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Abstract

Several real-life complex systems, like human societies or economic net-
works, are formed by interacting units characterized by patterns of relation-
ships that may generate a group-based social hierarchy. In this paper, we
address the problem of how to rank the individuals with respect to their abil-
ity to “influence” the relative strength of groups in a society. We also analyse
the effect of basic properties in the computation of a social ranking within

specific classes of (ordinal) coalitional situations.

Keywords: social ranking, coalitional power, ordinal power, axiomatic approach.

1 Introduction

Ranking is a fundamental ingredient of many real-life situations, like the ranking
of candidates applying to a job, the rating of universities around the world, the
distribution of power in political institutions, the centrality of different actors in
social networks, the accessibility of information on the web, etc. Often, the criterion
used to rank the items (e.g., agents, institutions, products, services, etc.) of a
set N also depends on the interaction among the items within the subsets of N (for
instance, with respect to the users’ preferences over bundles of products or services).
In this paper we address the following question: given a finite set N of items and a
ranking over its subsets, can we derive a “social” ranking over N according to the
“overall importance” of its single elements?

For instance, consider a company with three employees 1,2 and 3 working in the

same department. According to the opinion of the manager of the company, the
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job performance of the different teams S C N = {1,2, 3} is as follows: {1,2,3} =
{3} = {1,3} = {2,3} = {2} = {1,2} = {1} = 0 (S = T, for each S,T C N,
means that the performance of S is at least as good as the performance of T').
Based on this information, the manager asks us to make a ranking over his three
employees showing their attitude to work with others as a team or autonomously.
Intuitively, 3 seems to be more influential than 1 and 2, as employee 3 belongs to
the most successful teams in the above ranking. Can we state more precisely the
reasons driving us to this conclusion? And what can we say if we have to decide who
between 1 and 2 is more productive and deserves a promotion? In this paper we
analyse different properties of ordinal social rankings in order to get some answers
to such questions.

In this paper, a social ranking is defined as a map associating to each power
relation (i.e., a total preorder over the set of all subsets of V) a total preorder over
the elements of N. The properties for social rankings that we analyse in this paper
have classical interpretations, such as anonymity and symmetry, saying that the
ranking should not depend on the identity of the elements of N, or the dominance,
saying that an element ¢ € N should be ranked higher than an element ;7 € N
whenever i dominates j, i.e. a coalition S U {i} is stronger than S U {j} for each
S C N not containing neither ¢ nor j. Another property we study in this paper is
the independence of irrelevant coalitions, saying that the social ranking between two
elements ¢ and j should only depend on their respective contributions when added
to coalitions not containing neither ¢ nor j (in other words, the information needed
to rank ¢ and j is provided by the relative comparison of coalitions U, W C N
such that U \ {i} = W\ {j}). Finally, we introduce the notion of separability,
which specifies how to combine social rankings associated to “compatible” power
relations, i.e. power relations whose intersection is still a power relation. We use
these properties to axiomatically characterize social rankings on particular classes
of power relations.

The structure of the paper is the following. In the next section, we present some
related approaches from the literature and our main contributions. Basic notions and

definitions are presented in Section 3. In Section 4 we introduce and discuss some



properties for social rankings. In Section 5 we study the compatibility of certain
axioms and their effect on some elementary notions of social ranking. Section 6 is
devoted to the presentation of the axiomatic analysis of social rankings on a special
class of compatible power relations. In Section 7 we focus on the analysis of social
rankings that satisfy both the dominance property and the property of independence
of irrelevant coalitions, and that, on particular power relations, are specified by the

ordering of coalitions of the same size. Section 8 concludes.

2 Related Work and Contribution

The central question of this paper seems closely related to the well known problem
of measuring the power of players in a cooperative game (see, for instance, [14]). In
this context, given the information about which coalitions of players are winning or
not, one can use several power indices from the literature on coalitional games to as-
sess the power of the single players [6, 1, 18, 9]. However, our framework is different
for at least two reasons: first, we face coalitional situations where only a qualitative
(ordinal) comparison of the strength of coalitions is given; second, we look for a
ranking over the single elements of NV, and we do not require a quantitative assess-
ment of their “power”. Differently stated, we characterize social rankings starting
from the very basic properties of a power relation over coalitions, and without the
use of any particular coalitional game, that would necessarily require the conversion
of the (purely ordinal) information about the relative strength of coalitions into a
quantitative assessment of their power.

As far as we know, the only attempt in the literature to generalize the notions
of coalitional game and power index within an ordinal framework has been provided
in [12], where, given a total preorder representing the relative strength of coalitions,
a social ranking over the player set is provided according to a notion of ordinal in-
fluence and using the Banzhaf index [1] of a “canonical” coalitional game. In a still
different context, a model of coalition formation has been introduced in [15], where
the relative strength of disjoint coalitions is represented by an exogenous binary

relation and the players try to maximize their position in a social ranking.



We also noticed a connection with some kind of “inverse problems”, precisely,
how to derive a ranking over the set of all subsets of N in a way that is “com-
patible” with a primitive ranking over the single elements of N. This question has
been carried out in the tradition of the literature on extending an order on a set
N to its power set (the set of all possible subsets of N) with the objective to ax-
iomatically characterize families of ordinal preferences over subsets (see, for instance,
[2, 3,4, 5,8, 7,10, 11]). In this context, an order 3= on the power set of N is re-
quired to be an extension of a primitive order P on N. This means that the relative
ranking of any two singleton sets according to = must be the same as the relative
ranking of the corresponding alternatives according to P. In this framework, most
of the axiomatic approaches from literature focused on properties suggesting that
the interaction among single objects should not play a relevant role in establishing
the ranking among subsets [4, 17, 3]. An example is the property of responsive-
ness introduced by [17], which requires that a set S C N is preferred to a set
T C N whenever S is obtained from T' by replacing some object t € T' with another
i € N not in T which is preferred to ¢ (according to the primitive ranking on the
universal set N). In other words, the responsiveness property prevents complemen-
tarity or incompatibility effects among objects within sets of the same cardinality.
The responsiveness property, together with another property called fized-Cardinality
neutrality and saying that the labelling of the alternatives is irrelevant in establish-
ing the ranking among sets of a fixed cardinality, was used by [4] to characterize a
particular class of extension based on a lexicographic comparison of sets of the same
size.

In real life situations it seems not realistic to exclude a prior: the possibility that
items within coalitions may interact. The ranking with employees is one example,
another one (and a classical one) is the problem of deciding whether to combine
two distinct therapies for a disease: the combination of two treatments does not
always improve the chances of success, and may provoke more serious side effects,
with respect to each single treatment. More in general, according to our definition,
we do not require a power relation to be responsive: even if a singleton coalition

{z} is strictly stronger than a singleton coalition {y}, we can have that for another



coalition S (not containing neither x nor y) S U {y} is stronger than a coalition

SU{x} (e.g., because of an incompatibility among x and some objects in S).

3 Preliminaries and notations

A binary relation R on a finite set N = {1,...,n} is a collection of ordered pairs
of elements of N, i.e. R C N x N. Vx,y € N, the more familiar notation xRy
will be often used instead of the more formal one (z,y) € R. We provide some
standard properties for R. Reflerivity: for each © € N, xRx; transitivity: for each
x,y,z2 € N, xRy and yRz = xRz; totality: for each z,y € N, x # y = xRy or
yRx; antisymmetry: for each x,y € N, xRy and yRx = = = y. A reflexive and
transitive binary relation is called preorder. A preorder that is also total is called
total preorder. A total preorder that also satisfies antisymmetry is called linear
order. The notation —(zRy) means that xRy is not true. We denote by 2V the
power set of N and we use the notations 77 and T2 to denote the set of all total
preorders on N and on 2V, respectively. Moreover, the cardinality of a set S € 2V
is denoted by |S|. In the remaining of the paper, we will also refer to an element
S € 2V as a coalition S.

Consider a total preorder =C 2V x 2V over the subsets of N. Often we will
use the notation S > T to denote the fact that S = T and —=(7 > S) (in this
case, we also say that the relation between S and T is ‘strict’), and the notation
S ~ T to denote the fact that S %= T and T = S. For each 7,j € N, i # j, and all
k=1,...,n—2, we denote by X, = {S € 2N\t . |S| = k} the set of all subsets
of N not containing neither ¢ nor j with k£ elements. Moreover, for each 7,7 € N,
we define the set DJ;(=) = {S € X : SU{i} = SU{j}} as the set of coalitions
S € 2N\t of cardinality & such that S U {i} is in relation with S U {j} (and,
changing the ordering of i and j, the set D;(=) = {S € X, : SU{j} = SU{i}}).



4 Axioms for social rankings

In the following of these notes, we interpret a total preorder = on 2V as a power
relation, that is, for each S, T € 2V, S = T stands for ‘S is considered at least as
strong as T' according to the power relation =’

Given a class C2" C 72" of power relations, we call a map p : c?N — TN , as-
signing to each power relation in C?" a total preorder on N, a social ranking solution
or, simply, a social ranking. Then, given a power relation »=, we will interpret the
total binary relation p(%=) associated to = by the social ranking p, as the relative
power of players in a society under relation »=. Precisely, for each i,j € N, ip(=)j
stands for ‘¢ is considered at least as influential as j according to the social ranking
p(=)’, where the influence of an agent is intended as her/his ability to join coalitions
in the strongest positions of a power relation. Note that we require that p(3=) is a
total preorder over the elements of N, that is we always want to express the relative
comparison of two agents, and such a relation must be transitive.

A social ranking p : C*" — TV such that ip(=)j < {i} = {j} for each =€ C*"
and each i, j € N is said to be primitive (i.e., it neglects any information contained
in %= about the comparison of coalitions of cardinality different from 1). A social
ranking p : C2° — TN such that ip(3=)j and jp(=)i for all i, € N is said to be
unanimous (N is an indifference class with respect to p(3=)).

Now we introduce some properties for social rankings. The first axiom is the
dominance one: if each coalition S containing agent ¢ but not j is stronger than
coalition S with j in the place of 7, then agent ¢ should be ranked higher than agent
J in the society, for any 7,5 € N. Precisely, given a power relation =€ 72" and
i,7 € N we say that i dominates j in 3= if S U {i} = S U {j} for each S € 2N\{i3}
(we also say that i strictly dominates j in %= if i dominates j and in addition there

exists S € 2V} such that S U {i} = S U {j}).

Definition 1 (DOM). A social ranking p : C2° — TN satisfies the dominance
(DOM) property on C* C T2 if and only if for all =€ C*" and i,j € N, if i

dominates j in = then ip(=)j [and —(jp(=)i) if i strictly dominates j in =].

The following axiom states that the relative strength of two agents 7,57 € N in



the social ranking should only depend on their effect when they are added to each
possible coalition S not containing neither ¢ nor j, and the relative ranking of the

other coalitions is irrelevant. Formally:
Definition 2 (IIC). A social ranking p : C*° — TN satisfies the Independence of
Irrelevant Coalitions (IIC) property on C* C T2" iff
()] = ip(2);
for alli,57 € N and all power relations =, J€ C? such that for each S € 2N\i}
Sufli} =Su{jt e su{i} 3SU{j}

For the following property we need some further notations. Let II be the set of
all bijections 7 : N — N. With a slightly abuse of notations, we also denote by
7(S) the image under 7 of a coalition S, i.e. m(S) = {n(i) : i € S}.

The anonymity property says that a social ranking of two agents ¢ and j should

not depend on the labels. We can formulate this principle as follows.
Definition 3 (ANON). A social ranking p : 2 — TN satisfies the anonymity
(ANON) property on C2" C T2 iff
ip(=)j & 7(0)p(=)7())
foralli,j € N, m € Il and =€ C*" such that for each S € 2N\l:d}
SU{i} = SU{j} & m(S) U{r(i)} = m(S) U{r(j)}.

We notice that in the framework of the extension problems discussed in Sections
2, this property is very close to the neutrality property introduced in [4]. One
can define a similar but more restrictive property by paying more attention to the

comparisons of subsets having the same cardinality.
Definition 4 (SYM). A social ranking p : 2 — TN satisfies the symmetry
(SYM) property on c T if

ip(=)j < pp(*=)q

for alli,j,p,q € N and =€ C*" such that |D%| = |Dk | and |D%| = |D% | for each
k=0,...,n—2.



Remark 1. Note that if a social ranking p satisfies the SYM axiom on ¢ C 7’2N,
2N P - k| — | Dk —

then for every =€ C** and i,j € N, if |Di| = |D};| for each k =0,...,n —2, then

ip(t=)j and jp(=)i, that is i and j are indifferent in p(3=) (to see this, simply take

p =1 and q = j in Definition 4).

Remark 2. If we want to check if a given social ranking rule satisfies DOM, IIC,
ANON or SYM only partial information on %= is needed. In fact, conditions on the
ranking p(3=) between two elements {i,j} only depend on the comparisons of subsets
having the same cardinality and sharing the same subset S € 2N\53} not containing
neither i nor j.

Table 1 presents the partial information that we need in order to analyse the
social ranking on three elements 1,2, and 3 for N = {1,2,3,4}1. For instance,
concerning the comparison p(3=) between 1 and 2, only the first column of Table 1

18 needed.

Table 1: Partial information needed for the analysis of p(3=) for N ={1,2,3,4}

1vs2 2vs. 3 1vs. 3
(11> or {2} 21 or < {3} {1} = or < {3}
{1,3} = or x{2,3} {1,2} = or x{1,3} {1,2} = or x{2,3}
{1,4} = or x{2,4} {2,4} = or <{3,4} {1,4} = or < {3,4}
{1,3,4} = or <{2,3,4} | {1,2,4} = or =< {1,3,4} | {1,2,4} = or <{2,3,4}

From now, we will sometimes omit braces and commas to separate elements, for
instance, ij denotes the set {i,j}.

Table 2 is the comparison table of the power relation “{1,2,3} = {3} = {1,3} =
{2,831 = {2} = {12} = {1} = 0.

Remark 3. We present in the following some properties of comparisons tables.

!The complete table for the social ranking relation on N = {1,2, 3,4} has three more columns

: (1vs4), (2vs4)and (3 vs 4).



Table 2: Comparison table of {1,2,3} = {3} = {1,3} = {2,3} = {2} = {1,2} =

{1}%@.
1vs2 2vs 3 1vs3

12 23 153
1323 1213|1223

e Let |[N| = n, then the corresponding comparison table has 20"~ 41 lines (+1

corresponds to the title line).

e The number of comparisons to be considered with k elements is (Z:f)

e Only comparisons between subsets having the same cardinality being relevant,
different power relations can give place to the same comparison table. For
instance 123 =32 =21 =13 =1%=2%=3 =0 and 323123321 31323

13 3 3 3 0 will have the same comparison table.

We start the axiomatic analysis of social rankings showing that the anonymity

property and the symmetry one are not equivalent.

Proposition 1. If a social ranking p : T2 — TN satisfies SYM then it also
satisfies ANON, but the converse is not true.

Proof. Consider a social ranking p that satisfies SYM. Let =€ 72" and 1,7 € N be

such that there exists m € II such that
SU{i} = SuU{j} & n(S)U{nr(i)} = n(S) u{r(y)}

for all S € 2M\&91 Tt immediately follows that |Df| = [D%, | and [D};| =

m(0)m(J
|D7kr(j)7r(i)|’ for each k =1,...,n — 2, and by SYM

ip(=)j < m()p(=)m(4)

which proves that p satisfies also ANON.

Now, consider a social ranking p that satisfies the ANON property and let =&
72" with N = {i,j,p,q,1,2, 3,4,5,6}, be as in Table 3 and S ~ T for every
S € 2NM\iit and every T € 2N\P4} different from the subsets explicitly reported in
Table 3. Clearly, |DY| = |Db | and |D¥| = |DJ | for each k=1,...,n—2.

9



Table 3: The ANON property does not imply the SYM property.
1Vs j P Vs. ¢
{i,1,2} = {j,1,2} | {p,4,5} > {¢, 4,5}
{i,1,3} = {5, 1,3} | {p,4,6} = {q,4,6}
{i,1,6} < {j,1,6} | {p,3,5} <{¢,3,5}
Su{iy ~Su{j} | TU{p} ~TU{q}

On the other hand there is no permutation 7 € Il such that 7(i) = p and 7(j) = ¢
and such that

SUfi} = SU{j} & n(S)U{n()} = n(S) U {r(j)}

for all S € 2V\43} In fact, from the first two lines of Table 3 we necessarily have that
7(1) = 4 and then 7({7,1,6}) # {p,3,5}. As a consequence, the ANON property
cannot impose any relation between the social ranking of ¢ over j and the social

ranking of p over ¢, and the SYM is not necessarily satisfied. O]

We conclude this section with an example showing that an apparently natural
procedure (namely, the majority rule) to rank the agents of N may fail to provide
a transitive social ranking. We first formally introduce such a procedure.
Definition 5 (Majority rule). A majority rule (denoted by M ) is a map assigning
to each power relation =€ T2" a total binary relation M (=) on N such that

iM(7)j < dij(7) = d;i(Z).
where di;(3=) = |{S € 2M\MB}  SU {i} = SU{j}}| for each i,j € N.
Example 1. One can easily check that the majority rule M satisfies the property of
DOM, IIC and SYM on the class T2" . On the other hand, it is also easy to find an

example of power relation = such that M (=) is not transitive. Consider for instance

the power relation =€ T2 with N = {1,2,3,4} such that

2>=1>3
23=13>12>14 >34 > 24
134 ~ 124 ~ 234

10



We rewrite the relevant information about = by means of Table 4. Note that

Table 4: The relevant information about = of Example 1.
1 vs. 2 2vs. 3 1vs. 3

1<2 2>=3 1>3
13 <23 12 < 13 12 < 23
14 > 24 24 < 34 14 > 34
134 ~ 234 | 124 ~ 134 | 124 ~ 234

dia(=) = 2, du(=) = 3, dos(=) = 2, ds2(=) = 3, di3(%=) = 3 and ds1 (=) = 2.
So, we have that 2M (>=)1, 3M ()2 and 1M (3=)3, but =(3M (3=)1)): M(3=) is not a

transitive relation.

5 Primitive and unanimous social rankings

In this section we study the relations between the axioms introduced in the previous
section and the social ranking solutions. In the following, we show that DOM and
SYM are not compatible in a general case, for N > 3 (see Theorem 1), whereas
SYM and IIC determine a unanimous social ranking on particular power relations.

We start with showing some consequences of using the axioms introduced in
the previous section when the cardinality of the set N is 3 or 4. The analysis for
cardinality |[N| = 3 is easy since we can enumerate all the cases. As we will present
in the following, the notion of complementarity plays an important role in this case.
We denote by S* the complement of the subset S (S* = N\ S), and we say that a
social ranking p such that ip(3=)j < {i}* = {j}* for each =€ T2" and eachi,j € N
is complement primitive (i.e., it neglects any information contained in > about the

comparison of coalitions of cardinality different from n — 1).

Proposition 2. If |[N| = 3, then there are only two social ranking solutions sat-
isfying the DOM and SYM conditions: the primitive solution and the complement

primitive one.

Proof. Let N = {1,2,3} with 1 3= 2 »> 3. Then six cases may occur in »=: case 1)

11



13 = 23 5= 12, case 2) 13 = 12 5= 23, case 3) 23 = 13 = 12, case 4) 12 = 13 = 23,
case 5) 23 = 12 = 13 and case 6) 12 = 23 = 13.
DOM and SYM impose that:

case 1) by DOM :1p(=)2, by SYM (1p(=)3 and 2p(=)3) or (3p(=)1 and 3p(3=)2).
Hence we have 1p(=)2p(=)3 (primitive) or 3p(=)1p(>)2 (complement primi-

tive)

case 2) by DOM :1p(=)2 and 1p(%=)3. We can have 2p(=)3 or 3p(=)2. Hence we have
1p(=)2p(=)3 (primitive) or 1p(3=)3p(=)2 (complement primitive)

case 3) by SYM : (1p(3=)2, 1p(=)3 and 2p(=)3) or (2p(=)1 , 3p(’=)1 and 3p(=)2).
case 4) by DOM 1p(3=)2p(=)3

case 5) by DOM :2p(3=)3, by SYM (1p(>)2 and 1p(=)3) or (2p(=)1 and 3p(=)1).
Hence we have 1p(=)2p(=)3 (primitive) or 2p(>)3p(=)1 (complement primi-

tive)

case 6) by DOM :1p(=)3 and 2p(=)3. We can have 1p(=)2 or 2p(=)1. Hence we have
1p(=)2p(=)3 (primitive) or 2p(3=)1p(=)3 (complement primitive)

[]

A relation which provides coherent comparisons with respect to the complement
of objects is said “self-reflecting” . The notion of “self-reflecting” is introduced by
Fishburn [19]. More formally, if we denote by S* the complement of the subset S

(S* = N\ S), we say that the power relation = is self-reflecting if and only if for all
S,Q € N, S = (Q implies Q* = S*.

Corollary 1. If |[N| = 3 and the power relation is self-reflecting, then the DOM
condition is sufficient in order to determine the social ranking and it corresponds to

a primitive social rule.

Proof. Let N = {i,j,k}. Self-reflecting implies that Vi,j € N i = j & j* =i &
ik = jk. By DOM we get Vi, j,k € N ip(=)j < i = j < j* =i" & ik = jk. ]

12



Next proposition presents an impossibility for cardinality |N| = 4 and shows
that on the class 72" (all possible total preorders) the properties of DOM and SYM

are not compatible.

Proposition 3. Let N = {1,2,3,4}. There is no social ranking rule p : T2 — TN
which satisfies DOM and SYM on 72",

Proof. We show a particular situation where DOM and SYM are not compatible.
Consider a power relation =€ 72" with N = {1,2,3,4} and such that

1~2~3
13>=23>12>24~ 14> 34
1234 ~ 123 ~ 124 ~ 134 ~ 234

We rewrite the relevant informations about = and the elements 1,2 and 3 by means

of the following Table 5. By Remark 1, a social ranking rule p : 72" — TN which

Table 5: The relevant informations about = and the elements 1,2 and 3.
1vs. 2 2vs. 3 1vs. 3

1~2 2~3 1~3
13 > 23 12 <13 12 < 23
14 ~ 24 24 = 34 14 - 34
134 ~ 234 | 124 ~ 134 | 124 ~ 234

satisfies SYM should be such that 2p(=)3, 3p(=)2, 1p(>)3, 3p(=)1.
By the DOM property, we should have 1p(3=)2, and —(2p(=)1), which yields a

contradiction with the transitivity of the ranking p(%=). O
Proposition 3 can be easily generalized to the case |[N| > 4

Theorem 1. Let |[N| > 3. There is no social ranking rule p : T> — TN which
satisfies DOM and SYM on T

Proof. Simply consider power relations in 72", N D {1,2,3,4}, that are obtained
from the power relation = defined in the proof of Proposition 3 and assigning all the

additional subsets of N not contained in {1,2,3,4} in the same indifference class.

13



More precisely, let N D {1,2,3,4}, and take »>'€ T2 such that U =/ W i U = W
(where 3= is the power relation considered in the proof of Proposition 3) for all the
subsets U, W C {1,2,3,4}, and U 3=’ W, W =’ U for all the other subsets of N not
included in {1,2,3,4}. H

One could argue that the incompatibility between the properties of DOM and

SYM follows from the particular instance of power relation = used in the proof of
Proposition 3, where the fact that |D;(3=)] = |Di,(%=)| and |Dis(=)| = | D}, (=)
(and D%, (=) = Dj;(%=) for t = 0,2 and i,j € {1,2,3}) implies, by the SYM ax-
iom, that 1, 2 and 3 must be indifferent in p(3=). On the other hand, the following
proposition shows that the adoption of properties IIC and SYM yields a unan-
imous social ranking over all those power relations =€ 7% such that, for some
k€ {0,...,|N| =2}, Dj(*=) = Dj;(*=) for all cardinalities ¢ # k and all 4,5 € N,
and | D};(3=)| is not necessarily equal to | DJ;(%=)| (provided that Df;(=)\ D};(=) # 0
and Dj;(=) \ Df(=) # 0).
Proposition 4. Let p : 72" — TN be a social ranking satisfying IIC and SYM. Let
=€ T2 and k € {0,...,|N|=2} be such that SU{i} = SU{j} and SU{j} = SU{i},
for all S € 2M\UIY with |S| # k, DE(=) \ DY (=) # 0 and D (=) \ DE(=) # 0 for
alli,j € N. Then ip(>=)j and jp(3=)i for eachi,j € N.

Proof. Take i,j € N such that |Dj;(=)| > |D};(>)|. Define another power relation
e 72" such that

Su{i}=Su{jteSu{fi} JSU{j}

for each S € 2N\t with |S| = k, and S 3 T and 7' J S for all the other coalitions
S, T € 2V with | S| = |T'| # k+1. We still need to define relation J on the remaining
coalitions of size k.

Take I € N\ {i,j}. Let D C Df(%=) be such that |D| = [D¥(>)|. By Remark
4 (see Section 10 Appendix), define the remaining comparisons in J as follows (an

illustrative example of these cases are given in Table 6):

case 1) for each S € D};(3=) with [ € S, let
SULL A ESU{iy and SU {4, 53\ {I} E SU{j};
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case 2) for each S € DF (=) with [ ¢ S, let

SU{I} T SU{l} and SU{} CSU{I};

case 3) For each S € D with [ € 5, let

SUli, 3 \A{} 3 SU{i} and SU {53\ {l} ESU{j};

case 4) for each S € D with [ ¢ 5, let

SU{i} ESU{l} and SU{j} T SU{l};

case 5) for each S € Df\ D with [ € S, let

SULL I\ 2 SU{iy and SU {53\ {1} I SU{j};

case 6) for each S € D}, \ D with [ ¢ S, let

SU{it3SU{l} and SU{j} 3 SU{i}.

Table 6: An illustrative example of the six possible cases for a power relation

as the one considered in Proposition 4 with N = {1,2,3,4,7,l}, k = 2 and D =

{1,2}, {2, 13}

1VS J 7 vs. [ jovs. 1

case 4): S ={1,2} | {1,2,i} 3{1,2,5} | {1,2,4} C {1,2,} | {1,2,5} 3 {1,2,1}
case 6): S ={1,3} | {1,3,4} 3 {1,3,5} | {1,3,:} 3 {1,3,1} | {1,3,5} 3 {1,3,1}
case 2): S ={2,3} | {2,3,i} £ {2,3,5} | {2,3,i} C{2,3,1} | {2,3,5} C {2,3,1}
case 5): S = {11} | {101} 3 {Lij} | {Lij} 3 {040 | (L} 3 {100}
case 3): S = {20} | {2.0,i} 3{2,0,5} | {2,0.5} T{2.5.0} | {2,4,5) 3 {2,i,1}
case 1): S ={3,1} | {3,1,i} C{3,4,5} | {3,4,7} C{3,5,1} | {3,4,5} C {3,4,1}

1Di;(2)] = 4 [Da()] =2 [Dju(2)] = 4

|D;i(3)] =2 Dy(2)] =4 |Dy;(3)| =2

Note that |Dj;(=)| = |Dj(2)] = |Dj(2)| and | D (=) = [Di(2)| = |Dj(I)]-
Suppose now that ip(3=)j. By IIC, we have ip(d)j. By SYM, jp(d)l and lp(D)i.
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By transitivity of p(3), jp(2)i. By IIC we conclude that jp(=)i too. In a similar
way, if we suppose jp(3=)i, then we end up with the conclusion that ip(%=)j too, and

the proof follows. O

An interesting consequence of Proposition 4 is that if the only information mak-
ing a difference between two objects is given by comparisons of a fixed cardinality,
then it is sufficient to have one discordance in order to declare an indifference (with
IIC and SYM). Proposition 4 suggests how to deal with situations where coalitions
are of a fixed size (such situations are not so eccentric in real life). For instance,
let us imagine that we have committees with a given number (k) of persons and
that we have a ranking on them (for instance N = {1,2,3,4} and k = 2, with
12 %= 13 = 14 = 34 = 24 = 23). Since committees are always formed by two
persons, no information is available on subsets of N with | # k elements (or such
information is irrelevant). How to define a social ranking in this case? One solution
could be to consider all the other comparisons indifferent. Then, by Proposition 4,
we know that SYM and IIC properties can be used in order to support a unanimous

social ranking.

Example 2. Consider a power relation =€ T2 with N = {1,2,3,4,5} and

13 =23 > 12> 24 > 14 > 34 = 15 ~ 25 = 35 > 45,

all the other coalitions of the same size being indifferent (i.e., S U {i} = S U
{7} and SU {j} = S U {i}, for all S € 2N\t with |S| # 1 and i, € {1,2,3}).
We rewrite the relevant informations about = and elements 1,2 and 3 by means of
Table 7.

If a social ranking p satisfies both SYM and DOM, then by Proposition 4, all
the elements in {1,2,3} are in relation with each other in p(3=) (i.e. they are all

indifferent).

6 A property driven approach

In the previous section, we have shown that a social ranking cannot satisfy both

DOM and SYM axioms on 72" . Therefore, it seems natural to look at a restricted
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Table 7: The relevant informations about = of Example 2 and the elements 1,2 and

3.
1 vs. 2 2vs. 3 1vs. 3
1~2 2~3 1~3
13 > 23 12 <13 12 < 23
14 <24 24 = 34 14 - 34
15 ~ 25 25 >~ 35 15> 35
134 ~ 234 124 ~ 134 124 ~ 234
135 ~ 235 125 ~ 135 125 ~ 235
1345 ~ 2345 | 1245 ~ 1345 | 1245 ~ 2345

domain of power relations where the two properties are compatible (for instance,
avoiding power relations like %= in the proof of Proposition 3). To this end, in the
remaining of this section we consider a particular class of power relations R2Y Cc 12"
as provided in the following definitions. For such a restriction, our intuition is
the following (and inspired by Proposition 4): it can be interesting to analyse in

a separate way the comparisons with different size of coalitions and the “local”

dominance for a given size can play a role. We first need some further notations.

Definition 6. Let =€ 72", i,j € N and s € {0,...,n — 2}. We say that i s-
dominates j in =, iff

SuU{i} = SU{j} for each S € 2N\U3} with | S| = s. (1)

Given a total preorder =€ 72", let P(3=) C {0,...,n — 2} be such that for each

i,7 € N and s € P(}=) either i s-dominates j or j s-dominates i. In other words,

P (=) represents those coalitions’ sizes such that a per size dominance relation exists.

Note that 0 and n — 2 are in P(3=) for every =€ T2 .

Definition 7. The set of compatible power relations is defined as the set R2Y Cc 12"

such that for each =€ R the following two conditions hold:
i) for each s,t € P(%=) and i,j € N, if i s-dominates j then i t-dominates j;

ii) for each s € {0,...,n —2} \ P(3>) and all i,j € N, neither i s-dominates j
nor j s-dominates i (i.e., ij(%) \ Dﬁ-(%) #+ 0 and D?’};(?) \ ij(%) £10).
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Roughly speaking, compatible power relations are such that no opposite dom-
inance is allowed for coalitions of different size?. Of course a dominance relation
between coalitions of the same size does not necessarily occur: it is still possible
that for many coalitions S of cardinality k£ (not containing neither x nor y) S U {y}
is stronger than SU{z} and for others of the same cardinality SU{z} is stronger than

S U{y}. For instance, the power relation considered in Example 2 is a compatible

one. Another example of compatible power relation is provided next.
Example 3. Consider a power relation =€ R?" with N = {1,2,3,4} such that

1=2+=3~4
14 =23 =24 =13 =34 = 12
123 ~ 124 = 234 ~ 134.

Note that P(=) = {0,2}. We rewrite the relevant informations about = by means
of the Table 8.

Table 8: The relevant informations about =€ R2" of Example 3.

1wvs. 2 2vs. 3 1vs. 3 1vs. 4 2vs. 4 3vs. 4

1>2 2>3 1>3 1>4 24 3~4

13 <23 12 <13 12 <23 12 <24 12 < 14 13 <14
14 > 24 24 - 34 14 > 34 13 > 34 23 = 34 23 > 24
134 ~ 234 | 124 > 134 | 124 > 234 | 123 > 234 | 123 > 134 | 123 ~ 124

In order to characterize a social ranking that satisfies DOM, IIC and SYM on
R2" . we also need to introduce a new and last axiom. The next axiom says how to
combine social rankings of “compatible” power relations. To be more specific, we
say that if the intersection of two total preorders =, J in 2™ C 72" is still a total
preorder in C2N, then the social ranking corresponding to their intersection = N I

must be the intersection of the individual social rankings p(=) N p(3J).

2However one can still have situations where ‘4 dominates (not strictly) j’ on coalitions of size

t and ‘j strictly dominates i’ on coalitions of size [.
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Definition 8 (SEP). A social ranking p : 2 — TN satisfies the separability
(SEP) property on C*" C T2" iff

p(=N3) = p(=) N p(2)
for all power relations 3=, 3 C2" such that = N Je C2" and p(=) N p(2) € TV.
We can now state the main theorem of this section.

Theorem 2. A social ranking p : R¥ — TN that satisfies the properties of
DOM, IIC, SYM and SEP on the class of compatible relations R2" s such that
ip(3=)j and =(jp(3=)i), if there exist k € P(3=) and S € 2 with |S| = k such that
SU{i} = SU{j};ip(=)j and jp(=)i, otherwise.

Proof. Let =€ R . For all k € {0,...,n—2} and i,j € N define a power relation

=he R2" such that
Su{il =" Su{j} & Su{i} = Su{j}
for each S € 2V} with |S| = k, and
SuU{i} =¥ SU{j} and SU{j} =" SU {i}

for each S € 2V} with | S| # k.

Note that, for each k,t € {0,...,n — 2}, the intersection =* N =! is also a
power relation in R2N, and that =" is a power relation of the type considered in
Proposition 4.

By Proposition 4 and the fact that p satisfies both SYM and IIC, we have that
ip(3=F)j and jp(=F)i for each k € {0,...,n — 2} \ P(3=) and all i,j € N.

Moreover, by the fact that p also satisfies DOM, for each k£ € P(3=) and all
i,j € N, we have that ip(3=*)j and —(jp(:=F)i), if there exists S € 2V with |S| = k
such that SU {i} =% SU{j}; ip(:=")j and jp(:=*)i, otherwise.

By the multiple application of the SEP property, we have that

p(=) N 0p(="),

p(7)
which concludes the proof. n
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Surely Theorem 2 is based on a restriction which can be considered “strong”.
However it shows that “local” dominances can be important and when they are

coherent between them they cancel all the other informations.

Example 4. Consider the compatible power relation =& T2 with N = {1,2,3,4}
of Example 3. By Theorem 2, we have that 1p(3=)2 and —(2p(>)1); 2p(=)3 and
~(3p(5)2); 1p(=)3 and ~(3p(=)1); 1p(=)4 and ~(p(=)1); 2p(=)4 and ~(4p()2).
Finally, 3p(=)4 and 4p(=)3.

7 Dictatorship of the coalition size

In Section 5, we have shown that, over a restricted domain of power relations that
satisfy a given notion of compatibility between the rankings of coalitions of the
same size (see Definition 7), SYM and DOM properties, together with SEP and I1C,
determine a well defined social ranking, as shown by Theorem 2. In this section, we
focus on power relations that do not necessarily satisfy the notion of compatibility
introduced in Definition 7, but still present some regularity when coalitions of the
same size are considered.

More precisely, we define a special class of power relations (namely, the per size-
strong dominant relations) characterized by the fact that a relation of dominance
always exists with respect to coalitions of the same size, but the dominance may
change with the cardinality (for instance, an element i could dominate another
element j when coalitions of size s are considered, but j could dominate i over

coalitions of size t # s). We first need to introduce the notion of s-strong dominance.

Definition 9. Let =€ T2", 4,5 € N and s € {0,...,n—2}. We say that i s-strong

dominates j in =, iff
SuU{i} = SU{j} for each S € 2N\MWIt with |S| = s. (2)

Definition 10. We say that =€ T2 is per size-strong dominant (shortly, ps-sdom)
iff for each s € {0,...,n—2} and all i,j € N, we have either

[i s-strong dominates j in =] or [j s-strong dominates i in =].
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The set of all ps-sdom power relations is denoted by S c 7.

We first study the effect of the combination of the properties of DOM and IIC
on a specific instance of ps-sdom power relations where there exist elements that
are always placed at the top or at the bottom in the rankings of coalitions of equal

cardinality.
Example 5. Consider a power relation =€ 82" with N = {1,2,3,4} and such that

1>2%=3>4
34 =24~ 14 > 23 > 13 > 12
123 > 134 > 124 > 234.

We rewrite the relevant informations about = by means of Table 9.

Table 9: The relevant informations about = of Example 5.

1wvs. 2 2vs. 3 1vs. 3 1vs. 4 2vs. 4 3vs. 4

1>2 2>3 1>3 1>4 24 3>=4
13 <23 12 <13 12 <23 12 <24 12 <14 13 <14
14 < 24 24 < 34 14 < 34 13 < 34 23 < 34 23 <24
134 > 234 | 124 < 134 | 124 > 234 | 123 > 234 | 123 > 134 | 123 > 124

Note that for each s € {0,2}, it holds that either S U {1} = S U{l} for each
S C N\{1} with |S| = s and alll € N\S (i.e., coalitions SU{1} are ranked above all
coalitions SU{l}, with | # i and S containing 0 or 2 elements), and SU{1} < SU{l}
foreach S C N\{1} with |S| =1 and alll € N\S (i.e., coalitions SU{1} are ranked
below all coalitions SU{l}, with | # i and S containing precisely 1 element). Similar
considerations can be done for element 4. So, elements 1 and 4 are two “extreme”
ones. Let us remark that there can be at most two “extreme” elements of a power
relation in 82" . In Proposition 5 we argue that on this kind of power relations, a

social ranking satisfying both DOM and IIC cannot rank “extreme” elements (in this

case 1 and 4) in between two others.

The following proposition shows the effect of DOM and IIC on the social position

of the “extreme” elements.
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Proposition 5. Let p : S — TN be a social ranking satisfying IIC' and DOM
on 82", Let =€ 8*" and i € N be such that for each s € {0,...,n — 2} either

[SU{i} = SU{j} for all j € N\ {i} and S € 2N\3} with |S| = 5] (3)

or

[SU{j} = SU{i} forall j € N\ {i} and S € 2N\U3} with | S| = s]. (4)
Then, [ip(=)j for all j € N] OR [jp(=)i for all j € NJ.

Proof. Suppose on the contrary that there exist j, k € N \ {i}, such that

jp(=)i and ip(i=)k. (5)
Define J€ 72" such that
SU{i} 3SU{j} & SU{i} = SU{j} forall S C N\ {45}, (6)
SU{i} 3 SU{k} < SU{i} = SU{k} forall S C N\ {i,k}, (7)
and
SU{k} 3 SU{j} forall S C N\ {j,k}. (8)

[note that each coalition S U {i}, with S C N \ {i}, by condition (3) and (4), is
ranked strictly higher or lower than each other coalition S U {j}, j # 4, so the
rearrangement of coalitions in 3= to obtain 1 is feasible.]

By IIC, we have that
ip(=)j < ip(2)j and ip(i=)k < ip(D)k.

So, by relation (5), jp(2)i and ip(J)k. On the other hand, by DOM we have kp(J);
and —(jp(2)k), which yields a contradiction with the transitivity of p(3). O

Proposition 5 shows that if there is an element ¢ € N having “contradictory”
and “radical” behavior depending on the size of coalitions (very well for size k and
very bad for size [), then the social ranking satisfying IIC and DOM can not give

¢

him an intermediate position: the element ¢ will be the “best” one or the “worst”

one in the social ranking.
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In the following we argue that if a power relation is in 82" and a social ranking
satisfies both DOM and IIC on the set of ps-sdom power realtions S2", then it
must exist a cardinality t* € {0,...,n — 2} whose relation of ¢*-strong dominance
(dictatorially) determines the social ranking. We first need to introduce the next

lemma, where a given element ¢ plays an important role.

Lemma 1. Leti € N and p : S — TN be a social ranking satisfying IIC and
DOM on 8*". There exists t* € {0,...,n — 2} such that

Jjp(=)k < j t*-strong dominates k in ‘=,
forall j,k € N\ {i} and =€ 8.

Proof. Given a power relation =€ 82" define another power relation =o€ 82" such

that for each S C N\ {i} we have
SU{l} =g SU{i} foralll € N\ (SU{i}), 9)

and

UzsoW: asU=W

for all the other possible pairs of coalitions U, W whose comparison is not already
considered in (9). Roughly speaking, the only difference between 3¢ and = is that
coalitions of size s containing ¢ are placed at the bottom of the ranking induced by
= over the coalitions of the same size. By DOM, it follows that Ip(3=g)i for every
le N.

Now, for each ¢t € {0,...,n — 2}, define a power relation =,€ T2 such that
SuU{i} =, SU{l} for each [ € N and S € 2"\ with |S| = s, (10)

where s € {0,...,t}, and
U%tW3<:>U%t,1W

for all the other possible pairs of coalitions U, W whose comparison is not already
considered in (10). So, the only difference between =; and =, ;, for each t €

{1,...,n— 2}, is that in =, coalitions of size ¢ containing i are placed at the top of
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the ranking induced by %=;_1 over coalitions of the same size ¢, and all the remaining
comparisons remain the same as in >=;_1.

Note that by Proposition 5, we have that either lp(i=;)i for every [ € N, or
ip(=¢)l for every [ € N. Moreover, By DOM, it follows that ip(3=,_2)l for every
jEN.

Let t* be the smallest number in {0,...,n — 2} such that lp(=4_1)i for every
[ € N and ip(=4)l for every [ € N (for the considerations above such a t* must
exist, being, at most, t* =n — 2).

Next, we argue that for every j, k € N \ {i}, the social ranking between j and k
in = is imposed by the relation of ¢*-strong dominance in >=.

W.lo.g., suppose that S U {j} = S U{k} (and, as a consequence, S U {j} =
S U {k}) for each S € 2M\Uk} and |S| = ¢*. Consider another power relation
Je 72" obtained by = and such that:

SU{j} 3SU{i} for each S € 2VM\li7} with |S| = t*, (11)

Su{i} 3 SU{k} for each S € 2V\F} with |S| = t*, (12)
SU{j} 3 SU{k} for each S € 2V\UKF\ (2M\lid}h y 2MERH) “and |S] = ¢+, (13)

and, finally,
UV :sU:=:V (14)

for all the other relevant pairs of coalitions U, W of size s # t* + 1. By 11C jp(d)i
(since in J the comparisons between coalitions containing 7 and j are precisely as in
=_1 and, as previously stated, jp(=4_1)i) and ip(J)k (since in J the comparisons
between coalitions containing ¢ and k are precisely as in =4 and, as previously
stated, ip(>=4)k). Then, by transitivity of p(J) we have jp(2)k. Note that by IIC,
Jp(Dk < jp(=i)k < jp(=)k. We have then proved that whenever j t*-dominates
k, then jp(=)k.

O

We can now formulate the following theorem stating the “dictatorship of the

coalition’s size”.
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Theorem 3. Let p : S — TN be a social ranking satisfying IIC and DOM on
S?". There exists t* € {0,...,n — 2} such that

ip(=)j < i t*-strong dominates j in ‘=,
foralli,j € N and =€ 82"

Proof. Given a power relation =€ SQN, let i+ € N and define 3=+ starting from =
and ¢ precisely as in the proof of Lemma 1.

Now take k € N\ {i} and apply Lemma 1 with k in the role of i. Consequently,
we have that there exists £ € {0,...,n — 2} such that

hp(=)l < h t-strong dominates [ in =,
for each h,l € N\ {k}, and in particular
ip(=)l < i t-strong dominates [ in =,

for whatever complete power relation =€ S

But in the proof of Lemma 1 we have shown that
ip(=)l < i t*-strong dominates [ in 3=

(remember that ¢* in the proof of Lemma 1 is the smallest number in {0,...,n —2}
such that [p(=4_1)i for every | € N and ip(=4 )l for every [ € N). Then it must be

~

t = t*, and the proof follows. n

Example 6. Take again the power relation =€ 82" with N = {1,2,3,4} of Exam-
ple 5. Theorem 3 says that if a social ranking satisfies DOM and IIC on 82", then it
must yield on = one of the following three possible linear orders: 1p(3=)2p(=)3p(=)4
(corresponding to the relation of 0-strong dominance); 4p(=)3p(=)2p(=)1 (corre-
sponding to the relation of 1-strong dominance); 4p(=)1p(=)3p(=)2 (corresponding
to the relation of 2-strong dominance).

For instance, suppose that the social ranking is 4p(=)2p(=)3p(=)1. Define a
new power relation J€ S such that (again, the main changes with respect to =

are shown in bold):

13203304
347323324313 314 312
134 112371234 17124
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We rewrite the relevant informations about 2 by means of Table 10. By DOM we

Table 10: The relevant informations about 3 of Example 6.

1 vs. 2 2vs. 3 1vs. 3 1vs. 4 2vs. 4 3vs. 4

132 233 133 134 234 334

1323 12C 13 12 C 23 12 C 24 12C 14 13314
14C 24 24C 34 14C 34 13C 34 23C 34 23324
134 1234 | 124 C 134 | 124 234 | 123 13234 | 123 C 134 | 123 0124

have that 3p(2)4 and —(4p(2)3). By IIC we have 4p(2)2 and 2p(3)3 (the columns
2 vs. 47 and 2 vs. 3’ are the same in the Tables 9 and 10, respectively), which

yields a contradiction with the transitivity of p(3).

8 Conclusions

In this paper we introduced and studied the problem of how to rank the objects of
a set N according to their ability to influence the ranking over the subsets of N.
As we discussed in Section 2, such a problem can be seen as an ordinal counter-
part of the one about how to measure the power of players in a coalitional game
[1, 6, 9, 18], or as the inverse problem of extending preferences to subsets of objects
(2, 3,4, 5,8, 7,10, 11]. As far as we know, this is the first time that a solution
is proposed using an axiomatic approach (and without the quantitative notion of
power index from cooperative game theory).

The aim of this paper was to analyse some “intuitive” properties for social rank-
ings. We first notice that two natural properties, precisely, dominance and symme-
try, are not compatible over the class of all power relations, despite the fact that, in
some related axiomatic frameworks (see, for instance, [3]), similar axioms have been
successfully used in combination. Then, we provide an axiomatic characterization
of social rankings satisfying symmetry, dominance, iic and separability on a specific
domain of compatible power relations (those whose intersection is still a power rela-
tion). Finally, we proved that the property of independence of irrelevant coalitions

and dominance property determine a kind of ‘dictatorship of the cardinality’ when
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a relation of strong dominance among coalitions of the same size holds: in this case,
the only social ranking satisfying those two properties is the one imposed by the
relation of dominance of a given cardinality s € {1,...,|N|}.

A possible direction for future research is the open question about which axioms
could be used to characterize a social ranking over the domain of all possible power
relations. In view of our results, some of the axioms we propose in this paper
should be abandoned. In this respect, it is worth noting that all the properties
that we analysed are based on the comparison of subsets having the same number
of elements. Therefore, it would be interesting to study properties based on the
comparison among subsets with different cardinalities. For instance, if N = {1,2,3},
the information of the type {1} > {2,3} > {1,3} > {2} could be used to establish
that 1 is socially stronger than 2 (note that 1 strictly dominates 2 on coalitions of
size 1, and 2 strictly dominates 1 of coalitions of cardinality 2, but the “interval”
between {2,3} and {1, 3} is smaller than the one between {1} and {2}).

A related question is the evaluation of the interaction among the elements of
N. As we already noticed, we deal with power relations that do not necessarily
satisfy the responsiveness property [4] or the monotonicity one [3], so objects may
strongly interact (e.g., with respect to monotonicity, two objects z and y together
could be less strong than x and y alone). Consequently, an interesting question to
address is how to compare the interaction among pairs of objects taking into account
their effects over all possible subsets (for instance, to establish whether the level of
interaction between two objects x and y is stronger than the one between two other

objects w and z).
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10 Appendix

Remark 4. Note that by transitivity of power relations =& T2V the relations be-
tween the elements of the columns of a comparison table must satisfy some con-

straints, as listed below.
o Leti,j,k € N and S € 2V\M0dk with S U {i} = SU {j}. Then, one of the
following possibilities may occur:

— SU{i} = SU{k} and SU{j} = SU{k};
- SU{i} x SU{k} and SU{j} < SU{k};
— SU{i} = SU{k} and SU{j} < SU{k}.

o Leti,j k€ N and S € 2M\UIF with SU {i, kY = SU {4, k}.
— SU{i,j} = SU{i,k} and SU{i,j} = SU{j, k};
- SuU{i,j} < SU{i,k} and SU{i,j} < SU{j, k};

— SU{i,j} = SU{i,k} and SU{i, 5} < SU{y, k}.
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