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Abstract

In this paper we consider the k-node-connected subgraph problem. We pro-

pose an integer linear programming formulation for the problem and investigate

the associated polytope. We introduce further classes of valid inequalities and

discuss their facial aspect. We also devise separation routines, investigate the

structural properties of the linear relaxation and discuss some reduction opera-

tions that can be used in a preprocessing phase for the separation. Using these

results, we devise a Branch-and-Cut algorithm and present some computational

results.

Keywords: k-node-connected graph, polytope, facets, separation,

Branch-and-Cut.

1. Introduction

The design of survivable networks is an important issue in telecommunica-

tions. The aim is to conceive cheap, efficient and reliable networks with spe-

cific characteristics and requirements on the topology. Survivability is generally

expressed in terms of connectivity in the network. The level of connectivity

depends on the need of each telecommunication operator. We may have to con-

ceive several paths to link each pair of nodes to ensure the transmission in case

of disconnection or breakdown, all this at the cheapest possible cost. As we

can see in [17, 18], the most frequent and useful case in practice is the uniform
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topology. This means that the nodes of the network have all the same impor-

tance and it is required that between every pair of nodes there are at least k

edge- (node-) disjoint paths, where k is a fixed integer such that k ≥ 2. Thus

the network will be still functional when at most k−1 edges fail. The underlay-

ing problem is to determine, given weights on the possible links of the network,

a minimum weight network satisfying the edge or the node connectivity. This

paper deals with the node connectivity of the problem.

A graph G = (V,E) is called k-node (resp. k-edge) connected (k ≥ 0) if

for every pair of nodes i, j ∈ V , there are at least k node-disjoint (resp. edge-

disjoint) paths between i and j. Given a graphG = (V,E) and a weight function

c on E that associates with an edge e ∈ E a weight c(e) ∈ R, the k-node-

connected subgraph problem (kNCSP for short) is to find a k-node-connected

spanning subgraphH = (V, F ) of G such that
∑
e∈F

c(e) is minimum. The kNCSP

has applications in communication and transportation networks ([1, 13, 14, 15,

16]). The kNCSP is NP-hard for k ≥ 2 ([11]). The edge version of the problem

has been widely studied in the literature ([1, 3, 6, 13, 14, 15, 16, 20]). However,

the kNCSP has been particulary considered for k = 2 (see [8, 19]). A little

attention has been given for the high connectivity case where k ≥ 3. The

kNCSP has been studied by Grötschel et al. [13, 14, 15, 16] within a more

general survivability model. Grötschel et al. study the model from a polyhedral

point of vue, and propose cutting plane algorithms [14, 15, 16].

In [8], Diarrassouba et al. consider the 2NCSP with bounded lengths. Here

it is supposed that each path does not exceed L edges for a fixed integer L ≥ 1.

They investigate the structure of the associated polytope when L ≤ 3 and

propose a Branch-and-Cut algorithm. In [19], Mahjoub and Nocq discuss the

linear relaxation of the 2NCSP(G). They describe some structral properties and

characterize which they called extreme points of rank 1.

In this article, we consider the kNCSP from a polyhedral point of view. We

introduce further classes of valid inequalities for the associated polytope, discuss

their facial aspect and devise a Branch-and-Cut algorithm.

The paper is organised as follows. In the following section, we give an in-
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teger programming formulation for the problem. In Section 3 we investigate

the kNCSP polytope and present several classes of valid inequalities. Then,

in Section 4, we discuss the conditions under which these inequalities define

facets of the polytope. In Sections 5 and 6, we consider the polytope associated

with linear relaxation of the problem and present some structural proporties as

well as some reduction operations. Section 7 is devoted to the Branch-and-Cut

algorithm we have developed for the problem and Section 8 we give some ex-

perimental results. Finally, in Section 9, we give some concluding remarks.

In the rest of this section, we give some notations. We will denote a graph by

G = (V,E) where V is the node set and E is the edge set. Given F ⊆ E, c(F )

will denote
∑
e∈F

c(e). For W ⊆ V , we let W = V \W . If W ⊂ V is a node subset

of G, then δG(W ) will denote the set of edges in G having one node in W and

the other in W . We will write δ(G) if the meaning is clear from the context. For

W ⊂ V , we denote by E(W ) the set of edges of G having both endnodes in W

and by G[W ] the subgraph induced by W . Given node subsets W1, ...,Wp ⊂ V ,

p ≥ 2, we denote by δG(W1, ...,Wp) the set of edges of G between the sets W1,

..., Wp. A matching of G is a set of pairwise nonadjacent edges.

Let F be an edge subset of E, then the incidence vector of F , denoted by

xF , is the 0− 1 vector defined by

xF (e) =





1 if e ∈ F

0 otherwise.

2. Formulation

Let F ⊆ E be an edge subset of G. Then F induces a solution of the

kNCSP for G, that is, the subgraph of G induced by F is k-node-connected, if
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xF satisfies the following inequalities

x(e) ≥ 0, e ∈ E, (1)

x(e) ≤ 1, e ∈ E, (2)

x(δG(W )) ≥ k, for all W ( V with W 6= ∅, (3)

x(δG\Z(W )) ≥ k − |Z|, for all Z ⊆ V such that 1 ≤ |Z| ≤ k − 1, and (4)

all W ( V \Z with W 6= ∅.

Conversely, any integer solution of the system above is the incidence vector

of the edge set of a k-node-connected subgraph of G. Hence, the kNCSP is

equivalent to

min{cx | x satisfies (1)− (4) and x ∈ ZE
+}. (5)

Constraints (3) and (4) are called cut and node cut inequalities, respectively.

We will denote by kNCSP(G) the convex hull of all the integer solutions of (1)-

(4), and will call kNCSP(G) the k-node-connected subgraph problem polytope.

We will also denote by P (G, k) the polytope given by the linear relaxation

of formulation (5), that is

P (G, k) = {x ∈ RE | x satisfies (1)− (4)}.

In what follows we give an alternative formulation for the problem. This

formulation consists in restricting the node-cut inequalities (4) to the node sets

Z ⊂ V such that |Z| = k−1. We hence consider the following set of inequalities

x(δG\Z(W )) ≥ 1, ∅ 6= Z ⊆ V, |Z| = k − 1, (6)

∅ 6= W ⊆ V \Z.

Theorem 1. The kNCSP is equivalent to

min{cx | x satisfies (1)− (3), (6) and x ∈ ZE
+}. (7)
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Proof. Let Z ⊂ V . Inequality x(δG\Z(W )) ≥ k−|Z| is satisfied by any solution

of kNCSP(G) for |Z| = k−t, t ∈ {1, ..., k−2}, andW ⊂ V \Z. Let |Z ′| be a node

subset of V such that |Z ′| = k − t− 1, and let W ′ ⊂ V \Z ′ such that W ′ 6= ∅ 6=

V \(W ′∪Z ′). We will show that x(δG\Z′(W )) ≥ k−|Z ′| = t+1 is satisfied by ev-

ery solution of kNCSP(G). First note that either |V \(W ′∪Z ′)| ≥ 2 or |W ′| ≥ 2

or both. In fact, if |V \(W ′∪Z ′)| = |W ′| = 1, then |Z ′| = n−2 (= k−t−1). But

this implies that k ≥ n, which is impossible. In what follows we suppose, w.l.o.g.,

that |V \(W ′ ∪ Z ′)| ≥ 2. We claim that if x induces a solution of the kNCSP,

then there is at least one node, say u, in V \(W ′ ∪Z ′) such that x([u,W ′]) ≥ 1.

Indeed, if this is not the case, then x([u,W ′]) = 0 for all u ∈ V \(W ′ ∪ Z ′).

However, this implies that x(δG\Z′ (W ′)) = 0. As x(δG\Z′(W )) ≥ k − |Z ′| ≥ 2,

this is a contradiction. Now let u ∈ V \(W ′ ∪ Z ′) such that x([u,W ′]) ≥ 1 and

let Z = Z ′ ∪ {u}. We have |Z| = k − t. By our assumption, we have that

x(δG\Z(W )) = x(δG\Z′ (W )) − x([u,W ′]) ≥ k − |Z| = t. As x([u,W ′]) ≥ 1, it

then follows that x(δG\Z′ (W )) = x(δG\Z(W )) + x([u,W ′]) ≥ t+ 1. �

As before, we will denote by Q(G, k) the polytope associated with the linear

relaxation of (7). Clearly, P (G, k) ⊆ Q(G, k). Moreover, the two polytopes may

be different, that is P (G, k) 6= Q(G, k), for some graphG and connectivity k. For

example, consider the graph and the solution of Figure 1 for k = 3. The solution

satisfies the cut inequalities and the node-cut inequalities with |Z| = k− 1 = 2,

and violates a node-cut inequality with |Z| = k − 2 = 1. Indeed, for Z = {v7}

and W = {v1, v2, v3}, x(δG\Z(W )) < 2. Thus, formulation (5) may produce

a better linear relaxation than (7). We will hence consider formulation (5) for

solving the kNCSP.

In the next sections, we investigate the polytope kNCSP(G) and describe

some valid inequalities.
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Figure 1: A solution of Q(G, k) \ P (G, k) for k = 3.

3. Dimension and Valid inequalities

In this section, we will discuss tthe polytope kNCSP(G). We will establish

its dimension and describe some classes of valid inequalities.

3.1. Dimension

Let G = (V,E) be a graph. An edge e is said to be essential if the solutions

set of kNCSP(G\e) is empty. Let E∗ be the set of essential edges of kNCSP.

We have the following result.

Theorem 2. dim(kNCSP(G))= |E| − |E∗|.

Proof. Let e ∈ E∗. Then, x(e) = 1 for every solution x of kNCSP(G). Then

dim(kNCSP(G)) ≤ |E| − |E∗|. Now, observe that the edge sets Se = E\{e},

e ∈ E\E∗, and E form |E| − |E∗| + 1 solutions of the kNCSP. Moreover,

the incidence vectors of these solutions are affinely independant. Therefore,

dim(kNCSP(G)) ≥ |E| − |E∗|. Thus, the result follows. �

Corollary 1. kNCSP(G) is full-dimensional if and only if G is (k + 1)-node-

connected.

6



Now we describe some classes of valid inequalities for kNCSP(G). One can

easily see that any solution of the kNCSP on G is also solution of the kECSP

on G. Thus, any valid inequality for the kECSP polytope on G is also valid for

kNCP(G).

In the following, we introduce a notation that will be used throughout the

remainder of the paper. Given a partition π = (V1, ..., Vp), p ≥ 2, we will denote

by Gπ the subgraph induced by π, that is, the graph obtained by contracting

the sets Vi, i = 1, ..., p. Note that δG(V1, ..., Vp) is the set of edges of Gπ, that

is, the edges that have their endnodes in different elements of π.

3.2. Node-partition inequalities

In [13], Grötschel et al. introduce a class of valid inequalities for a more

general version of the kNCSP as follows. Consider a subset Z ⊂ V , such that

|Z| ≤ k− 1, and let V1, ..., Vp, p ≥ 2 be a partition of V \Z. Then the inequality

x(δG\Z(V1, ..., Vp)) ≥





⌈
p(k−|Z|)

2

⌉
if |Z| ≤ k − 2

p− 1 if |Z| = k − 1,
(8)

is valid for the kNCSP(G). Inequalities of type (8) are called node-partition

inequalities.

3.3. SP-node-partition inequalities

Now we introduce a class of inequalities called SP-node-partition inequalities,

which generalize the so-called SP-partition inequalities introduced by Didi Biha

and Mahjoub [6] for the kECSP(G). These latter inequalities are defined as

follows. Let π = (V1, ..., Vp) be a partition of V such that the graph Gπ is

series-parallel. Recall that a graph is series-parallel if it is not contractible to

K4, the complete graph on four nodes. The SP-partition inequality associated

with π is given by

x(δG(V1, ..., Vp)) ≥

⌈
k

2

⌉
p− 1. (9)

Didi Biha and Mahjoub [6] showed that these inequalities are valid for the

kECSP(G), for every k ≥ 1.
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For the kNCSP, we introduce a similar type of inequalities. Let Z ⊂ V such

that |Z| ≤ k − 1 and k − |Z| is odd, and consider a partition π = (V1, ..., Vp)

of V \Z such that (G\Z)π is series-parallel. The SP-node-partition inequality

associated with π is

x(δG\Z(π) ≥

⌈
k − |Z|

2

⌉
p− 1. (10)

Theorem 3. The SP-node-partition inequalities (10) are valid for kNCSP(G).

Proof.

Let x ∈ kNCSP(G) and consider x′ the restriction of x on G\Z. As x′ ∈

(k − |Z|)ECSP(G\Z), and the SP-partition inequalities (9) are valid for (k −

|Z|)ECSP(G\Z), we have

x(δG\Z(V1, ..., Vp)) = x′(δG\Z(V1, ..., Vp)) ≥

⌈
k − |Z|

2

⌉
p− 1,

which proves the result. �

Chopra [3] (see also Didi Biha and Mahjoub [6]) describe a lifting procedure

for inequalities (10). This can be easily extended to the SP-node-partition

inequalities. Let G = (V,E) be a graph and k ≥ 3 an odd integer. Consider the

graph G′ = (V,E ∪ T ) obtained from G by adding an edge set T . Let Z ⊂ V

and π = (V1, ..., Vp) be a partition of V \Z, such that (G\Z)π is series-parallel.

Then the lifted SP-node-partition inequality induced by π is

x(δG\Z(V1, ..., Vp)) +
∑

e∈T∩δG′ (V1,...,Vp)

a(e)x(e) ≥

⌈
k − |Z|

2

⌉
p− 1. (11)

where a(e) is the length, that is to say the number of edges, of the shortest path

in (G\Z)π between the endnodes of e, for all e ∈ T ∩ δG′(V1, ..., Vp).

Chopra [3] show that inequalities (11) are valid for kNCSP(G).

3.4. F-node-partition inequalities

Let G = (V,E) be a graph and Z a node subset of V . Let π = (V0, V1, ..., Vp)

be a partition of V \Z and F an edge subset of δG\Z(V0). Let Zi ⊂ Z be the
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set of nodes adjacent to nodes in Vi. Suppose that |Zi| ≤ k − 1, for i = 1, ..., p,

and Z =
⋃

i=1,...,p

Zi. The following inequality

x(δG\Z(π\F )) ≥




p∑
i=1

(k − |Zi|)− |F |

2




(12)

is called an F -node-partition inequality.

Theorem 4. F -node partition inequalities are valid for the kNCSP(G).

Proof. Consider the following valid inequalities

x(δG\Zi
(Vi)) ≥ k − |Zi|, for all i = 1, ..., p,

−x(e) ≥ −1, for all e ∈ F,

x(e) ≥ 0, for all e ∈ δG\Z(V0)\F.

By adding these inequalities, we obtain

2x(δG\Z(π\F )) ≥
p∑

i=1
(k − |Zi|)− |F |

By dividing by 2 and rounding up the right hand, we get inequality (12). �

4. Facial aspect

In this section, we discuss the facial aspects of the kNCSP polytope. Namely,

we investigate the conditions under which the inequalities presented in the pre-

vious section define facets of kNCSP(G). In the following we assume that G is

(k + 1)-node-connected. By Corollary 1, kNCSP(G) is then full-dimensional.

In [14], Grötschel et al. characterize when the trivial inequalities define

facets.

Theorem 5. [14]
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1. Inequalities (1) define facets for kNCSP(G) if and only if e does not be-

long to a cut δG\Z(W ) for some Z ⊂ V containing exactly k+1−|Z| edges.

2. Inequalities (2) define facets for kNCSP(G) for every e ∈ E.

The next theorem deals with conditions for the cut inequalities to define

facets. Before, we give the following remark that will be helpful for proving the

results below.

Remark 1. Let W and W be a partition of G such that |W | ≥ k, |W | ≥ k + 1

and G[W ] and G[W ] are both k-node-connected. Let {e1, ..., ek} be edges of

δG(W ) forming a matching of G such that every edge ei has ends ui ∈ W

and vi ∈ W . Let S = E(W ) ∪ E(W ) ∪ {e1, ..., ek}. Then S is a solution of

kNCSP(G).

Theorem 6. The cut inequality (3) induced by a node set W ⊂ V defines a

facet for kNCSP(G) if the following hold.

i) G[W ] and G[W ] are (k + 1)-node-connected,

ii) there exists a matching M containing k edges in δG(W ),

iii) there exists a node s in W such that s is not incident to the matching M

and it is adjacent to all the nodes of M in W .

Proof.

Let us denote by ax ≥ α the cut inequality induced by W , and let F = {x ∈

kNCSP (G)|ax = α}. Suppose there exists a defining facet inequality bx ≥ β

such that F ⊆ F = {x ∈ kNCSP (G) | bx = β}. We will prove that there is

a scalar ρ such that b = ρa. By ii) there exists a matching M = {e1, ..., ek}

in δG(W ) of k edges such that ei = uivi, i = 1, ..., k, with ui in W and vi in

W . Let U1 = {u1, ..., uk} and V1 = {v1, ..., vk}. Let T1 = E(W ) ∪ E(W ) ∪M .

As by i) G[W ] and G[W ] are (k + 1)-node-connected, by Remark 1, T1 is a

solution of kNCSP(G). We will show in what follows that the coefficients be

are equal for all e ∈ δG(W ). Let fi = uis, i = 1, ..k. Such edges exist by
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iii). Let Si = (T1 − ei) + fi, i = 1, ...k. Note that Si contains a matching of

k edges between W and W . Hence Si is a solution of the kNCSP(G). More-

over xT1 , xSi ∈ F ⊆ F . Hence bxT1 = bxSi , implying that bei = bfi = ρ,

for i = 1, ...k, for some ρ ∈ R. By symetry, we also obtain that bg = ρ for

all g ∈ [W\U1, V1] ∪ [U1,W\V1] ∪M . Now consider an edge e = uv such that

u ∈ W\U1 and v ∈ W\V1. It is clear that T2 = (T1\{e1}) ∪ {e} is a solu-

tion of the kNCSP(G). Moreover xT2 ∈ F ⊆ F . Hence bxT1 = bxT2 , yielding

be1 = be = ρ. Finally consider an edge h = uivj , i, j ∈ {1, ..., k}, with i 6= j.

Consider the subset T3 = (T1\{ei, ej})∪{h, ujs}. We have that T3 is a solution

of kNCSP(G), and xT3 ∈ F ⊆ F . Which implies that bei + bej = bh + bujs. As

bei = bej = bujs = ρ, it follows that bh = ρ. Thus we obtain that be = ρ for all

e ∈ δG(W ).

Now we will show that be = 0 for all e ∈ E\δG(W ). As G[W ] and G[W ] are

(k + 1)-node-connected, we have that T4 = T1\{e} induces a k-node connected

graph for all edge e ∈ E(W ) ∪ E(W ). Moreover xT4 ∈ F ⊆ F . Hence be = 0.

Consequently, we have that be = ρ for all e ∈ δG(W ), and be = 0 for all

e ∈ E\δG(W ). Thus b = ρa. �

Corollary 2. If the graph G is complete, the cut inequality (3) induced by

W ⊂ V is facet-defining for kNCSP(G) if |W | ≥ k + 2 and |W | ≥ k + 2.

The following theorems give necessary conditions and sufficient conditions

for the node-cut inequalities to be facet-defining.

Theorem 7. The node-cut inequality (4) induced by a node cut δG\Z(W ), for

some node sets W and Z, defines a facet for kNCSP(G) only if |[W,Z]| ≥ |Z|+1

and |[V \ (W ∪ Z), Z]| ≥ |Z|+ 1.

Proof. Suppose for instance that |[W,Z]| < |Z| + 1, the case where |[V \

(W ∪ Z), Z]| < |Z| + 1 is similar. Thus, if |[W,Z]| < |Z| + 1, then for any

solution x ∈ kNCSP(G) we have that −x([W,Z]) ≥ −|Z|, and x(δG(W )) ≥ k.

Hence we obtain that x(δG\Z(W )) = x(δG(W )) − x([W,Z]) ≥ k − |Z|. In
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consequence, x(δG\Z(W )) ≥ k − |Z| is redundant with respect to the cut and

trivial inequalities and hence cannot define a facet. �

Theorem 8. The node-cut inequalities (4) define facets for kNCSP(G) if

i) G[W ] and G[W ] are (k + 1)-node connected,

ii) there exists a matching C in δG(W ), such that |C| = k+1 and |C∩[Z,W ]| =

|Z|,

iii) there exists a node s1 in W such that s1 is not incident to the matching C

and it is adjacent to all the nodes of C in W ,

iv) there exists a node s2 in W such that s2 is not incident to the matching C

and it is adjacent to all the nodes of Z.

Proof. Let us denote by ax ≥ α the cut inequality induced by W , and let F =

{x ∈ kNCSP (G)|ax = α}. Suppose there exists a defining facet inequality bx ≥

β such that F ⊆ F = {x ∈ kNCSP (G) | bx = β}. We will prove that there

is a scalar ρ such that b = ρa. By ii) there exists a matching C = {e1, ..., ek}

in δW (G) of size k, such that ei = uivi, i = 1, ..k, ui ∈ W and vi ∈ W . Let

U1 = {u1, ..., uk} and V1 = {v1, ..., vk}. And let T1 = E(W )∪E(W )∪C1∪[Z,W ],

with C1 the restriction of C in G\Z. As by i) G[W ] and G[W ] are (k+1)-node-

connected, by Remark 1, T1 is a solution of kNCSP(G). Hence xT2 ∈ F . Now

consider an edge f = u1s. Such edge exists by iii). Let T2 = (T1\e1) + f .

T2 is a solution of kNCSP(G). Moreover xT2 ∈ F ⊆ F . Hence bxT1 = bxT2 ,

implying that be1 = bf . As uis ∈ E, i = 1, ...k. By symetry, we also obtain that

bei = bf = ρ, i = 1, ...k, for some ρ ∈ R. By symetry, we also obtain that bg = ρ

for all g ∈ [W\U1, V1] ∪ [U1,W\V1] ∪ C.

Let e = uv such that u ∈ W\U1 and v ∈ W\V1. It is clear that T3 =

(T1\{e1}) ∪ {e} is a solution of kNCSP(G). Moreover xT3 ∈ F ⊆ F . Hence

bxT1 = bxT3 , implying that be1 = be = ρ.

Let h = uivj , i 6= j, i, j ∈ {1, ..., k}. Consider the subset T4 = (T1\{ei, ej} ∪

{h, ujs}. T4 = (T1\{ei, ej})∪{h, ujs}. T4 is a solution of kNCSP(G). Moreover
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xT4 ∈ F ⊆ F . Hence bei + bej = bh + bujs. As bei = bej = bujs, this implies

that that bh = ρ. We obtain that be = ρ for all e ∈ δ(W ).

Now consider an edge e ∈ E(W ) ∪ E(W ). T5 = T1\e. As G[W ] is (k + 1)-

node-connected, G[W ]\e is k-node-connected, thus xT5 ∈ F ⊆ F , hence bxT1 =

bxT6 = bxT1 − be, implying that be = 0.

Let f ∈ [Z,W ]\C2, where C2 is the restriction of C in [Z,W ]. T6 = T1\f is

a solution of kNCSP(G), hence bf = 0.

All together, we obtain be = ρ for all e ∈ δG\Z(W ) and be = 0 for all

e ∈ E \ δG\Z(W ). Therefore, b = ρa. �

Corollary 3. If the graph G is complete, then the node-cut inequalities (4) are

facet-defining for kNCSP(G) if |W | ≥ k + 2 and |W | ≥ k + 2.

Now, we discuss the sufficient conditions for the F -node-partition and SP-

node-partition inequalities to define facets of kNCSP(G).

Theorem 9. Let G = (V,E) be a graph and an integer k ≥ 2. Let Z ⊂ V ,

Zi ⊂ Z, and π = (V0, V1, ..., Vp) a partition of V \Z where p is odd. Suppose

that the following hold.

i) G[Z] is a complete graph,

ii) G[Vi], for i = 0, 1, ..., p, are (k + 1)-node connected,

iii) for i = 1, ..., p, there exists a subset Si, of k + 1 edges of δ(Vi) such that:

* |Si ∩ [Zi, Vi]| = |Zi| and covering |Zi| nodes of Z,

* |Si ∩ [V0, Vi]| = k − |Zi| − 1 and covering k − |Zi| − 1 nodes of V0,

* |Si ∩ [Vi, Vi−1]| = |Si ∩ [Vi, Vi+1]| = 1,

where the indices are taken modulo p.

Moreover, if |Vi| ≥ 2, Si must cover at least k + 1 nodes of Vi.

iv) [Z, V0] contains a set of k+1 edges covering k+1 nodes of V0 and min(|Z|, k+

1) nodes of Z,
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v) for i = 1, ..., p, [V0, Vi ∪ Vi+1] contains a set Ri ⊆ Si ∪ Si+1 of k − |Zi| + 1

edges covering k − |Zi|+ 1 nodes of V0.

Let Fi = Si ∩ [V0, Vi], for i = 1, ..., p, and let F =
p⋃

i=1

Fi. Then the

F -node-partition inequality (12) induced by π and F , defines a facet of

kNCSP(G).

(see figure 2) for an illustration with k = 5)

Z

V0

V1

V3

V4

V5

V2

Figure 2: An F -node-partition configuration for k = 5

Proof.

Remark that under these conditions we can easily show that G is (k + 1)-

node connected, thus kNCSP(G) is full dimensional. Let us denote the F -node-

partition inequality by ax ≥ α and let F = {x ∈ kNCSP (G) | ax = α}.

Clearly, F is a proper face of kNCSP(G). Now suppose that there exists a

facet defining inequality bx ≥ β of kNCSP(G) such that F ⊆ F ′ = {x ∈

kNCSP (G) | bx = β}. We will show that b = ρa for some scalar ρ ∈ R.

Let E0 be the set of edges in E\F having both endnodes in the same element

of π. Let Γ = E0 ∪ F ∪ E(Z) ∪ δ(Z).

Let el be an edge of Sl ∩ [Vl, Vl+1], l = 1, ..., p. For l ∈ {1, ..., p} consider the

edge set

14



Tl = Γ ∪ {el+2r, r = 0, ...,
p− 1

2
}.

where the indices are taken modulo p.

Claim 1. Tl induces a k-node-connected subgraph of G.

Proof. Let Gl be the subgraph of G induced by Tl. First, we have the following

remarks.

a) |δ(Vj)| = k for j ∈ {1, ..., p}\{i} and |δ(Vi)| = k + 1,

b) The graph obtained from Gl by removing subsets from {Z, V1, ..., Vp} is

connected,

c) The graph G∗
l obtained from Gl by contracting the sets V0, V1, ..., Vp,

Z, replacing the multiple edges by a single edge, and deleting the edges

between Vi and Vj , i 6= j, i, j = 1, ..., p is connected.

Let Z ′ ⊂ V with |Z ′| = k − 1. We will show that the graph Gl\Z
′ is

connected.

Case 1. Z ′ ⊂ Z or Z ′ ⊂ Vi, for some i ∈ {1, ..., p}. Suppose that Z ′ ⊂ Z.

If |Z| = |Z ′| = k − 1, then by the Remark b) above, Gl\Z ′ is connected. So

suppose |Z| ≥ k+1. As |Z ′| = k−1 and G[Z] is complete, the subgraph induced

by Z\Z ′ is connected. Moreover, by Condition iv) there exists at least one edge

connecting Z\Z ′ to V0. Since Gl\Z is connected, we obtain that Gl\Z ′ is also

connected. If Z ′ ⊂ Vi, for some i ∈ {1, ..., p}, by using Condition iii), the proof

can be done along the same line.

Case 2. Z ′ ⊂ V0. We distinguish two cases. Suppose first that for every

s ∈ {1, ..., p} such that [Vs, Vs+1]Gl
6= ∅, at least one of the sets Vs and Vs+1

is adjacent to Z in Gl. As |Z ′| = k − 1, by Condition iv), it follows that

[Z, V0\Z ′] 6= ∅. Moreover, since G[V0] is (k + 1)-node connected, we have that
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G[V0\Z ′] is connected. ThereforeGl\Z ′ is connected. If this is not the case, then

there is s ∈ {1, ..., p} such that [Vs, Z]Gl
= ∅ = [Vs+1, Z]Gl

and [Vs, Vs+1]Gl
6= ∅.

If k − 1 nodes are removed from V0, by Condition v) at least one edge remains

linking V0\Z ′ to Vs ∪ Vs+1. Thus for j = 1, ..., p, if [Vj , Vj+1]Gl
6= ∅, at least

one of the sets [V0\Z ′, Vj ∪ Vj+1], and [Z, Vj ∪ Vj+1] is not empty. Moreover by

Condition iv) [V0\Z ′, Z] 6= ∅. As G[V0] is (k + 1)-node connected, and hence

G[V0\Z ′] is connected, it follows that Gl\Z ′ is connected.

Case 3. Z ′ ⊆
⋃
i∈I

Vi, where I ⊂ {1, ..., p}. Note that |I| ≤ k − 1. Let

I ′ = {i ∈ I | |Vi| = 1}. First note that, by the Remark b) above, the graph

Gl\
⋃
i∈I

Vi, is connected. Also note that as |Z ′| = k− 1, and Z ′ is not contained

in a single set, we have |Z ′ ∩Vi| ≤ k− 2 for i ∈ I\I ′. Since G[Vi] is (k+1)-node

connected, it follows that G[Vi\Z ′] is connected for i ∈ I\I ′. Also by construc-

tion we have |[Vi, V0 ∪ Z]Gl
| ≥ k − 1 for i ∈ I\I ′. Moreover by Condition iii),

[Vi, V0 ∪ Z]Gl
covers at least k − 1 different nodes in Vi, for i ∈ I\I ′. So if no

more than k−2 nodes are removed from Vi at least one edge remains connecting

Vi\Z ′ to Z ∪ V0, for i ∈ I\I ′. Therefore Gl\Z ′ is connected.

Case 4. Z ′ ⊂ V0 ∪Z ∪ (
⋃
i∈I

Vi) where I ⊆ {1, ..., p}. Let I ′ = {i ∈ I | |Vi| = 1}.

Suppose first that Z ′ ∩ Z 6= ∅, Z ′ ∩ V0 6= ∅ and Z ′ ∩
⋃
i∈I

Vi = ∅. We have that

|Z ′∩Z| ≤ k−2 and |Z ′∩V0| ≤ k−2. By Condition v) |[Vi∪Vi+1, V0]| = k−|Zi|+1

and covers k − |Zi|+ 1 nodes of V0. Then there exists at least one edge linking

V0\Z ′ and Vi ∪ Vi+1. Thereby G[(V0\Z ′)∪ (
p⋃

i=1

Vi)] is connected, which is equal

to Gl\Z. Now suppose Z\Z ′ 6= ∅. Since G[V0] is (k + 1)-node connected and

G[Z] is a complete graph, it follows that G[V0\Z
′] and G[Z\Z ′] are connected.

By Condition iv), [Z\Z ′, V0\Z ′] 6= ∅. Moreover, by construction at least an edge

remains connecting Vi to Vi+1 ∪ Vi−1. And we can show in the same way as in

Case 2, that Vi is connected to V0\Z ′. Thus Gl\Z ′ is connected.

Now suppose that Z ′ ∩ Z 6= ∅, Z ′ ∩ Vi 6= ∅, for i ∈ I, I ⊆ {1, ..., p}, and

Z ′ ∩ V0. Suppose that Z\Z ′ 6= ∅. If Z ⊂ Z ′, the proof is similar to the previous

case. We have that |Z ′ ∩ Z| ≤ k − |I| − 1. Let I ′ = {i ∈ I | Vi ∩ Z ′ 6= ∅
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and |Vi| = 1}. Since G[Vi], for i ∈ I\I ′, is (k + 1)-node connected and G[Z]

is a complete graph, it follows that G[Vi\Z ′] and G[Z\Z ′] are connected, for

i ∈ I\I ′. By Condition iv) there exists at least one edge connecting Z\Z ′ to V0.

Also by Condition iii) [Vi, V0∪Z] contains k−1 edges covering different nodes in

V0∪Z and covers k−1 nodes in Vi. So if no more than k−2 nodes are removed

from Vi∪V0∪Z at least an edge remains connecting Vi\Z ′ to (Z\Z ′)∪V0. Thus

Gl\Z ′ is connected.

Now, if Z ′ ∩ V0 6= ∅ and Z ′ ∩ Vi 6= ∅, for i ∈ I, and Z ′ ∩Z = ∅, then we have

that |Z ′ ∩ V0| ≤ k− |I| − 1 and |Z ′ ∩ Vi| ≤ k− |I| − 1 for i ∈ I. Since G[Vi], for

i ∈ {0}∪ (I\I ′), is (k+1)-node connected, it follows that G[Vi\Z ′] is connected,

for i ∈ {0}∪(I\I ′). By Condition iv) we have that [V0\Z ′, Z\Z ′] 6= ∅. Moreover

by Condition iii), [Vi, V0 ∪ Z] contains k − 1 edges that covers k − 1 nodes in

V0 ∪Z and k− 1 nodes in Vi. So if no more than k− 2 nodes are removed from

Vi ∪ V0 at least an edge remains connecting Vi\Z ′ to Z ∪ V0\Z ′. Thus Gl\Z ′ is

connected.

Suppose now that Z ′ ∩ Z 6= ∅, Z ′ ∩ V0 6= ∅ and Z ′ ∩ (
⋃
i∈I

Vi) 6= ∅. We have

that |Z ′ ∩ Z| ≤ k − |I| − 2 and |Z ′ ∩ Vi| ≤ k − |I| − 2 for i ∈ I. Since G[Vi], for

i ∈ {0}∪I\I ′, is (k+1)-node connected and G[Z] is a complete graph, it follows

that G[Vi\Z ′] and G[Z\Z ′] are connected, for i ∈ {0} ∪ I\I ′. By Condition iv),

there exists at least one edge connecting Z\Z ′ to V0. Also by Condition iii),

there are |[Vi, V0 ∪ Z]| ≥ k − 1 edges covering different nodes in Vi, V0 and Z.

So if no more than k − 4 nodes are removed from Vi ∪ V0 ∪ Z, then at least an

edge remains connecting Vi\Z ′ to (Z\Z ′) ∪ (V0\Z ′). Thus Gl\Z ′ is connected.

Consequently Gl = (V, Tl) is k-node-connected. Moreover xTl ∈ F . �

Now we show that b(e) = ρa(e) for all e ∈ E\Γ, for some ρ ∈ R.

As xT1 , ..., xTp belong to F , it follows that bxT1 = ... = bxTp = β. Hence

b(e1) = ... = b(ep). As e1 and ep are arbitrary edges of [V1, V2] and [Vp, V1],

respectively, we obtain
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b(e) = ρ for all e ∈ [Vi, Vi+1], i = 1, ..., p,

for some ρ ∈ R.

Let gl+1 be a fixed edge of [Vl+1, V0]\F . Consider the edge set

T̃l = (Tl\{el}) ∪ {gl+1}.

Similary, we can show that T̃l induces a k-node-connected subgraph of G.

As xTl and xT̃l belong to F , it follows in a similar way that b(el) = b(gl+1). As

b(el) = b(el+1) = ρ, this yields b(gl+1) = ρ. By exchanging the roles of Vl+1 and

Vl, l = 1, ..., p, we obtain that b(e) = ρ for all e ∈ δG(V0)\F . In consequence,

b(e), for all e ∈ E\Γ have all the same value ρ.

Next, we will show that b(e) = 0 for all e ∈ Γ.

Note that there are k + 1 edges incident to Vl in the graph induced by Tl.

By using Condition iii) we can show in a similar way as in the claim above that

for any edge e ∈ Fl, T
∗
l = Tl\{e} also induces a k-node-connected subgraph of

G. As xTl and xT∗

l belong to F , it follows that bxTl = bxT∗

l = β, implying that

b(e) = 0 for all e ∈ Fl. As l is arbitrarily chosen, we obtain that b(e) = 0 for all

f ∈ F . Moreover, as the subgraphs induced by V0, ..., Vp are all (k + 1)-node-

connected, the subgraph induced by Tl\{e}, for all e ∈ E0, is k-node-connected.

This yields as before b(e) = 0 for all e ∈ E0.

Now suppose that e ∈ E(Z). By Conditions i) and iv) we can clearly see that

Tl\{e} also induces a k-node-connected subgraph of G. Implying that b(e) = 0.

Let h be an edge of δ(Z). We can show in a similar way as in the claim

above that T l = Tl\{h} also induces a k-node-connected subgraph of G. As xT l

belongs to F , it follows that b(e) = 0 for all h ∈ δ(Z). Consequently b(e) = 0

for all e ∈ Γ.

Thus we obtain that b = ρa, which ends the proof of the theorem. �
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Corollary 4. If the graph G is complete, then the F -node-partition inequalities

(4) are facet-defining for kNCSP(G) if |Vi| ≥ k + 2, i = 0, 1, ..., p.

Theorem 10. Let G = (V,E) be a graph and an integer k ≥ 2. Let Z ⊂ V ,

such that |Z| ≤ k − 1 and k − |Z| is odd. Let π = (V1, ..., Vp) be a partition of

V \Z such that (G \Z)π. The SP-node-partition inequality (10) associated with

π defines a facet of kNCSP(G) if the following conditions hold

i) p ≥ k − |Z|+ 1,

ii) G[Vi], for i = 1, ..., p, are (k + 1)-node connected,

iii) G[Z] is a complete graph,

iv) for i = 1, ..., p, there exists a subset Si ⊂ δ(Vi), with |Si| = k + 1, and such

that:

a) |Si ∩ [Z, Vi]| = |Z| and Si ∩ [Z, Vi] is a matching,

b) |Si ∩ [Vi, Vi−1]| = |Si ∩ [Vi, Vi+1]| =

⌈
k − |Z|

2

⌉
and such that Si ∩

[Vi, Vi−1] and Si ∩ [Vi, Vi+1] are matchings,

where the indices are taken modulo p.

Moreover, if |Vi| ≥ 2, Si must cover at least k nodes of Vi.

Proof.

Remark that under these conditions we can easily see that G is (k+1)-node

connected, thus kNCSP(G) is full dimensional. Let us denote the SP-node-

partition inequality by ax ≥ α and let F = {x ∈ kNCSP (G) | ax = α}.

Clearly, F is a proper face of kNCSP(G). Now suppose that there exists a

facet defining inequality bx ≥ β of kNCSP(G) such that F ⊆ F ′ = {x ∈

kNCSP (G) | bx = β}. We will show that b = ρa for some scalar ρ ∈ R.

Let E0 =
p⋃

i=1

E(Vi). And let Fi be an edge subset of [Vi, Vi+1], i = 1, ..., p,

of k−|Z|+1
2 edges and let Consider Hj = (

p⋃
i=1,i6=j

Fi) ∪ (Fj\{fj}) ∪ E0 for some

j ∈ {1, ..., p}, where the indices are taken modulo p.
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Z
V1

V2

V3

V4

Figure 3: An SP-node-partition configuration for k = 5 and Z = 2

As Fi, i = 1, ..., p forms a matching, and G[Vi] is (k + 1)-node-connected,

then it is not difficult to see that the graph induced by Hj is (k − |Z|)-node-

connected. Thus, by iv)a) the graph obtained by H ′
j = Hj ∪ E(Z) ∪ δ(Z) is

k-node-connected. Moreover xHj belong to F .

Similary, we can see that Fj+1 = (Fj\{fj+1}) ∪ {fj} also induces a k-

node-connected subgraph of G. As xHj and xHj+1 belong to F , we have that

b(xHj ) = b(xHj+1) and hence b(fj) = b(fj+1). As fj and fj+1 are arbitrary

edges of Fj and Fj+1, respectively, it follows that b(e) = b(e′) for all e ∈ Fj

and e′ ∈ Fj+1. Moreover, as Fj and Fj+1 are arbitrary subsets of [Vj , Vj+1] and

[Vj+1, Vj+2], respectively, we obtain that b(e) = b(e′) for all e ∈ [Vj , Vj+1] and

e′ ∈ [Vj+1, Vj+2], j = 1, ..., p. Consequently, by symmetry, we get b(e) = b(e′)

for all e, e′ ∈
p⋃

i=1

[Vi, Vi+1].

Now let h ∈ [Vi0 , Vj0 ]; i0, j0 ∈ {1, ..., p} with |i0 − j0| > 1. Consider the

edge sets H2 = (Hl\{fl−1}) ∪ {h} and H3 = (H2\{h}) ∪ {fl}. Similary, we can

show that H2 and H3 induce k-node connected subgraphs of G. As xH2 and

xH3 belong to F , it follows that b(xH2 ) = b(xH3 ) and hence b(h) = b(fl). This

yields b(e) = b(e′) for all e, e′ ∈ δG\Z(π). Now, we will show that b(e) = 0 for all

e ∈ E0 ∪E(Z)∪ δ(Z). Consider the edge set H4 = Hj\{e} for some e ∈ E0. As

G[Vi], i = 1, ..., p, are (k + 1)-node connected, H4 induces a k-node connected

subgraph of G. As xHj and xH4 belong to F , we have that b(xHj ) = b(xH4), and
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thus b(e) = 0 for all e ∈ E0. Now suppose that e ∈ E(Z). By Condition i) and

iii) we can clearly see that Hj\{e} also induces a k-node connected subgraph of

G. Implying that b(e) = 0. Let g be an edge of δ(Z). We can show in a similar

way as in the claim above that H5 = Hj\{g} also induces a k-node connected

subgraph of G. As xH5 belongs to F , it follows that b(e) = 0 for all g ∈ δ(Z).

Thus b(e) = 0 for all e ∈ E0 ∪ E(Z) ∪ δ(Z). Therefore we obtain that b = ρa

and the proof is complete. �

Corollary 5. If the graph G is complete, then the SP-node-partition inequalities

(10) are facet-defining for kNCSP(G) if p ≥ k − |Z| + 1 and |Vi| ≥ k + 2,

i = 1, ..., p.

5. Structural properties

In this section, we discuss some structural properties of the extreme points

of the linear relaxation P (G, k) of the kNCSP polytope. Recall that P (G, k) is

the polytope given by inequalities (1)-(4).

For this, we first give some notations and definitions. Let x ∈ P (G, k) be a

solution. We say that an inequality ax ≥ α is tight for x if ax = α. We will

denote by E0(x), E1(x) and Ef (x), the following edge sets

• E0(x) = {e ∈ E | x(e) = 0},

• E1(x) = {e ∈ E | x(e) = 1},

• Ef (x) = {e ∈ E | 0 < x(e) < 1}.

Also we let CPE(x) (resp. CPN (x)) be the set of cuts δ(W ) (resp. node-cuts

δG\Z(W )) that are tight for x. If x is an extreme point of P (G, k), then x is

the unique solution of the linear system

S(x)





x(e) = 0, for all e ∈ E0(x),

x(e) = 1, for all e ∈ E1(x),

x(δG(W )) = k, for all cuts δG(W ) ∈ C ∗
PE(x),

x(δG\Z(W )) = k − |Z|, for all node-cuts δG\Z(W ) ∈ C ∗
PN (x),
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where C ∗
PE(x) (resp. C ∗

n (x)) is a subset of CPE(x) (resp. CPN (x)).

Lemma 1. Let x ∈ P (G, k) and W ⊆ V such that the cut induced by W is tight

for x. Then,

1. if for some R ⊂ V , x(δ(R)) = k, then

x(δ(W ∩R)) = k and x(δ(W ∪R)) = k;

2. if for some Z ⊂ V such that |Z| ≤ k − 1, and T ⊂ V \ Z, x(δG\Z(T )) =

k − |Z|, then

x(δG\(Z∩W )(W ∩ T )) = k − |Z ∩W | and

x(δG\(Z∩W )(W ∩ T )) = k − |Z ∩W |.

Proof.

1. The proof is similar to that of [21].

2. Suppose that Z ∩ W 6= ∅ 6= Z ∩W . Also suppose that T ∩ W 6= ∅ and

T 6⊂ W , W 6⊂ T and T ∪ W 6= V \Z. If this is not the case, then we

are done. Let T1 = T ∩ W , T2 = T ∩ W , Z1 = Z ∩ W , Z2 = Z ∩ W ,

T3 = W\(T ∪ Z1) and T4 = W\(T ∪ Z2). Thus Ti 6= ∅ for i = 1, ..., 4. As

δ(W ) ∈ CPE(x), we have that

k = x(δ(W )) = x(δ(T1, T2)) + x(δ(T1, T4)) + x(δ(T3, T2))

+x(δ(T3, T4)) + x(δ(T1, Z2)) + x(δ(T3, Z2))

+x(δ(T2, Z1)) + x(δ(T4, Z1)) + x(δ(Z1, Z2)).

(13)

And as δG\Z(T ) ∈ Cn(x), we have that

k − |Z| = x(δ(T )) = x(δ(T1, T3)) + x(δ(T1, T4))

+x(δ(T2, T3)) + x(δ(T2, T4)).
(14)

By considering the node-cuts δG\Z1
(T1) and δG\Z2

(T4), we have that
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k − |Z1| ≤ x(δG\Z1
(T1)) = x(δ(T1, T2))

+x(δ(T1, T3)) + x(δ(T1, T4)) + x(δ(T1, Z2)),
(15)

k − |Z2| ≤ x(δ(T4)) = x(δ(T4, T1)) + x(δ(T4, T2))

+x(δ(T4, T2)) + x(δ(T4, Z1)).
(16)

As x(e) ≥ 0 for all e ∈ E, by adding (13) and (14) and combining the

resulting equation with (15) and (16), we get x(δG\Z1
(T1)) = k− |Z1| and

x(δG\Z2
(T4)) = k − |Z2|, which ends the proof.

�

From Lemma 1, we can show the following result. Its proof is omitted since

it follows the same lines as a similar result in [4].

Lemma 2. Let x be an extreme point of P (G, k), and W ⊂ V such that

x(δ(W )) = k. Then the system S(x) can be chosen so that

1. a cut δ(R) ∈ C ∗
PE(x) is such that R ⊂ W or R ⊂ W ;

2. a node-cut δG\Z(T ) ∈ C ∗
PN (x) is such that (T ∪ Z) ⊂ W , (T ∪ Z) ⊂ W ,

T ⊂ W and Z ⊂ W , or T ⊂ W and Z ⊂ W .

6. Reduction operations

In this section we introduce some reduction operations defined with respect

to a solution x of P (G, k). These operations will be considered in a preprocessing

phase for separating violated inequalities in our Branch-and-Cut algorithm. Let

θ1, θ2, θ3 and θ4 be the reduction operations defined as follows.

θ1: Delete an edge e ∈ E such that x(e) = 0.

θ2: Contract a node subset W ⊆ V such that G[W ] is k-edge connected, x(e) =

1 for all e ∈ E(W ) and x(δ(W )) = k.

θ3: Contract a node subset W ⊆ V such that |W | ≥ 2, |W | ≥ k, x(e) = 1 for

all e ∈ E(W ), and |δG(W )| = k.
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θ4: Replace a set of parallel edges by only one edge.

We have the following results.

Lemma 3. Let G′ = (V,E′) be the graph obtained from G by the application

of Operation θ1 and let x′ be the restriction of x to G′. Then x′ is an extreme

point of P (G′, k) if and only if x is an extreme point of P (G, k).

Proof. Easy. �

Lemma 4. Let G′ = (V ′, E′) and x′ be the graph and the solution obtained

from G and x by the application of Operation θ2. Suppose that

1) x′ ∈ P (G′, k),

2) for all Z ⊂ W , |Z| ≤ k − 1, δG\Z(T ) /∈ CPN (x) for all T ⊆ W .

Then x′ is an extreme point of P (G′, k) if x is an extreme point of P (G, k).

Proof. Let W be a node set of G contracted by Operation θ2. As δ(W ) ∈

CPE(x), by Lemma 2, the system S(x) can be chosen in such a way that for

every δ(R) ∈ C ∗
PE(x) (resp. δG\ZT

(T ) ∈ C ∗
PN (x)) either R ⊆ W or R ⊆ W

(resp. (T ∪ ZT ) ⊂ W , T ⊂ W and ZT ⊂ W , or T ⊂ W and ZT ⊂ W ). As

x(e) = 1 for all e ∈ E(W ) and G[W ] is k-edge connected, this implies that

C ∗
PE(x) ⊆ CPE(x

′). Moreover by 2) it follows that if δG\ZT
(T ) is tight for x

and ZT ⊆ W , then W ∩ T 6= ∅ and W\(ZT ∪ T ) 6= ∅. Let T1 = W ∩ T and

T2 = W\(ZT ∪ T ). We have that k − |ZT | = x(δG\ZT
(T )) ≥ x(δ(T1, T2)) ≥ k,

a contradiction. The last inequality comes from the fact that G[W ] is k-edge

connected and x(e) = 1 for all e ∈ E(W ). In consequence, all the node-cuts

δG\ZT
(T ) of C ∗

PN (x) are such that ZT ⊂ W . However these are at the same

time tight for x′. Thus C ∗
PN (x) ⊂ CPN (x′). Let S′(x) be the system obtained

from S(x) by deleting the equations x(e) = 1 for all e ∈ E(W ). Then x′ is the

unique solution of S′(x). As all the equations of S′(x) come from P (G′, k) and

by 1) x′ ∈ P (G′, k), it follows that x′ is an extreme point of P (G′, k). �
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Lemma 5. Let G′ = (V ′, E′) and x′ be the graph and the solution obtained

from G and x, respectively, by the application of Operation θ3. Then x′ is an

extreme point of P (G′, k).

Proof. Let W ⊆ V be a node set satisfying the conditions of Operation θ3.

First observe that as |δ(W )| = k, we have that x(e) = 1 for all e ∈ δ(W ) and

x(δ(W )) = k. Thus, by Lemma 2, S(x) can be chosen so that for every node-cut

δG\Z(T ) ∈ C ∗
PN , we have (T ∪ Z) ⊂ W , (T ∪ Z) ⊂ W , T ⊂ W and Z ∈ W ,

or T ⊂ W and Z ∈ W . We will show that any cut δ(R) ∈ C ∗
PE(x) is such

that R ⊂ W , and any node-cut δG\Z(T ) ∈ C ∗
PN (x) is such that (T ∪ Z) ⊂ W .

Suppose the contrary and consider first that for some δ(R) ∈ C ∗
PE(x), R ( W .

As x(e) = 1, for all e ∈ E(W ) ∪ δ(W ), one can see that |δ(R)| = k, and

hence x(δ(R)) = k can be obtained from x(e) = 1, for all e ∈ δ(R), con-

tradicting the fact that δ(R) ∈ C ∗
PE(x). Now suppose that for some node-

cut δG\Z(T ) ∈ C ∗
PN (x) either (T ∪ Z) ⊂ W or T ⊆ W and Z ⊆ W . We

can show similarily to the previous case that |δG\Z(T )| = k − |Z| and that

x(δG\Z(T )) = k−|Z| can be obtained from x(e) = 1, for all e ∈ δG\Z(T ), which

yields a contradiction.

We consider now a node-cut δG\Z(T ) ∈ C ∗
PN (x) such that T ⊆ W and

Z ⊆ W . Notice that, as |W | ≥ k, we have that W \ Z 6= ∅. If T = W , then

x(δG\Z(T )) = x(δ(W \ Z, T )) = |δ(W \ Z, T )| = k − |Z|. Thus, x(δG\Z(T )) =

k − |Z| can be obtained from the equations x(e) = 1, for all e ∈ δG\Z(T ), con-

tradicting the fact that δG\Z(T ) ∈ C ∗
PN (x). Thus, W \T 6= ∅. For convenience,

we let T1 = W \ Z and T2 = W \ T . First, note that

x(δG\Z(T )) = x(δ(T, T1)) + x(δ(T, T2)) = k − |Z|. (17)

Equation 17 together with the cut inequality induced by T yields

x(δ(T, Z)) ≥ |Z|. (18)

Also, as by the assumption |δ(W )| = k, we have that

x(δ(T, T1)) + x(δ(T, Z)) + x(δ(T2, T1)) + x(δ(T2, Z)) = k. (19)
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This equation, together with the node-cut inequality induced by δG\Z(T2) im-

plies that

x(δ(T, Z)) + x(δ(T2, Z)) ≤ |Z|. (20)

Thus, by inequalities (18) and (20), we have that x(δ(T, Z)) = |Z| and

x(δ(T2, Z)) = 0, and hence

x(δ(T )) = x(δ(T, T1)) + x(δ(T, Z)) + x(δ(T, T2)) = k. (21)

Moreover, as x(e) = 1, for all e ∈ δ(W ), we have that x(δ(T, Z)) = |Z| =

|δ(T, Z)|. Therefore, x(δG\Z(T )) = k − |Z| can be obtained from (21) and the

x(e) = 1, for all e ∈ δ(T, Z), and hence, can be replaced in S(x) by equation (21).

Consequently, the system S(x) can be chosen so that R ⊆ W for every cut

δ(R) ∈ C ∗
PE(x) and T∪Z ⊆ W for every node-cut δG\Z(T ) ∈ C ∗

PN (x). This also

implies we have that C ∗
PE(x) ∪ C ∗

PN (x) ⊆ C ∗
PE(x

′) ∪ C ∗
PN (x′). Thus, x′ is the

unique solution of a subsystem of S(x). As all the equations of that subsystem

correspond to constraints of P (G\W,k), this implies that x′ is an extreme point

of P (G\W,k). �

Lemma 6. Let G′ = (V ′, E′) be the graph obtained from G by the application of

Operation θ4. Let E0 be the set of parallel edges of G and e0 the edge replacing

E0 in G′. Let x′ be the solution given by x′(e) = x(e) if e ∈ E\E0 and x′(e) = 1

if e = e0. Then x′ is an extreme point of P (G′, k).

Proof. Observe that for every cut δ(W ) (node-cut δG\Z(W )) either E0 ⊆ δ(W )

(E0 ⊂ δG\Z(W )) or E0 ∩ δ(W ) = ∅ (E0 ∩ δG\Z(W ) = ∅). Moreover, E0 cannot

contain more than two edges with fractional value. Indeed, if e1, e2 ∈ E0 and

0 < x(e1) < 1 and 0 < x(e2) < 1, let x∗ be the solution given by x∗(e) = x(e)

if e ∈ E\{e1, e2}, x
∗(e) = x(e) + ǫ if e = e1 and x∗(e) = x(e) − ǫ if e = e2,

where ǫ is a positive scalar sufficiently small. We then have that x∗ is also a

solution of S(x), which is a contradiction. We claim that E0 does not con-

tain any edge with fractional value. Suppose, on the contrary that h is such
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an edge. Then x(E0) > 1. Therefore there exists a cut or a node-cut of sys-

tem S(x) containing h. Let v be an extremity of h. Let δ(S) be a cut of

C ∗
e (x) that contains h. Thus E0 ⊂ δ(S). Suppose W.l.o.g., that v ∈ S. Con-

sider the node-cut δG\v(S). We have that x(δG\v(S)) ≤ x(δ(S)\E0) < k − 1,

a contradiction. Now consider a node-cut δG\Z(T ) of C ∗
n (x) that contains h

and hence E0. As x(E0) > 1, one must have |Z| < k − 1. So suppose that

|Z| < k− 1. Suppose W.l.o.g., that v ∈ V \(T ∪Z). Let Z ′ = Z ∪ {v}. We have

x(δG\Z′(T )) ≤ x(δG\Z(T ))−1−x(h) = k−(|Z|+1)−x(h) < k−|Z ′|, a contradic-

tion. Consequently, x(e) = 1 for all e ∈ E0. From the development above we also

deduce that neither a cut of C ∗
e (x) nor a node-cut of C ∗

n (x) intersects E0. Hence

C ∗
e (x) ∪ C ∗

n (x) ⊂ C (x′). Moreover, we have that x′ ∈ P (G′, k). Obviously, x′

satisfies the trivial inequalities as well as the cut and node-cut inequalities that

do not contain h. Let δ(W ) be a cut that contains h. Suppose v ∈ W . We have

that x′(δ(W )) = x′(h)+x′(δ(W )\{h}) = 1+x(δ(W )\E0) = 1+x(δG\v(W )) ≥ k.

Consider now a node-cut δG\Z(T ) containing h. If |Z| = k − 1, as x′(h) = 1

and h ∈ δG\Z(T ), we have that x′(δG\Z(T )) ≥ 1. If |Z| < k − 1, then let

Z ′ = Z ∪ {v}. We have that x′(δG\Z(T )) ≥ 1 + x′(δG\Z′(T )) ≥ 1 + k − |Z ′| =

1 + k − |Z| − 1 = k − |Z|. �

As we will see later, the reduction operations θ1, ..., θ4 can be used as a

preprocessing for the separation procedures in our Branch-and-Cut algorithm.

7. Branch-and-Cut algorithm

In this section, we present a Branch-and-Cut algorithm for the kNCSP. The

algorithm is based on the theoretical results presented in the previous sections.

We will first present the general framework of the algorithm, then we will ad-

dress the main issues of our algorithm, that are the separation procedures for

the various inequalities we will use, and a primal heuristic.

We will consider a graph G = (V,E) and a weight vector c ∈ RE associated
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with the edges of G. We let k ≥ 1 be the connectivity requirement.

7.1. General framework

To start the optimization we consider the following linear program consisting

in the cut constraints induced by node sets {u}, for every u ∈ V together with

the trivial inequalities, that is

min
∑

e∈E

c(e)x(e)

x(δG(u)) ≥ k for all u ∈ V,

0 ≤ x(e) ≤ 1 for all e ∈ E.

If the optimal solution y ∈ RE of the above LP is feasible for the kNCSP,

that is, it is integer and it satisfies all the cut and node-cut inequalities, then it

is optimal for the problem. Usually, y is not feasible for the kNCSP. Thus, we

need to generate further valid inequalities for the problem which are violated by

y. This is done by addressing the separation problem associated with the cut

and node-cut inequalities, respectively, and the other families of inequalities we

consider in our algorithm. Recall that the separation problem associated with y

and a family of inequalities F is to say if y satisfies or not all the inequalities

of F , and if not, exhibit at least one inequality of F which is violated by y.

An algorithm solving a separation problem is called a separation algorithm. In

our algorithm, we use the inequalities that we described in the previous sections

and perform their separation in the following order

1. cut inequalities,

2. node-cut inequalities,

3. SP-node-partition inequalities,

4. F -node-partition inequalities,

5. node-partition inequalities.
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We move to a class of inequalities when the separation algorithm for the

previous class of inequalities has not find any violated inequality. We may add

several inequalities at the same time in the Branch-and-Cut algorithm. More-

over, all the inequalities are global, that is they are valid for all the node of the

Branch-and-Cut tree.

Remark that the separations are done on the graph obtained after repeated

applications of the reduction operations θ1, ..., θ4 to the graph G and solution y.

If G′ is the reduced graph and y′ is the restriction of y to G′, then by Lemmas

3-6, y′ is an extreme point of P (G′, k) if y is an extreme point of P (G, k).

Moreover, we have the following results which are easily seen to be true.

Lemma 7. Let a′x ≥ α be an F -node-partition inequality (respectively node-

partition inequality) valid for kNCSP(G′), induced by a partition π′ = (V ′
0 , V

′
1 , ..., V

′
p),

p ≥ 2 and an edge set F (respectively π′ = (V ′
1 , ..., V

′
p), p ≥ 3) of V ′\Z, with

Z ⊂ V . Let π = (V0, V1, ..., Vp), p ≥ 2 (respectively π = (V1, ..., Vp), p ≥ 3) be

the partition of V obtained by expanding the elements of π′. Let ax ≥ α be the

inequality such that

a(e) =





a′(e) for all e ∈ E′,

1 for all e ∈ (E\E′) ∩ δG(π),

0 otherwise.

Then ax ≥ α is valid for kNCSP(G). Moreover, if a′x ≥ α is violated by y′,

then ax ≥ α is violated by y.

Lemma 8. Let a′x ≥ α be an SP-node-partition inequality valid for kNCSP(G′),

induced by a partition π′ = (V ′
1 , ..., V

′
p), p ≥ 3 of V ′\Z, with Z ⊂ V such that

|Z| ≤ k − 1. Let π = (V1, ..., Vp), p ≥ 3 be the partition of V \Z obtained by

expanding the subsets V ′
i of π′. Let ax ≥ α be the lifted SP-node-partition in-

equality obtained from a′x ≥ α by application of the lifting procedure described

in Section 3.4 for the edges of E\E′. Then ax ≥ α is violated by y, if a′x ≥ α

is violated by y′.
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Lemmas 7 and 8 show that the separation of F -node-partition, SP-node-

partition and node-partition inequalities can be done in the reduced graph as-

sociated with any fractional solution of P (G, k).

7.2. Separation algorithms

Now we describe the separation algorithms we have devised for the cut,

node-cut, SP-node-partition, F -node-partition and node-partition inequalities.

We start by the separation of the cut inequalities (3). It is well known

that the separation of the cut inequalities (3) reduces to computing a minimum

weight cut in G with respect to weight vector y. Indeed, there is a violated cut

inequality (3) if and only if the minimum weight of a cut, w.r.t. weight vector

y, is < k. One can compute a minimum weight cut in polynomial time by using

any minimum cut algorithm, and especially by using the Gomory-Hu algorithm

[12] which computes the so-called Gomory-Hu cut tree. This algorithm consists

in |V | − 1 maximum flow computations.

Now we discuss the separation of the node-cut inequalities (4). In what

follows, we show that these inequalities can be separated in polynomial time.

In fact, Grötschel et al. [16] present a separation algorithm for inequalities (4)

based on a transformation of the graph G into a directed graph G̃ = (Ṽ , Ã).

This transformation is presented as follows. For each node u ∈ V , we add in Ṽ

two copies u− and u+ of u. The arc set is built in the following way. First, for

each edge uv ∈ E, we add two arcs (v+, u−) and (u+, v−). Finally, for every

node u ∈ V , we add an arc of the form (u−, u+). We also let ỹ ∈ RÃ be a weight

vector given by

ỹ(a) =





y(uv) for a = (u+, v−) and a = (v+, u−),

1 if a = (u−, u+) for all nodes u ∈ V.

One can see that a cut δ(W ) in G corresponds to a dicut which does not

contain an arc of the form (u−, u+). Conversely, a dicut δ+
G̃
(W̃ ) of G̃ which

30



does not contain any arc of the form (u−, u+) corresponds to a cut of G. Also,

a node cut δG\Z(W ) of G corresponds to a dicut of G̃ which contains |Z| arcs

of the form (u−, u+). Conversely, a dicut of G̃ which contains at least one arc

of the form (u−, u+) corresponds to a node-cut of G. The corresponding node

set Z is given by the nodes u ∈ V such that (u−, u+) ∈ δ+
G̃
(W̃ ), and the edges

of δG\Z(W ) are given by the arcs of δ+
G̃
(W̃ ) of the form (u−, v+) with u 6= v.

Thus, cuts and node-cuts of G corresponds to dicuts of G̃ which does not contain

arcs of the form (u−, u+), and vice-versa. Moreover, we have that

• if δ(W ) in G and δ+
G̃
(W̃ ) in G̃ are corresponding cuts, then y(δ(W )) =

ỹ(δ+
G̃
(W̃ ));

• if δG\Z(W ) inG and δ+
G̃
(W̃ ) in G̃ are corresponding cuts, then y(δG\Z(W ))+

|Z| = ỹ(δ+
G̃
(W̃ )).

Thus, there is a cut or node-cut inequality violated by y if and only if there

exists a dicut δ+
G̃
(W̃ ) in G̃ whose weight with respect to ỹ is < k. Notice that, if

we assume the cut inequalities to be all satisfied by y, finding violated node-cut

inequalities then reduces to compute a minimum weight cut in G̃ w.r.t. weight

vector ỹ.

Consequently, our separation algorithm for node-cut inequalities is as fol-

lows. First, we assume that the cut inequalities are all satisfied by y. We build

the graph G̃ and compute a minimum weight cut, say δ+
G̃
(W̃ ∗), w.r.t. ỹ. If

ỹ(δ+
G̃
(W̃ ∗)) ≥ k, then every node-cut inequality is satisfied by y, and the al-

gorithm stops. If ỹ(δ+
G̃
(W̃ ∗)) < k, then there is a violated node-cut inequality

induced by a node-cut δG\Z(W ) with Z ⊆ V , |Z| ≤ k− 1, and W ⊆ V \Z. The

node sets Z and W are given by

Z = { u ∈ V such that (u−, u+) ∈ δ+
G̃
(W̃ ∗)},

W = {u ∈ V such that u−, u+ ∈ W̃ or u+ ∈ W̃ and u− ∈ Ṽ \ W̃}.

Finally, computing a minimum weight cut in G̃ can be done in polynomial

time by computing, for every pair of nodes (s, t) ∈ V ×V , with s 6= t, a maximum
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flow in G̃ from source node s+ to destination t−. This, hence, reduces our algo-

rithm to |V |(|V |−1)/2 maximum flow computations in W̃ , which is polynomial.

Finally, we consider the separation problems for node-partition, SP-node-

partition and F -node-partition inequalities. First notice that the separation

problem of node-partition inequalities is NP-Hard even when Z = ∅. For our

purpose, we consider these inequalities in the case where Z = ∅. Thus, the cor-

responding node-partition, SP-node-partition and F -node-partition inequalities

also correspond to partition, SP-partition and F -partition inequalities, which

are valid for the kECSP on G. Therefore, to separate these inequalities, we use

the separation heuristics developed in Bendali et al. [1] for these latter inequal-

ities. These algorithms are applied on the graph G′ and solution y′ obtained

by the application of the reduction operations to G and y. As mentioned be-

fore, by Lemmas 7 and 8, any violated node-partition, SP-node-partition and

F -node-partition inequality found in G′ by the separation procedure is valid for

kNCSP(G) and is also violated by y.

7.3. Primal heuristic

Next, we discuss a primal heuristic for the problem. The aim of this heuristic

is to produce, for a given instance, good upper bounds of the optimal solution of

the problem. Such upper bounds are used by the Branch-and-Cut algorithm to

prune unrelevant branches of the Branch-and-Cut tree. This also ensures that

Branch-and-Cut algorithm produces a feasible solution, even if it reaches the

maximum CPU time.

The primal heuristic we have developed for our purpose consider a frac-

tional solution y obtained at the end of the cutting plane phase. The aim of

the heuristic is to transform y into a feasible solution for the problem. To do

this, we first build the graph G = (V,E) obtained by removing from G every

edge e ∈ E with y(e) = 0. Then, we iteratively remove from G all the edges uv

such that u and v are both incident in G to at least k + 1 edges. We denote by

32



G
′
= (V,E

′
) the resulting graph, and by z the incidence vector of G

′
. Next, we

check if G
′
is k-node-connected. We do this by calling the separation algorithms

for the cut and node-cut inequalities described in the previous section on z and

G
′
. If this there is a cut (resp. node-cut) inequality induced by a cut δ

G
′(W )

(resp. node-cut δ
G

′

\Z(W )), which is violated by z, then we add in G
′
an edge

e ∈ δG(W ) \ E
′
(resp. e ∈ δG\Z(W ) \ E

′
) whose weight c(e) is minimum. If

there is no cut and node-cut inequality violated by z, then G
′
is feasible for the

kNCSP. We repeat this procedure until the graph G
′
is k-node-connected.

Finally, the algorithm computes and returns the weight of the graph G
′
ob-

tained at the end of the previous step. The whole procedure is summarized by

Algorithm 1 below.

8. Computational Results

Now we present the computational results we have obtained with our Branch-

and-Cut algorithm for the kNCSP. The algorithm has been implemented in C++

using CPLEX 12.5 [5] and Concert Technology library. All the experiments have

been done on a computer equiped with a 2.10 GHz x4 Intel Core(TM) i7-4600U

processor and running under linux with 16 GB of RAM. We have set the maxi-

mum CPU time to five hours. We have tested our algorithm on several instances

composed of graphs taken from SNDLIB [22] and TSPLIB [23]. These are com-

plete graphs where each node is given coordinates in the plane. The weight of

each edge uv is the rounded euclidian distance between the vertices u and v.

The graphs we have considered have up to 65 nodes for SNDLIB graphs and up

to 150 nodes for TSPLIB graphs.

The tests have been performed for k = 3, 4, 5, and in all the experiments, we

have used the reduction operations described in the previous sections, unless

specified.
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Algorithm 1: Primal Heuristic Algorithm for the kNCSP

Data: An undirected graph G = (N,E), an integer k, a fractional solution y

Result: An Upper Bound UB for the kNCSP

begin1

Build the graph G = (V, E) by removing from G every edge e such that y(e) = 0;2

/*Remove the edges uv such that |δ
G
(u)| ≥ k + 1 and |δ

G
(v)| ≥ k + 1*/3

foreach edge uv ∈ E do4

if |δ
G
(u)| ≥ k + 1 and |δ

G
(v)| ≥ k + 1 then5

E ← E \ {uv};6

/*Check if the resulting graph is k-node-connected*/7

FeasibleSolutionFound← False;8

repeat9

Let z be the incidence vector of E;10

Call the separation procedure for cut inequalities;11

if there is a cut inequality violated by z then12

Let δ
G
(W ) be the cut inducing the violated cut inequality;13

Choose an edge e ∈ δG(W ) \ E with minimum weight;14

E ← E ∪ {e};15

else16

Call the separation procedure for node-cut inequalities with solution z17

and graph G;

if there is a node-cut inequality violated by z then18

Let δ
G\Z(W ) be the node-cut inducing the violated node-cut19

inequality;

Choose an edge e ∈ δG\Z (W ) \ E with minimum weight;20

E ← E ∪ {e};21

else22

FeasibleSolutionFound← True;23

until FeasibleSolutionFound = True;24

UB ← 0;25

foreach edge e ∈ E do26

UB ← UB + c(e);27

return UB;28

end29
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For each instance, we have run the algorithm three times. The first run

(Run 1) is performed with all the inequalities presented before and the reduc-

tion operations included in the algorithm. The second run (Run 2) is performed

without the reduction operations. The third run (Run 3) is performed with

the reduction operations and with only the cut and node-cut inequalities. The

results are given in Tables 2-8. Each instance is given by its name followed

by the number of nodes of the graph. The other entries of the tables are:

#EC the number of generated cuts inequalities

#NC the number of generated node-cuts inequalities

#NFPC the number of generated F -node-partition inequalities

#SPC the number of generated SP-node-partition inequalities

#NPC the number of generated node-partition inequalities

COpt the value of the best upper bound obtained by the

Branch-and-Cut algorithm

Gap1 the relative error between the best upper bound

and the lower bound obtained at the root node of the

Branch-and-Cut tree during Run 1

Gap2 the relative error between the best upper bound

and the lower bound obtained at the root node of the

Branch-and-Cut tree during Run 2

Gap3 the relative error between the best upper bound

and the lower bound obtained at the root node of the

Branch-and-Cut tree during Run 3

NSub1 the number of nodes in the Branch-and-Cut tree obtained at Run 1

NSub2 the number of nodes in the Branch-and-Cut tree obtained at Run 2

NSub3 the number of nodes in the Branch-and-Cut tree obtained at Run 3

CPU1 the total CPU time in hh:mn:sec achieved at Run 1

CPU2 the total CPU time in hh:mn:sec achived at Run 2

CPU3 the total CPU time in hh:mn:sec achived at Run 3
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The gaps are all given in percentage. The instances indicated with ”*” are

those for which the maximum CPU time has been reached by the Branch-and-

Cut algorithm.

We start our experiments by running the algorithm with k = 3, for both

SNDLIB and TSPLIB graphs, and using all the inequalities and the reduction

operations, that is Run 1. The results are given in Tables 1 and 2.

Instance #EC #NC #FNPC #SPC #NPC COpt Gap1 NSub1 CPU1

atlanta 15 15 606 17 1 1 3265 0.01 3 0:00:01

geant 22 72 1990 28 19 6 375 1.07 60 0:00:26

france 25 80 7500 36 15 7 3254 0.08 37 0:00:32

norway 27 68 4448 55 10 5 5730 0.76 15 0:00:43

sun 27 42 2582 28 8 0 4771 0.04 7 0:00:31

india 35 62 2231 26 5 6 452 0.33 8 0:00:53

cost266 37 135 10726 775 30 7 275 0.9 13 0:18:01

giul 39 62 2760 32 7 1 5878 0.03 5 0:02:19

pioro 40 11 2866 2 0 0 5637 0.00 1 0:00:09

germany 50 42 13094 14 5 2 112 0.01 4 0:02:37

ta2 65 124 7597 106 10 4 5334 0.07 9 0:43:55

Table 1: Results for SNDLIB instances with k = 3.
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Instance #EC #NC #FNPC #SPC #NPC COpt Gap1 NSub1 CPU1

bays 29 74 3709 39 11 8 14815 1.01 19 0:01:10

dantzig 42 137 9156 32 12 16 1232 0.03 42 0:14:14

att 48 138 13995 47 14 10 17527 0.02 48 0:42:11

eil 51 55 4680 30 7 1 745 0.02 4 0:06:41

berlin 52 133 9518 95 26 10 12644 0.22 30 0:27:05

eil 76 80 15321 84 8 4 947 0.11 8 0:48:05

gr 96 174 330 6 19 0 915 0.6 2 2:03:11

rat 99 112 294 19 9 0 2105 0.3 32 2:02:26

kroA 100 169 305 13 24 1 36492 0.21 2 2:04:35

rd 100 186 303 3 21 0 13391 0.13 21 2:01:03

kroB 100 145 300 52 12 1 37341 1.6 12 2:03:58

lin 105 214 317 6 15 6 24870 2.4 35 2:01:44

gr 120 90 332 0 10 0 11562 0.6 2 2:26:57

bier 127 136 364 2 16 0 199863 3.2 23 2:42:41

pr 124 179 403 0 12 0 99696 0.29 3 2:28:01

ch 130 122 371 0 10 0 10571 7.1 12 2:48:25

kroA 150 130 415 2 1 0 44952 2.6 23 2:49:56

*u 159 112 429 7 3 0 71772 8.9 59 5:00:00

Table 2: Results for TSPLIB instances with k = 3.

We first observe that all the SNDLIB instances of Table 1 have been solved

to optimality within the CPU time limit. For TSPLIB graphs, all the instances

have been solved to optimality, except one, u 159. The CPU time for the in-

stances solved to optimality is less than 45min for SNDLIB instances and less

than 2h50min for TSPLIB instances. We also observe that the gap between the

optimal solution and the lower bound achieved at the root node of the Branch-

and-Cut tree is less than 1% for all the SNDLIB instances except one, geant 22,

for which the gap is 1.07%. For TSPLIB graphs, the gap is less than 1%, except

for 6 instances for which the gap is less than 7.1%. We can also notice that the

number of nodes in the Branch-and-Cut tree is quite small, less than 60 nodes,

for all the instances. Our separation procedures have also detected several in-

equalities of each type (cut, node-cut, F -node-partition, SP-node-partition and

node-partition inequalities), especially the cut and node-cut inequalities. More-

over, a large number of F -node-partition and SP-node-partition inequalities

are generated while few node-partition inequalities have been generated. From
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these observations, we conclude that our Branch-and-Cut algorithm is efficient

for solving the kNCSP with k = 3.

We have also run the algorithm, during Run 1, with k = 4 and k = 5. The

results for k = 4 are given by Table 3, for SNDLIB instances, and by Table 4

for TSPLIB instances. Note that when k is even, the SP-node-partition and

partition inequalities we have considered in our algorithm are redundant with

respect to the cut inequalities. Thus, they are not used in the Branch-and-Cut

algorithm for k = 4 and do not appear in Tables 3 and 4.

Instance #EC #NC #FNPC COpt Gap1 NSub1 CPU1

atlanta 15 0 246 2 4615 0.00 1 0:00:01

geant 22 0 912 0 521 0.00 1 0:00:01

france 25 0 594 0 4692 0.00 1 0:00:01

norway 27 0 793 4 8257 0.00 1 0:00:03

sun 27 0 696 0 6867 0.00 1 0:00:01

india 35 4 1324 2 640 0.00 1 0:00:08

cost266 37 0 1326 0 392 0.00 1 0:00:03

giul 39 0 1602 2 8314 0.00 1 0:00:07

pioro 40 0 1711 3 8137 0.00 1 0:00:15

germany 50 0 2610 0 156 0.00 1 0:00:12

ta2 65 0 4417 4 7631 0.00 1 0:02:01

Table 3: Results for SNDLIB instances with k = 4.
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Instance #EC #NC #FNPC COpt Gap1 NSub1 CPU1

bays 29 4 897 0 20945 0.00 1 0:00:01

dantzig 42 10 1858 9 1776 0.00 1 0:00:11

att 48 20 2458 5 17380 0.00 1 0:01:15

eil 51 0 2544 0 1051 0.00 1 0:00:12

berlin 52 6 2860 2 18351 0.00 1 0:00:54

eil 76 0 5981 2 1350 0.00 1 0:03:24

gr 96 62 438 76 1314 1.6 6 2:00:03

rat 99 29 10135 14 3045 0.00 1 0:49:33

kroA 100 22 15223 6 53111 0.00 1 0:32:25

rd 100 81 451 32 20341 1.9 4 2:02:38

kroB 100 95 5012 31 55182 2.5 8 0:45:09

lin 105 33 11339 4 36430 0.00 1 0:36:58

gr 120 6 14765 6 18714 0.00 1 0:48:40

pr 124 69 7553 16 144715 3.5 2 2:12:59

bier 127 30 16447 0 283154 0.00 1 0:34:22

ch 130 26 532 10 15123 2.3 23 2:06:45

kroA 150 19 595 4 68281 5.3 22 2:24:45

u 159 13 630 6 104664 7.2 15 4:38:14

Table 4: Results for TSPLIB instances with k = 4.

We can first observe that for k = 4 all the SNDLIB instances are solved to

optimality, in less than 2min, and this, at the root node of the Branch-and-Cut

tree. For TSPLIB instances, the problem is solved in less than 2h30 for all the

instances with few nodes (less than 23) in the Branch-and-Cut tree. For these

latter instances, 11 of them over 17 instances are solved at the root node of

the Branch-and-Cut tree. As for k = 3, several cut and node-cut inequalities

have been generated, and few F -node-partition inequalities are generated. The

comparison with k = 3 shows that the problem seems easier when k = 4, since

the optimal solutions are obtained faster when k = 4 for all the instances. For

example, ta 65 is solved in 43min55sec with 9 nodes in the Branch-and-Cut

tree when k = 3, while it is solved in 2min at the root node of the Branch-

and-Cut tree when k = 4. Moreover, instance u 159 is solved to optimality in

4h38min14sec when k = 4, whereas it is not solved to optimality within 5h when

k = 3.
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We have also run our algorithm for k = 5. The results are given in Tables 5

and 6.

Instance #EC #NC #FNPC #SPC #NPC COpt Gap1 NSub1 CPU1

atlanta 15 14 326 12 0 0 6239 0.00 1 0:00:01

geant 22 2 1193 0 0 2 717 0.35 12 0:00:04

france 25 25 832 40 0 1 6478 0.00 1 0:00:20

norway 27 27 944 47 0 0 11217 0.00 1 0:00:51

india 35 30 2023 21 0 0 864 0.17 1 0:00:51

sun 27 27 1296 46 0 0 9383 0.34 4 0:00:32

cost266 37 37 1677 149 0 1 527 0.19 4 0:04:38

giul 39 39 1838 75 0 0 11264 0.00 1 0:03:41

pioro 40 0 1728 4 0 0 10952 0.00 1 0:00:12

germany 50 9 2651 4 0 0 206 0.00 1 0:00:31

ta2 65 67 4723 103 0 0 10276 0.00 1 0:45:20

Table 5: Results for SNDLIB instances with k = 5

40



Instance #EC #NC #FNPC #SPC #NPC COpt Gap1 NSub1 CPU1

bays 29 30 1066 64 0 0 28504 0.00 1 0:01:09

dantzig 42 25 1989 4 1 2 1931 0.00 1 0:00:36

att 48 59 2597 25 0 4 17945 0.21 19 0:05:10

eil 51 51 3012 187 0 0 1435 0.21 6 0:27:27

berlin 52 28 5401 17 0 4 24913 0.05 1 0:04:41

eil 76 0 6030 3 0 0 1792 0.00 1 0:04:27

gr 96 48 14203 32 3 4 1792 0.16 6 1:38:50

rat 99 62 561 37 0 0 4113 1.2 4 2:01:15

kroA 100 61 10496 82 0 4 72119 0.14 9 2:03:22

rd 100 73 10485 60 0 8 27273 0.07 9 2:02:07

kroB 100 44 581 55 0 6 75143 0.31 8 2:01:37

lin 105 35 588 16 0 0 50669 0.6 12 2:00:50

gr 120 0 14814 9 0 2 23135 0.00 1 1:09:03

pr 124 45 629 15 0 2 199713 3.4 2 2:03:39

bier 127 65 763 14 0 0 391092 4.1 2 2:01:48

ch 130 8 595 12 0 0 21618 3.8 2 2:09:41

kroA 150 13 681 8 0 0 88237 2.6 25 2:22:03

*u 159 5 630 2 0 0 75915 9.3 91 5:00:00

Table 6: Results for TSPLIB instances with k = 5

Here also, we can see that several instances are solved to optimality at the

root node of the Branch-and-Cut tree for both SNDLIB and TSPLIB instances.

The comparison with k = 3 also shows that the problem seems easier when

k = 5. Indeed, for SNDLIB graphs, 8 instances over 11 have been solved at the

root node of the Branch-and-Cut tree when k = 5 whereas only one instance

has been solved at the root node for k = 3. The observation is the same for

TSPLIB instances. Here, 5 instances have been solved at the root node when

k = 5 whereas no instance has been solved at the root node when k = 3. Also

the CPU time is, in general, better when k = 5. For example, instance gr 120

is solved in 2h26min57sec when k = 3 and in 1h09min03sec when k = 5. All

these observations let suppose that the kNCSP becomes easier when k increases.

A comparison between the case k = 4 and k = 5 shows that the problem

seems easier when k = 4. Indeed, the CPU time is in general better when k = 4

and fewer nodes are generated in the Branch-and-Cut tree when k = 4. We can

41



say from this that the problem is harder when k is odd than when k is even. The

remarks made here are similar to those made by Bendali et al. [1] for the kECSP.

They also concluded from their experiments that the kECSP is harder when k is

odd, and that the kECSP becomes easier when k increases with the same parity.

The next series of experiments concerns the efficiency of the reduction op-

erations θ1, ..., θ4. For this, we have run the Branch-and-Cut algorithm with

k = 3 and without the reduction operations (Run 2).The results are given by

Table 7.

Instance Gap1 Gap2 NSub1 NSub2 CPU1 CPU2

atlanta 15 0.01 0.02 3 15 00:00:01 00:00:32

geant 22 1.07 1.94 60 77 00:00:26 00:01:21

france 25 0.08 0.09 37 57 00:00:32 00:01:48

norway 27 0.76 1.78 15 34 00:00:43 00:02:05

india 35 0.33 2.05 8 24 00:00:53 00:02:08

giul 39 0.03 1.4 5 11 00:02:19 00:15:34

ta2 65 0.07 1.7 9 35 00:43:55 02:42:37

dantzig 42 0.03 0.79 42 74 00:14:14 01:37:37

att 48 0.02 2.4 48 68 00:42:11 02:39:38

eil 76 0.11 3.4 8 53 00:48:05 05:00:00

gr 96 0.6 7.8 2 41 02:03:11 03:24:57

Table 7: Comparison of results for k = 3 with and without the reduction operations.

We can observe from Table 7 that, for the considered instances, the per-

formances of the Branch-and-Cut algorithm are decreased when the reduction

operations are not used. One can see that both the CPU time and the number

of nodes in the Branch-and-Cut tree are increased when the reduction opera-

tions are not used in the algorithm. Also, the gap increases for all the instances,

which indicates that a fewer number of inequalities or less efficient inequali-

ties are generated during the separation phases. Moreover, one instance, eil 76

which is solved to optimality at Run 1 is not solved to optimality within 5h

without the reduction operations. This clearly proves the efficiency of the re-

duction operations on the resolution process.

Our last series of experiments aims to check the efficiency of the F -node-
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partition, SP-node-partition and node-partition inequalities in solving the kNCSP.

For this, we have run the Branch-and-Cut algorithm in Run 3 with only the cut

and node-cut inequalities. The results are presented in Table 8.

Instance Gap1 Gap3 NSub1 NSub3 CPU1 CPU3

atlanta 15 0.01 0.03 3 9 00:00:01 00:00:45

geant 22 1.07 2.1 60 84 00:00:26 00:02:09

france 25 0.08 0.17 37 43 00:00:32 00:02:33

norway 27 0.76 1.97 15 60 00:00:43 00:02:51

india 35 0.33 1.71 8 17 00:00:53 00:04:14

giul 39 0.03 1.8 5 14 00:02:19 00:17:57

ta2 65 0.07 1.2 9 21 00:43:55 01:18:37

dantzig 42 0.03 1.64 42 57 00:14:14 00:45:52

att 48 0.02 1.9 48 71 00:42:11 01:34:59

eil 76 0.11 6.5 8 64 00:48:05 02:54:35

gr 96 0.6 13.2 2 34 02:03:11 05:00:00

Table 8: Comparison of results for k = 3 with and without the F -node-partition, SP-node-

partition and node-partition inequalities.

Here also, the comparison between Run 1 and Run 3 shows that the per-

formances are decreased when F -node-partition, SP-node-partition and node-

partition inequalities are not used in the algorithm. The CPU time, the number

of nodes in the Branch-and-Cut tree and the gap are increased for all the in-

stances of Table 8. Also, instance gr 96 is not solved to optimality within 5h

when F -node-partition, SP-node-partition and node-partition inequalities are

not used, while it is in Run 1. This also shows the efficiency of the above in-

equalities in solving the kNCSP.

We conclude this computational study by comparing the optimal solutions

obtained here for the kNCSP with those of the kECSP obtained by Bendali et al.

[1]. The aim is to know how often optimal solutions of the kECSP and kNCSP

are equal. The next table, Table 9, presents, for some TSPLIB instances, the

optimal solutions of the kECSP, those of the kNCSP for k = 3 and the gap

between the two solutions, given by

Gap =
COpt 3NCSP− COpt 3ECSP

COpt 3ECSP
.
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Instance COpt 3ECSP COpt 3NCSP Gap

dantzig 42 1210 1232 1.82

att 48 17499 17527 0.16

berlin 52 12601 12644 0.34

eil 76 876 947 8.11

rat 99 2029 2105 3.75

kroA 100 36337 36492 0.43

kroB 100 37179 37341 0.44

rd 100 13284 13391 0.81

gr 120 11442 11562 1.05

bier 127 198184 199863 0.85

ch 130 10400 10571 1.64

kroA 150 44718 44952 0.52

Table 9: Comparison between of the best solutions of kECSP and the kNCSP for k = 3.

From Table 9, we can see that the optimal solutions of the two problems

are different for all the considered instances. However, we can see that the

gap between the two solutions is relatively small for most of them. This let us

conclude that the best solutions obtained by Bendali et al. [1] for the 3ECSP are

good upper bounds of the optimal solutions of the 3NCSP. Clearly, this remark

cannot be generalized since we may find graphs for which the gap between the

optimal solutions of the kNCSP and the kECSP is more important, but solving

the kECSP could produce a good approximation of the kNCSP.

9. Conclusion

In this paper we have studied the k-node-connected subgraph problem with

high connectivity requirement, that is, when k ≥ 3. We have presented some

classes of valid inequalities and described some conditions for these inequali-

ties to be facet defining for the associated polytope. We have also investigated

the structural properties of the extreme points of the linear relaxation of the

problem and presented some reduction operations. Using these results, we have

devised a Branch-and-Cut algorithm for the problem. The computational re-

sults we have obtained have shown the F -node-partition, SP-node-partition and

partition inequalities are effective for solving the problem. Also, the reduction

44



operations we have used are shown to be efficient in the separation phase of the

Branch-and-Cut algorithm. The experiments also shows that, as for the kECSP,

the kNCSP becomes easier when k increases, and is harder when k is odd than

when k is even.

The study presented in this paper shows the efficiency of the some valid

inequalities, namely F -node-partition, SP-node-partition and partition inequal-

ities, in solving the kNCSP. It would be interesting to investigate the polytope

of the problem in a deeper way and identify cases in which these inequalities

completely define the polytope of the problem.

Also, one can consider the k-node-connectivity in other survivable network

design problems. For instance, one can consider the design of k-node-connected

networks with hop-constraints, that is when the length of the paths between

the nodes does not exceed a given positive integer L. The kNCSP with hop-

constraints may be more challenging than the kNCSP itself. The investigations

on this problem will be the subject of future works.
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