
la
m
sa

d
e

LAMSADE

Laboratoire d’Analyse et Modélisation de Systèmes pour
l’Aide à la Décision

UMR 72

Février 2016

Constrained Object Allocation Problems

 Laurent Gourvès, Carlos A.Martinhon, Jérôme Monnot

CAHIER DU
 372

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

Constrained Object Allocation Problems

Laurent Gourvès∗, Carlos A. Martinhon†, Jérôme Monnot‡

Abstract

The Object Allocation Problem (OAP) is a well studied problem which is about to allocate
a set X of n objects to a set N of n agents. This paper deals with a generalization called
Constrained Object Allocation Problem (COAP) where the set of objects allocated to the agents
must satisfy a given feasibility constraint. The input is a set X of at least n elements and a
collection S of subsets of X , each of size n. Every S ∈ S defines a set of elements that the
agents can collectively possess and such that every agent is allocated exactly one element.

In this article we first study the problem of a central authority who wants to maximize
the social welfare defined in two ways: the sum of the agents’ utility for the item they receive
(utilitarian) or the utility of the poorest agent (egalitarian). This optimization problem is shown
NP-hard for COAP in general but polynomial time solvable when S is the base set of a matroid
(for the utilitarian social welfare and the egalitarian social welfare).

An allocation can be built by the agents without communicating their utilities to a central
authority. They can use a mechanism like the famous Serial Dictatorship mechanism (SD). In
SD, a permutation of the agents is given and, starting from scratch, the agents select in turn
their most preferred element among the remaining items. We analyse the solutions produced by
a version of SD adapted to COAP. There are instances of COAP such that SD fails to produce
a socially optimal allocation, whatever the order on the agents. However, if S is the base set of
a matroid, then we prove that SD produces a social optimum for at least one permutation (for
the utilitarian social welfare and the egalitarian social welfare).

Then, we give tight worst case bounds on the ratio between the social utility under SD and
the optimal social utility. These bounds are valid for both OAP and COAP.

We conclude with a proof showing that manipulating SD for inducing a socially good alloca-
tion in OAP is NP-hard even with 3-approval scores. Here, we retain two ways to indicate that
an allocation is socially good: the sum of the agents’ utilities is maximum and the minimum
utility of an agent is maximum.

We end the paper by showing some special cases where manipulating is polynomial. In par-
ticular, we obtain a dichotomic complexity result of the manipulation problem for the egalitarian
social welfare.

Keywords: object allocation, matroids, Egalitarian, Utilitarian, manipulation.

1 Introduction

The Object Allocation Problem (OAP) is about to match a set X of n objects (e.g. houses or jobs)
to a set N of n agents. Every agent receives exactly one object so there are n! possible allocations.

∗CNRS UMR 7243 and Université Paris Dauphine, France (laurent.gourves@dauphine.fr)
†Fluminense Federal University, Department of Computer Science, Niterói, RJ, Brazil (mart@dcc.ic.uff.br)
‡CNRS UMR 7243 and Université Paris Dauphine, France (jerome.monnot@dauphine.fr)

1

This article deals with a generalization called Constrained Object Allocation Problem (COAP): X
may contain more than n elements but each agent is allocated exactly one object and the sets of
objects that the agents can collectively possess is prescribed. In concrete terms, we are given a
collection S of subsets of X , each of these subsets has cardinality n, and an allocation A is feasible
if and only if {A(i) : i ∈ N} ∈ S where A(i) is the object assigned to agent i ∈ N . Thus, S defines
which sets of 2X the agents can collectively possess. But for any given S ∈ S, there is no restriction
on how S is distributed to the agents. We aim at studying some important features of OAP and
see if they extend to COAP.

In both OAP and COAP the individual utility of an agent for a given allocation solely depends
on the object he receives. The social welfare is mainly defined in two standard ways: utilitarian
(total sum of the agents’ individual utilities) and egalitarian (least individual utility of an agent).

For OAP, it is long known that a socially optimal allocation can be computed in polynomial
time if the agents’ utilities for the objects are given (maximum weight perfect matching). For
example, these utilities can be collected by a central authority which computes the social optimum.
Interestingly, we show that the problem is still polynomial-time solvable for COAP if S is the base
set of a matroid defined on X . This matroidal subcase of COAP, denoted by MOAP for matroidal
object allocation problem, is well motivated and central to our work. For COAP in general, we
prove that computing a socially optimal allocation is an NP-hard problem.

The remaining part of the article deals with Serial Dictatorship (SD), a famous mechanism
for the greedy construction of solutions in the object allocation problem (no central authority is
required). Given a permutation of N (also called policy), the first agent selects his top item, i.e.
his most preferred object in X , and removes it from X . Then, the second agent selects his top
item and removes it from X , and so on. The allocation produced by SD is rarely a social optimum.
However, it is known that for every instance of OAP, there must be a permutation of N such that
SD ends up with a socially optimal allocation (a folk result).

In this article we provide an extension of SD to COAP: at each step, the agent who plays selects
his most preferred element under the constraint that the set of currently selected elements can
be completed in a set of S. We show that for every instance of MOAP (the matroidal version of
COAP), there must be at least one permutation of N such that SD ends up with a socially optimal
allocation. For COAP in general, there is at least one instance such that no permutation of SD
provides a socially optimal allocation according to the utilitarian or the egalitarian social welfare.

Finally we study the problem of a central authority who wishes that a socially optimal allocation
emerges and, to do so, manipulates as little as possible the policy of SD. Here, assuming that the
manipulation is measured by the number of agents who are imposed a choice of object by the
central authority, we prove that manipulating SD for OAP is NP-hard even with approval scores
and for several notions of social welfare (utilitarian, egalitarian, Pareto optimality). On the other
side, we show that this problem becomes polynomial for simple scores like plurality, 2-approval or
veto. In particular, we obtain the following dichotomic complexity result for the egalitarian social
welfare of OAP with k-approval scores: k constant is polynomial if and only if k ≤ 2.

This article is organized as follows. Related works are provided in Section 2. Formal definitions
of COAP, MOAP and OAP, together with basic notions on matroids are given in Section 3. MOAP
is new and central to our work so we motivate it with applications in Section 4. The problem of
computing a social optimum is studied in Section 5. SD and its extension to COAP are investigated
in Section 6. More precisely, see Section 6.1 for the existence of a permutation inducing a social
optimum for MOAP. Finally, Section 7 deals with the manipulation of SD. A summary of our

2

central computation Serial Dictatorship
of a social optimum (SD)

COAP NP-hard for some instances, no permu- approximation NP-hard
tation induces a social optimum ratio of 0 in general. to mani-

MOAP polynomial time at least one permutation It is O(n−2) pulate
OAP solvable induces a social optimum under mild

assumptions (*)

Table 1: Contribution. Except (*), all these results hold for utilitarian and egalitarian social
welfare.

contribution is given in Table 1.

2 Related work

Many real-world applications require to pair some entities: jobs and workers, houses and families,
men and women, students and schools, etc. These well-studied problems are often called markets
or matchings.

In a two-sided market there are two groups of agents and everyone has preferences over the
members of the opposite group (e.g. men and women). A solution is a matching M that consists
of pairs (one member of each group) and M(x) denotes the agent matched with x under M . Given
a two-sided market, the famous stable marriage problem is about to find a matching M such that
no pair of agents (a, b), not matched together, satisfies “a prefers b to M(a)” and “b prefers a to
M(b)”. Such a stable matching always exists and Gale and Shapley provided an algorithm to build
it [21].

Sometimes M has to satisfy some extra constraints. For example, a school may have bounds on
the number of students that it can host. Schools can be classified according to their topic/location
and there may be additional quotas, not on the schools directly, but on the groups on schools. In a
different context, this is known as laminar matroids which are special cases of matroids [34, 29, 31].
Matroidal extensions of the stable matching problem have already been studied in [4, 19, 23, 27].

A one-sided market is also cut in two groups of agents but only one group has preferences over
the other group (e.g. families and houses). In [35], Shapley and Scarf study a one-sided house
market with endowments (each agent owns a house). They search for an allocation such that no
coalition of agents can improve upon it. Such a stable allocation always exists and it is produced by
Gale’s top trading cycle algorithm (TTC) [35]. TTC is centralized and mainly based on reallocating
resources along potentially long cycles of exchanges. In a recent paper [10], the authors propose to
study this kind of algorithms with the restriction that only small cycles of exchanges are allowed
(cycles involving at most 4 agents but most of the results concern bilateral exchange). For instance,
the authors identified a domain where this procedure converges to a Pareto-optimal allocation, and
they proved that the worst-case loss of welfare is as good as it can be under the assumption of
individual rationality. They also show the NP-completeness of deciding whether an allocation
resulting of swaps and maximizing utilitarian or egalitarian welfare is reachable.

This paper deals the object allocation problem (OAP), introduced in 1979 by Hylland and
Zeckhauser [24] (see also [39, 37]). It is a one-sided market with no endowment; a set n items

3

has to be allocated to a set N of n agents. One of the n! possible allocations is chosen with a
mechanism. A mechanism is deterministic if one specific allocation is returned with probability
1. Usually, a mechanism has to elicit the agents’ private preferences but in that case, the agents
may have incentive to strategize, i.e. to misreport their true preferences in order to influence the
outcome of the mechanism. In a strategy-proof mechanism, reporting false preferences cannot be
profitable. Pareto optimality is reached by a mechanism if the profile of the agents’ utilities is not
dominated by another utility vector.

Serial dictatorship (SD) is a well-studied deterministic mechanism for the object allocation
problem. The agents play in turn according to a given permutation π. During his turn, an agent
takes his most preferred item within the set of remaining items. We end up with an allocation, say
A, where A(i) designates the item allocated to agent i.

SD satisfies several valuable properties including Pareto optimality for strict preferences1 and
group-strategy-proofness (no group of agents can strategize).

Zhou [39] utilizes a random version of SD, called random serial dictatorship (RSD) which consists
in choosing a permutation of N uniformly at random and then, SD is performed.If RSD is executed,
then for every agent-object pair (i, x), agent i gets object x with probability Pix. Saban and
Sethuraman [32], together with Aziz, Brandt and Brill [1], have recently shown that computing the
bi-stochastic matrix P is #P-complete.

In a recent work, Filos-Ratsikas et al. [18] study the approximation ratio of RSD for the object
allocation problem. This is the worst case expected social utility of an allocation produced by RSD
divided by the value of a social optimum. This ratio is Θ(n−1/2) where n = |N |.

3 Models and matroids

An instance of the Constrained Object Allocation Problem (COAP) consists of a set N of n agents
and a structure (X ,S) where X is a set of at least n elements and S is a collection of subsets of X
where each S ∈ S is of size n.

We allow S to be defined explicitly (all its members are listed) or implicitly (we are equipped
with a test which indicates whether S ⊆ X belongs to S and this test is polynomial in |X |).
However, for hardness results we assume, as it is mainly done in the literature, that S is given
implicitly.

A valid allocation (or feasible solution) is a function A : N → X satisfying
⋃
i∈N A(i) ∈ S. We

say that A(i) is the element allocated (or assigned) to agent i. In this article we assume that an
agent cannot be allocated more than one object.

An allocation can be evaluated from the point of view of a single agent or from the point of view
of the entire group of agents. The individual utility of agent i with respect to element A(i) ∈ X
is denoted by ui(A(i)) and ui(A(i)) is a nonnegative real. The social welfare of an allocation A is
usually measured in three standard ways:

• U(A) =
∑

i∈N ui(A(i)) (utilitarian social welfare);

• E(A) = mini∈N ui(A(i)) (egalitarian social welfare);

• Pareto-optimality. Allocation A is Pareto optimal if no other allocation A′ satisfies [∀i ∈
N, ui(A

′(i)) ≥ ui(A(i))] and [∃j ∈ N, uj(A′(j)) > uj(A(j))].

1strict preference means a ≺i b iff ui(a) > ui(b).

4

The Object Allocation Problem (OAP) is a special case of COAP where X is a set of |N | objects
and S = {X}. An intermediate case, called Matroidal Object Allocation Problem (MOAP), is
defined on a matroid. Let us give some basic notions on matroids before MOAP is introduced (see
[34, 29, 31] for more details on matroid theory).

3.1 Matroids

A matroid (E,F) consists of a finite set E and a collection F of subsets of E such that:

(M1) ∅ ∈ F ;

(M2) if F2 ⊆ F1 and F1 ∈ F , then F2 ∈ F ;

(M3) if F1, F2 ∈ F such that |F1| < |F2|, then there exists e ∈ F2\F1 such that F1 ∪ {e} ∈ F .

The elements of F are called independent sets. Inclusionwise maximal independent sets are
called bases. A matroid can be defined by its set of bases, i.e. (E,B), where B denotes the set
of bases, is an alternative definition of (E,F) [34]. The rank of F ⊆ E is defined as max{|G| :
G ⊆ F, G ∈ F}. All the bases of a matroid have the same cardinality, also called the rank of the
matroid.

A subset of E that is not independent is dependent. Inclusionwise minimal dependent sets are
called circuits. If for F ∈ F and e ∈ E \ F we have F ∪ {e} /∈ F then F ∪ {e} contains a unique
circuit denoted by C(F, e) and C(F, e) contains e.

The independence oracle of a matroid (E,F) is a test for determining if a set F ⊆ E belongs to
F . Usually, an algorithm does not manipulate a matroid directly but its independence oracle. In
this article, we always assume that the time complexity of the independence oracle is polynomial
in the size of E.

When every element e ∈ E has a weight w(e) ∈ IR, a typical optimization problem consists in
computing a base B that maximizes

∑
e∈B w(e). This problem is solved in polynomial time by a

greedy algorithm [11]. Given two matroids (E, F1) and (E, F2) and a weight w(e) ∈ IR for every
e ∈ E, there exist polynomial algorithms to find an independent set F ∈ F1 ∩ F2 that maximizes∑

e∈F w(e) [20]. See also [34, 29] for the algorithms.
Let us finish this section with typical examples of matroids.
A laminar matroid is given by k (not necessarily disjoint) sets E1, . . . , Ek and k nonnegative

integers b1, . . . , bk. For every pair of sets Ei, Ej , one of following cases occurs: Ei ⊆ Ej or Ei ⊆ Ej or

Ei∩Ej = ∅. A laminar matroid (E,F) is such that E :=
⋃k
i=1Ei and F := {F ⊆ E : |F ∩Ei| ≤ bi}.

The partition matroid is a special case of laminar matroid in which the k sets are disjoint.
Given k (not necessarily disjoint) sets E1, . . . , Ek, subsets of a ground set E, a partial transversal

is a set T ⊆ E such that there exists an injective map Φ : T → [1..k] satisfying t ∈ XΦ(t) for all

t ∈ T . Then (E,F) where F = {T ∈ 2E : T is a partial transversal of E} is a transversal matroid.
If F denotes the set of forests of a multigraph G = (V,E), then (E,F) is called the graphic

matroid of G. The free matroid is defined as (E, 2E), and E is its unique base.

3.2 MOAP

In this article we pay particular attention to MOAP — the matroidal version of OAP. For MOAP,
S is the base set of a matroid (X ,F) and each base has size n = |N |. Note that if we are given a

5

matroid whose bases contain more than n elements, then we can restrict ourselves to (X ,F ′) such
that F ′ = {F ∈ F : |F | ≤ n}, which is also a matroid.

In the following, we interchangeably use S and the underlying matroid (X ,F) for the input of
MOAP. Notice that OAP corresponds to MOAP with the free matroid.

4 Motivation

Let us give some possible applications of MOAP and COAP.

Example 1. Let X be a set of 75 offices composed of 10 units located in building A, 15 units located
in building B and 50 units located in building C. There are 60 workers and we want to assign one
office per worker. For financial reasons (e.g. offices in building A are more expensive than in the
other buildings), at most 8 offices from building A can be allocated. Furthermore at least 4 offices
of buildings A and B must be left free because of forthcoming recruitment.

The situation depicted in Example 1 corresponds to a laminar matroid. We have XA =
{x1, . . . , x10}, XAB = {x1, . . . , x25}, XC = {x26, . . . , x75} and X = XAB ∪ XC . Then S contains
every set S satisfying S ⊆ X , |S| = 60, |S ∩ XA| ≤ 8 and |S ∩ XAB| ≤ 21.

Example 2. The researchers of a given institute can invite external colleagues for 1 month visits.
Let X be the set of possible external researchers. We know during which months these possible
guests can visit the institute. The problem is to assign one guest per internal researcher under the
constraint that no two guests are invited at the same time. Internal researchers have utilities with
respect to the external researchers but these values are independent of the visiting period. The next
instance involves 5 possible guests and 3 months.

January April June

Dr. Red 1 1 0
Dr. Blue 0 1 0
Dr. Yellow 1 0 1
Dr. Pink 0 1 0
Dr. Brown 1 0 1

It is possible to invite Doctors Red, Blue and Yellow in January, April and June, respectively.
However we cannot invite Doctors Red, Blue and Pink because none of them is available in June.

The situation depicted in Example 2 corresponds to a transversal matroid.

Example 3. For the provisioning of the International Space Station (ISS) the 5 actors of the
program (USA, Russia, EU, Japan, Canada) regularly send a cargo that is limited in space and
weight. Let X denote the bundles of objects that an actor may wish to send to ISS. All possible sets
of 5 bundles of objects satisfying the constraints of space and weight form S.

This last example falls in the case of COAP but not of MOAP.

6

5 Computing a socially optimal allocation

In this section we seek a good solution for the group of agents. Let ÂU and ÂE denote valid
allocations that maximize the utilitarian social welfare U(ÂU) =

∑
i∈N ui(ÂU (i)) and the egalitarian

social welfare E(ÂE) = mini∈N ui(ÂE(i)), respectively. We are going to see that computing ÂU or
ÂE is NP-hard for COAP but polynomial for MOAP.

Proposition 1. For COAP, computing ÂU or ÂE is NP-hard.

Proof. The reduction is done from Hamiltonian Cycle (hc in short) which is known to be NP-
complete [22]. hc consists in deciding if a given graph has an Hamiltonian cycle. Given an instance
G = (V,E) of hc with vertex set {1, . . . , n}, build an instance of COAP such that N = {1, . . . , n},
X = {(i, j) : 1 ≤ i, j ≤ n} and S ∈ S if and only if S is a Hamiltonian cycle. Finally, ui(a, b) = 1 if
(a, b) ∈ E, otherwise ui(a, b) = 0. Therefore U(ÂU) = n (resp., E(ÂE) = 1) if and only if G has an
Hamiltonian cycle.

Notice that if S ∈ S is given, i.e. what the agents collectively receive is fixed, then finding an
allocation A that maximizes U(A) (resp., E(A)) under the constraint

⋃
i∈N A(i) = S can be done

within polynomial time by using matching algorithms.
We are going to see that both ÂU and ÂE can be computed efficiently for MOAP (in a centralized

manner). The input is (N, (X ,S)) where S is the base set of a matroid (X ,F).
The fact that ÂU and ÂE are polynomial time computable is shown after an intermediate

result. Suppose X = {x1, . . . , xm} and for every k ∈ [m], let Yk = {y1
k, . . . , y

n
k} where each yik

can be seen as a copy of xk associated with agent i. Let Y =
⋃m
k=1 Yk. For any D ⊆ Y, let

p(D) := {xk ∈ X : |D ∩ Yk| > 0} be the projection of D; note that p(D) is not a multiset. Let
D = {D ⊆ Y : (p(D) ∈ F) ∧ (|D ∩ Yk| ≤ 1, k = 1..m)}.

Lemma 1. If (X ,F) is a matroid then (Y,D) is a matroid.

Proof. We have to verify the three properties of a matroid.

(M1) (X ,F) is a matroid, so ∅ ∈ F . Using p(∅) = ∅ and |∅ ∩ Yk| = 0 for all k, we get that ∅ ∈ D.

(M2) Take D, D′ such that D ⊂ D′ ⊆ Y and D′ ∈ D. |D′ ∩ Yk| ≤ 1 for all k implies |D ∩ Yk| ≤ 1
for all k. By the definition of p, p(D) is a subset of p(D′). From D′ ∈ D we know that p(D′) ∈ F .
Because (X ,F) is a matroid, any subset of p(D′) (p(D) in particular) is in F .

(M3) Take D and D′, two members of D, such that |D| < |D′|. It follows that |p(D)| < |p(D′)|.
Since both p(D) and p(D′) belong to F , there must be xk∗ ∈ p(D′)\p(D) such that p(D)+xk∗ ∈ F
by property (M3). Let yi

∗
k∗ be the unique member of D′ such that p({yi∗k∗}) = xk∗ . D ∩ Yk∗ must

be empty, otherwise xk∗ ∈ p(D), a contradiction. Hence |D + yi
∗
k∗ ∩ Yk∗ | = 1. In conclusion, yi

∗
k∗

belongs to D′ \D and D + yi
∗
k∗ ∈ D.

Note that (X ,F) and (Y,D) have the same rank. The independence oracle of (X ,F) is, by
hypothesis, polynomial in |X |. Thus a polynomial independence oracle for (Y,D) is immediately
derived. The interest of Lemma 1 is that (Y,D) carries more information than (X ,F) (having yik
in a solution means that xk is picked by agent i) and the properties of a matroid are preserved.

Theorem 1. For MOAP, ÂU can be computed in polynomial time.

7

Proof. We are going to see that a socially optimal allocation (utilitarian) corresponds to an inde-
pendent set of maximum weight at the intersection of two matroids, which is a polynomial time
solvable problem [34, 29].

Consider (Y,D), the matroid associated with (X ,F) (see Lemma 1). For every i ∈ N , let
Y ′i denote {yi1, yi2, . . . , yim}, i.e. the copies of X associated with agent i. We have a partition
Y ′1 ∪ Y ′2 ∪ . . . ∪ Y ′n of Y, so (Y,G) where G = {Z ⊆ Y : |Z ∩ Y ′i | ≤ 1 for every i ∈ N} is a partition
matroid. For every yik ∈ Y, define its weight w(yik) as ui(xk) where i ∈ N and k ∈ [m]. We claim
that if S ∈ D ∩ G has maximum weight w(S), then p(S) is an optimum for the utilitarian social
welfare U . Indeed, for every S ∈ D ∩ G we know that S ∈ D ⇒ p(S) ∈ F (definition of matroid
and S ∈ G implies that no agent is associated with more than one element).

If |S| < |N | then at least one agent, say i′, is not associated with an element of S. Take any
base B of (X ,F). We have |B| = |N | and |p(S)| = |S| < |N | so by property M3, there exists
xj ∈ B \ p(S) such that xj + p(S) ∈ F . It follows that yi

′
j , the copy of xj associated with agent

i′, can be added to S, i.e. yi
′
j /∈ S and yi

′
j + S ∈ D. We get that w(yi

′
j + S) ≥ w(S) by the non

negativeness of w(yi
′
j). Therefore, we can suppose w.l.o.g. that |S| = |N |. To conclude, U(p(S)) is

equal to w(S).

Theorem 2. For MOAP, ÂE can be computed in polynomial time.

Proof. The proof relies on the tools introduced for the previous proof. Let T be a threshold for
which we are going to test if an allocation A satisfying E(A) ≥ T can be built. Consider (Y,D),
the matroid associated with (X ,F). For every i ∈ N , let Y ′i denote {yi1, yi2, . . . , yim}. We have a
partition matroid (Y,G) where G = {Z ⊆ Y : |Z ∩ Y ′i | ≤ 1 for every i ∈ N}. For every yik ∈ Y,
define its weight w(yik) as 1 if ui(xk) ≥ T , otherwise w(yik) = 0. Therefore, if S ∈ D ∩G has weight
w(S) = n, then p(S) satisfies E(p(S)) ≥ T . With a binary search on T , we can guess the value
E(ÂE).

6 Serial Dictatorship

The previous section was dedicated to the centralized computation of a socially optimal allocation.
This approach is relevant when there exists a sort of central authority who knows the agents’ true
utilities for the objects but it fails in the following situations:

• the agents are reluctant to disclose their true valuation for the objects because they do not
trust the authority;

• the agents act strategically by misreporting their utilities;

• no central authority exists.

Therefore, other mechanisms for the construction of an allocation must be used. Serial Dicta-
torship (SD) is a well-studied deterministic mechanism for OAP. The agents play in turn according
to a given permutation π. During his turn, an agent takes his most preferred item within the set of
remaining items. We end up with an allocation, say Aπ, where Aπ(i) designates the item allocated
to agent i.

With SD no central authority is required and the agents need not disclose their true valuations.
However an ordering on the agents is assumed. This ordering can be seen as an exogenous ranking
of the agents. In Example 2, there can be an order of priority within the inviting researchers.

8

So far we assumed that the agents have utilities with respect to the objects and for SD we need
to clarify which object is selected by an agent in case of a tie. We suppose that every agent i has his
own total and strict order �i on X . This order is compliant with ui in the sense that ui(x) > ui(y)
implies x �i y. If several available objects maximize the individual utility of an agent, then the
element coming first in �i is selected by the agent.

Let us describe how SD extends to COAP with input (N, (X ,S)). The agents play in turn
according to a given permutation π on N . The allocation Aπ, which is undefined at the beginning,
is gradually built. At every step, the partial solution must be a subset of a member of S.

When it is the turn of agent π(i), the set of elements that are already assigned is
⋃
j<iA

π(π(j)).
The possible actions of agent π(i) are to pick one element in {x ∈ X \

⋃
j<iA

π(π(j)) : ∃S ∈
S such that S ⊇ x +

⋃
j<iA

π(π(j))}. The element that agent π(i) likes the most (according to
�π(i)) in this set is denoted by topπ(i), or topπ(i)(

⋃
j<iA

π(π(j))) if the previously assigned elements
need to be stressed. So topπ(i) is allocated to agent π(i). We sometimes say that it is picked by
π(i).

Let us emphasize a particularity of MOAP for SD. Aπ is empty at the beginning and for i = 1 to
n, agent π(i) adds to {Aπ(π(j)) : j < i} the element x that he likes the most under the constraint
that {Aπ(π(j)) : j < i} + x is an independent set. Because of M3 (see Section 3.1), as soon as
adding x to {Aπ(π(j)) : j < i} preserves the independence of the partial solution, we know that
{Aπ(π(j)) : j < i} + x can be completed in a base of the underlying matroid. Thus, no need to
foresee if {Aπ(π(j)) : j < i}+ x is the subset of some S ∈ S.

6.1 Can SD induce a social optimum?

As a reminder, ÂU and ÂE designate an allocation maximizing the utilitarian and egalitarian social
welfare, respectively. The allocation produced by SD under permutation π is denoted by Aπ. We
clearly have U(ÂU) ≥ U(Aπ) and E(ÂE) ≥ E(Aπ) for every permutation π. The best outcome if we
restrict ourselves to the allocations produced by SD will be denoted by Aπ

∗
U and Aπ

∗
E , respectively.

That is, π∗U = argmaxπ∈PU(Aπ) and π∗E = argmaxπ∈PE(Aπ) where P denotes the set of all
permutations on N .

It can be U(ÂU) > U(Aπ
∗
U) and E(ÂE) > E(Aπ

∗
E) because SD is sometimes unable to induce a

social optimum. For instance, consider the instance of COAP described in Exemple 4.

Example 4. There are two agents N = {1, 2} (and thus, two possible permutations). The instance
is described as follows:

• X = {l1, l2, l3, r1, r2, r3};

• S = {(l1, r2), (l2, r1), (l3, r3)};

• l1 �1 l3 �1 l2 �1 r1 �1 r2 �1 r3;

• r1 �2 r3 �2 r2 �2 l1 �2 l2 �2 l3.

For the identity permutation, player 1 picks l1 followed by player 2 who picks r2. For the
other permutation, player 2 picks r1 followed by player 1 who picks l2. Now we can find numerical
values such that ÂU = ÂE = {(l3, r3)} (agent 1 gets objet l3 and the other agent has r3), e.g.
u1(l1) = u2(r1) = 3, u1(l2) = u2(r2) = 0 and u1(l3) = u2(r3) = 2. For the utilitarian social welfare,
SD produces a solution of value 3 whereas the optimum is 4. For the egalitarian social welfare, SD
produces a solution of value 0 whereas the optimum is 2.

9

Thus, SD may fail to produce a social optimum, whichever order on the agents is selected.
This observation is made for COAP but if we consider MOAP then we are going to prove that for
every instance, there exists a permutation of the agents such that SD produces a socially optimal
allocation.

Let (N, (X ,S)) be an instance of MOAP such that S is the base set of a matroid (X ,F). We
are going to compute a socially optimal solution Â (depending on the context, Â = ÂU or Â = ÂE)
and a permutation π such that Aπ = Â. The algorithm is described in Algorithm 1 and it uses
Algorithm 2 as a subroutine.

Let us give an overview of the algorithms. First a socially optimal solution Â is computed. The
current solution S′ is initially empty and the current position j in the permutation is initially 1.
Every agent is unassigned (N0 is the set of unassigned agents). SD is simulated by Algorithm 2:
As long as there exists an unassigned agent i such that topi(S

′) = Â(i), agent i is put on position
j of the permutation, Â(i) is added to S′, j is incremented by 1, and agent i is removed from the
set of unassigned agents. If the set of unassigned agents is empty then we are done. Otherwise, Â
must be modified in order to continue the construction of the permutation.

Algorithm 1:

Data: N , a matroid (X ,F) given by its independence oracle, (�i)i∈N , (ui)i∈N
Result: a permutation π on N such that Aπ is a social optimum for U or E , depending on

the context
1 Build a social optimum Â = ÂU (or Â = ÂE , depending on the context) for the instance (see

Theorem 1 or Theorem 2)
2 Let π be a permutation on N (to be determined)
3 N0 ← N
4 j ← 1
5 while j ≤ |N | do
6 〈π, j,N0〉 ← Algorithm 2 (N, (X ,F), (�i)i∈N , π, j,N0, Â)
7 if N0 6= ∅ then

8 S′ ← {Â(i) : i ∈ N \N0}
9 Ŝ ← {Â(i) : i ∈ N}

10 if ∃i ∈ N0 such that Ŝ − Â(i) + topi(S
′) ∈ F then

11 Â(i)← topi(S
′)

12 else
13 Create an exchange digraph Gex = (N0, Eex) such that (i, i′) ∈ Eex if and only if

Â(i′) ∈ C(Ŝ, topi(S′)) (see Section 3.1 for the definition of C(Ŝ, topi(S′)))
14 Take a directed cycle C of Gex of minimum length and let N ′0 be the node set of C
15 foreach i ∈ N ′0 do

16 Â(i)← topi(S
′)

17 return π

Theorem 3. For every matroid (X ,F), Algorithm 1 provides a permutation π such that U(Aπ) =
U(ÂU) = U(Â) or E(Aπ) = E(ÂE) = E(Â), depending on the definition of the social welfare.

10

Algorithm 2: Simulated SD

Data: N , a matroid (X ,F) given by its independence oracle, (�i)i∈N , π, j, N0, Â
Result: a permutation on N , an integer and a subset of N

1 S′ ← {Â(i) : i ∈ N \N0}
2 t← j

3 while there exists i ∈ N0 such that Â(i) = topi(S
′) do

4 π(t)← i
5 N0 ← N0 − i
6 t← t+ 1

7 S′ ← S′ + Â(i)

8 return 〈π, t,N0〉

Proof. We prove the result simultaneously for the utilitarian and the egalitarian social welfare,
because the proofs are similar. The case N0 = ∅ (see line 7 of Algorithm 1) is direct since the
permutation π is fully determined. Let us consider the case N0 6= ∅. The current solution is
S′ := {Â(`) : ` ∈ N \N0} and for every i ∈ N0 it holds that topi(S

′) 6= Â(i) and ∃S ∈ S such that
S ⊃ (topi(S

′) + S′).
At line 10 of Algorithm 1 we check if an unassigned agent i can replace Â(i) by topi(S

′) so that
the new allocation remains valid. If it is possible then Â is modified accordingly. Otherwise we use
an exchange digraph Gex = (N0, Eex) such that (i, i′) ∈ Eex if and only if Â(i′) ∈ C(Ŝ, topi(S′)) (see
Section 3.1 for the definition of C(Ŝ, topi(S′))).

Property 1. Gex admits a directed cycle if ∀i ∈ N0, (Ŝ − Â(i) + topi(S
′)) is not independent.

Proof. For every i ∈ N0 there exists a base S of F such that S ⊃ (topi(S
′)+S′). Thus, topi(S

′)+S′ is
independent. However topi(S

′) 6= Â(i) and Ŝ is a base so topi(S
′)+Ŝ contains a circuit C(Ŝ, topi(S′))

and this circuit must contain at least one element of {Â(j) : j ∈ N0−i}2, say Â(i′). By construction,
arc (i, i′) belongs to Eex. Therefore, for each node i of N0, there is at least one arc to another node
i′ of N0. As a consequence, Gex admits a directed cycle.

Property 1 indicates that the directed cycle mentioned at line 14 of Algorithm 1 must exist.
We shall use a theorem taken from [20] (see also [29]).

Theorem 4. [20] Let (E,F) be a matroid and F ∈ F . Let x1, . . . , xs ∈ F and y1, . . . , ys /∈ F with

(a) xk ∈ C(F, yk) for k = 1, . . . , s and

(b) xj /∈ C(F, yk) for 1 ≤ j < k ≤ s.

Then (F \ {x1, . . . , xs}) ∪ {y1, . . . , ys} ∈ F .

Let us denote the members of N ′0 by {1, . . . , s} such that the directed cycle mentioned at line
14 of Algorithm 1 is {(k, k + 1) : 1 ≤ k ≤ s− 1} ∪ {(s, 1)}. Since N ′0 are the nodes of a minimum

2If not, this circuit is included in (topi(S
′) + S′ + Â(i)). Now, since (topi(S

′) + S′) and Ŝ are independent, axiom
M3 of matroids implies that we can add all the elements of Ŝ \ S′ except one to (topi(S

′) + S′). By hypothesis, it is
not Â(i)) and then (Ŝ + topi(S

′)− Â(i)) is a base which is a contradiction with the initial assumption.

11

directed cycle C, we must have that (N ′0, C) is an induced subgraph of Gex or equivalently C is
chordless.

Because of line 13 of Algorithm 1, item (a) of Theorem 4 is satisfied if we let F = Ŝ, yk = topk(S
′)

and xk = Â(k + 1) for k = 1, . . . , s (with the convention s+ 1 = 1). Indeed (i, i+ 1) ∈ Eex if and
only if xi = Â(i + 1) ∈ C(Ŝ, topi(S′)) = C(F, yi). In words, yk is agent k’s top object, yk can be
added to Ŝ if xk is removed and xk is initially assigned to agent k + 1.

Now we consider item (b) of Theorem 4. The case where an agent i ∈ N0 can replace Â(i) by
topi(S

′) is treated at line 10 of Algorithm 1 so we can consider that |N ′0| ≥ 2. If item (b) does not
hold then there exists j and k such that xj ∈ C(F, yk) and 1 ≤ j < k ≤ s. This is equivalent to
xj = Â(j + 1) ∈ C(Ŝ, topk(S′)). In others words, Eex contains arc (k, j + 1). If j + 1 = k then we
get a contradiction with the fact that no agent i ∈ N0 can replace Â(i) by topi(S

′). If j + 1 < k
then we get a contradiction with the minimality of N ′0 since there is a directed cycle on N ′0 \ {j},
i.e. consecutive arcs from j + 1 to k and one arc from k to j + 1.

Therefore, we can apply Theorem 4 and state that {Â(i) : i ∈ N \N ′0} ∪ {topi(S′) : i ∈ N ′0} is
independent. It is, of course, a base because it has the same size as Ŝ. At line 16 of Algorithm 1, Â(i)
is replaced by topi(S

′) for every i ∈ N ′0. The social utility of {Â(i) : i ∈ N \N ′0}∪{topi(S′) : i ∈ N ′0}
is as good as U(ÂU) (resp., E(ÂE)) because ui(topi(S

′)) ≥ ui(ÂU (i)) (resp., ui(topi(S
′)) ≥ ui(ÂE(i)))

for every i ∈ N ′0.
Finally, the construction of π can be resumed by the use of Algorithm 2 (line 6 of Algorithm

1). The termination of Algorithm 1 is due to the fact that we can always find i ∈ N0 such that
topi = Â(i), until all the agents are assigned. This concludes the proof of Theorem 3.

6.2 How bad is SD?

In this section and the next sections, we suppose without loss of generality that π is the identity so
we denote by A, instead of Aπ, the outcome of SD. If there is no restriction on the agents’ utilities
then next example shows that only the trivial lower bound of 0 can be stated.

Example 5. Consider the following instance of OAP. There are two agents {1, 2} and two items
{a, b}. Agent 1 has utility ε, with ε > 0, for both items whereas agent 2 has utility 1 + ε for a and 0
for b. Moreover a �i b for every i ∈ {1, 2}. In the assignment A induced by SD, agents 1 and 2 get
items a and b, respectively. Thus, U(A) = ε and E(A) = 0 while U(ÂU) = 1 + 2ε and E(ÂE) = ε.
So U(A)/U(ÂU) tends to 0 and E(A)/E(ÂE) = 0.

As we will see, this negative result can be mitigated for the utilitarian social welfare if natural
assumptions on the agents’ utilities are made for utilitarian welfare.

Let Si ∈ S be the outcome that agent i ∈ N would prefer if he were allocated all the elements,
i.e. Si maximizes

∑
x∈Si ui(x). Let {xi1, . . . , xin} be the elements of Si and let αij be a simplified

notation for ui(xij). We suppose w.l.o.g. that

αi1 ≥ αi2 ≥ . . . ≥ αin ≥ 0, ∀i ∈ N (1)

In addition αi1 > 0, ∀i ∈ N . We make a normalization assumption stating that the utility of agent
i for Si is equal to a positive constant Utot.

n∑
j=1

αij = Utot, ∀i ∈ N (2)

12

This is similar to the unit-sum representation used in [18], where an agent’s utility for an item is
between 0 and 1, and the sum of an agent’s utilities for the entire set of items must be 1.

Proposition 2. Under the normalization assumption, the approximation ratio of COAP with the
utilitarian social welfare is 1

n(n−1)+1 .

Proof. Here, we set ÂU = Â because we only focus on the utilitarian social welfare. If for A, every
agent i is allocated xi1, or another element for which he has utility αi1, then U(A)/U(Â) = 1.
Otherwise, there is an agent i′ such that ui′(Â(i′)) ≤ αi′2.

U(Â) ≤

 ∑
i∈N\{i′}

αi1

+ αi′2 (3)

We have
U(A) ≥ α11 (4)

because agent 1 can always pick his top element. By Inequalities (1) and (2), we know that
nα11 ≥

∑n
j=1 α1j = Utot. We deduce that

n(n− 1)α11 ≥ (n− 1)Utot

(n(n− 1) + 1)U(A) ≥ α11 + (n− 1)Utot (5)

where (4) is used for the last inequality. Let us show that
(∑

i∈N\{i′} αi1

)
+αi′2 ≤ α11 +(n−1)Utot.

It holds for i′ = 1 because αi1 ≤
∑n

j=1 αi′j = Utot by (2) and αi′2 = α12 ≤ α11 by (1). If i′ 6= 1,

then
(∑

i∈N\{1,i′} αi1

)
+ α11 + αi′2 ≤ α11 + (n− 1)Utot.

Combine
(∑

i∈N\{i′} αi1

)
+ αi′2 ≤ α11 + (n − 1)Utot with (3) and (5) to get that (n(n − 1) +

1)U(A) ≥ U(Â).
Finally, observe that the bound is tight for the following family of instances of OAP (N = X =

{1, . . . , n}). The first agent has utility 1/n for every item. For any other agent i > 1, his most
preferred item is i − 1 and ui(i − 1) = 1. Agent i’s utility for the any other item is 0. Therefore
A(i) = i and the social utility is equal to 1/n. The optimal allocation Â consists in giving item n
to agent 1 and item i − 1 to agent i for i > 1. The optimal social utility is (n − 1) + 1/n. In all,
the ratio U(A)/U(Â) = 1/ (n(n− 1) + 1) for this instance.

Now suppose there is a value α such that αi1 = α for all i ∈ N . We still consider the nor-
malization assumption (2). This is similar to the unit-range representation used in [18], where an
agent’s utility for an item is between 0 and 1, and every agent’s maximum and minimum utility
for an item must be 1 and 0, respectively.

Proposition 3. Under the normalized assumption and if αi1 = α for all i ∈ N , the approximation
ratio of COAP for the utilitarian social welfare is 1

n−1 .

Proof. If for A, every agent i is allocated xi1, or another element for which he has utility αi1,
then U(A)/U(Â) = 1. Otherwise, there is an agent i′ such that ui′(A(i′)) ≤ αi′2. It follows that

U(Â) ≤
(∑

i∈N\{i′} αi1

)
+ αi′2 where αi1 = α and αi′2 ≤ min{α,Utot − α}.

U(Â) ≤ (n− 1)α+ min{α,Utot − α} (6)

13

Agent i has utility at least αii for A(i) so U(A) ≥ α11 + α22 where α11 = α and α22 ≥ Utot−α
n−1 .

(n− 1)U(A) ≥ (n− 2)α+ Utot (7)

If min{α,Utot − α} = α then Utot ≥ 2α and (n − 1)U(A) ≥ nα ≥ U(Â). Otherwise Utot ≤ 2α and
U(Â) ≤ (n− 1)α+ Utot − α ≤ (n− 1)U(A). Thus, U(A)/U(Â) ≥ (n− 1) in any case.

The bound is reached for every n by generalizing the next instance of OAP. N = X = {1, 2, 3, 4}
and the agents’ preferences are as follows.

1 �1 4 �1 3 �1 2
1 �2 2 �2 4 �2 3
2 �3 1 �3 3 �3 4
3 �4 2 �4 1 �4 4

Suppose αi1 = 1 and any other score is equal to 0. Agent i takes his i-th most preferred item in A
while in Â every agent gets his most preferred item, excepting the first agent who gets his second
choice.

Notice that the upper bounds given in the proofs of Propositions 2 and 3 hold for OAP so there
is no hope for better approximation ratios for OAP or MOAP. For the egalitarian social welfare,
results like Propositions 2 and 3 cannot be derived (for example, take ε = 1 in Example 5).

7 Manipulation of the serial dictatorship mechanism

In the previous section we focused on SD for MOAP from both the centralized and the decentralized
viewpoints. The crucial point of SD is the turn order of the agents, i.e. the permutation π. In
Section 6.1 we proved that if a central authority controls the choice of π then it can always find a
turn order inducing an allocation with optimal social welfare. On the opposite, when the order of
turn is fixed, we showed in Section 6.2 that the social welfare of the allocation induced by SD is, in
the worst case, far from the optimum. Now, assuming that π is given in advance, the goal of this
part is to know if the central authority, who is aware of the agents’ true utilities for the objects, can
manipulate in order to reach a socially good allocation. We explore the possibility for the central
authority to force some agents, during their turns, to choose an element which is not their most
preferred one. The goal of this manipulation is to induce a socially optimal allocation. Since the
decentralized nature of SD is weakened, we consider the optimization problem of minimizing the
number of forced agents, provided that a socially optimal allocation emerges from the modified SD.
Before giving a formal description of the manipulation problem under consideration, let us mention
some related problems.

7.1 Works related to manipulation

Simple sequential allocation procedures for sharing indivisible goods between agents in which agents
take turns, according to a policy or mechanism, to pick items have been studied in [25, 26, 5, 38].

For instance, supposing additive utilities and independence between the agents, it is shown in
[25] that the expected utilitarian social welfare3 is maximized when the agents take alternate turns.

3It is the sum of the agents’ individual utilities.

14

In this section, the order (i.e. the policy) by which the agents make their decision is fixed and it is
the identity permutation (i.e. π = IdN is the identity).

Usually, there are several ways to measure the manipulation in procedures for allocating in-
divisible goods: the number of flips made on the order of turn, the addition/deletion of agents
and the control of some agents’ action. Dealing with manipulation or bribery in resource alloca-
tion, to our best knowledge, only a few results appeared in the literature [5, 26] while some exist
in judgment argumentation [3, 13] and many others in voting theory (see surveys [6, 9, 16, 15]).
For instance, in voting theory, the complexity of electoral control has been extensively studied for
constructive/destructive control by adding/deleting/partitioning candidates/voters [7, 8, 17]. In
[12], different models of bribery are studied where the price of each vote depends on the amount of
change (also known as swap bribery or shift bribery) that the voter is asked to implement.

In game theory, the notion of Stackelberg strategy is somehow related to manipulation [36].
The set of players is partitioned in two groups: leaders and followers. The leaders play first and
keep their strategies fixed. Then the followers play in response to the leaders’ strategy in order
to maximize their individual payoffs. A Stackelberg equilibrium is reached when no follower can
change his strategy and improve his payoff. The goal of the leaders is to guide the game to a
desirable outcome (e.g. one that is good for the entire group of players). In algorithmic game
theory, Stackelberg strategies are used to induce a socially optimal outcome and this problem is
known as the price of optimum [30, 28, 14].

7.2 Two manipulation problems

In this section we study the following manipulation problem related to COAP. The problem is
called mfa(P) where P ∈ {U , E} and the goal is to find a set of forced agents W and an allocation
A such that:

• If i /∈W , then agent i picks A(i) = topi(
⋃
j<iA(j)) which is i’s top item during turn i;

• If i ∈W , then agent i is forced to pick A(i) which is not i’s top item during turn i;

• W ⊆ N ;

• A is a socially optimal allocation with respect to P (depending on the context, U(A) = U(ÂU)
or E(A) = E(ÂE));

• |W | is minimum.

Because computing a socially optimal allocation is difficult for COAP (see Proposition 1),
mfa(P) for COAP is immediately difficult, P ∈ {U , E}. Our contribution is that mfa(P) is compu-
tationally difficult, even in a restricted case of OAP for P ∈ {U , E} . We focus on instances where
the agents’ utilities are expressed with scores. The allocation of indivisible goods with scores has
been studied, for instance, in [2].

An instance of OAP is said to be with k-approval scores if every agent i partitions X into two
equivalence classes X 1

i and X 0
i such that X 1

i = {x ∈ X : ui(x) = 1}, X 0
i = {x ∈ X : ui(x) = 0} and

|X 1
i | = k. Equivalently, the linear order �i of every agent i satisfies [X 1

i �i X 0
i] and k = |X 1

i |. The
special cases k = 1 and k = n− 1 are named plurality and veto, respectively. An object x is said to
be approved by agent i if and only if x ∈ X 1

i . Note that an item can be approved by several agents.
Let us give an illustration of mfa(E) with 2-approval scores.

15

Example 6. Let X = {a, b, c, d} be a set of 4 objects and 3 agents N = {1, 2, 3, 4}. The preference
of the agents are:

1. a �1 c �1 b �1 d

2. b �2 d �2 c �2 a

3. b �3 a �3 c �3 d

4. a �4 b �4 c �4 d

We consider 2-approval scores which means that X 1
1 = {a, c}, X 1

2 = {b, d} and X 1
3 = X 1

4 = {a, b}.
Obviously, E(Â) = 1 where for instance Â(1) = c, Â(2) = d, Â(3) = a and Â(4) = b.

On the other hand, if AIdN is the allocation returned by SD, then AIdN (1) = a, AIdN (2) = b,
AIdN (3) = c and AIdN (4) = d. Hence, we get E(AIdN) = 0. Now, we have to impose the items
assigned to the agents in, at least, W = {1, 2} with A(1) = c and A(2) = d in order to obtain
E(A) = 1.

An instance of mfa(P) for OAP, with k-approval scores, can be modeled as a bipartite graph
B = (N ∪ X , E) where E =

⋃
i∈N{(i, x) : x ∈ X 1

i }. Since k ≥ 1, the degree of every i ∈ N in B is
at least one. We assume that at least one agent must be forced. For a subset of agents N ′, A(N ′)
designates {A(i) : i ∈ N ′}. In particular, dealing with mfa(E), we assume that the bipartite graph
B has a perfect matching since otherwise, in any allocation A, the poorest agent does not approve
its item and then E(Â) = 0. In that case, we do not force any agent (W = ∅).

Theorem 5. ∀P ∈ {U , E}, mfa(P) is NP-hard for 3-approval instances of OAP.

Proof. The NP-completeness result is proved from a reduction of max cut.

max cut
Input: A simple graph G = (V,E) of r vertices and an integer k
Solution: A partition of V into two sets V1, V2 called cut 〈V1, V2〉
Goal: Deciding whether there is a cut 〈V1, V2〉 such that the number of edges

|〈V1, V2〉| of the cut is at least k.

max cut is known to be NP-complete (problem [GT16] page 210 in [22]).
Take an instance (G, k) of max cut in which V = {v1, . . . , vr} and E = {e1, . . . , em} (of course

k ≤ m). Build an instance (N,X , (�i)i∈N) of OAP where each agent approves a subset of exactly
3 objects4:

• N = {a1, a2, a3}∪NV ∪N ′V ∪NE∪N ′E is the set of 2r+2m+3 agents where NV = {b1, . . . , br},
N ′V = {b′1, . . . , b′r} NE = {c1, . . . , cm} and N ′E = {c′1, . . . , c′m}. Both bi and b′i correspond to
the same vertex vi of V . Both cq and c′q correspond to the same edge eq of E. These agents are
ordered in the following manner (permutation π): b1, . . . , br, then c1, . . . , cm, then c′1, . . . , c

′
m,

then b′1, . . . , b
′
r and finally a1, a2, a3. The set of objects X is equal to V ∪V ′∪E∪E′∪{x1, x2, x3}

where V ′ = {v′1, . . . , v′r} and E′ = {e′1, . . . , e′m}.

• The preferences of agents a1, a2 and a3 are x1 � x2 � x3.

4We only explain the preference of the first 3 objects for each agent.

16

• For every vertex vi ∈ V , the preferences of bi ∈ NV and b′i ∈ N ′V are x1 � vi � v′i and
x1 � v′i � vi, respectively.

• For every edge eq = (vi, vj) ∈ E where 1 ≤ i < j ≤ r, the preferences of cq ∈ NE and c′q ∈ N ′E
are vi � v′j � eq and v′i � vj � e′q, respectively.

The instance of OAP is clearly built in polynomial time and the corresponding bipartite graph B
admits a perfect matching {(ai, xi) : i = 1, 2, 3} ∪ {(bi, vi), (b′i, v′i) : i = 1, . . . , r} ∪ {(cq, eq), (c′q, e′q) :

q = 1, . . . ,m}, which means that U(ÂU) = |N | and E(ÂE) = 1.
We claim that there is a cut of size at least k in G if and only if, we can force at most 2r+2m−k

agents for mfa(P) with P ∈ {U , E}, i.e. |W | ≤ 2r + 2m− k.
If 〈V1, V2〉 is a cut of G with |〈V1, V2〉| ≥ k, then by considering the allocation A given by

A(ai) = xi for i = 1, 2, 3, [A(bi) = vi and A(b′i) = v′i if vi ∈ V1] and [A(bi) = v′i and A(b′i) = vi
if vi ∈ V2], for i = 1, . . . , r and finally, A(cq) = eq and A(c′q) = e′q for q = 1, . . . ,m, we have that
〈W,A〉 is a feasible solution with |W | = 2r + 2m− |〈V1, V2〉| ≤ 2r + 2m− k.

Conversely, suppose 〈W,A〉 is a feasible solution with |W | ≤ 2r + 2m − k for mfa(P) with
P ∈ {U , E}. We have U(ÂU) = |N | and E(ÂE) = 1 because the bipartite graph B admits a perfect
matching. Thus {(x,A(x)) : x ∈ N} must be a perfect matching of B. Observe that every perfect
matching of B satisfies:

• {a1, a2, a3} is matched with {x1, x2, x3};

• NE ∪N ′E is matched with E ∪ E′ because only agent cq approves item eq (resp., only agent
c′q approves item e′q);

• NV ∪N ′V is matched with V ∪ V ′ because they are the remaining vertices.

We claim that if V1 := A(NV) \ V ′, then 〈V1, V \ V1〉 is a cut of G of size at least k.
It must be NV ∪N ′V ⊆W in order to prevent these agents to pick x1 during their turn. Agent

cq ∈ NE (resp., c′q ∈ N ′E) is matched with eq (resp., e′q) which comes on third position of the agent’s
preference order. Since the items on first and second positions belong to V ∪ V ′, either cq (resp.,
c′q) is not forced (the first two items are already allocated) or he is forced (one of the first two items
is available). Therefore, the only way to have agent cq (resp., c′q) out of W is that vi and v′j (resp.,
v′i and vj), where eq = (vi, vj), are already allocated. Since NV and N ′V appear before and after
NE ∪ N ′E in the permutation, respectively, cq (resp., c′q) is not forced to pick eq (resp., e′q) if and
only if vi and v′j (resp., v′i and vj) were previously allocated to agents of NV .

Concerning agents a1, a2 and a3 who come last in the permutation, none of them needs to be
forced because a1 ranks x1 first whereas only a2 approves x2 and only a3 approves x3.

Therefore, the solution to mfa(P) under consideration, which forces (at most) 2m + 2r − k =
|NV ∪N ′V ∪NE ∪N ′E |−k agents, does not force (at least) k agents of NE ∪N ′E . This set of unforced
agents are associated with edges of the form (s, t) where s ∈ A(NV) ∩ V and t ∈ A(NV) ∩ V ′.

Thus, 〈V1, V \ V1〉 where V1 := A(NV) \ V ′ is a cut of G and its size is at least k.

In conclusion, mfa(P) is NP-hard even for 3-approval instances of OAP where P ∈ {U , E}. It
is interesting to stress out that the negative result of Theorem 5 is also valid for Pareto optimality.

Next subsections are polynomial special cases with approval scores. We solve mfa(U) instances
with plurality or veto and mfa(E) for plurality and 2-approval scores. Hence, dealing with mfa(E),
we obtain a dichotomic complexity result with respect to k-approval scores with constant k. It is

17

polynomial for k ≤ 2 and NP-complete for k ≥ 3. All procedures described below are based on the
same technique: find a socially optimal matching M of B and then decide which agent is forced.

The bipartite graph B = (N ∪X , E) is such that (i, x) ∈ E if, and only if, agent i ∈ N approves
item x (thus, x ∈ X 1

i and ui(x) = 1). Given a bipartite graph B, (�i)i∈N and a prescribed
maximum matching M of B, pre-mfa consists of finding a set of forced players W of minimum
size such that SD produces an allocation A satisfying M ⊆ {(i, A(i)) : i ∈ N}. Note that M is
a subset of E, but M is not necessarily a complete allocation. Actually, pre-mfa is a variant of
mfa(P) for P ∈ {U , E} where a specified maximum matching is given in advance. Clearly, the
optimal resolution of pre-mfa for all maximum matchings of B provides an optimal solution to
mfa(P). Unfortunately, a slight modification of the proof of Theorem 5 allows us to show that
pre-mfa remains NP-hard for approval scores.

Given a bipartite graph B and a prescribed maximum matching M of B, Algorithm 3 outputs a
set of forced players W and an assignment A such that SD produces A and M ⊆ {(i, A(i)) : i ∈ N}.
This algorithm runs in linear time. By construction, W ′ = W ∩N ′ where N ′ denotes the subset of
players saturated5 by M and X ′′ is the set of items defined at Step 14.

Algorithm 3:

Data: A bipartite graph B = (N ∪ X , E) and a target maximum matching
M = {(i,Mi) : i ∈ N ′} of B where N ′ is the subset of agents saturated by M

Result: A set of forced agents W := W ′ ∪W ′′ and an allocation A
1 W ′′ ← ∅ and W ′ ← ∅ ; /* W ′′ is a waiting list */

2 X ′ ← X ; /* X ′ is the set of not yet allocated items */

3 for i = 1 to n do
4 Let j be agent i’s most preferred item in X ′ ;
5 if i ∈ N ′ then
6 if j 6= Mi then
7 W ′ ←W ′ ∪ {i} ;

8 A(i)←Mi and X ′ ← X ′ \ {Mi} ;

9 else
10 if j is not saturated by M then
11 A(i)← j and X ′ ← X ′ \ {j} ;

12 else
13 W ′′ ←W ′′ ∪ {i} ;

14 X ′′ ← X ′ ;
15 Complete A by any allocation of W ′′ to X ′′ ;
16 return 〈W := W ′ ∪W ′′, A〉

Let us see that Algorithm 3 produces a feasible solution to pre-mfa.

Property 2. The following properties hold for the solution returned by Algorithm 3.

(i) ∀i /∈W , A(j) �i A(i) implies j < i;

5A node x of B is saturated by M if an edge of M is incident to x.

18

(ii) X ′′ is a subset of items not saturated by M .

Proof. For (i). By contradiction, there exists an agent i /∈W such that A(j) �i A(i) and j > i. By
construction, A(j) is not allocated during the turn of agent i because j > i. If (i, A(i)) ∈M , then
agent i would be forced to pick item A(i), contradiction with i /∈W . If (j, A(j)) ∈M , then agent i
would be put in W ′′ which is a subset of W , contradiction. If neither (i, A(i)) nor (j, A(j)) belongs
to M , then i is assigned his most preferred item, which cannot be A(i) because A(j) �i A(i),
contradiction.

For (ii). All the items are initially in X ′. During the turn of an agent i saturated by M , Mi is
assigned to i and Mi is removed from X ′. Thus, in the end of the for loop, no item saturated by
M is in X ′, and X ′′ ← X ′ at this moment.

Note that if B admits a perfect matching, then pre-mfa can be solved optimally and the unique
optimal solution is produced by Algorithm 3. The proof is obvious, so it is omitted.

Proposition 4. For every perfect matching M of B = (N ∪X , E), Algorithm 3 forces a minimum
number of agents such that M = {(i, A(i)) : i ∈ N}.

7.3 mfa(U) for plurality and veto

7.3.1 Plurality

Here, we suppose that for every agent i ∈ N there exists exactly one item f(i) such that ui(f(i)) = 1
and ui(j) = 0 for every j ∈ X \ {f(i)}. Hence X 1

i = {f(i)}. Agent i only approves alternative f(i)
but f(i) can be approved by several agents. An item j is said to be approved if there exists i ∈ N
such that j = f(i). According to the next lemma, a social optimum has a special structure in the
plurality case.

Lemma 2. A matching M of B is of maximum cardinality if, and only if, M saturates every
approved item.

Proof. (⇐) The number of approved items is an upper bound on the size of a matching.
(⇒) Take a maximum cardinality matching M∗ and suppose, by contradiction, that an item j
approved by an agent, say i, is not matched. Since i only approves j, i is unmatched and we can
increase |M∗| by adding (i, j), contradiction.

Algorithm 4:

Data: B
Result: A matching M of B

1 M ← ∅ ;
2 for every j ∈ X do
3 if j is approved by at least one agent then
4 M ←M ∪ {(i, j)} where i is the agent with minimum index who approves j ;

5 return M

19

By Lemma 2, Algorithm 4 produces a maximum matching M , and by Property 2, Algorithm
3 with input M produces a feasible solution to mfa(U). Besides, the two algorithms are clearly
polynomial in the size of the input.

Given an allocation A, let M(A) and M1(A) denote {(i, A(i)) : i ∈ N} and {(i, A(i)) : i ∈
N and ui(A(i)) = 1}, respectively.

Lemma 3. There exists an optimal solution 〈W ∗, A∗〉 to mfa(U) such that M1(A∗) = M , where
M is the matching returned by Algorithm 4.

Proof. The proof consists of picking one optimal solution 〈W ∗, A∗〉 and showing that ifM1(A∗) 6=
M , then another optimal solution 〈W ∗∗, A∗∗〉 satisfies |M1(A∗) ∩M | < |M1(A∗∗) ∩M |.

Suppose M1(A∗) 6= M . There exists an item jr matched with two distinct agents in M1(A∗)
and M . Let i1 and ir be the agents satisfying (ir, jr) ∈M1(A∗) (i.e., A∗(ir) = jr) and (i1, jr) ∈M .
We know that both i1 and ir approve jr. Since in Algorithm 4, jr is assigned to the agent with
smallest index who approves it, we get that i1 < ir. Let {i2, . . . , ir−1} be the agents who are between
i1 and ir in the permutation. We denote by jk the item allocated to ik in A∗, i.e. A∗(ik) = jk, for
1 ≤ k ≤ r.

Let 〈W ∗∗, A∗∗〉 be a solution which is identical to 〈W ∗, A∗〉 for every agent and item out of
{i1, . . . , ir} ∪ {j1, . . . , jr}. Since i1 approves jr but he does not get it in A∗, i1 must be forced to
take j1, i.e. i1 ∈W ∗ and (i1, j1) ∈M(A∗). In 〈W ∗∗, A∗∗〉, i1 is left free to pick jr so i1 /∈W ∗∗.

For k = 2 to k = r − 1, we complete 〈W ∗∗, A∗∗〉 as follows. If ik ∈ W ∗, then ik ∈ W ∗∗ and
A∗∗(ik) = A∗(ik) = jk. Otherwise, ik is left free to choose his top item. Note that in this case, the
top item must be in {j1, . . . , jr−1}. Moreover, an agent ik who gets his approved item jk in A∗ still
gets it in A∗∗.

After the turn of ir−1, only one item in {j1, . . . , jr−1} remains available (it is not necessarily
j1). Let j′ denote this item and force ir to take it, i.e. (ir, j

′) ∈ M(A∗∗). If j′ were the top item
of ir, then |W ∗∗| < |W ∗|, contradicting the optimality of 〈W ∗, A∗〉.

In conclusion, 〈W ∗∗, A∗∗〉 is a feasible solution to mfa(U), it is optimal because |W ∗∗| = |W ∗|
and |M1(A∗∗) ∩M | > |M1(A∗) ∩M | because of (i1, jr).

Theorem 6. Algorithm 3 applied to the target matching M returned by Algorithm 4 produces an
optimal solution to plurality instances of mfa(U).

Proof. We know from Lemma 2 that Algorithm 4 returns a matching of maximum cardinality.
Therefore, Algorithm 3 returns a solution 〈W ∗, A∗〉 which induces a social optimum M . Lemma 3
states that an optimal solution to mfa(U) inducing M exists. In order to prove that Algorithm 3
is optimal, it remains to prove that W ∗ is of minimum size within the solutions inducing M .

In Algorithm 3, the set of forced agents W is partitioned in W ′ and W ′′. Note that for plurality
instances, W ′ must be empty. Indeed, if i ∈ N ′ (see Step 5 of Algorithm 3), then i is matched with
f(i), the only item that he approves. f(i) comes first in �i and f(i) cannot be already allocated
to another agent because, according to Algorithm 4, f(i) is allocated to the agent with minimum
index, within the set of agents who approve f(i). Therefore, only the members of W ′′ are forced
(see Step 13 of Algorithm 3). An agent is put in W ′′ if, during his turn, his top item is an approved
item assigned to another agent whose turn comes later. Thus, every agent of W ′′ must be forced
in any solution inducing M .

20

7.3.2 Veto

Let us finish the analysis of polynomial cases for mfa(U) by studying veto scores, also known as
anti-plurality or disapproval. This case is equivalent to (|N |−1)-approval, meaning that every agent
approves all items but one (only the last choice in an agent’s linear preference is not approved).
Recall that during step i of SD, agent i picks his favorite item among the remaining items.

Let j∗ ∈ X be the item disapproved by agent n, i.e. the linear order of agent n is [X \{j∗} �n j∗].
If j∗ is disapproved by the entire set of agents, then the optimal social utility is n−1 (e.g. A∗(i) = i
for i = 1, . . . , n− 1). In that case, we can run SD without forcing any agent ; we get an allocation
with optimal social utility n − 1. This is true because at least one approved item is available for
every agent i ∈ [1..n− 1] during turn i.

Now, suppose j∗ is approved by at least one agent. There exists an allocation with social utility
n because no item is disapproved by the entire set of agents.

Let i∗ be the agent with largest index who approves item j∗ (1 ≤ i∗ ≤ n− 1). Run SD without
forcing any agent. If the resulting allocation A has social utility n, then forcing no agent (W = ∅)
is optimal. The last case is when the social utility of the allocation induced by SD is n− 1 whereas
the maximum social utility is n. In any feasible solution, at least one agent is forced, and we claim
that it suffices to force agent i∗ to pick item j∗. Indeed, during the turn of agent i 6= i∗, at least
one item approved by i is available.

Proposition 5. mfa(U) is polynomial time solvable for veto scores.

Note that |W ∗| ≤ k for k-veto scores. Hence, we can produce a polynomial algorithm (running
time of O(k!n2k) by exhaustive search) of mfa(U) for k-veto instances, where k-veto means that
each agent approves exactly n− k objects.

7.4 mfa(E) for plurality and 2-approval

Dealing with plurality, we always have W = ∅ for mfa(E) because if E(ÂE) = 0, then trivially
W = ∅. If E(ÂE) 6= 0, then E(ÂE) = 1 because we use approval scores. In that case, each agent
approves a distinct object since otherwise a same object is liked by 2 agents or more and then
E(ÂE) = 0. In all cases, W = ∅. Now, we deal with 2-approval (i.e. each agent approves exactly
two items) for mfa(E). Actually, 2-approval means that the bipartite graph B = (N ∪ X , E)
satisfies dB(i) = 2 for every agent i ∈ N where dB(v) denotes the degree of node v in graph B.
Moreover, we can assume that each item is approved at least once, i.e., ∀j ∈ X , dB(j) ≥ 1 since
otherwise E(ÂE) = 0 and then, W = ∅.Suppose the bipartite graph B has p connected components
Bj = (Nj ∪ Xj , Ej), for j = 1, . . . , p.

We are going to prove several properties that hold because we can assume E(ÂE) = 1: (1)
∀j = 1, . . . , p, |Nj | = |Xj |, (2) Bi is 2-regular and thus it only admits two perfect matchings and (3)
solving mfa(E) on (N,X , (�i)i∈N) is equivalent to solve mfa(E) independently on each component
(Nj ,Xj , (�i)i∈Nj) for j = 1, . . . , p. Hence, by applying twice Algorithm 3 for pre-mfa on each
bipartite graph Bj , we obtain the expected result.

Property (1) is quite straightforward. If at least one connected component Bj does not contain
any perfect matching, then B has no perfect matching and E(ÂE) = 0.

For (2), consider a connected component Bj of B. First, we apply a preprocessing (Algorithm
5) to show that we can restrict ourselves to a connected 2-regular bipartite graph B′j , that is a
subgraph of Bj .

21

Algorithm 5:

Data: A connected bipartite graph Bj = (Nj ∪ Xj , Ej) where |Nj | = |Xj | and ∀i ∈ Nj ,
dBj (i) = 2

Result: A connected 2-regular bipartite graph B′j = (N ′j ∪ X ′j , E′j) and a matching M ′j .

1 M ′j ← ∅, N ′j ← Nj and X ′j ← Xj ;

2 Let B′j be the subgraph induced by N ′j ∪ X ′j ;

3 while there is q ∈ X ′j such that dB′j (q) = 1 do

4 Let iq be the unique neighbor of q ;
5 N ′j ← N ′j \ {iq}, X ′j ← X ′j \ {q} and M ′j ←M ′j ∪ {(q, iq)} ;

6 Let B′j be the subgraph induced by N ′j ∪ X ′j ;

7 return B′j and M ′j

Lemma 4. Algorithm 5 returns a connected 2-regular bipartite graph B′j. Moreover, M ′j is a
matching in the subgraph induced by (Nj \N ′j) ∪ (Xj \ X ′j).

Proof. By construction, M ′j is a matching in the subgraph induced by (Nj \N ′j) ∪ (Xj \ X ′j). Now,
an inductive proof easily shows that at each step the subgraph B′j induced by N ′j ∪X ′j is connected,
|N ′j | = |X ′j | and the number of leaves decreases by one unit. Thus, at the end, we obtain a connected
bipartite graph B′j where dB′j (i) = 2 for all i ∈ N ′j and dB′j (q) ≥ 2 for all q ∈ X ′j . This implies that

dB′j (q) = 2 for all q ∈ X ′j and then B′j is a connected 2-regular bipartite graph.

For (3), we consider the projection of B on Bj which means that the ordering and the preference
of the agents of Nj are the restriction of B to Nj and Xj , respectively. For instance, if Nj =
{j1, . . . , jr} with j1 < · · · < jr, then agent j1 appears first, and then it is the turn of j2, and so
on until the appearance of the last agent jr. In particular, this implies that any item of Xj′ is
disapproved by agents of Nj , for j′ 6= j. Thus, the choice of agents of Nj and the allocation only
depends on the bipartite graph Bj whatever the given allocation outside of Bj .

Theorem 7. mfa(E) is polynomial-time solvable for 2-approval.

Proof. Using Lemma 4, we know that B′j is a connected 2-regular bipartite graph and then it can

be decomposed into two perfect matchings M j
1 and M j

2 . Thus, M j
1 ∪M ′j and M j

2 ∪M ′j are perfect
matchings of Bj . Now, using a simple inductive proof, we can show that any perfect matching

of Bj contains M ′j . In conclusion, M j
1 ∪M ′j and M j

2 ∪M ′j are the only perfect matchings of Bj .
Finally, using Proposition 4, we obtain a polynomial time algorithm by running Algorithm 3 with
the two perfect matchings M j

1 ∪M ′j and M j
2 ∪M ′j , and retain the best solution W ∗j . Finally, by (3),

we know that we can solve separately each connected bipartite graph Bj for j ≤ p and the final
solution is the concatenation of the partial solutions, i.e.. W ∗ = ∪pj=1W

∗
j .

8 Concluding remarks

An extension of the well studied OAP was proposed in this article. We have shown that two
important features of OAP extend to MOAP: a social optimum can be computed in polynomial
(provided that the agents’ utilities for the objects are known) and for every instance, there always

22

exists a permutation such that SD induces a social optimum. Therefore it is natural to ask if these
results can be extended to a problem that is more general than MOAP. We conjecture that the
existence of an underlying matroid is necessary for these properties to hold.

As a future work, it would be interesting to study other mechanisms than SD.

References

[1] Haris Aziz, Felix Brandt, and Markus Brill. The computational complexity of random serial
dictatorship. Economics Letters, 121(3):341 – 345, 2013.

[2] Dorothea Baumeister, Sylvain Bouveret, Jérôme Lang, Nhan-Tam Nguyen, Trung Thanh
Nguyen, and Jörg Rothe. Scoring rules for the allocation of indivisible goods. In Schaub
et al. [33], pages 75–80.

[3] Dorothea Baumeister, Gábor Erdélyi, Olivia Johanna Erdélyi, and Jörg Rothe. Complexity
of manipulation and bribery in judgment aggregation for uniform premise-based quota rules.
Mathematical Social Sciences, 76:19–30, 2015.

[4] Péter Biró, Tamás Fleiner, Robert W. Irving, and David Manlove. The college admissions
problem with lower and common quotas. Theor. Comput. Sci., 411(34-36):3136–3153, 2010.

[5] Sylvain Bouveret and Jérôme Lang. Manipulating picking sequences. In Schaub et al. [33],
pages 141–146.

[6] Felix Brandt, Vincent Conitzer, and Ulle Endriss. Computational social choice. Multiagent
systems, pages 213–283, 2012.

[7] Laurent Bulteau, Jiehua Chen, Piotr Faliszewski, Rolf Niedermeier, and Nimrod Talmon.
Combinatorial voter control in elections. Theor. Comput. Sci., 589:99–120, 2015.

[8] Jiehua Chen, Piotr Faliszewski, Rolf Niedermeier, and Nimrod Talmon. Elections with few
voters: Candidate control can be easy. In Blai Bonet and Sven Koenig, editors, Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA., pages 2045–2051. AAAI Press, 2015.

[9] Yann Chevaleyre, Ulle Endriss, Jérôme Lang, and Nicolas Maudet. A short introduction to
computational social choice. In Jan van Leeuwen, Giuseppe F. Italiano, Wiebe van der Hoek,
Christoph Meinel, Harald Sack, and Frantisek Plasil, editors, SOFSEM 2007: Theory and
Practice of Computer Science, 33rd Conference on Current Trends in Theory and Practice
of Computer Science, Harrachov, Czech Republic, January 20-26, 2007, Proceedings, volume
4362 of Lecture Notes in Computer Science, pages 51–69. Springer, 2007.

[10] Anastasia Damamme, Aurélie Beynier, Yann Chevaleyre, and Nicolas Maudet. The power
of swap deals in distributed resource allocation. In Gerhard Weiss, Pinar Yolum, Rafael H.
Bordini, and Edith Elkind, editors, Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May 4-8, 2015,
pages 625–633. ACM, 2015.

23

[11] J. Edmonds. Matroids and the greedy algorithm. Mathematical programming, 1(1):127–136,
1971.

[12] Edith Elkind, Piotr Faliszewski, and Arkadii M. Slinko. Swap bribery. In Marios Mavroni-
colas and Vicky G. Papadopoulou, editors, Algorithmic Game Theory, Second International
Symposium, SAGT 2009, Paphos, Cyprus, October 18-20, 2009. Proceedings, volume 5814 of
Lecture Notes in Computer Science, pages 299–310. Springer, 2009.

[13] Ulle Endriss, Umberto Grandi, and Daniele Porello. Complexity of judgment aggregation. J.
Artif. Intell. Res. (JAIR), 45:481–514, 2012.

[14] Bruno Escoffier, Laurent Gourvès, and Jérôme Monnot. The price of optimum in a matching
game. In Giuseppe Persiano, editor, Proceedings of SAGT 2011, volume 6982 of LNCS, pages
81–92. Springer, 2011.

[15] P Faliszewski and J Rothe. Control and bribery in voting. Handbook of Computational Social
Choice, chapter 7 in press, 2015.

[16] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. Using complexity to
protect elections. Commun. ACM, 53(11):74–82, 2010.

[17] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. Weighted electoral
control. J. Artif. Intell. Res. (JAIR), 52:507–542, 2015.

[18] Aris Filos-Ratsikas, Søren Kristoffer Stiil Frederiksen, and Jie Zhang. Social welfare in one-
sided matchings: Random priority and beyond. In Ron Lavi, editor, Proceedings of SAGT
2014, volume 8768 of LNCS, pages 1–12. Springer, 2014.

[19] Tamás Fleiner and Naoyuki Kamiyama. A matroid approach to stable matchings with lower
quotas. In Proceedings of SODA 2012, pages 135–142, 2012.

[20] András Frank. A weighted matroid intersection algorithm. Journal of Algorithms, 2(4):328–
336, 1981.

[21] David Gale and Lloyd S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

[22] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[23] Masahiro Goto, Naoyuki Hashimoto, Atsushi Iwasaki, Yujiro Kawasaki, Suguru Ueda, Yosuke
Yasuda, and Makoto Yokoo. Strategy-proof matching with regional minimum quotas. In
Proceedings of AAMAS 2014, pages 1225–1232, 2014.

[24] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions.
Journal of Political Economy, 87(2):293 – 314, 1979.

[25] Thomas Kalinowski, Nina Narodytska, and Toby Walsh. A social welfare optimal sequen-
tial allocation procedure. In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013.
IJCAI/AAAI, 2013.

24

[26] Thomas Kalinowski, Nina Narodytska, Toby Walsh, and Lirong Xia. Strategic behavior when
allocating indivisible goods sequentially. In Marie desJardins and Michael L. Littman, editors,
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18,
2013, Bellevue, Washington, USA. AAAI Press, 2013.

[27] Yuichiro Kamada and Fuhito Kojima. Efficient matching under distributional constraints:
Theory and applications. American Economic Review, 105(1):67–99, 2015.

[28] Alexis C. Kaporis and Paul G. Spirakis. The price of optimum in stackelberg games on arbitrary
single commodity networks and latency functions. Theor. Comput. Sci., 410(8-10):745–755,
2009.

[29] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer Publishing Company, Incorporated, 4th edition, 2007.

[30] Marios Mavronicolas, Vicky Papadopoulou, and Paul G. Spirakis. Algorithmic game theory
and applications. In Amiya Nayak and Ivan Stojmenović, editors, Handbook of Applied Algo-
rithms: Solving Scientific, Engineering, and Practical Problems, pages 287–315. Wiley-IEEE
Press, 2008.

[31] James G. Oxley. Matroid Theory. Oxford University Press, 1992.

[32] Daniela Sabán and Jay Sethuraman. The complexity of computing the random priority al-
location matrix. In Yiling Chen and Nicole Immorlica, editors, Proceedings of WINE 2013,
volume 8289 of LNCS, page 421. Springer, 2013.

[33] Torsten Schaub, Gerhard Friedrich, and Barry O’Sullivan, editors. ECAI 2014 - 21st European
Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic - Including
Prestigious Applications of Intelligent Systems (PAIS 2014), volume 263 of Frontiers in Arti-
ficial Intelligence and Applications. IOS Press, 2014.

[34] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag
Berlin and Heidelberg GmbH & Co., 2003.

[35] Lloyd Shapley and Herbert Scarf. On cores and indivisibility. Journal of Mathematical Eco-
nomics, 1(1):23 – 28, 1979.

[36] Marwaan Simaan and Jose B. Cruz. On the stackelberg strategy in nonzero-sum games.
Journal of Optimization Theory and Applications, 11(5):533–555, 1973.

[37] Lars-Gunnar Svensson. Queue allocation of indivisible goods. Social Choice and Welfare,
11(4):323–330, 1994.

[38] Lirong Xia. Assigning indivisible and categorized items. In International Symposium on
Artificial Intelligence and Mathematics, ISAIM 2014, Fort Lauderdale, FL, USA, January
6-8, 2014, 2014.

[39] Lin Zhou. On a conjecture by gale about one-sided matching problems. Journal of Economic
Theory, 52(1):123 – 135, 1990.

25

	Première page cahier.pdf
	Page 1

