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Abstract

Several real-life complex systems, like human societies or economic net-

works, are formed by interacting units characterized by patterns of relation-

ships that may generate a group-based social hierarchy. In this paper, we

address the problem of how to rank the individuals with respect to their abil-

ity to “influence” the relative strength of groups in a society. We also analyse

the effect of basic properties in the computation of a social ranking within

specific classes of (ordinal) coalitional situations.

Keywords: social ranking, coalitional power, ordinal power, axiomatic approach.

1 Introduction

Ranking is a fundamental ingredient of many real-life situations, like the ranking

of candidates applying to a job, the rating of universities around the world, the

distribution of power in political institutions, the centrality of different actors in

social networks, the accessibility of information on the web, etc. Often, the criterion

used to rank the items (e.g., agents, institutions, products, services, etc.) of a

set N also depends on the interaction among the items within the subsets of N (for

instance, with respect to the users’ preferences over bundles of products or services).

In this paper we address the following question: given a finite set N of items and a

ranking over its subsets, can we derive a “social” ranking over N according to the

“overall importance” of its single elements?

For instance, consider a company with three employees 1, 2 and 3 working in the

same department. According to the opinion of the manager of the company, the

3Email: stefano.moretti@dauphine.fr
4Email: meltem.ozturk@dauphine.fr
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job performance of the different teams S ⊆ N = {1, 2, 3} is as follows: {1, 2, 3} <

{3} < {1, 3} < {2, 3} < {2} < {1, 2} < {1} < ∅ (S < T , for each S, T ⊆ N ,

means that the performance of S is at least as good as the performance of T ).

Based on this information, the manager asks us to make a ranking over his three

employees showing their attitude to work with others as a team or autonomously.

Intuitively, 3 seems to be more influential than 1 and 2, as employee 3 belongs to

the most successful teams in the above ranking. Can we state more precisely the

reasons driving us to this conclusion? And what can we say if we have to decide who

between 1 and 2 is more productive and deserves a promotion? In this paper we

analyse different properties of ordinal social rankings in order to get some answers

to such questions.

In this paper, a social ranking is defined as a map associating to each power

relation (i.e., a total preorder over the set of all subsets of N) a total preorder over

the elements of N . The properties for social rankings that we analyse in this paper

have classical interpretations, such as anonymity and symmetry, saying that the

ranking should not depend on the identity of the elements of N , or the dominance,

saying that an element i ∈ N should be ranked higher than an element j ∈ N

whenever i dominates j, i.e. a coalition S ∪ {i} is stronger than S ∪ {j} for each

S ⊂ N not containing neither i nor j. Another property we study in this paper is

the independence of irrelevant coalitions, saying that the social ranking between two

elements i and j should only depend on their respective contributions when added

to coalitions not containing neither i nor j (in other words, the information needed

to rank i and j is provided by the relative comparison of coalitions U,W ⊂ N

such that U \ {i} = W \ {j}). Finally, we introduce the notion of separability,

which specifies how to combine social rankings associated to “compatible” power

relations, i.e. power relations whose intersection is still a power relation. We use

these properties to axiomatically characterize social rankings on particular classes

of power relations.

The structure of the paper is the following. In the next section, we present some

related approaches from the literature and our main contributions. Basic notions and

definitions are presented in Section 3. In Section 4 we introduce and discuss some
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properties for social rankings. In Section 5 we study the compatibility of certain

axioms and their effect on some elementary notions of social ranking. Section 6 is

devoted to the presentation of the axiomatic analysis of social rankings on a special

class of compatible power relations. In Section 7 we focus on the analysis of social

rankings that satisfy both the dominance property and the property of independence

of irrelevant coalitions, and that, on particular power relations, are specified by the

ordering of coalitions of the same size. Section 8 concludes.

2 Related Work and Contribution

The central question of this paper seems closely related to the well known problem

of measuring the power of players in a cooperative game (see, for instance, [14]). In

this context, given the information about which coalitions of players are winning or

not, one can use several power indices from the literature on coalitional games to as-

sess the power of the single players [6, 1, 18, 9]. However, our framework is different

for at least two reasons: first, we face coalitional situations where only a qualitative

(ordinal) comparison of the strength of coalitions is given; second, we look for a

ranking over the single elements of N , and we do not require a quantitative assess-

ment of their “power”. Differently stated, we characterize social rankings starting

from the very basic properties of a power relation over coalitions, and without the

use of any particular coalitional game, that would necessarily require the conversion

of the (purely ordinal) information about the relative strength of coalitions into a

quantitative assessment of their power.

As far as we know, the only attempt in the literature to generalize the notions

of coalitional game and power index within an ordinal framework has been provided

in [12], where, given a total preorder representing the relative strength of coalitions,

a social ranking over the player set is provided according to a notion of ordinal in-

fluence and using the Banzhaf index [1] of a “canonical” coalitional game. In a still

different context, a model of coalition formation has been introduced in [15], where

the relative strength of disjoint coalitions is represented by an exogenous binary

relation and the players try to maximize their position in a social ranking.
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We also noticed a connection with some kind of “inverse problems”, precisely,

how to derive a ranking over the set of all subsets of N in a way that is “com-

patible” with a primitive ranking over the single elements of N . This question has

been carried out in the tradition of the literature on extending an order on a set

N to its power set (the set of all possible subsets of N) with the objective to ax-

iomatically characterize families of ordinal preferences over subsets (see, for instance,

[2, 3, 4, 5, 8, 7, 10, 11]). In this context, an order < on the power set of N is re-

quired to be an extension of a primitive order P on N . This means that the relative

ranking of any two singleton sets according to < must be the same as the relative

ranking of the corresponding alternatives according to P . In this framework, most

of the axiomatic approaches from literature focused on properties suggesting that

the interaction among single objects should not play a relevant role in establishing

the ranking among subsets [4, 17, 3]. An example is the property of responsive-

ness introduced by [17], which requires that a set S ⊆ N is preferred to a set

T ⊆ N whenever S is obtained from T by replacing some object t ∈ T with another

i ∈ N not in T which is preferred to t (according to the primitive ranking on the

universal set N). In other words, the responsiveness property prevents complemen-

tarity or incompatibility effects among objects within sets of the same cardinality.

The responsiveness property, together with another property called fixed-Cardinality

neutrality and saying that the labelling of the alternatives is irrelevant in establish-

ing the ranking among sets of a fixed cardinality, was used by [4] to characterize a

particular class of extension based on a lexicographic comparison of sets of the same

size.

In real life situations it seems not realistic to exclude a priori the possibility that

items within coalitions may interact. The ranking with employees is one example,

another one (and a classical one) is the problem of deciding whether to combine

two distinct therapies for a disease: the combination of two treatments does not

always improve the chances of success, and may provoke more serious side effects,

with respect to each single treatment. More in general, according to our definition,

we do not require a power relation to be responsive: even if a singleton coalition

{x} is strictly stronger than a singleton coalition {y}, we can have that for another
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coalition S (not containing neither x nor y) S ∪ {y} is stronger than a coalition

S ∪ {x} (e.g., because of an incompatibility among x and some objects in S).

3 Preliminaries and notations

A binary relation R on a finite set N = {1, . . . , n} is a collection of ordered pairs

of elements of N , i.e. R ⊆ N × N . ∀x, y ∈ N , the more familiar notation xRy

will be often used instead of the more formal one (x, y) ∈ R. We provide some

standard properties for R. Reflexivity : for each x ∈ N , xRx; transitivity : for each

x, y, z ∈ N , xRy and yRz ⇒ xRz; totality : for each x, y ∈ N , x 6= y ⇒ xRy or

yRx; antisymmetry : for each x, y ∈ N , xRy and yRx ⇒ x = y. A reflexive and

transitive binary relation is called preorder. A preorder that is also total is called

total preorder. A total preorder that also satisfies antisymmetry is called linear

order. The notation ¬(xRy) means that xRy is not true. We denote by 2N the

power set of N and we use the notations T N and T 2N to denote the set of all total

preorders on N and on 2N , respectively. Moreover, the cardinality of a set S ∈ 2N

is denoted by |S|. In the remaining of the paper, we will also refer to an element

S ∈ 2N as a coalition S.

Consider a total preorder <⊆ 2N × 2N over the subsets of N . Often we will

use the notation S � T to denote the fact that S < T and ¬(T < S) (in this

case, we also say that the relation between S and T is ‘strict’), and the notation

S ∼ T to denote the fact that S < T and T < S. For each i, j ∈ N , i 6= j, and all

k = 1, . . . , n − 2, we denote by Σk
ij = {S ∈ 2N\{ij} : |S| = k} the set of all subsets

of N not containing neither i nor j with k elements. Moreover, for each i, j ∈ N ,

we define the set Dk
ij(<) = {S ∈ Σk

ij : S ∪ {i} < S ∪ {j}} as the set of coalitions

S ∈ 2N\{ij} of cardinality k such that S ∪ {i} is in relation with S ∪ {j} (and,

changing the ordering of i and j, the set Dk
ji(<) = {S ∈ Σk

ij : S ∪ {j} < S ∪ {i}}).
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4 Axioms for social rankings

In the following of these notes, we interpret a total preorder < on 2N as a power

relation, that is, for each S, T ∈ 2N , S < T stands for ‘S is considered at least as

strong as T according to the power relation <’.

Given a class C2N ⊆ T 2N of power relations, we call a map ρ : C2N −→ T N , as-

signing to each power relation in C2N a total preorder on N , a social ranking solution

or, simply, a social ranking. Then, given a power relation <, we will interpret the

total binary relation ρ(<) associated to < by the social ranking ρ, as the relative

power of players in a society under relation <. Precisely, for each i, j ∈ N , iρ(<)j

stands for ‘i is considered at least as influential as j according to the social ranking

ρ(<)’, where the influence of an agent is intended as her/his ability to join coalitions

in the strongest positions of a power relation. Note that we require that ρ(<) is a

total preorder over the elements of N , that is we always want to express the relative

comparison of two agents, and such a relation must be transitive.

A social ranking ρ : C2N −→ T N such that iρ(<)j ⇔ {i} < {j} for each <∈ C2N

and each i, j ∈ N is said to be primitive (i.e., it neglects any information contained

in < about the comparison of coalitions of cardinality different from 1). A social

ranking ρ : C2N −→ T N such that iρ(<)j and jρ(<)i for all i, j ∈ N is said to be

unanimous (N is an indifference class with respect to ρ(<)).

Now we introduce some properties for social rankings. The first axiom is the

dominance one: if each coalition S containing agent i but not j is stronger than

coalition S with j in the place of i, then agent i should be ranked higher than agent

j in the society, for any i, j ∈ N . Precisely, given a power relation <∈ T 2N and

i, j ∈ N we say that i dominates j in < if S ∪ {i} < S ∪ {j} for each S ∈ 2N\{i,j}

(we also say that i strictly dominates j in < if i dominates j and in addition there

exists S ∈ 2N\{i,j} such that S ∪ {i} � S ∪ {j}).

Definition 1 (DOM). A social ranking ρ : C2N −→ T N satisfies the dominance

(DOM) property on C2N ⊆ T 2N if and only if for all <∈ C2N and i, j ∈ N , if i

dominates j in < then iρ(<)j [and ¬(jρ(<)i) if i strictly dominates j in <].

The following axiom states that the relative strength of two agents i, j ∈ N in
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the social ranking should only depend on their effect when they are added to each

possible coalition S not containing neither i nor j, and the relative ranking of the

other coalitions is irrelevant. Formally:

Definition 2 (IIC). A social ranking ρ : C2N −→ T N satisfies the Independence of

Irrelevant Coalitions (IIC) property on C2N ⊆ T 2N iff

iρ(<)j ⇔ iρ(w)j

for all i, j ∈ N and all power relations <,w∈ C2N such that for each S ∈ 2N\{i,j}

S ∪ {i} < S ∪ {j} ⇔ S ∪ {i} w S ∪ {j}.

For the following property we need some further notations. Let Π be the set of

all bijections π : N → N . With a slightly abuse of notations, we also denote by

π(S) the image under π of a coalition S, i.e. π(S) = {π(i) : i ∈ S}.

The anonymity property says that a social ranking of two agents i and j should

not depend on the labels. We can formulate this principle as follows.

Definition 3 (ANON). A social ranking ρ : C2N −→ T N satisfies the anonymity

(ANON) property on C2N ⊆ T 2N iff

iρ(<)j ⇔ π(i)ρ(<)π(j)

for all i, j ∈ N , π ∈ Π and <∈ C2N such that for each S ∈ 2N\{i,j}

S ∪ {i} < S ∪ {j} ⇔ π(S) ∪ {π(i)} < π(S) ∪ {π(j)}.

We notice that in the framework of the extension problems discussed in Sections

2, this property is very close to the neutrality property introduced in [4]. One

can define a similar but more restrictive property by paying more attention to the

comparisons of subsets having the same cardinality.

Definition 4 (SYM). A social ranking ρ : C2N −→ T N satisfies the symmetry

(SYM) property on C2N ⊆ T 2N iff

iρ(<)j ⇔ pρ(<)q

for all i, j, p, q ∈ N and <∈ C2N such that |Dk
ij| = |Dk

pq| and |Dk
ji| = |Dk

qp| for each

k = 0, . . . , n− 2.
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Remark 1. Note that if a social ranking ρ satisfies the SYM axiom on C2N ⊆ T 2N ,

then for every <∈ C2N and i, j ∈ N , if |Dk
ij| = |Dk

ji| for each k = 0, . . . , n− 2, then

iρ(<)j and jρ(<)i, that is i and j are indifferent in ρ(<) (to see this, simply take

p = i and q = j in Definition 4).

Remark 2. If we want to check if a given social ranking rule satisfies DOM, IIC,

ANON or SYM only partial information on < is needed. In fact, conditions on the

ranking ρ(<) between two elements {i, j} only depend on the comparisons of subsets

having the same cardinality and sharing the same subset S ∈ 2N\{i,j} not containing

neither i nor j.

Table 1 presents the partial information that we need in order to analyse the

social ranking on three elements 1, 2, and 3 for N = {1, 2, 3, 4}1. For instance,

concerning the comparison ρ(<) between 1 and 2, only the first column of Table 1

is needed.

Table 1: Partial information needed for the analysis of ρ(<) for N = {1, 2, 3, 4}

1 vs 2 2 vs. 3 1 vs. 3

{1} < or 4 {2} {2} < or 4 {3} {1} < or 4 {3}

{1, 3} < or 4 {2, 3} {1, 2} < or 4 {1, 3} {1, 2} < or 4 {2, 3}

{1, 4} < or 4 {2, 4} {2, 4} < or 4 {3, 4} {1, 4} < or 4 {3, 4}

{1, 3, 4} < or 4 {2, 3, 4} {1, 2, 4} < or 4 {1, 3, 4} {1, 2, 4} < or 4 {2, 3, 4}

From now, we will sometimes omit braces and commas to separate elements, for

instance, ij denotes the set {i, j}.

Table 2 is the comparison table of the power relation “{1, 2, 3} < {3} < {1, 3} <

{2, 3} < {2} < {1, 2} < {1} < ∅”.

Remark 3. We present in the following some properties of comparisons tables.

1The complete table for the social ranking relation on N = {1, 2, 3, 4} has three more columns

: (1 vs 4), (2 vs 4) and (3 vs 4).
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Table 2: Comparison table of {1, 2, 3} < {3} < {1, 3} < {2, 3} < {2} < {1, 2} <

{1} < ∅.
1 vs 2 2 vs 3 1 vs 3

1 4 2 2 4 3 1 4 3

13 < 23 12 4 13 12 4 23

• Let |N | = n, then the corresponding comparison table has 2(n−2) + 1 lines (+1

corresponds to the title line).

• The number of comparisons to be considered with k elements is
(
n−2
k−1

)
.

• Only comparisons between subsets having the same cardinality being relevant,

different power relations can give place to the same comparison table. For

instance 123 < 32 < 21 < 13 < 1 < 2 < 3 < ∅ and 32 w 123 w 21 w 1 w 2 w

13 w 3 w ∅ will have the same comparison table.

We start the axiomatic analysis of social rankings showing that the anonymity

property and the symmetry one are not equivalent.

Proposition 1. If a social ranking ρ : T 2N −→ T N satisfies SYM then it also

satisfies ANON, but the converse is not true.

Proof. Consider a social ranking ρ that satisfies SYM. Let <∈ T 2N and i, j ∈ N be

such that there exists π ∈ Π such that

S ∪ {i} < S ∪ {j} ⇔ π(S) ∪ {π(i)} < π(S) ∪ {π(j)}

for all S ∈ 2N\{i,j}. It immediately follows that |Dk
ij| = |Dk

π(i)π(j)| and |Dk
ji| =

|Dk
π(j)π(i)|, for each k = 1, . . . , n− 2, and by SYM

iρ(<)j ⇔ π(i)ρ(<)π(j)

which proves that ρ satisfies also ANON.

Now, consider a social ranking ρ that satisfies the ANON property and let <∈

T 2N , with N = {i, j, p, q, 1, 2, 3, 4, 5, 6}, be as in Table 3 and S ∼ T for every

S ∈ 2N\{i,j} and every T ∈ 2N\{p,q} different from the subsets explicitly reported in

Table 3. Clearly, |Dk
ij| = |Dk

pq| and |Dk
ji| = |Dk

qp| for each k = 1, . . . , n− 2.
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Table 3: The ANON property does not imply the SYM property.

i vs j p vs. q

{i, 1, 2} � {j, 1, 2} {p, 4, 5} � {q, 4, 5}

{i, 1, 3} � {j, 1, 3} {p, 4, 6} � {q, 4, 6}

{i, 1, 6} ≺ {j, 1, 6} {p, 3, 5} ≺ {q, 3, 5}

S ∪ {i} ∼ S ∪ {j} T ∪ {p} ∼ T ∪ {q}
...

...

On the other hand there is no permutation π ∈ Π such that π(i) = p and π(j) = q

and such that

S ∪ {i} < S ∪ {j} ⇔ π(S) ∪ {π(i)} < π(S) ∪ {π(j)}

for all S ∈ 2N\{i,j}. In fact, from the first two lines of Table 3 we necessarily have that

π(1) = 4 and then π({i, 1, 6}) 6= {p, 3, 5}. As a consequence, the ANON property

cannot impose any relation between the social ranking of i over j and the social

ranking of p over q, and the SYM is not necessarily satisfied.

We conclude this section with an example showing that an apparently natural

procedure (namely, the majority rule) to rank the agents of N may fail to provide

a transitive social ranking. We first formally introduce such a procedure.

Definition 5 (Majority rule). A majority rule (denoted by M) is a map assigning

to each power relation <∈ T 2N a total binary relation M(<) on N such that

iM(<)j ⇔ dij(<) ≥ dji(<).

where dij(<) = |{S ∈ 2N\{i,j} : S ∪ {i} < S ∪ {j}}| for each i, j ∈ N .

Example 1. One can easily check that the majority rule M satisfies the property of

DOM, IIC and SYM on the class T 2N . On the other hand, it is also easy to find an

example of power relation < such that M(<) is not transitive. Consider for instance

the power relation <∈ T 2N with N = {1, 2, 3, 4} such that

2 � 1 � 3

23 � 13 � 12 � 14 � 34 � 24

134 ∼ 124 ∼ 234
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We rewrite the relevant information about < by means of Table 4. Note that

Table 4: The relevant information about < of Example 1.

1 vs. 2 2 vs. 3 1 vs. 3

1 ≺ 2 2 � 3 1 � 3

13 ≺ 23 12 ≺ 13 12 ≺ 23

14 � 24 24 ≺ 34 14 � 34

134 ∼ 234 124 ∼ 134 124 ∼ 234

d12(<) = 2, d21(<) = 3, d23(<) = 2, d32(<) = 3, d13(<) = 3 and d31(<) = 2.

So, we have that 2M(<)1, 3M(<)2 and 1M(<)3, but ¬(3M(<)1)): M(<) is not a

transitive relation.

5 Primitive and unanimous social rankings

In this section we study the relations between the axioms introduced in the previous

section and the social ranking solutions. In the following, we show that DOM and

SYM are not compatible in a general case, for N > 3 (see Theorem 1), whereas

SYM and IIC determine a unanimous social ranking on particular power relations.

We start with showing some consequences of using the axioms introduced in

the previous section when the cardinality of the set N is 3 or 4. The analysis for

cardinality |N | = 3 is easy since we can enumerate all the cases. As we will present

in the following, the notion of complementarity plays an important role in this case.

We denote by S∗ the complement of the subset S (S∗ = N \ S), and we say that a

social ranking ρ such that iρ(<)j ⇔ {i}∗ < {j}∗ for each <∈ T 2N and each i, j ∈ N

is complement primitive (i.e., it neglects any information contained in < about the

comparison of coalitions of cardinality different from n− 1).

Proposition 2. If |N | = 3, then there are only two social ranking solutions sat-

isfying the DOM and SYM conditions: the primitive solution and the complement

primitive one.

Proof. Let N = {1, 2, 3} with 1 < 2 < 3. Then six cases may occur in <: case 1)
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13 < 23 < 12, case 2) 13 < 12 < 23, case 3) 23 < 13 < 12, case 4) 12 < 13 < 23,

case 5) 23 < 12 < 13 and case 6) 12 < 23 < 13.

DOM and SYM impose that:

case 1) by DOM :1ρ(<)2, by SYM (1ρ(<)3 and 2ρ(<)3) or (3ρ(<)1 and 3ρ(<)2).

Hence we have 1ρ(<)2ρ(<)3 (primitive) or 3ρ(<)1ρ(<)2 (complement primi-

tive)

case 2) by DOM :1ρ(<)2 and 1ρ(<)3. We can have 2ρ(<)3 or 3ρ(<)2. Hence we have

1ρ(<)2ρ(<)3 (primitive) or 1ρ(<)3ρ(<)2 (complement primitive)

case 3) by SYM : (1ρ(<)2, 1ρ(<)3 and 2ρ(<)3) or (2ρ(<)1 , 3ρ(<)1 and 3ρ(<)2).

case 4) by DOM 1ρ(<)2ρ(<)3

case 5) by DOM :2ρ(<)3, by SYM (1ρ(<)2 and 1ρ(<)3) or (2ρ(<)1 and 3ρ(<)1).

Hence we have 1ρ(<)2ρ(<)3 (primitive) or 2ρ(<)3ρ(<)1 (complement primi-

tive)

case 6) by DOM :1ρ(<)3 and 2ρ(<)3. We can have 1ρ(<)2 or 2ρ(<)1. Hence we have

1ρ(<)2ρ(<)3 (primitive) or 2ρ(<)1ρ(<)3 (complement primitive)

A relation which provides coherent comparisons with respect to the complement

of objects is said “self-reflecting” . The notion of “self-reflecting” is introduced by

Fishburn [19]. More formally, if we denote by S∗ the complement of the subset S

(S∗ = N \S), we say that the power relation < is self-reflecting if and only if for all

S,Q ∈ N , S < Q implies Q∗ < S∗.

Corollary 1. If |N | = 3 and the power relation is self-reflecting, then the DOM

condition is sufficient in order to determine the social ranking and it corresponds to

a primitive social rule.

Proof. Let N = {i, j, k}. Self-reflecting implies that ∀i, j ∈ N i < j ⇔ j∗ < i∗ ⇔

ik < jk. By DOM we get ∀i, j, k ∈ N iρ(<)j ⇔ i < j ⇔ j∗ < i∗ ⇔ ik < jk.
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Next proposition presents an impossibility for cardinality |N | = 4 and shows

that on the class T 2N (all possible total preorders) the properties of DOM and SYM

are not compatible.

Proposition 3. Let N = {1, 2, 3, 4}. There is no social ranking rule ρ : T 2N −→ T N

which satisfies DOM and SYM on T 2N .

Proof. We show a particular situation where DOM and SYM are not compatible.

Consider a power relation <∈ T 2N with N = {1, 2, 3, 4} and such that

1 ∼ 2 ∼ 3

13 � 23 � 12 � 24 ∼ 14 � 34

1234 ∼ 123 ∼ 124 ∼ 134 ∼ 234

We rewrite the relevant informations about < and the elements 1, 2 and 3 by means

of the following Table 5. By Remark 1, a social ranking rule ρ : T 2N −→ T N which

Table 5: The relevant informations about < and the elements 1, 2 and 3.

1 vs. 2 2 vs. 3 1 vs. 3

1 ∼ 2 2 ∼ 3 1 ∼ 3

13 � 23 12 ≺ 13 12 ≺ 23

14 ∼ 24 24 � 34 14 � 34

134 ∼ 234 124 ∼ 134 124 ∼ 234

satisfies SYM should be such that 2ρ(<)3, 3ρ(<)2, 1ρ(<)3, 3ρ(<)1.

By the DOM property, we should have 1ρ(<)2, and ¬(2ρ(<)1), which yields a

contradiction with the transitivity of the ranking ρ(<).

Proposition 3 can be easily generalized to the case |N | > 4

Theorem 1. Let |N | > 3. There is no social ranking rule ρ : T 2N −→ T N which

satisfies DOM and SYM on T 2N .

Proof. Simply consider power relations in T 2N , N ⊇ {1, 2, 3, 4}, that are obtained

from the power relation < defined in the proof of Proposition 3 and assigning all the

additional subsets of N not contained in {1, 2, 3, 4} in the same indifference class.
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More precisely, let N ⊇ {1, 2, 3, 4}, and take <′∈ T 2N such that U <′ W :⇔ U < W

(where < is the power relation considered in the proof of Proposition 3) for all the

subsets U,W ⊆ {1, 2, 3, 4}, and U <′ W , W <′ U for all the other subsets of N not

included in {1, 2, 3, 4}.

One could argue that the incompatibility between the properties of DOM and

SYM follows from the particular instance of power relation < used in the proof of

Proposition 3, where the fact that |D1
23(<)| = |D1

32(<)| and |D1
13(<)| = |D1

31(<)|

(and Dt
ji(<) = Dt

ij(<) for t = 0, 2 and i, j ∈ {1, 2, 3}) implies, by the SYM ax-

iom, that 1, 2 and 3 must be indifferent in ρ(<). On the other hand, the following

proposition shows that the adoption of properties IIC and SYM yields a unan-

imous social ranking over all those power relations <∈ T N such that, for some

k ∈ {0, . . . , |N | − 2}, Dt
ji(<) = Dt

ij(<) for all cardinalities t 6= k and all i, j ∈ N ,

and |Dk
ji(<)| is not necessarily equal to |Dk

ij(<)| (provided that Dk
ij(<)\Dk

ji(<) 6= ∅

and Dk
ji(<) \Dk

ij(<) 6= ∅).

Proposition 4. Let ρ : T 2N −→ T N be a social ranking satisfying IIC and SYM. Let

<∈ T 2N and k ∈ {0, . . . , |N |−2} be such that S∪{i} < S∪{j} and S∪{j} < S∪{i},

for all S ∈ 2N\{i,j} with |S| 6= k, Dk
ij(<) \Dk

ji(<) 6= ∅ and Dk
ji(<) \Dk

ij(<) 6= ∅ for

all i, j ∈ N . Then iρ(<)j and jρ(<)i for each i, j ∈ N .

Proof. Take i, j ∈ N such that |Dk
ij(<)| ≥ |Dk

ji(<)|. Define another power relation

w∈ T 2N such that

S ∪ {i} < S ∪ {j} ⇔ S ∪ {i} w S ∪ {j}

for each S ∈ 2N\{i,j} with |S| = k, and S w T and T w S for all the other coalitions

S, T ∈ 2N with |S| = |T | 6= k+1. We still need to define relation w on the remaining

coalitions of size k.

Take l ∈ N \ {i, j}. Let D ⊆ Dk
ij(<) be such that |D| = |Dk

ji(<)|. By Remark

4 (see Section 10 Appendix), define the remaining comparisons in w as follows (an

illustrative example of these cases are given in Table 6):

case 1) for each S ∈ Dk
ji(<) with l ∈ S, let

S ∪ {i, j} \ {l} v S ∪ {i} and S ∪ {i, j} \ {l} v S ∪ {j};
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case 2) for each S ∈ Dk
ji(<) with l /∈ S, let

S ∪ {i} v S ∪ {l} and S ∪ {j} v S ∪ {l};

case 3) For each S ∈ D with l ∈ S, let

S ∪ {i, j} \ {l} w S ∪ {i} and S ∪ {i, j} \ {l} v S ∪ {j};

case 4) for each S ∈ D with l /∈ S, let

S ∪ {i} v S ∪ {l} and S ∪ {j} w S ∪ {l};

case 5) for each S ∈ Dk
ij \ D with l ∈ S, let

S ∪ {i, j} \ {l} w S ∪ {i} and S ∪ {i, j} \ {l} w S ∪ {j};

case 6) for each S ∈ Dk
ij \ D with l /∈ S, let

S ∪ {i} w S ∪ {l} and S ∪ {j} w S ∪ {l}.

Table 6: An illustrative example of the six possible cases for a power relation w

as the one considered in Proposition 4 with N = {1, 2, 3, i, j, l}, k = 2 and D =

{{1, 2}, {2, l}}.
i vs j i vs. l j vs. l

case 4): S = {1, 2} {1, 2, i} w {1, 2, j} {1, 2, i} v {1, 2, l} {1, 2, j} w {1, 2, l}

case 6): S = {1, 3} {1, 3, i} w {1, 3, j} {1, 3, i} w {1, 3, l} {1, 3, j} w {1, 3, l}

case 2): S = {2, 3} {2, 3, i} v {2, 3, j} {2, 3, i} v {2, 3, l} {2, 3, j} v {2, 3, l}

case 5): S = {1, l} {1, l, i} w {1, i, j} {1, i, j} w {1, j, l} {1, i, j} w {1, i, l}

case 3): S = {2, l} {2, l, i} w {2, i, j} {2, i, j} v {2, j, l} {2, i, j} w {2, i, l}

case 1): S = {3, l} {3, l, i} v {3, i, j} {3, i, j} v {3, j, l} {3, i, j} v {3, i, l}

|Dij(w)| = 4 |Dil(w)| = 2 |Djl(w)| = 4

|Dji(w)| = 2 Dli(w)| = 4 |Dlj(w)| = 2

Note that |Dk
ji(<)| = |Dk

li(w)| = |Dk
jl(w)| and |Dk

ij(<)| = |Dk
il(w)| = |Dk

lj(w)|.

Suppose now that iρ(<)j. By IIC, we have iρ(w)j. By SYM, jρ(w)l and lρ(w)i.
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By transitivity of ρ(w), jρ(w)i. By IIC we conclude that jρ(<)i too. In a similar

way, if we suppose jρ(<)i, then we end up with the conclusion that iρ(<)j too, and

the proof follows.

An interesting consequence of Proposition 4 is that if the only information mak-

ing a difference between two objects is given by comparisons of a fixed cardinality,

then it is sufficient to have one discordance in order to declare an indifference (with

IIC and SYM). Proposition 4 suggests how to deal with situations where coalitions

are of a fixed size (such situations are not so eccentric in real life). For instance,

let us imagine that we have committees with a given number (k) of persons and

that we have a ranking on them (for instance N = {1, 2, 3, 4} and k = 2, with

12 < 13 < 14 < 34 < 24 < 23). Since committees are always formed by two

persons, no information is available on subsets of N with l 6= k elements (or such

information is irrelevant). How to define a social ranking in this case? One solution

could be to consider all the other comparisons indifferent. Then, by Proposition 4,

we know that SYM and IIC properties can be used in order to support a unanimous

social ranking.

Example 2. Consider a power relation <∈ T 2N with N = {1, 2, 3, 4, 5} and

13 � 23 � 12 � 24 � 14 � 34 � 15 ∼ 25 � 35 � 45,

all the other coalitions of the same size being indifferent (i.e., S ∪ {i} < S ∪

{j} and S ∪ {j} < S ∪ {i}, for all S ∈ 2N\{i,j} with |S| 6= 1 and i, j ∈ {1, 2, 3}).

We rewrite the relevant informations about < and elements 1, 2 and 3 by means of

Table 7.

If a social ranking ρ satisfies both SYM and DOM, then by Proposition 4, all

the elements in {1, 2, 3} are in relation with each other in ρ(<) (i.e. they are all

indifferent).

6 A property driven approach

In the previous section, we have shown that a social ranking cannot satisfy both

DOM and SYM axioms on T 2N . Therefore, it seems natural to look at a restricted
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Table 7: The relevant informations about < of Example 2 and the elements 1, 2 and

3.

1 vs. 2 2 vs. 3 1 vs. 3

1 ∼ 2 2 ∼ 3 1 ∼ 3

13 � 23 12 ≺ 13 12 ≺ 23

14 ≺ 24 24 � 34 14 � 34

15 ∼ 25 25 � 35 15 � 35

134 ∼ 234 124 ∼ 134 124 ∼ 234

135 ∼ 235 125 ∼ 135 125 ∼ 235

1345 ∼ 2345 1245 ∼ 1345 1245 ∼ 2345

domain of power relations where the two properties are compatible (for instance,

avoiding power relations like < in the proof of Proposition 3). To this end, in the

remaining of this section we consider a particular class of power relationsR2N ⊆ T 2N

as provided in the following definitions. For such a restriction, our intuition is

the following (and inspired by Proposition 4): it can be interesting to analyse in

a separate way the comparisons with different size of coalitions and the “local”

dominance for a given size can play a role. We first need some further notations.

Definition 6. Let <∈ T 2N , i, j ∈ N and s ∈ {0, . . . , n − 2}. We say that i s-

dominates j in <, iff

S ∪ {i} < S ∪ {j} for each S ∈ 2N\{i,j} with |S| = s. (1)

Given a total preorder <∈ T 2N , let P(<) ⊆ {0, . . . , n− 2} be such that for each

i, j ∈ N and s ∈ P(<) either i s-dominates j or j s-dominates i. In other words,

P(<) represents those coalitions’ sizes such that a per size dominance relation exists.

Note that 0 and n− 2 are in P(<) for every <∈ T 2N .

Definition 7. The set of compatible power relations is defined as the set R2N ⊆ T 2N

such that for each <∈ R2N the following two conditions hold:

i) for each s, t ∈ P(<) and i, j ∈ N , if i s-dominates j then i t-dominates j;

ii) for each s ∈ {0, . . . , n − 2} \ P(<) and all i, j ∈ N , neither i s-dominates j

nor j s-dominates i (i.e., Dk
ij(<) \Dk

ji(<) 6= ∅ and Dk
ji(<) \Dk

ij(<) 6= ∅).
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Roughly speaking, compatible power relations are such that no opposite dom-

inance is allowed for coalitions of different size2. Of course a dominance relation

between coalitions of the same size does not necessarily occur: it is still possible

that for many coalitions S of cardinality k (not containing neither x nor y) S ∪ {y}

is stronger than S∪{x} and for others of the same cardinality S∪{x} is stronger than

S ∪ {y}. For instance, the power relation considered in Example 2 is a compatible

one. Another example of compatible power relation is provided next.

Example 3. Consider a power relation <∈ R2N with N = {1, 2, 3, 4} such that

1 � 2 � 3 ∼ 4

14 � 23 � 24 � 13 � 34 � 12

123 ∼ 124 � 234 ∼ 134.

Note that P(<) = {0, 2}. We rewrite the relevant informations about < by means

of the Table 8.

Table 8: The relevant informations about <∈ R2N of Example 3.

1 vs. 2 2 vs. 3 1 vs. 3 1 vs. 4 2 vs. 4 3 vs. 4

1 � 2 2 � 3 1 � 3 1 � 4 2 � 4 3 ∼ 4

13 ≺ 23 12 ≺ 13 12 ≺ 23 12 ≺ 24 12 ≺ 14 13 ≺ 14

14 � 24 24 � 34 14 � 34 13 � 34 23 � 34 23 � 24

134 ∼ 234 124 � 134 124 � 234 123 � 234 123 � 134 123 ∼ 124

In order to characterize a social ranking that satisfies DOM, IIC and SYM on

R2N , we also need to introduce a new and last axiom. The next axiom says how to

combine social rankings of “compatible” power relations. To be more specific, we

say that if the intersection of two total preorders <,w in C2N ⊆ T 2N is still a total

preorder in C2N , then the social ranking corresponding to their intersection < ∩ w

must be the intersection of the individual social rankings ρ(<) ∩ ρ(w).

2However one can still have situations where ‘i dominates (not strictly) j’ on coalitions of size

t and ‘j strictly dominates i’ on coalitions of size l.
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Definition 8 (SEP). A social ranking ρ : C2N −→ T N satisfies the separability

(SEP) property on C2N ⊆ T 2N iff

ρ(< ∩ w) ≡ ρ(<) ∩ ρ(w)

for all power relations <,w∈ C2N such that < ∩ w∈ C2N and ρ(<) ∩ ρ(w) ∈ T N .

We can now state the main theorem of this section.

Theorem 2. A social ranking ρ : R2N −→ T N that satisfies the properties of

DOM, IIC, SYM and SEP on the class of compatible relations R2N is such that

iρ(<)j and ¬(jρ(<)i), if there exist k ∈ P(<) and S ∈ 2N with |S| = k such that

S ∪ {i} � S ∪ {j}; iρ(<)j and jρ(<)i, otherwise.

Proof. Let <∈ R2N . For all k ∈ {0, . . . , n− 2} and i, j ∈ N define a power relation

<k∈ R2N such that

S ∪ {i} <k S ∪ {j} ⇔ S ∪ {i} < S ∪ {j}

for each S ∈ 2N\{i,j} with |S| = k, and

S ∪ {i} <k S ∪ {j} and S ∪ {j} <k S ∪ {i}

for each S ∈ 2N\{i,j} with |S| 6= k.

Note that, for each k, t ∈ {0, . . . , n − 2}, the intersection <k ∩ <t is also a

power relation in R2N , and that <k is a power relation of the type considered in

Proposition 4.

By Proposition 4 and the fact that ρ satisfies both SYM and IIC, we have that

iρ(<k)j and jρ(<k)i for each k ∈ {0, . . . , n− 2} \P(<) and all i, j ∈ N .

Moreover, by the fact that ρ also satisfies DOM, for each k ∈ P(<) and all

i, j ∈ N , we have that iρ(<k)j and ¬(jρ(<k)i), if there exists S ∈ 2N with |S| = k

such that S ∪ {i} �k S ∪ {j}; iρ(<k)j and jρ(<k)i, otherwise.

By the multiple application of the SEP property, we have that

ρ(<) ≡ ρ(<1) ∩ . . . ∩ ρ(<n),

which concludes the proof.

19



Surely Theorem 2 is based on a restriction which can be considered “strong”.

However it shows that “local” dominances can be important and when they are

coherent between them they cancel all the other informations.

Example 4. Consider the compatible power relation <∈ T 2N with N = {1, 2, 3, 4}

of Example 3. By Theorem 2, we have that 1ρ(<)2 and ¬(2ρ(<)1); 2ρ(<)3 and

¬(3ρ(<)2); 1ρ(<)3 and ¬(3ρ(<)1); 1ρ(<)4 and ¬(4ρ(<)1); 2ρ(<)4 and ¬(4ρ(<)2).

Finally, 3ρ(<)4 and 4ρ(<)3.

7 Dictatorship of the coalition size

In Section 5, we have shown that, over a restricted domain of power relations that

satisfy a given notion of compatibility between the rankings of coalitions of the

same size (see Definition 7), SYM and DOM properties, together with SEP and IIC,

determine a well defined social ranking, as shown by Theorem 2. In this section, we

focus on power relations that do not necessarily satisfy the notion of compatibility

introduced in Definition 7, but still present some regularity when coalitions of the

same size are considered.

More precisely, we define a special class of power relations (namely, the per size-

strong dominant relations) characterized by the fact that a relation of dominance

always exists with respect to coalitions of the same size, but the dominance may

change with the cardinality (for instance, an element i could dominate another

element j when coalitions of size s are considered, but j could dominate i over

coalitions of size t 6= s). We first need to introduce the notion of s-strong dominance.

Definition 9. Let <∈ T 2N , i, j ∈ N and s ∈ {0, . . . , n− 2}. We say that i s-strong

dominates j in <, iff

S ∪ {i} � S ∪ {j} for each S ∈ 2N\{i,j} with |S| = s. (2)

Definition 10. We say that <∈ T 2N is per size-strong dominant (shortly, ps-sdom)

iff for each s ∈ {0, . . . , n− 2} and all i, j ∈ N , we have either

[i s-strong dominates j in <] or [j s-strong dominates i in <].
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The set of all ps-sdom power relations is denoted by S2N ⊆ T 2N .

We first study the effect of the combination of the properties of DOM and IIC

on a specific instance of ps-sdom power relations where there exist elements that

are always placed at the top or at the bottom in the rankings of coalitions of equal

cardinality.

Example 5. Consider a power relation <∈ S2N with N = {1, 2, 3, 4} and such that

1 � 2 � 3 � 4

34 � 24 � 14 � 23 � 13 � 12

123 � 134 � 124 � 234.

We rewrite the relevant informations about < by means of Table 9.

Table 9: The relevant informations about < of Example 5.

1 vs. 2 2 vs. 3 1 vs. 3 1 vs. 4 2 vs. 4 3 vs. 4

1 � 2 2 � 3 1 � 3 1 � 4 2 � 4 3 � 4

13 ≺ 23 12 ≺ 13 12 ≺ 23 12 ≺ 24 12 ≺ 14 13 ≺ 14

14 ≺ 24 24 ≺ 34 14 ≺ 34 13 ≺ 34 23 ≺ 34 23 ≺ 24

134 � 234 124 ≺ 134 124 � 234 123 � 234 123 � 134 123 � 124

Note that for each s ∈ {0, 2}, it holds that either S ∪ {1} < S ∪ {l} for each

S ⊆ N\{1} with |S| = s and all l ∈ N\S (i.e., coalitions S∪{1} are ranked above all

coalitions S∪{l}, with l 6= i and S containing 0 or 2 elements), and S∪{1} 4 S∪{l}

for each S ⊆ N \{1} with |S| = 1 and all l ∈ N \S (i.e., coalitions S∪{1} are ranked

below all coalitions S∪{l}, with l 6= i and S containing precisely 1 element). Similar

considerations can be done for element 4. So, elements 1 and 4 are two “extreme”

ones. Let us remark that there can be at most two “extreme” elements of a power

relation in S2N . In Proposition 5 we argue that on this kind of power relations, a

social ranking satisfying both DOM and IIC cannot rank “extreme” elements (in this

case 1 and 4) in between two others.

The following proposition shows the effect of DOM and IIC on the social position

of the “extreme” elements.
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Proposition 5. Let ρ : S2N −→ T N be a social ranking satisfying IIC and DOM

on S2N . Let <∈ S2N and i ∈ N be such that for each s ∈ {0, . . . , n− 2} either

[S ∪ {i} � S ∪ {j} for all j ∈ N \ {i} and S ∈ 2N\{i,j} with |S| = s] (3)

or

[S ∪ {j} � S ∪ {i} for all j ∈ N \ {i} and S ∈ 2N\{i,j} with |S| = s]. (4)

Then, [iρ(<)j for all j ∈ N ] OR [jρ(<)i for all j ∈ N ].

Proof. Suppose on the contrary that there exist j, k ∈ N \ {i}, such that

jρ(<)i and iρ(<)k. (5)

Define w∈ T 2N such that

S ∪ {i} = S ∪ {j} ⇔ S ∪ {i} � S ∪ {j} for all S ⊆ N \ {i, j}, (6)

S ∪ {i} = S ∪ {k} ⇔ S ∪ {i} � S ∪ {k} for all S ⊆ N \ {i, k}, (7)

and

S ∪ {k} = S ∪ {j} for all S ⊆ N \ {j, k}. (8)

[note that each coalition S ∪ {i}, with S ⊆ N \ {i}, by condition (3) and (4), is

ranked strictly higher or lower than each other coalition S ∪ {j}, j 6= i, so the

rearrangement of coalitions in < to obtain w is feasible.]

By IIC, we have that

iρ(<)j ⇔ iρ(w)j and iρ(<)k ⇔ iρ(w)k.

So, by relation (5), jρ(w)i and iρ(w)k. On the other hand, by DOM we have kρ(w)j

and ¬(jρ(w)k), which yields a contradiction with the transitivity of ρ(w).

Proposition 5 shows that if there is an element i ∈ N having “contradictory”

and “radical” behavior depending on the size of coalitions (very well for size k and

very bad for size l), then the social ranking satisfying IIC and DOM can not give

him an intermediate position: the element i will be the “best” one or the “worst”

one in the social ranking.
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In the following we argue that if a power relation is in S2N and a social ranking

satisfies both DOM and IIC on the set of ps-sdom power realtions S2N , then it

must exist a cardinality t∗ ∈ {0, . . . , n − 2} whose relation of t∗-strong dominance

(dictatorially) determines the social ranking. We first need to introduce the next

lemma, where a given element i plays an important role.

Lemma 1. Let i ∈ N and ρ : S2N −→ T N be a social ranking satisfying IIC and

DOM on S2N . There exists t∗ ∈ {0, . . . , n− 2} such that

jρ(<)k ⇔ j t∗-strong dominates k in <,

for all j, k ∈ N \ {i} and <∈ S2N .

Proof. Given a power relation <∈ S2N , define another power relation <0∈ S2N such

that for each S ⊆ N \ {i} we have

S ∪ {l} �0 S ∪ {i} for all l ∈ N \ (S ∪ {i}), (9)

and

U <0 W :⇔ U < W

for all the other possible pairs of coalitions U,W whose comparison is not already

considered in (9). Roughly speaking, the only difference between <0 and < is that

coalitions of size s containing i are placed at the bottom of the ranking induced by

< over the coalitions of the same size. By DOM, it follows that lρ(<0)i for every

l ∈ N .

Now, for each t ∈ {0, . . . , n− 2}, define a power relation <t∈ T 2N such that

S ∪ {i} �t S ∪ {l} for each l ∈ N and S ∈ 2N\{i,l} with |S| = s, (10)

where s ∈ {0, . . . , t}, and

U <t W :⇔ U <t−1 W

for all the other possible pairs of coalitions U,W whose comparison is not already

considered in (10). So, the only difference between <t and <t−1, for each t ∈

{1, . . . , n− 2}, is that in <t coalitions of size t containing i are placed at the top of
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the ranking induced by <t−1 over coalitions of the same size t, and all the remaining

comparisons remain the same as in <t−1.

Note that by Proposition 5, we have that either lρ(<t)i for every l ∈ N , or

iρ(<t)l for every l ∈ N . Moreover, By DOM, it follows that iρ(<n−2)l for every

j ∈ N .

Let t∗ be the smallest number in {0, . . . , n − 2} such that lρ(<t∗−1)i for every

l ∈ N and iρ(<t∗)l for every l ∈ N (for the considerations above such a t∗ must

exist, being, at most, t∗ = n− 2).

Next, we argue that for every j, k ∈ N \ {i}, the social ranking between j and k

in < is imposed by the relation of t∗-strong dominance in <.

W.l.o.g., suppose that S ∪ {j} < S ∪ {k} (and, as a consequence, S ∪ {j} <t∗

S ∪ {k}) for each S ∈ 2N\{j,k}, and |S| = t∗. Consider another power relation

w∈ T 2N obtained by <t∗ and such that:

S ∪ {j} = S ∪ {i} for each S ∈ 2N\{i,j} with |S| = t∗, (11)

S ∪ {i} = S ∪ {k} for each S ∈ 2N\{i,k} with |S| = t∗, (12)

S ∪ {j} = S ∪ {k} for each S ∈ 2N\{j,k} \
(
2N\{i,j} ∪ 2N\{i,k}

)
, and |S| = t∗, (13)

and, finally,

U w V :⇔ U <t∗ V (14)

for all the other relevant pairs of coalitions U,W of size s 6= t∗ + 1. By IIC jρ(w)i

(since in w the comparisons between coalitions containing i and j are precisely as in

<t∗−1 and, as previously stated, jρ(<t∗−1)i) and iρ(w)k (since in w the comparisons

between coalitions containing i and k are precisely as in <t∗ and, as previously

stated, iρ(<t∗)k). Then, by transitivity of ρ(w) we have jρ(w)k. Note that by IIC,

jρ(w)k ⇔ jρ(<t∗)k ⇔ jρ(<)k. We have then proved that whenever j t∗-dominates

k, then jρ(<)k.

We can now formulate the following theorem stating the “dictatorship of the

coalition’s size”.
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Theorem 3. Let ρ : S2N −→ T N be a social ranking satisfying IIC and DOM on

S2N . There exists t∗ ∈ {0, . . . , n− 2} such that

iρ(<)j ⇔ i t∗-strong dominates j in <,

for all i, j ∈ N and <∈ S2N .

Proof. Given a power relation <∈ S2N , let i ∈ N and define <t∗ starting from <

and i precisely as in the proof of Lemma 1.

Now take k ∈ N \ {i} and apply Lemma 1 with k in the role of i. Consequently,

we have that there exists t̂ ∈ {0, . . . , n− 2} such that

hρ(<)l⇔ h t̂-strong dominates l in <,

for each h, l ∈ N \ {k}, and in particular

iρ(<)l⇔ i t̂-strong dominates l in <,

for whatever complete power relation <∈ S2N .

But in the proof of Lemma 1 we have shown that

iρ(<)l⇔ i t∗-strong dominates l in <t∗

(remember that t∗ in the proof of Lemma 1 is the smallest number in {0, . . . , n− 2}

such that lρ(<t∗−1)i for every l ∈ N and iρ(<t∗)l for every l ∈ N). Then it must be

t̂ = t∗, and the proof follows.

Example 6. Take again the power relation <∈ S2N with N = {1, 2, 3, 4} of Exam-

ple 5. Theorem 3 says that if a social ranking satisfies DOM and IIC on S2N , then it

must yield on < one of the following three possible linear orders: 1ρ(<)2ρ(<)3ρ(<)4

(corresponding to the relation of 0-strong dominance); 4ρ(<)3ρ(<)2ρ(<)1 (corre-

sponding to the relation of 1-strong dominance); 4ρ(<)1ρ(<)3ρ(<)2 (corresponding

to the relation of 2-strong dominance).

For instance, suppose that the social ranking is 4ρ(<)2ρ(<)3ρ(<)1. Define a

new power relation w∈ S2N such that (again, the main changes with respect to <

are shown in bold):

1 = 2 = 3 = 4

34 = 23 = 24 = 13 = 14 = 12

134 = 123= 234 = 124
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We rewrite the relevant informations about w by means of Table 10. By DOM we

Table 10: The relevant informations about w of Example 6.

1 vs. 2 2 vs. 3 1 vs. 3 1 vs. 4 2 vs. 4 3 vs. 4

1 = 2 2 = 3 1 = 3 1 = 4 2 = 4 3 = 4

13 < 23 12 < 13 12 < 23 12 < 24 12 < 14 13 = 14

14 < 24 24 < 34 14 < 34 13 < 34 23 < 34 23 = 24

134 = 234 124 < 134 124 < 234 123 = 234 123 < 134 123 = 124

have that 3ρ(w)4 and ¬(4ρ(w)3). By IIC we have 4ρ(w)2 and 2ρ(w)3 (the columns

‘2 vs. 4’ and ‘2 vs. 3’ are the same in the Tables 9 and 10, respectively), which

yields a contradiction with the transitivity of ρ(w).

8 Conclusions

In this paper we introduced and studied the problem of how to rank the objects of

a set N according to their ability to influence the ranking over the subsets of N .

As we discussed in Section 2, such a problem can be seen as an ordinal counter-

part of the one about how to measure the power of players in a coalitional game

[1, 6, 9, 18], or as the inverse problem of extending preferences to subsets of objects

[2, 3, 4, 5, 8, 7, 10, 11]. As far as we know, this is the first time that a solution

is proposed using an axiomatic approach (and without the quantitative notion of

power index from cooperative game theory).

The aim of this paper was to analyse some “intuitive” properties for social rank-

ings. We first notice that two natural properties, precisely, dominance and symme-

try, are not compatible over the class of all power relations, despite the fact that, in

some related axiomatic frameworks (see, for instance, [3]), similar axioms have been

successfully used in combination. Then, we provide an axiomatic characterization

of social rankings satisfying symmetry, dominance, iic and separability on a specific

domain of compatible power relations (those whose intersection is still a power rela-

tion). Finally, we proved that the property of independence of irrelevant coalitions

and dominance property determine a kind of ‘dictatorship of the cardinality’ when
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a relation of strong dominance among coalitions of the same size holds: in this case,

the only social ranking satisfying those two properties is the one imposed by the

relation of dominance of a given cardinality s ∈ {1, . . . , |N |}.

A possible direction for future research is the open question about which axioms

could be used to characterize a social ranking over the domain of all possible power

relations. In view of our results, some of the axioms we propose in this paper

should be abandoned. In this respect, it is worth noting that all the properties

that we analysed are based on the comparison of subsets having the same number

of elements. Therefore, it would be interesting to study properties based on the

comparison among subsets with different cardinalities. For instance, if N = {1, 2, 3},

the information of the type {1} � {2, 3} � {1, 3} � {2} could be used to establish

that 1 is socially stronger than 2 (note that 1 strictly dominates 2 on coalitions of

size 1, and 2 strictly dominates 1 of coalitions of cardinality 2, but the “interval”

between {2, 3} and {1, 3} is smaller than the one between {1} and {2}).

A related question is the evaluation of the interaction among the elements of

N . As we already noticed, we deal with power relations that do not necessarily

satisfy the responsiveness property [4] or the monotonicity one [3], so objects may

strongly interact (e.g., with respect to monotonicity, two objects x and y together

could be less strong than x and y alone). Consequently, an interesting question to

address is how to compare the interaction among pairs of objects taking into account

their effects over all possible subsets (for instance, to establish whether the level of

interaction between two objects x and y is stronger than the one between two other

objects w and z).
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10 Appendix

Remark 4. Note that by transitivity of power relations <∈ T 2N , the relations be-

tween the elements of the columns of a comparison table must satisfy some con-

straints, as listed below.

• Let i, j, k ∈ N and S ∈ 2N\{i,j,k} with S ∪ {i} < S ∪ {j}. Then, one of the

following possibilities may occur:

– S ∪ {i} < S ∪ {k} and S ∪ {j} < S ∪ {k};

– S ∪ {i} 4 S ∪ {k} and S ∪ {j} 4 S ∪ {k};

– S ∪ {i} < S ∪ {k} and S ∪ {j} 4 S ∪ {k}.

• Let i, j, k ∈ N and S ∈ 2N\{i,j,k} with S ∪ {i, k} < S ∪ {j, k}.

– S ∪ {i, j} < S ∪ {i, k} and S ∪ {i, j} < S ∪ {j, k};

– S ∪ {i, j} 4 S ∪ {i, k} and S ∪ {i, j} 4 S ∪ {j, k};

– S ∪ {i, j} < S ∪ {i, k} and S ∪ {i, j} 4 S ∪ {j, k}.
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