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Abstract

In this paper we shortly introduce an application of a method based on
power indices and coalitional games to design a weighted majority voting sys-
tem in practice. More specifically, we solve an inverse Banzhaf index problem
in order to decide the weight of “great electors” within the electoral college for
the election of the members of the Administration Board and the Academic
Senate of the Paris Sciences € Lettres University. The method used and the

relevant parameters of our analysis are presented and discussed.

Keywords: apportionment, coalitional games, Banzhaf index, inverse power

index problem.

1 Introduction

Paris Sciences € Lettres (PSL) is a federal university that brings together 25 edu-
cation and research institutions in Paris (to be hereafter denominated the PSL In-
stitution Members or, simply, the Institutions). Founded in 2010, the organisation
of PSL is based on two main bodies?: the PSL Foundation for Scientific Cooper-
ation (Fondation de Coopération scientifique), which is mainly responsible for the
management of key actions of the PSL project (e.g., the recruitment of chairs of
excellence, the development of strategic international partnerships, the implemen-

tation of innovative programs in research and training, etc.) and the Community
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of Universities and Institutions (Communauté d’Universités et Ftablissements, also
denominated ComUFE) which is responsible of the decisions concerning the training
and graduation policy of PSL, and of other decisions over the common actions re-
lated with the educational and research community (e.g., the joint coordination of
research policies and international projects for knowledge dissemination, the activa-
tion of digital actions, the implementation of joint strategies concerning students’
life, etc.).

The ComUF is governed by an Administration Board (AB) (Conseil d’Administra-
tion) of 30 members, assisted by an Academic Senate (AS) (Conseil Académique)
of 120 members with a consultative role. The members of the AB and the AS of the
ComUE are representatives of the different Institutions but, for statutory reasons,
only 16 Institutions (see Table 1) out of the 25 of PSL participate to the electoral
process for their designation. Notice that the PSL Foundation and the ComUE it-
self are both represented as independent establishment within the AB and the AS
of the ComUE.

The members of the AB and the AS are indirectly elected, among the candidates
of the different Institutions, by a college of “great electors” designated by the Insti-
tutions according to their own statutes (usually, via general elections within their
respective Institutions). Moreover, the members of the AB and the AS must be
appointed in the respect of their professional categories (e.g., teachers, researchers,
administrative and technical staff, etc.) according to the proportion specified in the
Internal Regulations [13|, addressing the general recommendations of the relevant
national legislation. The same internal rules also specify that the “great electors”
must have different amounts of say (weights) and should appoint candidates mem-
bers for the AB and the AS using a simple majority mechanism.

The ComUEF is also provided with a Steering Committee (SC) (Comité des Mem-
bres) formed by the PSL institutions heads, the president and the vice-president of
PSL, and the deans of the main departments. The objective of the SC is to ensure
the proper functioning of PSL and to address the implementation of the guidelines
provided by the Internal Regulations [13].

In this paper, we shortly introduce an approach based on coalitional games and



on power indices to establish a “fair” distribution of the weights among the “great
electors” within the PSL electoral college for the appointment of the AB and the
AS members. In the game theoretic literature, several power indices (e.g. the well
known Banzhaf index [4] and the Shapley-Shubik [15] index), have been proposed to
evaluate the (a priori) distribution of power on committee decisions (see for instance
[6] or [9] for a complete introduction to the literature). For instance, the Banzhaf
index, that will play a central role in this paper, measures the ability of a voter
to cast the decisive vote in winning coalitions when all coalitions have the same
probability to form (see Section 2 for a more detailed discussion). Applications of
power indices to existing electoral systems include the analysis of the United Nations
Security Council [15, 14], the International Monetary Fund [10], the European Union
Council of Ministers [1], the Electoral College of the United States [12] and many
others.

Another very interesting and related issue is the inverse power index problem:
if a vector of desired individual powers is given (for instance, as the outcome of a
negotiation process), can we determine a voting method where a certain power index
yields a good approximation of the desired vector? For instance, assuming that the
Banzhaf index is used to evaluate the power of n voters, the inverse power index
problem can be formulated as follows: given a vector P = (py,...,p,) of n real
numbers and an appropriate “metric” to evaluate the distance between real-valued
vectors, find a voting system with n voters such that the distance (or error) between
the Banzhaf index computed on such a voting system and the vector P is smaller
than a predefined value (see [3, 2| for further details, and 7] for a recent review of
the existing methods to solve this problem).

According to the recommendation of the SC [16], an “ideal” voting system should
take into account the following three criteria: 1) all the Institutions should partic-
ipate with a non-negligible power to the process of taking decisions in the AB and
the AS of the ComUE; 2) larger Institutions (in terms of number of staff employed)
should play a more relevant role; 3) Institutions with a major academic offer should
be fairly represented. Because of an important disproportion of students over the

different Institutions (many Institutions have no student at all), the SC of the Co-



mUFE considers this last principle less relevant than the first two, in order not to
destabilise the “global economy” of the decision-making process within PSL.

Consequently, a triple majority system (with thresholds over the total number
of Institutions, staff and students) has been adopted as an “ideal” voting system
(see Section 3 for more details on the three respective quotas). Our goal, is then to
solve an inverse Banzaf index problem |2| with the objective to compute the weights
of the “great electors” of PSL such that the Banzhaf index of the electoral college
(based on a simple majority mechanism) is as close as possible to the Banzhaf index
of the “ideal” triple majority system recommended by the SC [16].

We start with some preliminary notations and definitions in the next section.
Section 3 is devoted to the discussion of the method used to solve the inverse Banzhaf

index problem in our setting. Section 4 concludes.

2 Preliminaries and notations

A coalitional game, also known as game in characteristic function form or Transfer-
able Utility (TU) game, is a pair (N, v), where N denotes a finite set of players and
v is the characteristic function, assigning to each S C N, a real number v(S) € R,
with v(0)) = 0 by convention. If the set N of players is fixed, we identify a coalitional
game (N,v) with the corresponding characteristic function v. A group of players
S C N is called a coalition and v(S) is called the worth of this coalition.

A coalitional game (N, v) such that v(S) € {0,1} (i.e., the worth of every coali-
tion is either 0 or 1) for each S € 2V \ {0} and v(N) = 1 is said a simple game.
The standard interpretation for these games is to consider coalitions as “winning”
(v(S) = 1) or “losing” (v(S) = 0).

A particular class of simple games is the one of weighted majority games, where
the players in N are associated to a vector of n = |N| weights (wy,...,w,) and a
magority quota q is given. A weighted majority game (N, v") on the weight w and
the quota ¢ is such that for each S € 2V \ {0}:

() = Lif Y qwi >q, (1)

0 otherwise.



Institution Short name

1 | Ecole nationale supérieure de chimie de Paris Chimie ParisTech
2 | Centre national de la recherche scientifique CNRS
3 | Conservatoire national supérieur d’art dramatique CNSAD
4 | Conservatoire national supérieur de musique et de
danse de Paris CNSMDP
5 | Communauté d’universités et établissements PSL ComUE PSL
6 | Ecole normale supérieure ENS
7 | Ecole nationale supérieure des arts décoratifs ENSAD
8 | Ecole nationale supérieure des beauz-arts ENSBA
9 | Ecole supérieure de physique et de chimie industrielles
de la ville de Paris ESPCI
10 | Fondation de coopération scientifique PSL FCS PSL
11 | Institut national de recherche en informatique et en
automatique INRIA
12 | Institut Curie Institut Curie

13 | Fondation européenne des métiers de ['image et du son | La Fémis

14 | Ecole Nationale Supérieure des Mines de Paris Mines ParisTech
15 | Observatoire de Paris Observatoire
16 | Université Paris-Dauphine Paris-Dauphine

Table 1: The 16 Institutions taking part to the electoral college for the appointment
of the AB and AS members.

This paper mainly deals with a very famous index for coalitional games: the
Banzhaf index [4]. The Banzhaf index of a game v is denoted by B(v) and can be
obtained directly from the following relation:

1
Bi(v)= > grmrmal5), (2)
Se2N\1{i}
where m;(S) = v(SU{i}) —v(S) is the marginal contribution of i entering in S, for
eachi € N and S € 2V\M#, So, B;(v) is the expected marginal contribution of player

i € N in game v over all possible coalitions (not containing ¢) in which ¢ can enter,
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and assuming that all coalitions not containing ¢ have the same probability to form
(i.e., probability equal to == ). The Banzhaf index [4] of coalitional games arising
from voting situations (e.g., the simple majority games) has been widely used in the
literature as a power indez: the vector of values assigned by the Banzhaf index to
the players of a (monotonic) simple game is often interpreted as the probability to
cast a decisive vote or, more in general, as the ability of players to influence a voting
mechanism.

A simple game (N, v) is said monotonic if v(S) = 1 implies that v(7') = 1 for
each S,T € 2¥ with S C T. For instance, every weighted majority game is a
monotonic simple game. For a monotonic simple game (N,v) and a player ¢ € N,
a coalition S € 2V \ {0} with i € S and such that v(S) = 1 and v(S \ {i}) = 0 is
said a swing for ¢ and we denote by s;(v) the number of swings for player ¢ in game
v. It is easy to check that the normalized Banzhaf index on v can be defined for
monotonic simple games as follows:

Bi(v)  si(v)

)= = B T S i)

(3)
for each 7 € N.

Example 1. Consider a parliament with three political parties 1, 2 and 3 with
weights (i.e., seats) 47, 33 and 20, respectively, and suppose that to pass any motion,
a qualified magjority of two-third of the seats is needed. This situation can be described
as a simple majority game (N,v") with N = {1,2,3}, w = (47, 33,20) and q = 2g—0.
As a consequence, v*({1,2,3}) = v*({1,2}) = v*({1,3}) =1 ({1,2,3},{1,2} and
{1,3} are winning coalitions) and v*’({1,2,3}) = 0 for all the remaining coalitions.
Notice that the number of swings for player 1 is s;(v*) = 3 ({1,2,3},{1,2} and
{1,3} are all swing for player 1), whereas for 2 and 3 we have s3(v?¥) = s3(v*) =1
({1, 2} is the only swing for 2 and {1,3} is the only swing for 3). So the normalized
Banzhaf indez is f(v") = (%,%, %) The reader can immediately verify that the

weight w; does not represent at all the effective power of players 1 € N.



3 The proposed apportionment

In this section, we introduce the inverse Banzhaf index problem used for the ap-
portionment of the weights of the “great electors” within the electoral college for
the appointment of the AB members (the analysis for the AS is very similar and
therefore omitted from these notes). To be more specific, we consider the inverse

Banzhaf index problem as introduced in the next definition.

Definition 1 (Inverse Banzhaf index problem). Let N = {1,...,n} be a finite set

of players, let X € [0,1] be a predefined quota (expressed as a fraction of the total

weight) and let € € [0,1] be the mazimum tolerated error.

Given another vector P = (py,...,pn) € [0, 1] of n real numbers on the interval

[0, 1] and such that ), p; = 1 (i.e., P is normalized), find a vector of non-negative

integer numbers w = (w1, ..., w,) € ZN with w; > 0 for each i € N and such that
Z 18:i(v") — pil <e, (4)
iEN

where v is the weighted majority game on N defined according to relation (1) with

weights w and a quota q = ),y w;, and |3;(v") — p;| is the absolute value of the

difference between the normalized Banzhaf index B;(v") of player i € N and in game

v and the “ideal” value p;.

Notice that in the above definition, it is asked to find a vector of integer weights
and the quota is provided a priori (for different formulations of the inverse Banzhaf
index problem see [3, 2]).

According to the aforementioned “ideal” triple-majority rule recommended by
the SC [16] a subset of the 16 Institutions of the ComUE shown in Table 1 is a

winning coalition if it satisfies the following three criteria:

i) it is formed by a simple majority (> 50%) of the Institutions of the ComUE,

all in favour;

ii) it represents a qualified majority (> 66%) of the total number of employees

working in the Institutions of the ComUFE;



ili) it represents at least one-fourth (> 25%) of the entire population of students

enrolled in the Institutions of the ComUF;

The data concerning the number of employees and students of each Institution of

the ComUE are shown in Table 2.

Institution e; e;% S; $;%
Chimie ParisTech 262 | 3.7% 410 2.4%
CNRS 128 | 1.8% 0 0.0%
CNSAD 68 1.0% 97 0.6%
CNSMDP 556 | 7.8% 1203 | 7.0%
ComUE PSL 87 1.2% 230 1.3%
ENS 1591 | 22.3% 1706 | 10.0%
ENSAD 284 | 4.0% 654 3.8%
ENSBA 293 | 4.1% 500 2.9%
ESPCI 354 | 5.0% 368 2.2%
FCS PSL 30 0.4% 0 0.0%
INRIA 42 0.6% 0 0.0%
Institut Curie 703 1 9.9% 0 0.0%
La Fémis 262 | 3.7"% 195 1.1%
Mines ParisTech 609 | 8.6% 831 4.9%
Observatoire de Paris 543 | 7.6% 103 0.6%
Université Paris-Dauphine | 1309 | 18.4% 10778 | 63.1%
Total 7121 | 100.0% || 17075 | 100.0%

Table 2: Relevant number of employees (e;) and students (s;) of each Institution ¢

of the ComUE in the electoral college for the appointment of the AB members.

A simple game (N, v'), with N = {1,...,16} as the set of players representing the
16 Institutions Members of PSL, was defined according to the above triple majority
mechanism. Precisely, let e; and s;, be, respectively, the number of employees and

of students of each Institution ¢ € N, and take a coalition of Institutions S C N,



S = {0}, then we have that:

- 2 1
W(8) = L if [S|>8and ), .qe; > zpand ), o8 > 0, 5)

0 otherwise,

where p = . \ e; is the total size of personnel affiliated to the 16 Institutions
of the ComUE and o = ), _\ s; is the total number of enrolled students. The
normalized Banzhaf index 3(v') of game v' has been computed according to relation
(3) and by means of the computer program introduced in [8] and the Mathematica
[17] functions introduced in [5] (see the Appendix for the Mathematica instructions).
The vector S(v?) is shown in the first column of Table 3.

A weighted majority game (N, v™) is also defined according to relation (1), where
the weights are computed solving the inverse Banzhaf index problem defined in
Definition 1 with P = g(v') and A = 3 (i.e., according to the guidelines of the
Internal Regulations [13| we focus on a simple-majority systems with quota ¢ =
Y icn ). The total error introduced by the approximation of the Banzhaf index
computed on the “ideal” game o', is defined as follows:

S(B(v*), B) =Y 1Bi(v") = Bi(v")],
ieN
which is bounded by the the vector € in the problem of Definition 1 (for our purposes,
we define € equal to 5%).

In order to find a solution of the previously introduced instance of the inverse
Banzhaf index problem (specifically, the one introduced in Definition 1 with P :=
L), A= % and € = 0.05), we apply a trial-and-error procedure. At the initial step
of the procedure, we define an initial vector w = (wy, ..., w,) of n integer weights
ordered according to §;(v'), i.e. such that w; > w; & B;(v') > B;(v'), for each
1,7 € N. Using this vector of initial integer weights w, we compute the associated
weighted majority game v and the corresponding Banzhaf index f;(v") together
with the initial total error §(8(v*"), B(v')). If this initial total error 6(5(v™), B(v?)) is
smaller than e, then the procedure stops and the vector w is a solution of the inverse
Banzhaf problem; otherwise, the vector of integer weights is adjusted as follows: each
w; such that player ¢ has the largest absolute difference |5;(v*) — 5;(v")] is decreased
by 1, if 5;(v*) — B;(v") > 0, and increased by 1, otherwise. A new weighted majority

9



game v associated to the adjusted weight vector is computed, together with the
corresponding Banzhaf index §;(v*) and the new total error §(5(v™), 5(v")). Again,
if the new total error 6(8(v"), B(v')) is smaller than e, then the procedure stops and
the new vector w is a solution of the inverse Banzhaf problem; otherwise, a new
adjustment of the weights occurs, and the process described above is repeated till
finding a vector of integer such that the corresponding total error 6(5(v®), B(v')) < e.
Of course, using this iterative procedure, in general we cannot guarantee to obtain
a solution of the inverse Banzhaf index problem as specified in Definition 1 (see [3]
for a more detailed discussion of the problem). In our case, however, the procedure
yielded the vector of integer weights shown in the last column of Table 3 together
with the Banzhaf value (3;(v") of the corresponding weighted majority game (see
also Figure 3 for a comparison between (3;(v*) and (3;(v*) of PSL members ordered

according to their Banzhaf index in the AB).

25

15 1
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Figure 1: Comparison of the normalized Banzhaf index of the “ideal” triple-majority
game v' (left column) and the Banzhaf index of the weighted majority game v* (right

column) for each Institution of the ComUE.

A more sophisticated algorithm to solve the inverse Banzhaf index problem has

10



Institution B | B | |B(wY) — B(v)] | Weight
Chimie ParisTech 0.039 | 0.037 | 0.002 3
CNRS 0.023 | 0.024 | 0.001 2
CNSAD 0.016 | 0.013 | 0.003 1
CNSMDP 0.073 | 0.076 | 0.003 6
ComUE PSL 0.018 | 0.013 | 0.005 1
ENS 0.213 | 0.208 | 0.005 15
ENSAD 0.041 | 0.037 | 0.004 3
ENSBA 0.042 | 0.037 | 0.005 3
ESPCI 0.049 | 0.050 | 0.001 4
FCS PSL 0.011 | 0.013 | 0.002 1
INRIA 0.013 | 0.013 | 0O 1
Institut Curie 0.088 | 0.090 | 0.002 7
La Fémis 0.039 | 0.037 | 0.002 3
Mines ParisTech 0.079 | 0.090 | 0.011 7
Observatoire de Paris 0.071 | 0.076 | 0.005 6
Université Paris-Dauphine | 0.186 | 0.186 | 0 14
Total 1 1 0.049 77

Table 3: Normalized Banzhaf index of the “ideal” triple-majority game v* and of the
weighted majority game v". The absolute value of the differences between the two
Banzhaf indices |5(v") — S(v")| is shown in the third column (notice that the total
error is less than the maximum tolerated one € = 0.05). The vector of weights is

shown in the last column (the quota is then fixed at ¢ = 7).

been introduced in [3]. Using the implementation of Algorithm 1 in [3] to solve
our instance of the inverse Banzhaf index problem, we obtain the vector of weights
shown in Table 10 in the Appendix (see the Appendix also for the Mathematica code
adapted from 3] to our problem). The vector of weights found with this algorithm
is very close to the one we obtain by our procedure, and the total error with respect

to the Banzhaf index of the “ideal” game is the same (§(5(v™), 5(v")) = 0.049).
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4 Concluding remarks

In this report we shortly introduce an application of the inverse Banzhaf index prob-
lem to the apportionment of the weights of “great electors” in the electoral college
for the appointment of the AB and AS members of the ComUE PSL [13]. Game
theoretic power indices [6, 9] are often used in literature to describe the a priori
power of players in existing voting systems [15, 14, 1, 12]. The objective of this
report is to show that the inverse power index problem |7]| can also provide the basis
to “prescribe” a good electoral system. We are aware that many aspects of our anal-
ysis can be improved and embedded in a more general framework. For instance, the
choice of the appropriate power index to evaluate the influence of the players in the
“ideal” game is a delicate issue that deserves further discussion. Another interesting
issue that should be further investigated is related to the algorithmic aspects of the
inverse power index problem (for more sophisticated algorithms see, for instance,
[11, 3, 2|). With respect to the inverse Banzhaf index problem, we would like to
conclude with some open questions raised by [3] that to the best of our knowledge
are still without a definitive answer:

[3]: “...The questions we are interested in exploring are: is there a way of directly
transforming a multiple majority weighted game into a weighted voting game with
the same voting powers. Is there any loss of information in the transformation? Is it
possible to identify and remove redundant weighted games from the multiple majority

weighted voting game?”

In our opinion, the method we propose for the design of the electoral college
of the ComUEFE should be seen as an attempt to provide an objective basis for the
negotiation of the weights among the PSL Institutions. This is at least, we believe,
how it has been perceived by the members of the SC of the ComUE [16], where our
proposition has been debated and finally approved under few modifications during

the PSL-SC meeting held in Paris on April 21st, 2015.
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Appendix: Mathematica instructions

For the computation of the Banzhaf index of games v' and v we used the Mathe-

matica [17] functions introduced in [5]. In this appendix we show the Mathematica

instructions to compute 3(v') and S(v").
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institutions16PSL = {"ENS", "Université Paris-Dauphine", "Institut Curie",
"Mines ParisTech", "CNSMDP", "Observatoire de Paris", "ESPCI",
"ENSBA", "ENSAD", "Chimie ParisTech", "La Fémis", "CNRS",

"ComUE PSL", "CNSAD", "INRIA", "FCS PSL"};

staffpermil = {223, 184, 99, 86, 78, 76, 50, 41, 40, 37, 37, 18, 12, 10, 6, 4};
studpermil = {100, 631, 0, 49, 70, 6, 22, 29, 38, 24, 11, 0, 13, 6, 0, 0};
members16 = Table[1, {16}];

swingsnumb = banzhaf3swings|staffpermil, studpermil, members16, 667, 250, 8|
ban3aPSL16 = SetPrecision[swingsnumb/Plus @@ swingsnumb, 3|
TableForm| Transpose|{staffpermil, studpermil, membersl6, swingsnumb,
ban3aPSL16}],

TableHeadings — > {institutions16PSL, {"Staff", "Students", "Membership",
"Swing", "Banzhaf Normalized"}}|

Table 4: Computation of the Banzhaf index §(v") of the “ideal” game v* (code
adapted from [5]).

weight16s — 15, 14, 7, 7,6, 6, 4, 3,3, 3,3, 2, 1, 1, 1, 1
swingssimple = banzhafPower|weight16s, 39|

ban3aPSL17simple = SetPrecision|swingssimple/Plus @@ swingssimple, 3|
TableForm|Transpose[{weight16s, swingssimple, ban3aPSL17simple}|,
TableHeadings — > {institutions16PSL, {"Weight", "Swing",

"Banzhaf Normalized" }}|

Table 5: Computation of the Banzhaf index f(v*) of the “ideal” game v* (code
adapted from [5]).
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Off [InterpolatingFunction: : "dmval", General::"=spelll", NumberForm::"sigz"]
Clear[P, RW, VD]
g[v_] := Apply[Times, Map[(1+x" %) &, v]]~
s[r_] :=Normal[Series[1/(1-x), {x, 0, x-1}]1]:
hir , v ] :=Expand[g[v] /(1L +x*1)];
plr_, v_]1 :=Coefficient([s[r] h[r, v], x*Round [Total[v] /2-1]]"
a5 it el y

Ind[v_]

=Map[pl[#, v] &, v]:

index+)NBI[v_] := (temp = Ind[v]:

temp /N[Total[temp]]l)

NOTma ed i JFirstBqual[u , v.] :=u[[1]] =v[[1]]"

F[r , RW ] := Total[(FractionalPart[RW r+1/2] -1/2)*2];
T={0.213, 0.186, 0.0876, 0.0791, 0.0732, 0.0714, 0.045, 0D.042, 0.0413, 0.0388, 0.0388, 0.0233, 0.0176, 0.0156, 0.0128, 0.0105};
P[n ] :=P[n] =NBI[V[n]] 1.0002; (:cc

Err[n ] :=Total[DT[n] *2]:
Errabs[n ] := Total[Abs[DT[n]]]:

#)DT[n ] :=P[n] -T:

RW[n ] :=RW[nD] = Map[Interpolation[Union[Transpose[{P[n-1], V[n-1]}], SameTest + FirstEqmal] , InterpeolationOrder -+ 2], T]:

Go[n_ ] := (Print["Next real weights RW[", n, "] = ", NumberForm[RW[n], 411
r = Minimize[F[s, RW[n]], 0.8<s<1.2, s][[2, 1, 2]]:
Print["Good mmltiplier =", r]:
V[n] = Round [RW[=n] r] ;
Print["Next integer weights BW[", n, "] = ", V[nll:

Print["Error 12-" NumberForm[Err[n], 4]]:
Print["Errcr 11=" NumberForm[Errabs[n], 41]1:):

V[0] =Round [77 Map [InverseErf, T] /Total[Map[InverseErf, T]11:

Print["Initial integer weights V[0]=", V[0]]:
Print["Initial error 12=", NumberForm[Err[0], 4]]:
Print["Initial error 11=", NumberForm[Errabs[0], 4]]:
Go[1l]

Table 6: Weights computation using the algorithm introduced in [3] (code adapted
from |3]
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Staff Students Membership Swing Banzhaf Normalized
ENS 223 100 1 10771 0.213
Université Paris-Dauphine | 184 631 1 9415 0.186
Institut Curie 99 0 1 4433 0.0876
Mines ParisTech 86 49 1 3999 0.0791
CNSMDP 78 70 1 3705 0.0732
Observatoire de Paris 76 6 1 3613 0.0714
ESPCI 50 22 1 2477 0.0490
ENSBA 41 29 1 2123 0.0420
ENSAD 40 38 1 2089 0.0413
Chimie ParisTech 37 24 1 1961 0.0388
La Fémis 37 11 1 1961 0.0388
CNRS 18 0 1 1181 0.0233
ComUE PSL 12 13 1 891 0.0176
CNSAD 10 6 1 789 0.0156
INRIA 6 0 1 647 0.0128
FCS PSL 4 0 1 531 0.0105

Table 7: The output of the instructions in Table 4.
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Weight Swing Banzhaf Normalized
ENS 15 e 0.208
Université Paris-Dauphine 14 59—é) 0.186
Institut Curie 7 % 0.0899
Mines ParisTech 7 e 0.0899
CNSMDP 6 = 0.0760
Observatoire de Paris 6 = 0.0760
ESPCI 4 Toass 0.0503
ENSBA 3 T 0.0374
ENSAD 3 s 0.0374
Chimie ParisTech 3 % 0.0374
La Fémis 3 T 0.0374
CNRS 2 i 0.0244
ComUE PSL 1 o 0.0125
CNSAD 1 i 0.0125
INRIA 1 o 0.0125
FCS PSL 1 2 0.0125

Table 8: The output of the instructions in Table 5.

Initial integer weights V[0]=[17, 14, 7, &, 6, 5, 4, 3, 3, 3, 3, 2, 1, 1, 1, 11
Initial error 12=0.001177

Initial error 11=0.08273

Next real weights BW[1] = {16.01, 14.7, 6.759, 6.168, 5.724, 5.585, 3.895, 3.348, 3.294, 3.098, 3.098, 1.876, 1.418, 1.257, 1.03, 0.5429]
Good multiplier =0.337229

Next integer weights RW[1] - [15, 14, 6, 6, 5,5, 4, 3, 3, 3,3, 2, 1,1, 1, 1}

Error 12=0.0001912

Error 11=0.04912

Table 9: The output of the instructions in Table 6.
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Institution Weight
Chimie ParisTech 3
CNRS 2
CNSAD 1
CNSMDP 5
ComUE PSL 1
ENS 15
ENSAD 3
ENSBA 3
ESPCI 4
FCS PSL 1
INRIA 1
Institut Curie 6
La Fémis 3
Mines ParisTech 6
Observatoire de Paris 5
Université Paris-Dauphine 14

Table 10: The weight of vector obtained using Algorithm 1 in [3] and using the code
in Table 6.
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