
la
m
sa

d
e

LAMSADE

Laboratoire d’Analyse et Modélisation de Systèmes pour
l’Aide à la Décision

UMR 7243

 Octobre 2015

 QoS-aware Automatic Syntactic
 Service Compositionproblem:

 complexity and resolution

 Virginie Gabrel, Maude Manouvrier, Kamil Moreau,Cécile Murat

CAHIER DU
 367

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

TECHNICAL REPORT 1

QoS-aware Automatic Syntactic Service
Composition problem: complexity and resolution

Virginie Gabrel, Maude Manouvrier, Kamil Moreau, Cécile Murat

E-mail: {gabrel,murat,manouvrier}@lamsade.dauphine.fr

Abstract—Automatic syntactic service composition problem consists in automatically selecting services, from a registry, by matching

their input and output data. The composite service, resulting from this selection, allows producing a set of output data, needed by a

user, from a set of input data, given by the user. Many approaches resolving the aforementioned problem do experimentations on the

well-known Web Service Challenge (WSC) standard benchmark, which provides synthetic services. Since 2009, this challenge has

extended the syntactic service composite problem to a Quality-Of-Service (QoS) based one, by describing the synthetic services with

execution time and throughput values. In this article, we propose an original formulation of the QoS-aware automatic syntactic service

composition problem in terms of scheduling problem with AND/OR constraints, using a directed graph structure. For the WSC-09

benchmark (considering execution time and throughput QoS criteria), our exact algorithm outperforms the related work. We also

analyse the complexity of optimizing other QoS criteria (cost and reliability) and exhibit polynomial cases.

Index Terms—Service composition, Web Service Challenge, AND/OR constraints, QoS optimization.

✦

1 INTRODUCTION

The QoS-aware automatic syntactic service composition
problem consists in automatically composing services by
matching their parameters (input and output data) such
that the resulting composite service can produce a set of
output data from a set of input ones while optimizing a
Quality of Service (QoS) criterion.

Available services are grouped into a service registry.
For example the Jena Geography Dataset1 groups almost
200 geography services that have been gathered from
different web sites. Moreover, it exists standard synthetic
data benchmarks, as the Web Service Challenge (WSC) one.
As shown in [24], WSC proposes an incremental synthetic
data benchmark. In 2005, it only focuses on syntactic web
service composition, then it integrates OWL for Taxonomy
in 2007, and structured data types in 2008 [3], and finally
it introduces QoS criteria (execution time and throughput)
in 2009 [14]. These benchmarks are still used by recent
approaches. For example, authors in [23] experiment their
approach on WSC-08, authors in [17] on WSC-08 and WSC-
09 and authors in [22] on WSC09. In the last benchmarks, a
WSDL standard file [5] describes the input and output data
of all the services available in the registry. Input and output
data are hierarchically organized in terms of concepts using
ontology recorded in a OWL [4] standard file. A WSLA [15]
file describes the QoS criteria of all available services.

In this article, we propose an original formulation of the
QoS-aware automatic syntactic service composition prob-
lem in terms of scheduling problem with AND/OR con-
straints. This formulation allows to apply very efficient exact
algorithm for optimizing the execution time and throughput
criteria (as shown by our experimental results on WSC-09).
We analyse the complexity of optimizing other types of QoS

1. http://fusion.cs.uni-jena.de/professur/jgd/

criterion and exhibit polynomial cases.
This article is organized as follows. Section 2 presents

the syntactic service composition problem. Related work
is reviewed in Section 3. Considering execution time and
throughput criteria, the service composition problem is
modelled as a scheduling one with AND/OR constraints
in Section 4. Section 5 analyses the theoretical complexity of
service composition problem for cost and reliability criteria.
Finally Section 6 concludes.

2 SYNTACTIC SERVICE COMPOSITION PROBLEM

2.1 Problem description: the feasibility part

As the syntactic description of functions in programming
language, any (SOAP, RESTful or Web API) service s can be
syntactically described by the set of its input data (i.e. the
data needed by the service to be invoked), in(s), and the
set of its output data (i.e. the data produced by the service
invocation), out(s). We denote S the set of services and D
the set of data.

Example 1. Let us consider an example with 9 services and
9 data:

s 1 2 3 4 5 6 7 8 9
in(s) J K,P L,M M M P J N,P L

out(s) M J,M N P P,Q R,Q L T N, P
Table 1

An example of a service registry

A service registry can easily be represented by a directed
graph G = (X,U), called in the following ServiceData graph:

• vertices represent services and data: X = D ∪ S,
• directed edges in U represent two kinds of relation:

(1) an edge from i ∈ S to j ∈ D represents the fact

elena
Texte tapé à la machine

TECHNICAL REPORT 2

that service i produces data j (j ∈ out(i)), (2) an edge
from i ∈ D to j ∈ S represents the fact that service j
needs data i to be executed (i ∈ in(j)).

Let us remark that G is a bipartite graph (there does not
exist any directed edge linking two vertices belonging to S
or two vertices belonging to D).

Example 2. The ServiceData graph associated with the
service registry given in Table 1 is represented in Fig. 1.
Vertices representing data are represented with circles
while vertices representing services are drawn with
squares. For example, vertex P is a data produced by
services represented by vertices 4, 5 or 9 and, is an input
of services 2, 6 and 8. Service represented by vertex 3
needs data L and M to be executed and produces data
N .

K
2 5

Q

R

M
4

P
6

J
1

7
3

N
8

T

L
9

Figure 1. The ServiceData graph associated with registry of Table 1

Such graph can be, for example, easily built from
the files provided by WSC-09 synthetic benchmark.
This benchmark provides 5 test sets, each one
containing one service registry described by 3 main
files: services.wsdl describing services of the registry
by their input/output, taxonomy.owl containing the
ontology and Servicelevelagreements.wsla storing
the QoS (response time and throughput) criteria values
of each service. The first file, services.wsdl, contains
all the services’ identifier and their input and output,
each one being defined as an instance of the ontology
(i.e. as a leaf in a concept hierarchy) stored in the second
file taxonomy.owl. A service is then represented in the
ServiceData graph by a vertex s. Each input i of a service
s is represented by vertex i. Each output o of a service s is
represented by several vertices, as many as the concept of o
has ancestors in the ontology.

A user query, denoted (I, O), is defined by a set I ⊆ D of
data provided by the user and a set O ⊆ D of data required
by the user. A service can be invoked only if all its input data
are available. A data is available if it is computed by at least
one service or if it is provided by user. In order to respond
to a user query, the syntactic service composition problem
is to select the set of services (representing the components
of the resulting composite service) that provides, from the
user input set I , the set O of all outputs needed by the user.

We can formulate this problem on the ServiceData graph
transformed as follows:

• we add a fictitious vertex d0, representing an
”empty” data, d0 is included in D and I ; for each
service s which does not need any input to be exe-
cuted, we add an arc (d0, s) ∈ U (d0 is included in
in(s)),

• we add a fictitious vertex denoted s0, which repre-
sents the beginning of the process; s0 is included in
S and for all i ∈ I , we add an arc (s0, i) ∈ U (thus
out(s0) = I),

• we add a fictitious vertex denoted End, which rep-
resents the end of the process; End is included in S
and for all o ∈ O, we add an arc (o, End) ∈ U (thus
in(End) = O).

A solution denoted C of the aforementioned compo-
sition problem can be expressed in terms of sub-graph.
More precisely, given a query characterized by I and O,
a sub-graph GC = (XC , UC) of the ServiceData graph G
corresponds to a composite service C if and only if:

• s0 and End belong to XC ,

• if a vertex i ∈ D belongs to XC , at least one arc
(j, i) ∈ U , with j ∈ S, belongs to UC (it is due to the
fact that each data i has to be produced by at least
one service),

• if a vertex i ∈ S belongs to XC , all arcs (j, i) ∈ U ,
with j ∈ D, belong to UC (it is due to the fact that
each service i can be executed if and only if all its
inputs data are available),

• GC does not contain any directed cycle.

Example 3. Given the graph of Fig. 1 and the query de-
scribed by I = {J,K} and O = {Q, T }, we can propose
the composite service {6, 7, 8, 9}. This solution is asso-
ciated with the sub-graph represented in bold arcs in
Fig. 2.

K
2 5

Q

R

M
4

P
6

J
1

7
3

N
8

T

L
9

End

s0

Figure 2. A composite service and the associated sub-graph

Services can also be described by their Quality of Ser-
vice (QoS) criteria. Among QoS criteria, we can find the
execution time (i.e. the time needed by a service to produce
output data from the input ones) and the throughput (i.e. the
average rate of successful service execution). A service with
the highest throughput and the lowest execution time rep-
resents a good performing service. In the following section,
we present the most used criteria and the way to compute
them.

TECHNICAL REPORT 3

2.2 Problems description: the optimality part

The QoS of a composite service C depends on the QoS
of each service belonging to the composite service. In the
following, we choose to present 4 famous QoS criteria
which are representative of 4 different ways to aggregate
individual QoS services:

• Execution time. Let us denote e(s) ≥ 0 the execution
time of service s, PC the set of paths in GC from s0
to End and ve(C) the value of the composite service
C on the execution time criterion. We have:

ve(C) = max
µ∈PC

∑

s∈µ

e(s)

This criterion has to be minimized and the associated
problem is denoted ESC for Execution time Service
Composition.

• Throughput. Let us denote t(s) ≥ 0 the throughput
of service s and vt(C) the value of the composite
service C on the throughput criterion. We have:

vt(C) = min
s∈C

t(s) = min
µ∈PC

min
s∈µ

t(s)

This criterion has to be maximized and the associ-
ated problem is denoted TSC for Throughput Service
Composition.

• Cost. Let us denote c(s) ≥ 0 the cost of service s and
vc(C) the value of the composite service C on the
cost criterion. We have:

vc(C) =
∑

s∈C

c(s)

This criterion has to be minimized and the associated
problem is denoted CSC for Cost Service Composi-
tion.

• Reliability. Let us denote r(s), with 0 ≤ r(s) ≤ 1,
the reliability of service s and vr(C) the value of the
composite service C on the reliability criterion. We
have:

vr(C) =
∏

s∈C

r(s)

This criterion has to be maximized and the associated
problem is denoted RSC for Reliability Service
Composition.

The QoS values are modelized in the ServiceData
graph as weight on vertices: a vertex representing a
service has a weight equals to its QoS value, vertices
associated to data and fictitious vertices (s0 and End) have
a neutral value (0 for the execution time and the cost values,
1 for the reliability value and +∞ for the throughput value).

For the first two criteria, the value of a composite
service C is equal to the value of a particular optimal
path in GC : the maximal path value for the execution time
criterion and the minimal path value for the throughput
criterion. The first criterion has to be minimized while
the second one has to be maximized. That’s why these
two criteria, maxmin-type (or equivalently minmax-type)
criteria, can be similarly processed by computing optimal
path. Polynomial-time algorithm has been proposed in [12],

[13], [16] for solving the service composition problem with
a maxmin-type criterion. This composition problem is the
subject of the WSC-09 and a lot of papers have proposed
different approaches to solve it.
At the opposite, the last two criteria (sum-type and product-
type respectively) cannot be expressed in terms of path
value in GC . They induce much more difficult optimization
problems. Indeed in [10], [19], authors show that the service
composition problem is NP-hard when a sum-type criterion
(e.g number of services or cost) is minimized. In [10], the
proof is based on a reduction to the set cover problem. A
composition problem with a sum-type criteria is the subject
of WSC-08 which appears to be much more difficult than
WSC-09.

In this article, we analyse the four optimality problems
and the main results are:

• We show that the minimal ESC problem is a well-
studied project scheduling problem with AND/OR
precedence constraints.

• The minimal ESC and maximal TSC problems can
be solved with a polynomial-time algorithm (already
proposed in the project scheduling context) directly
applied on the associated ServiceData graph. This
algorithm is more efficient on WSC-09 instances than
already published algorithms [12], [13], [16].

• We analyse the particular difficulty of the NP-hard
minimal CSC problem and we exhibit a polynomial
case (associated with a particular class of ServiceData
graph).

• We show that the maximal RSC problem is NP-hard
and we exhibit also a polynomial case.

The next section presents the related approaches associ-
ated with the aforementioned problems.

3 RELATED WORK

QoS-aware automatic syntactic service composition prob-
lem has attracted a lot of attention from different fields
in recent years. We choose to classify these approaches
into four groups: search approaches, dependency graph
approaches, planning graph approaches and integer linear
programming ones.

3.1 Search approaches

In [11] and [13], the WSC-09 first run-up winners propose
a polynomial-time algorithm to solve the minimal ESC and
maximal TSC problems. Its worst case complexity, given in
[13], is O(a|S|2), with a the average number of services’
input data. This algorithm proceeds in two steps: in the first
one, a forward search aims to eliminate useless services for
satisfying the user’s query and, at the same time, computing
optimal QoS values of useful services; in the second stage,
a backtrack search is executed to determine the optimal
composite service.
In [16], authors propose a more efficient polynomial-time
algorithm for solving the minimal ESC problem: the first
part is a search procedure determining, at each iteration,
the minimal accumulated execution time of one service (this
search procedure stops when all user outputs are reached)

TECHNICAL REPORT 4

and, the second part is a backtrack search in order to
determine the optimal composite service. No theoretical
complexity results are given. This algorithm is the closest
one from ours. However, authors claim that the backtrack
search can be rather long. From our point of view, this is
due to the chosen data structures and we propose a more
efficient graph-based data structure.

3.2 Dependency graph approaches

In [10], [12], authors represent the QoS-aware automatic
syntactic service composition problem with another directed
graph, called dependency graph. In the dependency graph,
denoted H = (S,A), vertices only represent services. There
is an arc in A from i to j if the intersection between the
output of i and the input of j is not empty (i.e. service j
needs a subset of the outputs produced by i to be executed,
in(j)∩out(i) 6= ∅). The arc is tagged with the subset of data
belonging to the intersection.

Example 4. The dependency graph corresponding to the
service registry given in Table 1 is represented in Fig. 3.
Vertex s is drawn with a square divided into three
columns: in(s) is given in the first column, s in the
middle and out(s) in the latest one. For example, service
9 produces data N and P and service 6 needs data P , so
there is an arc from 9 to 6 with tag P .

J 1 M

K
P

2 J
M

L
M

3 N

M 4 P

M 5
Q
P

P 6
Q
R

J 7 L

N
P

8 T

L 9 N
P

L

L M

M

M

J

N

J

P

M

P

P

P
M

N , P

P

P

P

P

M

Figure 3. The dependency graph associated with registry of Table 1

Remark 1. For building the dependency graph, one needs
to read the service registry and, for each service, one
has to match its inputs with the outputs of all the
other services, inducing an O(|S|) complexity for each
service (cf. [20]). Consequently, the building step of the
dependency graph is O(|S|2).

In [12], authors propose a new approach: to apply a
Dijkstra-like algorithm on the dependency graph to solve
the minimal ESC and maximal TSC problems. In their
experimental results, we remark that the computational
time is mainly due to the building step of the dependency
graph (for example, for instances with 10000 services, the
building time is 6000ms while the resolution time is 60ms).
Moreover, this article includes inexact results: authors
claim that their algorithm can be also applied to determine
the optimal composite service on product-type criterion
(reliability). We show in section 5.2 that it is not true since
RSC problem is NP-hard. In [22], authors mention the

inexact result of [12] to establish that the optimal QoS can
be calculated in polynomial time, which is right only for
throughput and execution time criteria.

3.3 Planning graph approaches

IA planning and graph-based approaches are also used for
solving service composition problem. In [26], the planning
graph model is applied for solving the following feasibility
problem: does there exist a feasible composite service for
satisfying the user’s request, without considering any QoS
criterion? Considering QoS-aware composition problem,
Chen and Yan in [6] propose a three steps algorithm to
determine the best composite service considering maxmin
(for example execution time) or sum-type (for example
cost) criterion. First, they represent the service composition
problem by a labelled planning graph. Second, they trans-
form the labelled planning graph into a layered weighted
graph. Third, an optimal service composite is found by
applying Dijkstra shortest path algorithm. Steps 1 and 3 can
be done by polynomial-time algorithms; the complexity of
step 2 is not presented in [6]. Since the QoS-aware service
composition with sum-type criterion is NP-hard, the step 2
is the critical non-polynomial part of the algorithm. Thus,
this approach is not interesting for solving the service com-
position with maxmin-type criterion since a polynomial-
time algorithm has been already proposed in [11]. The same
criticism can be done for the algorithmic study presented in
[7].

3.4 Integer linear programming approaches

Integer Linear Programming (ILP) model have also been
proposed for QoS-aware service composition in [9], [21],
[25]. In [21], [25], a composite service is decomposed into
stages: a stage contains one service or several services
executed in parallel. The associated ILP represents the
problem of selecting one or several services per stages.
Thus, the number of variables and constraints can be huge
since there are proportional to the number of services and
data times the number of stages. Moreover, the number
of stages is not known; only upper bounds can be chosen
(the worst one is to set the number of stages equals to the
number of services). The size of the model does not allow
to solve big size instances. In [9], authors propose a new
ILP model containing a lower number of variables and
constraints (proportional to the number of services and
data). This model is able to optimize a QoS criterion while
satisfying transactional requirements. In a large majority of
the experimental instances of WSC-09, model of [9] finds a
better solution more rapidly than models proposed in [21],
[25].

In conclusion, for minimal ESC and maximal TSC prob-
lems, search approaches dominate. Planning graph and
integer linear programming approaches become relevant
for other QoS-aware problems. In this article, we show
that the minimal ESC problem is exactly a well studied
project scheduling problem with AND/OR constraints. In
[18] authors propose a Dijkstra-like algorithm to solve the
project scheduling problem with AND/OR constraints. This

TECHNICAL REPORT 5

algorithm is similar to the one proposed in [12] but can be
directly applied on a ServiceData graph (without computing
a Dependency graph) as shown in the next section.

4 SERVICE COMPOSITION AS A SCHEDULING

PROBLEM WITH AND/OR CONSTRAINTS

4.1 Scheduling with AND/OR precedence constraints

In a classical precedence-constrained scheduling problem,
we have to determine the starting times of a set of jobs to
be performed (with known execution time) while satisfying
some precedence constraints of the form ”a job i can be
performed if and only if a job j is finished”. Thus, a job
is ready to be executed when all its precedence jobs are
completed. The objective is to minimized the total execution
time of all the jobs. This well-known problem can be solved
in polynomial-time with critical-path algorithm (see e.g.
[2]). In a scheduling problem with AND/OR precedence
constraints, two kinds of jobs are considered: jobs with
AND precedence constraints are ”classical” ones which can
be executed when all their precedence jobs are finished,
and jobs with OR precedence constraints can be performed
when at least one of their precedence jobs is terminated.
This scheduling problem can also be solved in polynomial
time : several algorithms have been proposed in [1], [8], [18].

The minimal ESC problem is exactly a scheduling prob-
lem with AND/OR precedence constraints in a ServiceData
graph:

• both data and services are jobs,
• services are AND-constrained jobs since each service

can be executed if and only if ALL its input data are
available,

• data are OR-constrained jobs since each data is
available when AT LEAST one service produces it.

We adapt the algorithm given in [18] to the service
composition context and present it in the next subsection.

4.2 Polynomial-time algorithm for minimal ESC prob-
lem

In Algorithm 1, we denote nd(j): the number of non-
available data expected by service j to be executed (at the
beginning nd(j) = |in(j)|). Data and services are labelled
with variables λ representing their starting time. The labels
are initialized (lines 2-8) as follows:

• λ(s0) = 0 (line 4)
• λ(i) = 0 for all data i in I (lines 5-8),
• λ(i) = +∞ for any other data and services (line 2).

For each data i, we have to record in p(i) the index of
the service that produces i and p(i) is initialized by −1 (line
2).

At the beginning, all the labels are temporary. When the
label of service j becomes definitive, it means that λ(j) is
equal to its earliest starting time, while for the label of data
i, it means that the data i is available at the earliest time
λ(i). The set of vertices with definitive labels is denoted L
in Algorithm 1. At the beginning, it only contains s0.

The temporary finite labels of data are recorded in a heap
H : the root of the heap contains the data with the minimal
value temporary label. In Algorithm 1, the classical heap
functions are called:

• root(H): removes and returns the root of heap H
• insert(λ(i), i, H): inserts data i with key λ(i) into

heap H ,
• decrease(v, i,H): modifies heap H due to the

decreasing of the label of data i, now equals to v.

In a current iteration of the algorithm, the three follow-
ing steps are performed (lines 10-24):

Step 1. Data i with the smallest temporary λ(i) is chosen:
its label becomes definitive (line 10).

Step 2. For each service j with data i as input, decrease
nd(j) of one unit. If the counter nd(j) reaches
0, it means that the service j can be executed at
the starting time of its latest available input data:
λ(j) = max

i∈in(j)
λ(i). Thus, the label of service j

becomes definitive (line 14).
Step 3. For each service j whose label became definitive at

the previous step, consider each data i belonging to
out(j) and refresh its label as follows (lines 15-22):

λ(i) = min{λ(i), λ(j) + e(j)}

and update p(i).

When Algorithm 1 terminates, two cases have to be
considered:

• The fictitious vertex End has a definitive label. It
means that all its input data (corresponding to set O)
are available and, λ(End) is equal to the minimum
execution time. Using p(i) (∀i ∈ D), we can easily
obtain the solution composite service, with a very
fast backtrack procedure.

• The fictitious vertex End has not a definitive label
and λ(End) equals +∞. It means that it does not
exist any feasible composite service to satisfy the
query.

Algorithm 1 is exact: the proof is given
in [18]. Concerning the complexity, we obtain
O(|D| log2 |D|+

∑

s∈S |in(s)|+
∑

s∈S |out(s)| log2 |D|).

4.3 Polynomial-time algorithm for maximal TSC prob-
lem

Algorithm 1 can be modified in order to optimize the
throughput criterion. The entire algorithm is presented in
the appendix and we present here the main modifications.
First, the labels representing throughput are now initialized
as follows:

• λ(s0) = +∞,
• λ(i) = +∞ for all data i in I ,
• λ(i) = 0 for any other data and services.

Moreover, current iteration has to be updated as follows:

TECHNICAL REPORT 6

Algorithm 1 Minimal ESC.

1: H ← ∅
2: λ(i)← +∞ ∀i ∈ S ∪D and p(i)← −1 ∀i ∈ D
3: nd(j)← |in(j)| ∀j ∈ S
4: λ(s0)← 0 and L← {s0}
5: for all i ∈ out(s0) do
6: λ(i)← 0 and p(i)← 0
7: insert(λ(i), i, H)
8: end for
9: while End /∈ L and H 6= ∅ do

10: i← root(H) and L← L ∪ {i}
11: for all j ∈ S \ L such that i ∈ in(j) do
12: nd(j)← nd(j)− 1
13: if nd(j) == 0 then
14: L← L ∪ {j} and λ(j)← max

k∈in(j)
λ(k)

15: v ← λ(j) + e(j)
16: for all k ∈ out(j) \ L do
17: if λ(k) == +∞ then
18: λ(k)← v, p(k)← j and insert(v, k,H)
19: else if λ(k) > v then
20: λ(k)← v, p(k)← j, decrease(v, k,H)
21: end if
22: end for
23: end if
24: end for
25: end while
26: Return λ(End)

Step 1. Data i with the maximal temporary λ(i) is chosen:
its label becomes definitive.

Step 2. For each service j with data i as input, decrease
nd(j) of one unit. If the counter nd(j) reaches 0,
it means that the service j can be executed with a
throughput value equals to the minimal throughput
of its input data: λ(j) = min

i∈in(j)
λ(i). Thus, the label

of service j becomes definitive.
Step 3. For each service j whose label became definitive at

the previous step, consider each data i belonging to
out(j) and refresh its label as follows:

λ(i) = max{λ(i),min{λ(j), t(j)}}

The temporary finite labels of data are recorded in a
heap which root contains the maximal λ. We have to update
the heap function by replacing the decrease function by an
increase one.

When the service composition problem does not have
any solution, Algorithm 2 cannot label End and terminates
with λ(End) = 0.

Property 1. When Algorithm 2 terminates with End ∈ L,
we have: for all i ∈ S ∪ D, λ(i) = vt(µ

∗(i)) with µ∗(i)
the maximal throughput value path from s0 to the vertex
i.

Proof 1. The proof is by induction on the following property:
Rank k. We denote Dk (resp. Sk) the subset of data i
(resp. service i) belonging to L at the kth iteration of the
while loop (lines 9-25). For all i ∈ Dk ∪ Sk, λ(i) equals
to the optimal path value from s0 to i on throughput
criterion denoted vt(µ

∗(i)).

Rank 0. We have S0 = {s0} and D0 = I . At the
initialization step of the algorithm:
- λ(s0) = +∞⇒ λ(s0) = vt(µ

∗(s0))
- ∀i ∈ I, λ(i) = +∞⇒ λ(i) = vt(µ

∗(i))
So, the property is satisfied at rank 0 and we assume
that it is verified at rang k. Thus we have to show that
the property is satisfied at rank k + 1.
Rank k+ 1. The algorithm chooses the data d belonging
to D \ Dk such that λ(d) = maxi∈D\Dk λ(i). Let us
suppose that this choice is wrong: the optimal path is
µ∗(d) = {s0, d1, . . . sq, dq+1, . . . , sl, dl+1 = d} and we
have vt(µ

∗(d)) > λ(d). If we scan µ∗(d) from s0 to d,
one necessarily encounters a service, denoted sq with
1 ≤ q ≤ l, belonging to Sk while dq+1 /∈ Dk. Since
the property is verified at rank k and sq ∈ Sk, we have
λ(sq) = vt(µ

∗(sq)). By construction of the algorithm, we
also have: λ(dq+1) ≥ min{λ(sq), t(sq)} implying:

λ(dq+1) ≥ vt(µ
∗(sq)) (1)

Moreover, since µ∗(sq) ⊂ µ∗(d), we have:

vt(µ
∗(sq)) ≥ vt(µ

∗(d)) (2)

Equations 1 and 2 and the hypothesis vt(µ
∗(d)) >

λ(d) imply: λ(dq+1) > λ(d) which contradicts λ(d) =
maxi∈D\Dk λ(i). Thus, if the algorithm chooses data d
with the maximal λ(i), we have λ(d) = vt(µ

∗(d)). And
at the end, λ(End) = vt(µ

∗(End))

In the next sub-section, we present the computational
time taken by Algorithms 1 and 2 on WSC-09.

4.4 Experimental results

The experiments were carried out on a Dell PC with Intel
(R) Core TM i7-2760, with 2,4 Ghz processor and 8 Go
RAM, under Windows 7 and Python 2.7. We have tested
our algorithm on the 5 Test Sets (TS) of WSC-092 [14]
containing around 500, 4000, 8000 and 15000 WS (described
by their response time and throughput QoS values) with
respectively more than 1500, 10000, 15000 and 25000 data.
Each test set corresponds to one query.

For each test set, in Table 2, we report:

• in the first line, the number of vertices associated
with services, |S|,

• in the second line, the number of vertices associated
with data, |D|,

• in the third line, the computational time (in ms)
necessary for Algorithm 1 to compute the optimal
solution on the execution time criterion and the com-
putational time necessary to obtain the correspond-
ing optimal solution with the backtrack procedure,

• in the fourth line, the computational time (in ms)
necessary for Algorithm 2 to compute the optimal
solution on the throughput criterion and the compu-
tational time necessary to obtain the corresponding
optimal solution with the backtrack procedure.

Let us compare our results with the closest approaches
already published. First, our results are better than those of
[12], since we don’t have to build the dependency graph.

2. Available at http://www.it-weise.de/documents/files/wsc05-09.zip.

TECHNICAL REPORT 7

TS01 TS02 TS03 TS04 TS05
|S| 572 4129 8138 8301 15211
|D| 1330 9599 16263 16364 28337

ESC /back. (ms) 3/5 11/6 11/6 25/5 30/6
TSC /back. (ms) 2/5 9/5 15/5 26/6 24/7

Table 2
Sizes and computing times on WSC-09

Our results are also better than those of [16] (and conse-
quently than those of [11], [13]) because our algorithm is
based on a directed graph structure, which specially allows
us to define a very efficient backtrack procedure. Unfortu-
nately, as shown below, this polynomial-time algorithm can
not be extended to other QoS criteria.

5 QOS-AWARE SYNTACTIC COMPOSITION PROB-

LEM: NP-HARD CASES

5.1 Minimal CSC problem: the case of sum-type QoS
citerion

5.1.1 General case

The minimal CSC problem is proved to be NP-hard in [10].
Considering a service s (resp. a data d), we denote by Cs

(resp. Cd) a composite service ending with s (resp. d) and
by vc(Cs) (resp. vc(Cd)) its associated cost. The difficulty
comes from the fact that vc(Cs) =

∑

sk∈Cs
c(sk) is not

equal to
∑

d∈in(s) vc(Cd) + c(s). In order to illustrate this
problem, let us consider the two following examples.

In the first typical situation, a service produces several
data.

si

K

L

sj

Figure 4. An example with a two-output data service

The service composite of Fig. 4 has a total cost
vc(Csj) = c(si) + c(sj). On the other hand, summing the
cost values of sj ’s inputs, we obtain:

vc(CK) + vc(CL) = 2c(si)

When adding c(sj), we do not obtain vc(Csj) since c(si) is
counted twice (forgetting that K and L are both outputs of
the same service si).

In the second typical situation, a data is an input of
several services.

The composite service of Fig. 5 has a total cost
vc(Csl) = c(si) + c(sj) + c(sk) + c(sl). On the other hand,

si
P

sk

sj
Q

R

sl

Figure 5. An example with a same input data of two distinct services

summing the cost values of the sl’s inputs, we obtain:

= vc(CQ) + vc(CR)

= vc(Csj) + vc(Csk)

= 2vc(CP) + c(sj) + c(sk)

= 2c(si) + c(sj) + c(sk)

When adding c(sl), we do not obtain vc(Csl) since the cost
of P is counted twice.

In general case, the cost of a composite service cannot
be computed by summing the cost of its input data and
Algorithm 1 cannot be updated for solving minimal CSC
problem. However, in the following section, we can exhibit
a polynomial case.

5.1.2 A polynomial case for solving CSC problem

If we assume the two following hypotheses, then the
minimal CSC problem becomes polynomial:
- (a) each service produces only one data,
- (b) each data is an input of only one service.
In this case, each feasible composite service is such that:

vc(Cs) =
∑

i∈in(s)

vc(Ci) + c(s) (3)

since XCi∩XCj = {s0}, ∀i, j ∈ in(s). If XCi∩XCj 6= {s0},
then it exists a vertex v 6= s0, v ∈ Cs such it exits a path from
v to i and it exists a path from v to j. Then i ∈ in(s) and
j ∈ in(s) imply that there exist two disjoint paths from v
to s which contradicts hypothesis (a) or (b). In particular,
equation 3 is useful for the minimum cost value and allows
us to adapt the Algorithm 1 for solving the minimal CSC
problem.

5.2 Maximal RSC problem: the case of product-type
QoS citerion

In this section, we show that the maximal RSC problem is
NP-hard.

Theorem 1. The maximal RSC problem is NP-hard.

Proof 2. The proof is based on a reduction from the minimal
CSC problem. Given an instance of the minimal CSC
problem described by a graph G = (X,U) and a cost
c(s) ≥ 0 associated to each service s, we build an
instance of the maximal RSC problem described by the
same graph G and a reliability r(s) = e−c(s) associated
to each service s, inducing that each r(s) belongs to [0, 1].
An optimal solution of such an instance of the maximal

TECHNICAL REPORT 8

RSC problem is equivalent to an optimal solution of the
minimal CSC problem since:

max
C∈C

∏

s∈C

r(s) ⇔ max
C∈C

ln

(

∏

s∈C

r(s)

)

⇔ max
C∈C

∑

s∈C

ln(r(s))

⇔ max
C∈C

∑

s∈C

ln(e−c(s))

⇔ max
C∈C

∑

s∈C

(−c(s))

⇔ min
C∈C

∑

s∈C

c(s)

Therefore, both maximal RSC and minimal CSC prob-
lems are NP-hard.

In [12], authors claim that their polynomial-time algo-
rithm (similar to Algorithm 1 applied to the dependency
graph) can be used for exactly solving maximal RSC prob-
lem. Theorem 1 implies that this claim is wrong. Here we
give an example to illustrate that the algorithm provided
in [12] does not give the optimal solution.

Example 5. In the dependency graph in Fig. 6, we consider
the following reliability:

Services 1 2 3
Reliability 0.8 0.8 0.7

K ,L

K 1 M
N

L 2
P
Q

K
L

3

M
N
P
Q

M ,N ,P ,Q

K

L

K, L

M , N

P , Q

M , N , P , Q

Figure 6. A counterexample for the reliability measure

At each current iteration, algorithm of [12] chooses a
maximal temporary label for becoming definitive: the
first label concerns service 1 and the second one service
2. Thus, the algorithm determines the composite service
with services 1 and 2 to obtain data M , N , P and Q with
global reliability of 0.64. The optimal solution is clearly
the service 3 with reliability of 0.7 which is better.

Corollary 1. If the ServiceData graph G = (X,U) verifies
hypothesis (a) and (b), then the maximal RSC problem
becomes polynomial.

6 CONCLUSION

The QoS-aware syntactic service composition problem has
been the subject of numerous studies. The well-known
benchmark WSC, allows experimenting approaches for such
problem using synthetic services. In this article, we recall
that the theoretical complexity of the challenges of 2008
and 2009 are different: the service composition problem
presented in WSC-08 (without QoS) is NP-hard, while for
the problem presented in WSC-09 (QoS-aware service com-
position), we propose a polynomial-time algorithm. This al-
gorithm is an extension of a Dijkstra-like project scheduling
algorithm, with AND/OR constraints, for exactly solving
the service composition problem. Our algorithm is based
on a simple directed graph structure and does not need
to construct any additional structure, like a dependency
graph or a planning graph as usually used in the related
work. Thanks to this simple graph structure, our approach
is the most efficient one for exactly solving, in polynomial
time, the service composition problem with a maxmin-
type criterion (like execution time or throughput criterion).
Unfortunately, for sum-type criterion (like cost QoS crite-
rion), polynomial time approaches can not be applied, since
this problem has been shown as NP-hard. In this article,
we highlight the particular difficulty of such optimization
problem and exhibit polynomial cases. We also show that
the QoS-aware syntactic composition problem is NP-hard,
when optimizing a product-type criteria like the reliability
criterion. Approximate approaches can be defined for solv-
ing NP-hard composition problems. This is left for future
research.

REFERENCES

[1] G. M. Adelson-Velsky and E. Levner, “Project Scheduling in
AND/OR Graphs: A Generalization of Dijkstra’s Algorithm,”
Mathematics of Operations Research, vol. 27, no. 3, pp. 504–517,
2002.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,
Network Flows: Theory, Algorithms, and Applications. Prentice-
Hall, Inc., 1993.

[3] A. Bansal, M. Blake, S. Kona, S. Bleul, T. Weise, and M. Jaeger,
“WSC-08: Continuing the Web Services Challenge,” in IEEE CEC,
July 2008, pp. 351–354.

[4] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein, “OWL Web
Ontology Language Reference,” W3C, Tech. Rep., February 2004,
http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

[5] D. Booth and C. K. Liu, “Web services description language
(wsdl) version 2.0 part 0: Primer,” W3C, Tech. Rep., 2007,
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626.

[6] M. Chen and Y. Yan, “QoS-aware Service Composition over
Graphplan through Graph Reachability,” in IEEE International
Conference on Services Computing (SCC),, 2014, pp. 544–551.

[7] S. Deng, B. Wu, J. Yin, and Z. Wu, “Efficient planning for top-k
web service composition,” Knowledge and information systems,
vol. 36, no. 3, pp. 579–605, 2013.

[8] E. A. Dinic, “The Fastest Algorithm for the Pert Problem with
AND-and OR-Nodes (The New-Product-New-Technology Prob-
lem),” in Proceedings of the 1st Integer Programming and
Combinatorial Optimization Conference. University of Waterloo
Press, 1990, pp. 185–187.

[9] V. Gabrel, M. Manouvrier, and C. Murat, “Optimal and Automatic
Transactional Web Service Composition with Dependency Graph
and 0-1 Linear Programming,” in Service-Oriented Computing.
Springer, 2014, pp. 108–122.

[10] S. C. Geyik, B. K. Szymanski, and P. Zerfos, “Robust dynamic
service composition in sensor networks,” Services Computing,
IEEE Transactions on, vol. 6, no. 4, pp. 560–572, 2013.

TECHNICAL REPORT 9

[11] Z. Huang, W. Jiang, S. Hu, and Z. Liu, “Effective Pruning Algo-
rithm for QoS-Aware Service Composition,” in IEEE Conference
on Commerce and Enterprise Computing, 2009, pp. 185–187.

[12] W. Jiang, T. Wu, S. Hu, and Z. Liu, “Qos-aware automatic service
composition: A graph view,” Journal of computer science and
technology, vol. 26, no. 5, pp. 837–853, 2011.

[13] W. Jiang, C. Zhang, Z. Huang, M. Chen, and S. Hu, “QSynth:
A Tool for QoS-Aware Automatic Service Composition,” in IEEE
International Conference on Web Services (ICWS), 2010, pp. 42–49.

[14] S. Kona, A. Bansal, M. B. Blake, S. Bleul, and T. Weise, “WSC-2009:
A Quality of Service-Oriented Web Services Challenge,” in IEEE
CEC, 2009, pp. 487–490.

[15] H. Ludwig, A. Keller, A. Dan, R. P. King, and
R. Franck, “Web Service Level Agreement (WSLA)
Language Specification,” W3C, Tech. Rep., 2003,
http://www.research.ibm.com/wsla/WSLASpecV1-
20030128.pdf.

[16] S. Luo, B. Xu, and Y. Yan, “An accumulated-qos-first search
approach for semantic web service composition,” in IEEE
International Conference on Service-Oriented Computing and
Applications (SOCA), 2010, pp. 1–4.

[17] H. Ma, A. Wang, and M. Zhang, “A hybrid ap-
proach using genetic programming and greedy
search for qos-aware web service composition,” in
Trans. on Large-Scale Data- and Knowledge-Centered Sys. XVIII,
ser. Lecture Notes in Computer Science, A. Hameurlain, J. Kng,
R. Wagner, H. Decker, L. Lhotska, and S. Link, Eds. Springer
Berlin Heidelberg, 2015, vol. 8980, pp. 180–205.

[18] R. H. Möhring, M. Skutella, and F. Stork, “Scheduling with
AND/OR precedence constraints,” SIAM Journal on Computing,
vol. 33, no. 2, pp. 393–415, 2004.

[19] S.-C. Oh, D. Lee, and S. R. Kumara, “Effective web service com-
position in diverse and large-scale service networks,” Services
Computing, IEEE Transactions on, vol. 1, no. 1, pp. 15–32, 2008.

[20] A. M. Omer, “A framework for Automatic Web Service Compo-
sition based on service dependency analysis,” Ph.D. dissertation,
TU Dresden, 2011.

[21] F. Paganelli, T. Ambra, and D. Parlanti, “A qos-aware service
composition approach based on semantic annotations and integer
programming,” International Journal of Web Information Systems,
vol. 8, no. 3, pp. 296–321, 2012.

[22] P. Rodriguez Mier, M. Mucientes, and M. Lama, “A hybrid local-
global optimization strategy for qos-aware service composition,”
in IEEE International Conferrence on Web Services (ICWS), 2015,
pp. 735–738.

[23] P. Rodriguez Mier, C. Pedrinaci, M. Lama, and M. Mucientes,
“An Integrated Semantic Web Service Discovery and Composition
Framework,” Services Computing, IEEE Transactions on, vol. PP,
no. 99, 2015.

[24] T. Weise, M. Blake, and S. Bleul, “Semantic web service compo-
sition: The web service challenge perspective,” in Web Services
Foundations, A. Bouguettaya, Q. Z. Sheng, and F. Daniel, Eds.
Springer New York, 2014, pp. 161–187.

[25] J. J.-W. Yoo, S. Kumara, D. Lee, and S.-C. Oh, “A web service
composition framework using integer programming with non-
functional objectives and constraints,” algorithms, vol. 1, p. 7,
2008.

[26] X. Zheng and Y. Yan, “An efficient syntactic web service compo-
sition algorithm based on the planning graph model,” in IEEE
International Conference on Web Services(ICWS’08) , 2008, pp.
691–699.

APPENDIX

ALGORITHM FOR SOLVING MAXIMAL TSC PROBLEM

The updated lines of Algorithm 1 are shown by ⊲.

Algorithm 2 Maximal TSC.

1: H ← ∅
2: λ(i)← 0 ∀i ∈ S ∪D and p(i)← −1 ∀i ∈ D ⊲
3: nd(j)← |in(j)| ∀j ∈ S
4: λ(s0)← +∞ and L← {s0} ⊲
5: for all i ∈ out(s0) do
6: λ(i)← +∞ and p(i)← 0 ⊲
7: insert(λ(i), i, H)
8: end for
9: while End /∈ L and H 6= ∅ do

10: i← root(H) and L← L ∪ {i}
11: for all j ∈ S \ L such that i ∈ in(j) do
12: nd(j)← nd(j)− 1
13: if nd(j) == 0 then
14: L← L ∪ {j} and λ(j)← min

k∈in(j)
λ(k) ⊲

15: v = min{λ(j), t(j)} ⊲
16: for all k ∈ out(j) \ L do
17: if λ(k) == 0 then ⊲
18: λ(k)← v, p(k)← j and insert(v, k,H)
19: else if λ(k) < v then ⊲
20: λ(k)← v, p(k)← j, increase(v, k,H) ⊲
21: end if
22: end for
23: end if
24: end for
25: end while
26: Return λ(End)

TECHNICAL REPORT 10

Virginie Gabrel got her computational science
PhD in 1994 at Université Paris-Dauphine, while
her research has been done and funded by
the DGA (Direction Générale de l’Armement).
In 2005, she got the HDR at Université Paris-
Dauphine. From 1996 to 2002, she has been
associate professor at Paris 13 university. Since
2002, she is associate professor at Université
Paris-Dauphine. From 2012 to 2014, she was
assistant director of LAMSADE laboratory. She
published around 40 papers in journals and con-

ferences. Her research activities concern the modelization in Operations
Research, the resolution of huge integer programs (with decomposition
techniques), the industrial applications (satellite mission planning, net-
work optimization, service composition) and the robustness in mathe-
matical programming.

Maude Manouvrier is currently working as an
Assistant Professor at the LAMSADE Lab. of
Université Paris-Dauphine. She has received a
Ph.D. in Computer Science in 2000. From 1998
to 2003, she has been working in an interna-
tional CNRS - CONICIT cooperation with the
Universidad Central de Venezuela (UCV), and
from 2008 to 2012, in an international CNRS -
FONACIT cooperation with the Universidad Si-
mon Bolivar (USB - Caracas - Venezuela). She
was reviewer or member of program committee

of several International Conferences and Journals and was, in 2012 and
2013, Program Chair of the International Symposium on Advances in
Transaction Processing (in conj. with the International Conference on
Mobile Web Information Systems). She published 23 papers in inter-
national journals and conferences. Her research interests are focused
on Spatio-Temporal and Multimedia Databases, Access Methods and
Indexing Structures, Content-Based Image Retrieval and Web Services
Composition.

Kamil Moreau is a student at Université Paris-
Dauphine, currently in the 3rd year of a bachelor
in Applied Mathematics and Computing Science,
also in the 3rd year of the Pluridisciplinar Cycle
of further studies (CyPES) at Paris Sciences et
Lettres. He passed his baccalauréat with distinc-
tion in 2013. He has studied graphs since 2014
and worked over service composition problem
during a research internship supervised by Vir-
ginie Gabrel in 2015.

Cécile Murat received her Ph.D. in Com-
puter Science in 1997, from Université Paris-
Dauphine. She is, from 1998, Associate Pro-
fessor, in the LAMSADE Lab. She received, in
1998, for her Ph.D. studies the Award Nathalie
Demassieux in Sciences (”Prix de la Chancel-
lerie des Universités de Paris”). In 2015, she got
the HDR from Université Paris-Dauphine. Her
research activities, in operation research, aim to
solve decision problems. The main focus of her
research is to create and to develop combina-

torial optimization tools, each for integrate more concepts related to
the random uncertainty and others, to solve efficiently practical difficult
problems. She is the author of one book and 31 articles in international
journals and conferences.

	Première page cahier.pdf
	Page 1

	Première page cahier.pdf
	Page 1

