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Abstract

In this paper we consider the k-node-connected subgraph problem. We pro-
pose an integer linear programming formulation for the problem and investigate
the associated polytope. We introduce further classes of valid inequalities and
discuss their facial aspect. We also devise separation routines, investigate the
structural properties of the linear relaxation and discuss some reduction opera-
tions that can be used in a preprocessing phase for the separation. Using these
results, we devise a Branch-and-Cut algorithm and present some computational
results.

Keywords: k-node-connected graph, polytope, facets, separation,

Branch-and-Cut.

1. Introduction

The design of survivable networks is an important issue in telecommunica-
tions. The aim is to conceive cheap, efficient and reliable networks with spe-
cific characteristics and requirements on the topology. Survivability is generally
expressed in terms of connectivity in the network. The level of connectivity
depends on the need of each telecommunication operator. We may have to con-
ceive several paths to link each pair of nodes to ensure the transmission in case
of disconnection or breakdown, all this at the cheapest possible cost. As we

can see in , ], the most frequent and useful case in practice is the uniform
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topology. This means that the nodes of the network have all the same impor-
tance and it is required that between every pair of nodes there are at least k
edge- (node-) disjoint paths, where k is a fixed integer such that k > 2. Thus
the network will be still functional when at most k£ — 1 edges fail. The underlay-
ing problem is to determine, given weights on the possible links of the network,
a minimum weight network satisfying the edge or the node connectivity. This
paper deals with the node connectivity of the problem.

A graph G = (V, E) is called k-node (resp. k-edge) connected (k > 0) if
for every pair of nodes i,j € V, there are at least k node-disjoint (resp. edge-
disjoint) paths between i and j. Given a graph G = (V, E) and a weight function
c on E that associates with an edge e € E a weight c(e) € R, the k-node-
connected subgraph problem (kNCSP for short) is to find a k-node-connected
spanning subgraph H = (V, F') of G such that " ¢(e) is minimum. The ANCSP
has applications in communication and trans;(fftation networks (H, , , ,

). The kNCSP is NP-hard for k > 2 (H ). The edge version of the problem
i
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). A little

has been widely studied in the literature
the kKNCSP has been particulary considered for k = 2 (see [8,
attention has been given for the high connectivity case where & > 3. The
ENCSP has been studied by Grotschel et al. , 14, 115, [16] within a more
general survivability model. Grotschel et al. study the model from a polyhedral
point of vue, and propose cutting plane algorithms , , ]

In [§], Diarrassouba et al. consider the 2NCSP with bounded lengths. Here
it is supposed that each path does not exceed L edges for a fixed integer L > 1.
They investigate the structure of the associated polytope when L < 3 and
propose a Branch-and-Cut algorithm. In ], Mahjoub and Nocq discuss the
linear relaxation of the 2NCSP(G). They describe some structral properties and
characterize which they called extreme points of rank 1.
In this article, we consider the KNCSP from a polyhedral point of view. We
introduce further classes of valid inequalities for the associated polytope, discuss
their facial aspect and devise a Branch-and-Cut algorithm.

The paper is organised as follows. In the following section, we give an in-



teger programming formulation for the problem. In Section [B] we investigate
the kNCSP polytope and present several classes of valid inequalities. Then,
in Section [ we discuss the conditions under which these inequalities define
facets of the polytope. In Sections Bl and [6] we consider the polytope associated
with linear relaxation of the problem and present some structural proporties as
well as some reduction operations. Section [7is devoted to the Branch-and-Cut
algorithm we have developed for the problem and Section [§ we give some ex-

perimental results. Finally, in Section B we give some concluding remarks.

In the rest of this section, we give some notations. We will denote a graph by
G = (V, E) where V is the node set and E is the edge set. Given F C E, ¢(F)
will denote > c(e). For W C V, welet W = V\W. If W C V is a node subset
of G, then (Seé{W) will denote the set of edges in G having one node in W and
the other in W. We will write §(G) if the meaning is clear from the context. For
W C V, we denote by E(W) the set of edges of G having both endnodes in W
and by G[W] the subgraph induced by W. Given node subsets W1, ..., W, C V,
p > 2, we denote by dg(Wh, ..., W,) the set of edges of G between the sets W1,
..., Wp. A matching of G is a set of pairwise nonadjacent edges.

Let F be an edge subset of E, then the incidence vector of F', denoted by
2, is the 0 — 1 vector defined by

1 ifeeF
P-4 Y
0 otherwise.

2. Formulation

Let FF C E be an edge subset of G. Then F' induces a solution of the
ENCSP for GG, that is, the subgraph of G induced by F' is k-node-connected, if



x¥ satisfies the following inequalities

x(e) >0, eck, (1)
xz(e) < 1, eck, (2)
r(6a(W)) > k, for all W C V with W # (), (3)
z(0en\z(W)) > k — 12|, for all Z C V such that 1 <|Z| <k—1, and (4)

all W C V\Z with W # 0.

Conversely, any integer solution of the system above is the incidence vector
of the edge set of a k-node-connected subgraph of G. Hence, the KNCSP is

equivalent to
min{cz | z satisfies (1) — @) and z € ZF}. (5)

Constraints [B]) and ) are called cut and node cut inequalities, respectively.
We will denote by kNCSP(G) the convex hull of all the integer solutions of (I)-
@), and will call kNCSP(G) the k-node-connected subgraph problem polytope.

We will also denote by P(G, k) the polytope given by the linear relaxation
of formulation (&), that is

P(G,k) = {z € RF | z satisfies (1) — @)}

In what follows we give an alternative formulation for the problem. This
formulation consists in restricting the node-cut inequalities (@] to the node sets

Z C V such that |Z| = k—1. We hence consider the following set of inequalities

(6a\z(W)) =1,  0#ZCV|Z|=k—1, (6)
0£WCV\Z

Theorem 1. The kNCSP is equivalent to

min{cr | z satisfies () — @), @) and = € ZF}. (7)



Proof. Let Z C V. Inequality 2(0¢\ z(W)) > k—|Z| is satisfied by any solution
of ENCSP(G) for |Z] = k—t, t € {1,...,k—=2},and W C V\ Z. Let | Z’| be a node
subset of V such that |Z/| =k —t — 1, and let W’ C V\Z’ such that W' # () #
VA(W'UZ'"). We will show that z(dc\z/(W)) > k—|Z'| = t+1 is satisfied by ev-
ery solution of kENCSP(G). First note that either |[V\(W/'UZ’)| > 2 or [W'| > 2
or both. In fact, if [V\(W'UZ")| = |[W’'| =1, then |Z'| =n—2 (= k—t—1). But
this implies that £ > n, which is impossible. In what follows we suppose, w.l.0.g.,
that [V\(W' U Z’)| > 2. We claim that if 2 induces a solution of the kNCSP,
then there is at least one node, say u, in V\(W'U Z’) such that x([u, W’]) > 1.
Indeed, if this is not the case, then z([u, W’]) = 0 for all v € V\(W' U Z").
However, this implies that z(dg\z/(W')) = 0. As 2(dg\z/(W)) > k — |Z'] > 2,
this is a contradiction. Now let uw € V\(W' U Z’) such that z([u, W’]) > 1 and
let Z = Z'U{u}. We have |Z| = k —t. By our assumption, we have that
262 (W) = 2620 (W)) — a[u, W) > & — 2] = t. As a((u, W) > 1, it
then follows that x(dc\ 2z (W)) = z(dcnz(W)) + 2([u, W']) > t + 1. O

As before, we will denote by Q(G, k) the polytope associated with the linear
relaxation of (7). Clearly, P(G, k) C Q(G, k). Moreover, the two polytopes may
be different, that is P(G, k) # Q(G, k), for some graph G and connectivity k. For
example, consider the graph and the solution of Figure[Ilfor k¥ = 3. The solution
satisfies the cut inequalities and the node-cut inequalities with |Z] =k —1 = 2,
and violates a node-cut inequality with |Z| = k — 2 = 1. Indeed, for Z = {v;}
and W = {vi,v,v3}, (6 z(W)) < 2. Thus, formulation (B) may produce
a better linear relaxation than (7). We will hence consider formulation (H) for
solving the kNCSP.

In the next sections, we investigate the polytope KNCSP(G) and describe

some valid inequalities.



............ edges with value 1/3

______ edges with value 1/2

edges with value 1

Figure 1: A solution of Q(G, k) \ P(G, k) for k = 3.

3. Dimension and Valid inequalities

In this section, we will discuss tthe polytope kNCSP(G). We will establish

its dimension and describe some classes of valid inequalities.

3.1. Dimension

Let G = (V, E) be a graph. An edge e is said to be essential if the solutions
set of kNCSP(G\e) is empty. Let E* be the set of essential edges of KNCSP.
We have the following result.

Theorem 2. dim(kNCSP(G))= |E| — |E*|.

Proof. Let e € E*. Then, x(e) = 1 for every solution z of kNCSP(G). Then
dim(kNCSP(G)) < |E| — |E*|. Now, observe that the edge sets S. = E\{e},
e € F\E*, and E form |E| — |E*| + 1 solutions of the ANCSP. Moreover,
the incidence vectors of these solutions are affinely independant. Therefore,

dim(kNCSP(G)) > |E| — |E*|. Thus, the result follows. O

Corollary 1. kNCSP(G) is full-dimensional if and only if G is (k + 1)-node-

connected.



Now we describe some classes of valid inequalities for kANCSP(G). One can
easily see that any solution of the kNCSP on G is also solution of the kECSP
on (. Thus, any valid inequality for the kECSP polytope on G is also valid for
ENCP(G).

In the following, we introduce a notation that will be used throughout the
remainder of the paper. Given a partition 7 = (V1, ..., V},), p > 2, we will denote
by G, the subgraph induced by , that is, the graph obtained by contracting
the sets V;, i = 1,...,p. Note that d¢(Vi,...,V}) is the set of edges of G, that

is, the edges that have their endnodes in different elements of .

3.2. Node-partition inequalities

In B], Grotschel et al. introduce a class of valid inequalities for a more
general version of the kNCSP as follows. Consider a subset Z C V, such that
|Z] < k—1, and let Vi,...,V},,, p > 2 be a partition of V\Z. Then the inequality

22D ] i |z < k-2

2(6c\z(V1, .., Vp)) = (8)
p—1 if |Z|=k-1,

is valid for the kNCSP(G). Inequalities of type (B) are called node-partition

inequalities.

3.3. SP-node-partition inequalities

Now we introduce a class of inequalities called SP-node-partition inequalities,
which generalize the so-called SP-partition inequalities introduced by Didi Biha
and Mahjoub ﬂa] for the kECSP(G). These latter inequalities are defined as
follows. Let m = (V4,...,V},) be a partition of V' such that the graph G is
series-parallel. Recall that a graph is series-parallel if it is not contractible to
K4, the complete graph on four nodes. The SP-partition inequality associated
with 7 is given by

206 (Vi Vi) > @ po1. )

Didi Biha and Mahjoub [6] showed that these inequalities are valid for the

KECSP(G), for every k > 1.



For the kNCSP, we introduce a similar type of inequalities. Let Z C V such
that |Z] < k—1 and k — |Z] is odd, and consider a partition 7 = (V4,...,V})
of V\Z such that (G\Z), is series-parallel. The SP-node-partition inequality

associated with 7 is

k—\|Z
stbore(m) > | =] p (10)
Theorem 3. The SP-node-partition inequalities (I0) are valid for kNCSP(G).

Proof.

Let x € kENCSP(G) and consider 2’ the restriction of x on G\Z. As 2/ €
(k — |Z|)ECSP(G\Z), and the SP-partition inequalities (@) are valid for (k —
|Z|)ECSP(G\Z), we have

k—1Z
$(5g\Z(V1, 7‘/;0)) = :c’((SG\Z(Vl, ,V;D)) Z ’V%-‘ p—= 17

which proves the result. O

Chopra B] (see also Didi Biha and Mahjoub ﬂa]) describe a lifting procedure
for inequalities ([I0). This can be easily extended to the SP-node-partition
inequalities. Let G = (V, F) be a graph and k > 3 an odd integer. Consider the
graph G’ = (V, EUT) obtained from G by adding an edge set T. Let Z C V
and m = (V4,...,V,) be a partition of V\Z, such that (G\Z), is series-parallel.
Then the lifted SP-node-partition inequality induced by 7 is

TP RD DRI O L o PEE R
e€TNégr (Va,...,Vp)
where a(e) is the length, that is to say the number of edges, of the shortest path
in (G\Z), between the endnodes of e, for all e € T'N o/ (Vi, ..., Vp).

Chopra B] show that inequalities ([I) are valid for kNCSP(G).

3.4. F-node-partition inequalities
Let G = (V, E) be a graph and Z a node subset of V.. Let m = (Vp, V4, ..., V})
be a partition of V\Z and F' an edge subset of d¢;\ z(Vo). Let Z; C Z be the



set of nodes adjacent to nodes in V;. Suppose that |Z;| <k —1, for i =1, ..., p,

and Z= |J Z;. The following inequality
1=1,..., D

S (k— |Zi]) - |F|

(0 z(T\F)) > =t 5 (12)

is called an F'-node-partition inequality.
Theorem 4. F-node partition inequalities are valid for the kNCSP(G).

Proof. Consider the following valid inequalities

I((SG\Zi (‘/Z)) > k— |Z’L|5 fOT all i = 17 Y2
—z(e) > -1, forall e € F,
z(e) > 0, for all e € 6\ z(Vo)\ F.

By adding these inequalities, we obtain
P
22(6enz(m\F)) > ;(k —|Zi]) = |F|

By dividing by 2 and rounding up the right hand, we get inequality (I2)). O

4. Facial aspect

In this section, we discuss the facial aspects of the kNCSP polytope. Namely,
we investigate the conditions under which the inequalities presented in the pre-
vious section define facets of ENCSP(G). In the following we assume that G is
(k + 1)-node-connected. By Corollary [l ANCSP(G) is then full-dimensional.

In ], Grotschel et al. characterize when the trivial inequalities define

facets.

Theorem 5. Q /



1. Inequalities @) define facets for kNCSP(G) if and only if e does not be-
long to a cut 5\ z(W) for some Z C V' containing exactly k+1—|Z| edges.

2. Inequalities @) define facets for kKNCSP(G) for every e € E.

The next theorem deals with conditions for the cut inequalities to define
facets. Before, we give the following remark that will be helpful for proving the

results below.

Remark 1. Let W and W be a partition of G such that |W| >k, |W| > k+1
and GIW| and G[W] are both k-node-connected. Let {ei,...,e;} be edges of
0q(W) forming a matching of G such that every edge e; has ends u; € W
and v; € W. Let S = E(W)U E(W) U {e1,...,er}. Then S is a solution of

kNCSP(G).

Theorem 6. The cut inequality @) induced by a node set W C V' defines a
facet for kKNCSP(G) if the following hold.

i) GIW] and G[W] are (k + 1)-node-connected,
ii) there exists a matching M containing k edges in 6g(W),

iii) there exists a node s in W such that s is not incident to the matching M

and it is adjacent to all the nodes of M in W.

Proof.

Let us denote by ax > « the cut inequality induced by W, and let % = {x €
ENCSP(G)|lax = a}. Suppose there exists a defining facet inequality bz > 3
such that .7 C F = {z € kNCSP(G) | bx = f}. We will prove that there is
a scalar p such that b = pa. By ii) there exists a matching M = {ey,...,e;}
in d¢(W) of k edges such that e; = u;v;, i = 1,..., k, with w; in W and v; in
W. Let Uy = {uy,...,ux} and Vi = {vy,...,vx}. Let Ty = E(W)U E(W)U M.
As by i) G[W] and G[W] are (k + 1)-node-connected, by Remark [l T; is a
solution of kNCSP(G). We will show in what follows that the coefficients b,

are equal for all e € 6g(W). Let f; = w;s, i@ = 1,..k. Such edges exist by

10



iti). Let S; = (Th —e;) + fi, ¢ = 1,...k. Note that S; contains a matching of
k edges between W and W. Hence S; is a solution of the kNCSP(G). More-
over 11, 25 € # C F. Hence bx™" = bx% implying that b., = by, = p,
for i = 1, ...k, for some p € R. By symetry, we also obtain that b, = p for
all g € [W\Uy, V4] U [U, W\V1] U M. Now consider an edge e = uv such that
u € W\Uy and v € W\V;. It is clear that 7o = (Ty\{e1}) U {e} is a solu-
tion of the kNCSP(G). Moreover z72 € # C F. Hence bzt = bx'2, yielding
be, = be = p. Finally consider an edge h = uv;, i,j € {1,...,k}, with ¢ # j.
Consider the subset T5 = (T1\{e;, e;}) U{h, u;js}. We have that T3 is a solution
of ENCSP(G), and ™* € .# C F. Which implies that b, + be, = bp + by As
be, = be; = by;s = p, it follows that by, = p. Thus we obtain that b. = p for all
e € da(W).

Now we will show that b, = 0 for all e € E\dg(W). As G[W] and G[W] are
(k + 1)-node-connected, we have that Ty = T1\{e} induces a k-node connected
graph for all edge e € E(W) U E(W). Moreover 27 € % C F. Hence b, = 0.
Consequently, we have that b, = p for all e € 6g(W), and b, = 0 for all
e € E\dg(W). Thus b = pa. O

Corollary 2. If the graph G is complete, the cut inequality (3) induced by
W C V is facet-defining for kNCSP(G) if |W| >k +2 and |[W| > k + 2.

The following theorems give necessary conditions and sufficient conditions

for the node-cut inequalities to be facet-defining.

Theorem 7. The node-cut inequality ({4)) induced by a node cut éc\z(W), for
some node sets W and Z, defines a facet for kNCSP(G ) only if |[W, Z]| > |Z]+1
and |[V\ (WU Z),Z]| > |Z] + 1.

Proof. Suppose for instance that |[W,Z]| < |Z| + 1, the case where |[V \
(WUZ2),Z]| < |Z]+1 is similar. Thus, if |[[W,Z]] < |Z] + 1, then for any
solution « € kNCSP(G) we have that —z([W, Z]) > —|Z|, and z(éc(W)) > k.
Hence we obtain that x(dg\z(W)) = z(0g(W)) — =([W,Z]) > k —|Z|. In

11



consequence, x(dg\z(W)) > k — |Z] is redundant with respect to the cut and

trivial inequalities and hence cannot define a facet. O

Theorem 8. The node-cut inequalities () define facets for kNCSP(G) if

i) GIW] and G[W] are (k + 1)-node connected,

ii) there exists a matching C in 0 (W), such that |C| = k+1 and |CN[Z, W]| =
171,

i1i) there exists a node s1 in W such that s1 is not incident to the matching C

and it is adjacent to all the nodes of C in W,

w) there exists a node so in W such that so is not incident to the matching C

and it is adjacent to all the nodes of Z.

Proof. Let us denote by ax > « the cut inequality induced by W, and let .7 =
{z € ENCSP(G)|ax = a}. Suppose there exists a defining facet inequality bz >
B such that .7 C F = {& € kNCSP(G) | bx = 5}. We will prove that there
is a scalar p such that b = pa. By ii) there exists a matching C = {ey, ..., e;}
in 0w (G) of size k, such that e; = wv;, ¢ = 1,..k, u; € W and v; € W. Let
Uy = {u1,...,ur} and V4 = {vy,...,vx}. Andlet Ty = E(W)UE(W)UC,U[Z, W],
with Cj the restriction of C in G\Z. As by i) G[W] and G[W] are (k+ 1)-node-
connected, by Remark [} 7} is a solution of kNCSP(G). Hence 22 € .#. Now
consider an edge f = wujys. Such edge exists by iii). Let T = (Ti\e1) + f.
Ty is a solution of kNCSP(G). Moreover 72 € % C F. Hence bx™t = bx™2,
implying that be, = by. As u;s € E, i =1,...k. By symetry, we also obtain that
be, = by = p, i =1,...k, for some p € R. By symetry, we also obtain that b, = p
for all g € [W\Uy, V1] U [U, W\W1] U C.

Let e = wv such that w € W\U; and v € W\V4. It is clear that T3 =
(T1\{e1}) U {e} is a solution of kNCSP(G). Moreover 273 € .# C F. Hence
bar™t = ba™s | implying that be, = b. = p.

Let h = wvj, i # j, 4,7 € {1, ..., k}. Consider the subset Ty = (T1\{e;,e;} U
{h,u;s}. Ty = (T1\{es, e;})U{h,ujs}. Ty is a solution of ENCSP(G). Moreover

12



2Tt € F C F. Hence b, + be; = bn + bu;s. As be, = be; = by,s, this implies
that that b, = p. We obtain that b, = p for all e € §(W).

Now consider an edge e € E(W)U E(W). Ts = Ty\e. As G[W]is (k+ 1)-
node-connected, G[W]\e is k-node-connected, thus 275 € .# C F, hence bz’ =
baTs = bx™ — b, implying that b, = 0.

Let f € [Z,W]\C2, where Cs is the restriction of C in [Z,W]. Tg = T1\ f is
a solution of kANCSP(G), hence by = 0.

All together, we obtain b, = p for all e € dg\z(W) and b, = 0 for all
e€ E\ dc\ z(W). Therefore, b = pa. O

Corollary 3. If the graph G is complete, then the node-cut inequalities [J]) are
facet-defining for kNCSP(G) if |W| >k +2 and |W| > k + 2.

Now, we discuss the sufficient conditions for the F-node-partition and SP-

node-partition inequalities to define facets of KNCSP(G).

Theorem 9. Let G = (V, E) be a graph and an integer k > 2. Let Z C V,
Z; C Z, and m = (Vo,V1,...,Vp) a partition of V\Z where p is odd. Suppose
that the following hold.

i) G[Z] is a complete graph,
ii) G[Vi], for i =0,1,...;p, are (k4 1)-node connected,
iii) fori=1,...,p, there exists a subset S;, of k + 1 edges of 6(V;) such that:

*1S: N [Zi, Vi]| = |Zi| and covering | Z;| nodes of Z,
*18: N [Vo,Vill =k —|Z;| — 1 and covering k — | Z;| — 1 nodes of Vb,
1SN Vi, Vil = [Si N [Vi, Vi)l = 1,

where the indices are taken modulo p.

Moreover, if |V;| > 2, S; must cover at least k + 1 nodes of V.

iv) [Z,Vy] contains a set of k+1 edges covering k+1 nodes of Vy and min(|Z|, k+
1) nodes of Z,

13



v) fori=1,..,p, [Vo,ViUVii1] contains a set R; C S; U Sip1 of k—1Z;| +1
edges covering k — |Z;| + 1 nodes of Vp.

p
Let F; = S; N [Vo,Vi], for i = 1,..,p, and let F = |J F;. Then the

i=1
F-node-partition inequality (I3) induced by m and F, defines a facet of
kNCSP(G).

(see figureld) for an illustration with k =5)

Figure 2: An F-node-partition configuration for k =5

Proof.

Remark that under these conditions we can easily show that G is (k + 1)-
node connected, thus kANCSP(G) is full dimensional. Let us denote the F-node-
partition inequality by az > « and let .# = {& € kENCSP(G) | ax = a}.
Clearly, % is a proper face of kNCSP(G). Now suppose that there exists a
facet defining inequality bz > B of kNCSP(G) such that & C #' = {x €
ENCSP(G) | bx = B}. We will show that b = pa for some scalar p € R.

Let Ey be the set of edges in E\ F having both endnodes in the same element
ofm. Let T = EgUFUE(Z)U(2).

Let e; be an edge of S; N[V, Vi41], 1 =1,...,p. For I € {1,...,p} consider the
edge set

14



p;l},

ﬂ - FU{61+2T;T207"'7 2

where the indices are taken modulo p.
Claim 1. T induces a k-node-connected subgraph of G.

Proof. Let GG; be the subgraph of G induced by 7;. First, we have the following

remarks.
8) [0(V;)| = k for j € {1, .., p}\{i} and |5(Vi)] = k + 1,

b) The graph obtained from G; by removing subsets from {Z,Vi,...,V,} is

connected,

c) The graph G obtained from G; by contracting the sets Vo, Vi, ..., V},
7, replacing the multiple edges by a single edge, and deleting the edges
between V; and Vj, i # j, i,j = 1,..., p is connected.

Let Z' Cc V with |Z'| = k — 1. We will show that the graph G;\Z’ is
connected.

Case 1. Z/ C Z or Z' C V,, for some i € {1,...,p}. Suppose that Z’ C Z.
If |Z] = |Z'| = k — 1, then by the Remark b) above, G;\Z’ is connected. So
suppose | Z| > k+1. As|Z'| = k—1 and G[Z] is complete, the subgraph induced
by Z\Z' is connected. Moreover, by Conditionthere exists at least one edge
connecting Z\Z' to Vy. Since Gi\Z is connected, we obtain that G;\Z’ is also
connected. If Z' C V;, for some i € {1,...,p}, by using Condition the proof

can be done along the same line.

Case 2. Z' C Vy. We distinguish two cases. Suppose first that for every
s € {1,...,p} such that [Vi, Vii1]lg, # 0, at least one of the sets Vi and V4
is adjacent to Z in G;. As |Z'| = k — 1, by Condition it follows that
[Z,Vo\Z'] # (). Moreover, since G[Vp] is (k 4+ 1)-node connected, we have that
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G[Vo\Z'] is connected. Therefore G;\Z’ is connected. If this is not the case, then
there is s € {1, ..., p} such that [V;, Z]g, = 0 = [Vit1, Z]g, and [Vi, Viqilg, # 0.
If £ — 1 nodes are removed from Vj, by Cond1t1on at least one edge remains
linking Vo\Z’ to Vs U Viyq. Thus for j = 1,...,p, if [V}, Vit1la, # 0, at least
one of the sets [Vo\Z', V; U Vj41], and [Z,V; U V4] is not empty. Moreover by
Condition [Vo\Z',Z] # 0. As G[Vo] is (k + 1)-node connected, and hence
G[Vo\Z'] is connected, it follows that G;\Z’ is connected.

Case 3. Z' C U Vi, where I C {1,..,p}. Note that [I| < k — 1. Let

={iel] |V| = 1} First note that, by the Remark b) above, the graph
G\ U Vi, is connected. Also note that as |Z/| = k — 1, and Z’ is not contained
in azselilgle set, we have |Z'NV;| < k—2 for i € I\I'. Since G[V;] is (k+ 1)-node
connected, it follows that G[V;\Z'] is connected for i € I\I'. Also by construc-
tion we have |[V;, Vo U Z]g,| > k — 1 for i € I\I'. Moreover by Condition
[Vi, Vo U Z]g, covers at least k — 1 different nodes in V;, for ¢ € I\I'. So if no

more than k— 2 nodes are removed from V; at least one edge remains connecting

Vi\Z' to Z U Vj, for i € I\I'. Therefore G;\Z' is connected.

Case 4. Z’CVOUZU(U Vi) where I C {1,....,p}. Let I' ={i e I | |Vi| = 1}.
Suppose first that Z’ N Z 75 0, Z’NVy # 0 and Z' N U V; = (). We have that
|Z2'NZ| < k—2and | Z'NVp| < k—2. By Condition[v)]| Vuvm,von =k—|Z;|+1
and covers k — |Z;| + 1 nodes of V. Then there exists at least one edge linking
Vo\Z' and V; UV, 1. Thereby G[(Vo\Z') U ( U Vi)] is connected, which is equal
to G;\Z. Now suppose Z\Z' # (). Since G[Vg] is (k + 1)-node connected and
G[Z] is a complete graph, it follows that G[Vp\Z'] and G[Z\Z’] are connected.
By Condition [iv)} [Z\Z’, Vo\Z'] # 0. Moreover, by construction at least an edge
remains connecting V; to V31 UV;_1. And we can show in the same way as in
Case 2, that V; is connected to Vp\Z’'. Thus G;\Z’ is connected.

Now suppose that Z'NZ £ 0, Z/NV; £ 0, fori € I, I C {1,...,p}, and
7' NVy. Suppose that Z\Z' # (. If Z C Z’, the proof is similar to the previous
case. We have that |2/ NZ| < k—|I|-1. Let I' ={i eI |V,;nZ #10
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and |V;| = 1}. Since G[Vi], for ¢ € I\I', is (k + 1)-node connected and G[Z]
is a complete graph, it follows that G[V;\Z'] and G[Z\Z'] are connected, for
i € I\I'. By Condition [iv)] there exists at least one edge connecting Z\Z’ to Vj.
Also by Condition [Vi, VoUZ] contains k—1 edges covering different nodes in
Vo U Z and covers k — 1 nodes in V;. So if no more than & — 2 nodes are removed
from V; UV U Z at least an edge remains connecting V;\Z’ to (Z\Z')UV;. Thus
G\Z' is connected.

Now, if Z/NVy # @ and Z'NV; # 0, fori € I, and Z' N Z = (), then we have
that |Z'NVy| <k—|I|-1and |Z'NV;| <k —|I| =1 fori € I. Since G[V}], for
i€ {0yU(I\I'), is (k+ 1)-node connected, it follows that G[V;\Z'] is connected,
for i € {0}U(I\I"). By Condition [iv)|we have that [Vo\Z’, Z\Z'] # (). Moreover
by Condition [Vi, Vo U Z] contains k — 1 edges that covers k — 1 nodes in
VoUZ and k — 1 nodes in V;. So if no more than k — 2 nodes are removed from
Vi UV, at least an edge remains connecting V;\Z' to ZUVp\Z’'. Thus G;\Z' is
connected.

Suppose now that Z'NZ # 0, Z' NVy # 0 and Z' N (U V;) # 0. We have
that |2/ N Z| <k — |I| — 2 and |2/ O\ Vi| <k — |I| 2 for i € I. Since G[V], for
i € {0}UI\I',is (k+1)-node connected and G[Z] is a complete graph, it follows
that G[V;\Z'] and G[Z\Z'] are connected, for i € {0} UI\I'. By Condition [iv)]
there exists at least one edge connecting Z\Z’ to Vj. Also by Condition
there are |[V;, Vo U Z]| > k — 1 edges covering different nodes in V;, V) and Z.
So if no more than k — 4 nodes are removed from V; U Vy U Z, then at least an
edge remains connecting V;\Z’ to (Z\Z') U (Vp\Z’). Thus G;\Z’ is connected.
Consequently G; = (V,T;) is k-node-connected. Moreover 2zt € Z. ¢

Now we show that b(e) = pa(e) for all e € E\T', for some p € R.

As 2T, ... 2™ belong to .Z, it follows that ba™* = ... = bazT» = 5. Hence
ble1) = ... = b(ep). As e; and e, are arbitrary edges of [Vi, V] and [V}, Vi,

respectively, we obtain
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ble)=p forall ec€[V;,Vi1],i=1,....p,

for some p € R.

Let g;+1 be a fixed edge of [V41, Vo]\F. Consider the edge set

T = (T\{e})Uign).

Similary, we can show that 7} induces a k-node-connected subgraph of G.
As 27 and 27" belong to .7, it follows in a similar way that b(e;) = b(gr4+1). As
b(e;) = b(ej+1) = p, this yields b(g;+1) = p. By exchanging the roles of Vj;1 and
Vi, 1 =1,...,p, we obtain that b(e) = p for all e € d¢(Vp)\F. In consequence,
b(e), for all e € E\T" have all the same value p.

Next, we will show that b(e) =0 for all e € T.

Note that there are k + 1 edges incident to V; in the graph induced by 7;.
By using Conditionwe can show in a similar way as in the claim above that
for any edge e € F}, T} = T;\{e} also induces a k-node-connected subgraph of
G. As 27t and ™7 belong to .Z, it follows that bz’ = bzT' = §, implying that
b(e) =0 for all e € F;. As [ is arbitrarily chosen, we obtain that b(e) = 0 for all
f € F. Moreover, as the subgraphs induced by Vj, ...,V are all (k 4+ 1)-node-
connected, the subgraph induced by T;\{e}, for all e € Ey, is k-node-connected.
This yields as before b(e) = 0 for all e € Ey.

Now suppose that e € E(Z). By Conditions[)]and [iv)] we can clearly see that
Ti\{e} also induces a k-node-connected subgraph of G. Implying that b(e) = 0.

Let h be an edge of §(Z). We can show in a similar way as in the claim
above that T; = T;\{h} also induces a k-node-connected subgraph of G. As 27
belongs to .7, it follows that b(e) = 0 for all h € §(Z). Consequently b(e) = 0
for all e € I

Thus we obtain that b = pa, which ends the proof of the theorem. O
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Corollary 4. If the graph G is complete, then the F-node-partition inequalities
@) are facet-defining for ENCSP(G) if |V;| > k+2,i=0,1,...,p.

Theorem 10. Let G = (V, E) be a graph and an integer k > 2. Let Z C V,
such that |Z| <k —1 and k — |Z| is odd. Let m = (V1,...,V,) be a partition of
V\Z such that (G\ Z)r. The SP-node-partition inequality (I0) associated with
7 defines a facet of kKNCSP(G) if the following conditions hold

ii) G[Vi], for i =1,....,p, are (k + 1)-node connected,
iii) G[Z] is a complete graph,

iv) fori=1,..,p, there exists a subset S; C §(V;), with |S;| =k + 1, and such
that:

a) 1SiN[Z, V]| =1Z| and S; N [Z,V;] is a matching,
k- 1]

b) [Si 0 [V, Vieall = [Si N[V, Vil = {
[Vi, Vie1] and S; N [V;, Vig1] are matchings,

—‘ and such that S; N

where the indices are taken modulo p.

Moreover, if |V;| > 2, S; must cover at least k nodes of V;.

Proof.

Remark that under these conditions we can easily see that G is (k+ 1)-node
connected, thus kNCSP(G) is full dimensional. Let us denote the SP-node-
partition inequality by ax > « and let .% = {z € kNCSP(G) | ax = «}.
Clearly, # is a proper face of kNCSP(G). Now suppose that there exists a
facet defining inequality bz > S of kENCSP(G) such that % C Z#' = {x €

ENCSP(G) | bx = g}. We will show that b = pa for some scalar p € R.

p
Let By = J E(V;). And let F; be an edge subset of [V;,Vi11], i = 1,...,p,
i=1
P
of % edges and let Consider H; = ( 1U#Fz) U (F3\{f;}) U Ey for some
i=1,i#j
j €{1,...,p}, where the indices are taken modulo p.
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Figure 3: An SP-node-partition configuration for k =5 and Z = 2

As F;, i = 1,...,p forms a matching, and G[V;] is (k + 1)-node-connected,
then it is not difficult to see that the graph induced by H; is (k — |Z]|)-node-
connected. Thus, by [iv)h) the graph obtained by H; = H; UE(Z)Ué(Z) is
k-node-connected. Moreover 27 belong to .%.

Similary, we can see that Fj41 = (F;\{fj+1}) U {f;} also induces a k-
node-connected subgraph of G. As 2 and 2™+ belong to .%, we have that
b(zfi) = b(xfi+1) and hence b(f;) = b(fj+1). As f; and fj1 are arbitrary
edges of F; and Fji1, respectively, it follows that b(e) = b(e’) for all e € F}
and € € Fj 1. Moreover, as F; and F)j1; are arbitrary subsets of [V}, Vj;1] and
[Vit1, Vj42], respectively, we obtain that b(e) = b(e’) for all e € [V}, Vj41] and
e € [Vig1,Viyal, j = 1,...,p. Consequently, by symmetry, we get b(e) = b(e’)
for all e, ¢’ € _O Vi, Viga).

Now let hlzel Vio, Viol; t0,J0 € {1,....,p} with |ip — jo| > 1. Consider the
edge sets Hy = (H\{fi—1}) U {h} and Hsy = (H2\{h}) U{fi}. Similary, we can
show that H, and Hz induce k-node connected subgraphs of G. As 22 and
23 belong to .7, it follows that b(x2) = b(x3) and hence b(h) = b(f;). This
yields b(e) = b(e') for all e, e’ € 6\ z(7). Now, we will show that b(e) = 0 for all
e€ EyUE(Z)Ud(Z). Consider the edge set Hy = H;\{e} for some e € Ey. As
G[V;], i =1,...,p, are (k 4+ 1)-node connected, H, induces a k-node connected

subgraph of G. As 2l and zf1* belong to .%, we have that b(x) = b(z*), and
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thus b(e) = 0 for all e € Ey. Now suppose that e € F(Z). By Condition [i)| and
[ii)] we can clearly see that H;\{e} also induces a k-node connected subgraph of
G. Implying that b(e) = 0. Let g be an edge of §(Z). We can show in a similar
way as in the claim above that Hs = H;\{g} also induces a k-node connected
subgraph of G. As x> belongs to .7, it follows that b(e) = 0 for all g € §(2).
Thus b(e) = 0 for all e € Ey U E(Z) U §(Z). Therefore we obtain that b = pa
and the proof is complete. O

Corollary 5. If the graph G is complete, then the SP-node-partition inequalities
Q) are facet-defining for kENCSP(G) if p > k —|Z| + 1 and |Vi| > k + 2,
1=1,..,p.

5. Structural properties

In this section, we discuss some structural properties of the extreme points
of the linear relaxation P(G, k) of the kNCSP polytope. Recall that P(G, k) is
the polytope given by inequalities (I)-().

For this, we first give some notations and definitions. Let T € P(G, k) be a
solution. We say that an inequality ax > « is tight for T if aT = a. We will

denote by Ey(T), E1(Z) and E(T), the following edge sets
* Eo(T) ={ecc E|T(c) = 0},
e E1(T)={e€ E|T(e) =1},
o E/(T)={ec E|0<7T(e) <1}.

Also we let €pp(T) (resp. €pn(T)) be the set of cuts §(W) (resp. node-cuts
dc\z(W)) that are tight for . If 7 is an extreme point of P(G, k), then T is

the unique solution of the linear system

xz(e) =0, for all e € Ey(T),

5@) z(e) =1, for all e € E1(T),
2(6¢(W)) =k, for all cuts 0q(W) € €55 (T),
z(0e\z(W)) = k —|Z|, for all node-cuts o z(W) € €pn(T),
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where €55 (T) (resp. 6,5 (T)) is a subset of pg(T) (resp. Epn(T)).

Lemma 1. Let T € P(G,k) and W C V such that the cut induced by W is tight
forT. Then,

1. if for some R C V, T(6(R)) =k, then
T(O(WNR)) =k and T(6(WUR)) = k;
2. if for some Z CV such that |Z| <k —1, and T C V\ Z, T(6c7\2(T)) =
k—1Z|, then
5(50\(ZQW)(W NT))=k—1|ZNnW| and
(0 (zmy(WNT)) =k — [ZNW|.
Proof.

1. The proof is similar to that of ]

2. Suppose that ZNW # () # ZNW. Also suppose that T N'W # § and
Tg¢gW, W ¢Tand TUW # V\Z. If this is not the case, then we
are done. Let T\ = TNW, To =TNW, Zy, =Z0W, Zy = ZNW,
Ty =W\(TUZ;) and Ty = W\(T U Z3). Thus T; # () for i = 1,...,4. As
(W) € €pE(T), we have that

And as dc\z(T') € €, (T), we have that

k— 2] = F(3(T)) = Z(5(T1, Tv)) + F(3(T1, Tu)
HT(3(Ty, Ts)) + T(5(Ts, Ty)).

(14)

By considering the node-cuts ¢ z, (11) and dg\ z, (T4), we have that
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k—1Z1] <T(de\z, (T1)) = Z(6(T1, T2))
+Z(0(T1, T3)) + T(6(T1, Tu)) + T(0(T1, Z2)),

k—12Zs| <T(6(Ty)) =T(6(Ts, Th)) + T(6(Tu, T2)) (16)
+T(6(Ty, Tz)) +T(6(Tu, Z1)).
As T(e) > 0 for all e € E, by adding (I3) and (I4) and combining the
resulting equation with (I5]) and (), we get x(dc\ z, (T1)) = k —|Z1] and

x(dc\z,(T4)) = k — | Zs|, which ends the proof.

O
From Lemma/[I we can show the following result. Its proof is omitted since

it follows the same lines as a similar result in [4].

Lemma 2. Let T be an extreme point of P(G,k), and W C V such that
T(6(W)) = k. Then the system S(T) can be chosen so that

1. a cut §(R) € €py(T) is such that RC W or R C W;
2. a node-cut dcn z(T) € €5 (T) is such that (TUZ) C W, (TUZ)C W,
TCWand ZCW,orTCW and Z CW.

6. Reduction operations

In this section we introduce some reduction operations defined with respect
to a solution T of P(G, k). These operations will be considered in a preprocessing
phase for separating violated inequalities in our Branch-and-Cut algorithm. Let

01, 02, 05 and 64 be the reduction operations defined as follows.
01: Delete an edge e € E such that T(e) = 0.

02: Contract a node subset W C V such that G[W] is k-edge connected, Z(e) =
1 for all e € E(W) and T(6(W)) = k.

f3: Contract a node subset W C V such that |W| > 2, [W| > k, T(e) = 1 for
all e € E(W), and |66(W)| = k.
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04: Replace a set of parallel edges by only one edge.

We have the following results.

Lemma 3. Let G' = (V, E’) be the graph obtained from G by the application
of Operation 01 and let ' be the restriction of T to G'. Then T’ is an extreme

point of P(G', k) if and only if T is an extreme point of P(G, k).
Proof. Easy. O

Lemma 4. Let G’ = (V',E') and T be the graph and the solution obtained

from G and T by the application of Operation 0. Suppose that
1) 7’ € P(G', k),
2) forall Z CW,|Z| <k -1, 6c\z(T) ¢ €pn(T) for all T CW.
Then T is an extreme point of P(G', k) if T is an extreme point of P(G, k).

Proof. Let W be a node set of G contracted by Operation 6. As §(W) €
¢pr(T), by Lemma 2] the system S(T) can be chosen in such a way that for
every 0(R) € €1p(T) (vesp. Sz, (T) € €}y (T)) either R C W or R C W
(resp. (TUZy) C W, T CW and Zyr C W,or T C W and Zyr C W). As
T(e) = 1 for all e € E(W) and G[W] is k-edge connected, this implies that
Cpp(T) C €pe(T'). Moreover by 2) it follows that if dgy 2, (T) is tight for T
and Zr C W, then WNT # 0 and W\(Zr UT) # 0. Let Ty = WNT and
Ty = W\(Zr UT). We have that k — |Z7| = T(dcn 2, (T)) > Z(0(T1, T2)) > k,
a contradiction. The last inequality comes from the fact that G[W] is k-edge
connected and T(e) = 1 for all e € E(W). In consequence, all the node-cuts
dcnzs(T) of €}y (T) are such that Zp C W. However these are at the same
time tight for . Thus €55 (T) C €pn(T'). Let S’(T) be the system obtained
from S(ZT) by deleting the equations z(e) =1 for all e € E(W). Then T’ is the
unique solution of S'(T). As all the equations of S/(Z) come from P(G’, k) and
by 1) T’ € P(G', k), it follows that T’ is an extreme point of P(G', k). O
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Lemma 5. Let G' = (V',E') and T be the graph and the solution obtained
from G and T, respectively, by the application of Operation 03. Then T' is an

extreme point of P(G', k).

Proof. Let W C V be a node set satisfying the conditions of Operation 63.
First observe that as [0(W)| = k, we have that Z(e) = 1 for all e € §(IW) and
Z(0(W)) = k. Thus, by Lemmall S(Z) can be chosen so that for every node-cut
beanz(T) € €py, we have (TUZ) C W, (TUZ)C W, T C W and Z € W,
or T C W and Z € W. We will show that any cut §(R) € €pp(F) is such
that R C W, and any node-cut dg\z(T') € €5y (T) is such that (TU Z) C W.
Suppose the contrary and consider first that for some §(R) € €p5(T), R C W.
As T(e) = 1, for all e € E(W) U §(W), one can see that |6(R)| = k, and
hence Z(d(R)) = k can be obtained from T(e) = 1, for all e € §(R), con-
tradicting the fact that §(R) € €p5(T). Now suppose that for some node-
cut de\z(T) € € (T) either (TUZ) € Wor T C W and Z C W. We
can show similarily to the previous case that [dc\z(T)| = k — |Z| and that
Z(0e\z(T)) = k —|Z| can be obtained from T(e) = 1, for all e € dc\ z(T'), which

yields a contradiction.

We consider now a node-cut dg\z(T) € €7y (%) such that T C W and
Z C W. Notice that, as |[W| > k, we have that W\ Z # 0. If T = W, then
7(06\2(T) = T(EW \ 2,1)) = |60V \ 2.T)] = k = |Z|. Thus, 751 (T)) =
k —|Z| can be obtained from the equations T(e) = 1, for all e € dc\z(T'), con-
tradicting the fact that dg\z(T) € €5y (%). Thus, W\ T # 0. For convenience,
we let Ty = W\ Z and Tp = W \ T. First, note that

T(oenz(T)) =Z(6(T, Th)) +Z(6(T, Tz)) = k — | Z]. (17)
Equation [[7] together with the cut inequality induced by T yields
Z(0(T, 7)) > |Z|. (18)
Also, as by the assumption [6(W)| = k, we have that

Z(0(T,T1)) +Z(8(T, Z)) + T(8(To, T1)) + T(6(T%, Z)) = k. (19)

25



This equation, together with the node-cut inequality induced by d¢\ z(T2) im-
plies that

F(3(T, 2)) + F(6(Th, 2)) < |2 (20)

Thus, by inequalities ([I8) and 20)), we have that T(§(T, 7)) = |Z| and
Z(6(Ts, Z)) = 0, and hence

Z(0(T)) = Z(0(T, Ty)) +T(6(T, Z)) + T(8(T, Tz)) = k. (21)

Moreover, as T(e) = 1, for all e € §(IW), we have that T(0(T, Z)) = |Z] =
|6(T, Z)|. Therefore, Z(d\ z(T')) = k — | Z] can be obtained from ZI)) and the
Z(e) =1, foralle € (7, Z), and hence, can be replaced in S(Z) by equation (2I).

Consequently, the system S(Z) can be chosen so that R C W for every cut
§(R) € €5 (T) and TUZ C W for every node-cut dcn z(T') € €7 (Z). This also
implies we have that €55 (T) U €pn (T) C Cpp(T) UEhn(T'). Thus, 2/ is the
unique solution of a subsystem of S(Z). As all the equations of that subsystem
correspond to constraints of P(G\W, k), this implies that Z’' is an extreme point

of P(G\W, k). O

Lemma 6. Let G' = (V' E') be the graph obtained from G by the application of
Operation 04. Let Ey be the set of parallel edges of G and ey the edge replacing
Ey in G'. Let T be the solution given by T'(e) =T (e) if e € E\Ey and T'(e) = 1

if e=eg. Then T’ is an extreme point of P(G', k).

Proof. Observe that for every cut 6(W) (node-cut ¢\ z(W)) either Ey C 6(W)
(Eo C dc\z(W)) or Eg N6(W) =0 (Eo N de\z(W) = (). Moreover, Ey cannot
contain more than two edges with fractional value. Indeed, if e1,es € Ey and
0 < x(er) < 1and 0 < z(ez) < 1, let T" be the solution given by T*(e) = T(e)
if e € E\{e1,e2}, T(e) = T(e) + € if e = €1 and T"(e) = T(e) — € if e = eq,
where € is a positive scalar sufficiently small. We then have that T* is also a
solution of S(T), which is a contradiction. We claim that Fy does not con-

tain any edge with fractional value. Suppose, on the contrary that h is such
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an edge. Then Z(Ey) > 1. Therefore there exists a cut or a node-cut of sys-
tem S(T) containing h. Let v be an extremity of h. Let §(S) be a cut of
¢*(T) that contains h. Thus Ey C 6(S). Suppose W.l.o.g., that v € S. Con-
sider the node-cut ¢\, (S). We have that T(dg\,(S5)) < T(6(S)\Eo) < k —1,
a contradiction. Now consider a node-cut dc\z(T') of € (Z) that contains h
and hence Ey. As T(Ep) > 1, one must have |Z| < k — 1. So suppose that
|Z| < k—1. Suppose W.l.o.g., that v € V\(T'UZ). Let Z' = Z U {v}. We have
Z(0e\z/ (1)) < T(6c\z(T))—1-T(h) = k—(|Z|4+1)—T(h) < k—|Z'|, a contradic-
tion. Consequently, Z(e) = 1 for alle € Ey. From the development above we also
deduce that neither a cut of € (Z) nor a node-cut of €’ (%) intersects Fy. Hence
C(T) UG (T) C (7). Moreover, we have that ¥ € P(G’, k). Obviously, T
satisfies the trivial inequalities as well as the cut and node-cut inequalities that
do not contain h. Let §(W) be a cut that contains h. Suppose v € W. We have
that Z'(6(W)) = T'(h)+7' (6(W)\{h}) = 1+Z(§(W)\Ep) = 14+T(dcn0(W)) > k.
Consider now a node-cut d¢c\ z(T') containing h. If |Z] = k — 1, as T'(h) = 1
and h € ¢\ z(T), we have that T'(dc\z(T)) > 1. If |Z| < k — 1, then let
Z' = Z U{v}. We have that T'(6c\z(T)) > 1+ 7' (02 (T)) > 1+ k = |Z'] =
1+k—-Z|-1=k—1Z|. O

As we will see later, the reduction operations 61, ...,04 can be used as a

preprocessing for the separation procedures in our Branch-and-Cut algorithm.

7. Branch-and-Cut algorithm

In this section, we present a Branch-and-Cut algorithm for the KNCSP. The
algorithm is based on the theoretical results presented in the previous sections.
We will first present the general framework of the algorithm, then we will ad-
dress the main issues of our algorithm, that are the separation procedures for

the various inequalities we will use, and a primal heuristic.

We will consider a graph G = (V, E) and a weight vector ¢ € R associated
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with the edges of G. We let k > 1 be the connectivity requirement.

7.1. General framework

To start the optimization we consider the following linear program consisting
in the cut constraints induced by node sets {u}, for every u € V' together with

the trivial inequalities, that is

min Z cle)xz(e)

ecl
x(6g(u)) >k for allu € V,
0<z(e) <1 foralle € E.

If the optimal solution 77 € R¥ of the above LP is feasible for the kNCSP,
that is, it is integer and it satisfies all the cut and node-cut inequalities, then it
is optimal for the problem. Usually, 7 is not feasible for the kNCSP. Thus, we
need to generate further valid inequalities for the problem which are violated by
y. This is done by addressing the separation problem associated with the cut
and node-cut inequalities, respectively, and the other families of inequalities we
consider in our algorithm. Recall that the separation problem associated with 7
and a family of inequalities F is to say if i satisfies or not all the inequalities
of F, and if not, exhibit at least one inequality of F which is violated by 7.
An algorithm solving a separation problem is called a separation algorithm. In
our algorithm, we use the inequalities that we described in the previous sections

and perform their separation in the following order

—_

cut inequalities,
node-cut inequalities,
SP-node-partition inequalities,

F-node-partition inequalities,

A I

node-partition inequalities.

28



We move to a class of inequalities when the separation algorithm for the
previous class of inequalities has not find any violated inequality. We may add
several inequalities at the same time in the Branch-and-Cut algorithm. More-
over, all the inequalities are global, that is they are valid for all the node of the

Branch-and-Cut tree.

Remark that the separations are done on the graph obtained after repeated
applications of the reduction operations 61, ..., 04 to the graph G and solution 3.
If G’ is the reduced graph and 7’ is the restriction of i to G’, then by Lemmas
BlG, 7' is an extreme point of P(G’ k) if § is an extreme point of P(G,k).

Moreover, we have the following results which are easily seen to be true.

Lemma 7. Let o’z > a be an F-node-partition inequality (respectively node-
partition inequality) valid for kNCSP(G'), induced by a partition ' = (Vg, V{, ..., V),
p > 2 and an edge set F (respectively 7' = (V{,...,V})), p > 3) of V'\Z, with
Z CV. Letm=(Vo,Vi,...,V,), p > 2 (respectively m = (V1,...,V,), p > 3) be
the partition of V' obtained by expanding the elements of ©’. Let ax > « be the

inequality such that

a'(e) foralleeF,
ale) =9 1 for all e € (E\E") N dg(m),
0 otherwise.
Then ax > « is valid for kNCSP(G). Moreover, if a’x > « is violated by 7,

then ax > « is violated by Y.

Lemma 8. Leta’z > « be an SP-node-partition inequality valid for kNCSP(G'),
induced by a partition " = (V{,..,V)), p > 3 of V'\Z, with Z C V such that
|Z] < k—1. Let m = (Vi,...,V,), p > 3 be the partition of V\Z obtained by
expanding the subsets V! of ©'. Let ax > « be the lifted SP-node-partition in-
equality obtained from o'z > « by application of the lifting procedure described
in Section 3.4 for the edges of E\E'. Then ax > « is violated by 7, if 'z > «

is violated by 7.
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Lemmas [7 and [] show that the separation of F-node-partition, SP-node-
partition and node-partition inequalities can be done in the reduced graph as-

sociated with any fractional solution of P(G, k).

7.2. Separation algorithms

Now we describe the separation algorithms we have devised for the cut,

node-cut, SP-node-partition, F-node-partition and node-partition inequalities.

We start by the separation of the cut inequalities [@)). It is well known
that the separation of the cut inequalities ([B]) reduces to computing a minimum
weight cut in G with respect to weight vector 7. Indeed, there is a violated cut
inequality @) if and only if the minimum weight of a cut, w.r.t. weight vector
7, is < k. One can compute a minimum weight cut in polynomial time by using
any minimum cut algorithm, and especially by using the Gomory-Hu algorithm
which computes the so-called Gomory-Hu cut tree. This algorithm consists

in |V] — 1 maximum flow computations.

Now we discuss the separation of the node-cut inequalities ({@l). In what
follows, we show that these inequalities can be separated in polynomial time.
In fact, Grotschel et al. @] present a separation algorithm for inequalities (@)
based on a transformation of the graph G into a directed graph G = (XN/, ,ZI)
This transformation is presented as follows. For each node u € V', we add in 1%
two copies u~ and ut of u. The arc set is built in the following way. First, for
each edge uv € F, we add two arcs (vt,u”) and (u*,v™). Finally, for every
node u € V, we add an arc of the form (v, u™). We also let § € R4 be a weight
vector given by

_ yuv) for a= (uT,v7) and a = (v, u"),

yla) =
1 if a = (u=,u™) for all nodes u € V.

One can see that a cut §(WW) in G corresponds to a dicut which does not

contain an arc of the form (u~,u"). Conversely, a dicut 5‘05(@/) of G which
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does not contain any arc of the form (u~,u™) corresponds to a cut of G. Also,
a node cut ¢\ z(W) of G corresponds to a dicut of G which contains |Z| arcs
of the form (u~,u"). Conversely, a dicut of G which contains at least one arc
of the form (u~,u™) corresponds to a node-cut of G. The corresponding node
set Z is given by the nodes u € V such that (u™,u") € (%'(W), and the edges
of 6c\z(W) are given by the arcs of 6&5 (W) of the form (u™,v") with u # v.

Thus, cuts and node-cuts of G corresponds to dicuts of G which does not contain

arcs of the form (u~,u™), and vice-versa. Moreover, we have that

e if §(IW) in G and 5§(W) in G are corresponding cuts, then Z(6(W)) =
FEL));

e if dc\z (W) in G and 5% (W) in G are corresponding cuts, then (0 z(W))+
12| = 5L (W)).

Thus, there is a cut or node-cut inequality violated by 7 if and only if there
exists a dicut 5§(W) in G whose weight with respect to  is < k. Notice that, if
we assume the cut inequalities to be all satisfied by 7, finding violated node-cut
inequalities then reduces to compute a minimum weight cut in G w.r.t. weight
vector .

Consequently, our separation algorithm for node-cut inequalities is as fol-
lows. First, we assume that the cut inequalities are all satisfied by 3. We build
the graph G and compute a minimum weight cut, say c%(W*), wrt. oy, If
ﬂ((% (W*)) > k, then every node-cut inequality is satisfied by 7, and the al-
gorithm stops. If g(ég(ﬁ*)) < k, then there is a violated node-cut inequality
induced by a node-cut dg\z(W) with Z CV, |[Z| <k—1,and W C V' \ Z. The
node sets Z and W are given by

Z ={ u €V such that (u™,u") € (%(ﬁ//*)},

W = {u €V such that u™,u™ € W or u™ € W and u™ € V\ W}.

Finally, computing a minimum weight cut in G can be done in polynomial

time by computing, for every pair of nodes (s,t) € V xV, with s # ¢, a maximum
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flow in G from source node s to destination ¢+~. This, hence, reduces our algo-

rithm to |V|(|V]—1)/2 maximum flow computations in W, which is polynomial.

Finally, we consider the separation problems for node-partition, SP-node-
partition and F-node-partition inequalities. First notice that the separation
problem of node-partition inequalities is NP-Hard even when Z = (). For our
purpose, we consider these inequalities in the case where Z = (). Thus, the cor-
responding node-partition, SP-node-partition and F-node-partition inequalities
also correspond to partition, SP-partition and F-partition inequalities, which
are valid for the kECSP on G. Therefore, to separate these inequalities, we use
the separation heuristics developed in Bendali et al. H] for these latter inequal-
ities. These algorithms are applied on the graph G’ and solution 7’ obtained
by the application of the reduction operations to G and 7. As mentioned be-
fore, by Lemmas [[] and [§] any violated node-partition, SP-node-partition and
F-node-partition inequality found in G’ by the separation procedure is valid for

ENCSP(G) and is also violated by 7.

7.3. Primal heuristic

Next, we discuss a primal heuristic for the problem. The aim of this heuristic
is to produce, for a given instance, good upper bounds of the optimal solution of
the problem. Such upper bounds are used by the Branch-and-Cut algorithm to
prune unrelevant branches of the Branch-and-Cut tree. This also ensures that
Branch-and-Cut algorithm produces a feasible solution, even if it reaches the

maximum CPU time.

The primal heuristic we have developed for our purpose consider a frac-
tional solution § obtained at the end of the cutting plane phase. The aim of
the heuristic is to transform 7 into a feasible solution for the problem. To do
this, we first build the graph G = (V, E) obtained by removing from G every
edge e € E with g(e) = 0. Then, we iteratively remove from G all the edges uv
such that v and v are both incident in G to at least k + 1 edges. We denote by
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G = (v, E/) the resulting graph, and by z the incidence vector of G . Next, we
check if G is k-node-connected. We do this by calling the separation algorithms
for the cut and node-cut inequalities described in the previous section on z and
G'. If this there is a cut (resp. node-cut) inequality induced by a cut dz (W)
(resp. node-cut 55/\Z(W)), which is violated by z, then we add in G an edge
e € og(W) \E/ (resp. e € 6\ z(W) \E/) whose weight ¢(e) is minimum. If
there is no cut and node-cut inequality violated by z, then G s feasible for the

ENCSP. We repeat this procedure until the graph G’ is k-node-connected.

Finally, the algorithm computes and returns the weight of the graph G ob-
tained at the end of the previous step. The whole procedure is summarized by

Algorithm [ below.

8. Computational Results

Now we present the computational results we have obtained with our Branch-
and-Cut algorithm for the KNCSP. The algorithm has been implemented in C++
using CPLEX 12.5 B] and Concert Technology library. All the experiments have
been done on a computer equiped with a 2.10 GHz x4 Intel Core(TM) i7-4600U
processor and running under linux with 16 GB of RAM. We have set the maxi-
mum CPU time to five hours. We have tested our algorithm on several instances
composed of graphs taken from SNDLIB ] and TSPLIB ] These are com-
plete graphs where each node is given coordinates in the plane. The weight of
each edge uv is the rounded euclidian distance between the vertices u and wv.
The graphs we have considered have up to 65 nodes for SNDLIB graphs and up
to 150 nodes for TSPLIB graphs.

The tests have been performed for k = 3,4,5, and in all the experiments, we
have used the reduction operations described in the previous sections, unless

specified.
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Algorithm 1: Primal Heuristic Algorithm for the kNCSP

Data: An undirected graph G = (N, E), an integer k, a fractional solution §
Result: An Upper Bound UB for the kNCSP

1 begin
2 Build the graph G = (V, E) by removing from G every edge e such that g(e) = 0;
3 /*Remove the edges uv such that [0z(u)| > k41 and [65(v)| >k + 1%/
4 foreach edge uv € E do
5 if [05(uw)| > k+1 and |[65(v)| > k+ 1 then
6 L E + B\ {uw};
7 /*Check if the resulting graph is k-node-connected*/
8 FeasibleSolutionFound < False;
9 repeat
10 Let z be the incidence vector of FE;
11 Call the separation procedure for cut inequalities;
12 if there is a cut inequality violated by z then
13 Let 65(W) be the cut inducing the violated cut inequality;
14 Choose an edge e € 5g(W) \ E with minimum weight;
15 E <+ Eu{el;
16 else
17 Call the separation procedure for node-cut inequalities with solution z
and graph G;
18 if there is a node-cut inequality violated by z then
19 Let 55\Z(W) be the node-cut inducing the violated node-cut
inequality;
20 Choose an edge e € 0y z(W) \ E with minimum weight;
21 E + EU{e};
22 else
23 L FeasibleSolution Found <+ True;
24 until FeasibleSolutionFound = True;
25 UB <+ 0;
26 foreach edge e € F do
27 L UB < UB + c(e);
28 return U B;
29 end
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For each instance, we have run the algorithm three times. The first run

(Run 1) is performed with all the inequalities presented before and the reduc-

tion operations included in the algorithm. The second run (Run 2) is performed

without the reduction operations. The third run (Run 3) is performed with

the reduction operations and with only the cut and node-cut inequalities. The

results are given in Tables PH8l Each instance is given by its name followed

by the number of nodes of the graph. The other entries of the tables are:

#EC

#NC

#NFPC
#SPC
#NPC
COpt

Gapl

Gap2

Gap3

NSubl
NSub2
NSub3
CPU1
CPU2
CPU3

the number of generated cuts inequalities

the number of generated node-cuts inequalities

the number of generated F-node-partition inequalities

the number of generated SP-node-partition inequalities

the number of generated node-partition inequalities

the value of the best upper bound obtained by the

Branch-and-Cut algorithm

the relative error between the best upper bound

and the lower bound obtained at the root node of the
Branch-and-Cut tree during Run 1

the relative error between the best upper bound

and the lower bound obtained at the root node of the
Branch-and-Cut tree during Run 2

the relative error between the best upper bound

and the lower bound obtained at the root node of the
Branch-and-Cut tree during Run 3

the number of nodes in the Branch-and-Cut tree obtained at Run 1
the number of nodes in the Branch-and-Cut tree obtained at Run 2
the number of nodes in the Branch-and-Cut tree obtained at Run 3
the total CPU time in hh:mn:sec achieved at Run 1

the total CPU time in hh:mn:sec achived at Run 2

the total CPU time in hh:mn:sec achived at Run 3
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The gaps are all given in percentage. The instances indicated with ”*” are
those for which the maximum CPU time has been reached by the Branch-and-

Cut algorithm.

We start our experiments by running the algorithm with & = 3, for both
SNDLIB and TSPLIB graphs, and using all the inequalities and the reduction
operations, that is Run 1. The results are given in Tables[I] and

Instance #EC #NC #FNPC  #SPC  #NPC COpt Gapl NSubl CPU1
atlanta_15 15 606 17 1 1 3265 0.01 3 0:00:01
geant_22 72 1990 28 19 6 375 1.07 60 0:00:26
france 25 80 7500 36 15 7 3254 0.08 37 0:00:32
norway 27 68 4448 55 10 5 5730 0.76 15 0:00:43
sun_27 42 2582 28 8 0 4771 0.04 7 0:00:31
india_35 62 2231 26 5 6 452 0.33 8 0:00:53
cost266_37 135 10726 775 30 7 275 0.9 13 0:18:01
giul_39 62 2760 32 7 1 5878 0.03 5 0:02:19
pioro_40 11 2866 2 0 0 5637 0.00 1 0:00:09
germany_50 42 13094 14 5 2 112 0.01 4 0:02:37
ta2.65 124 7597 106 10 4 5334 0.07 9 0:43:55

Table 1: Results for SNDLIB instances with k& = 3.
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Instance #EC #NC #FNPC #SPC #NPC COpt Gapl NSubl CPU1
bays_29 74 3709 39 11 8 14815 1.01 19 0:01:10
dantzig-42 137 9156 32 12 16 1232 0.03 42 0:14:14
att_48 138 13995 47 14 10 17527 0.02 48 0:42:11
eil 51 55 4680 30 7 1 745 0.02 4 0:06:41
berlin_52 133 9518 95 26 10 12644 0.22 30 0:27:05
€il_76 80 15321 84 8 4 947 0.11 8 0:48:05
gr-96 174 330 6 19 0 915 0.6 2 2:03:11
rat_99 112 294 19 9 0 2105 0.3 32 2:02:26
kroA_100 169 305 13 24 1 36492 0.21 2 2:04:35
rd_100 186 303 3 21 0 13391 0.13 21 2:01:03
kroB_100 145 300 52 12 1 37341 1.6 12 2:03:58
lin_105 214 317 6 15 6 24870 2.4 35 2:01:44
gr-120 90 332 0 10 0 11562 0.6 2 2:26:57
bier_127 136 364 2 16 0 199863 3.2 23 2:42:41
pr-124 179 403 0 12 0 99696 0.29 3 2:28:01
ch-130 122 371 0 10 0 10571 7.1 12 2:48:25
kroA_150 130 415 2 1 0 44952 2.6 23 2:49:56
*u-159 112 429 7 3 0 71772 8.9 59 5:00:00

Table 2: Results for TSPLIB instances with k = 3.

We first observe that all the SNDLIB instances of Table [l have been solved
to optimality within the CPU time limit. For TSPLIB graphs, all the instances
have been solved to optimality, except one, u-159. The CPU time for the in-
stances solved to optimality is less than 45min for SNDLIB instances and less
than 2h50min for TSPLIB instances. We also observe that the gap between the
optimal solution and the lower bound achieved at the root node of the Branch-
and-Cut tree is less than 1% for all the SNDLIB instances except one, geant_22,
for which the gap is 1.07%. For TSPLIB graphs, the gap is less than 1%, except
for 6 instances for which the gap is less than 7.1%. We can also notice that the
number of nodes in the Branch-and-Cut tree is quite small, less than 60 nodes,
for all the instances. Our separation procedures have also detected several in-
equalities of each type (cut, node-cut, F-node-partition, SP-node-partition and
node-partition inequalities), especially the cut and node-cut inequalities. More-
over, a large number of F-node-partition and SP-node-partition inequalities

are generated while few node-partition inequalities have been generated. From
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these observations, we conclude that our Branch-and-Cut algorithm is efficient

for solving the kNCSP with k£ = 3.

We have also run the algorithm, during Run 1, with £k = 4 and k = 5. The
results for k = 4 are given by Table [3] for SNDLIB instances, and by Table [4]
for TSPLIB instances. Note that when k is even, the SP-node-partition and
partition inequalities we have considered in our algorithm are redundant with
respect to the cut inequalities. Thus, they are not used in the Branch-and-Cut

algorithm for k = 4 and do not appear in Tables Bl and @

Instance #EC #NC #FNPC COpt Gapl NSubl CPU1
atlanta_15 0 246 2 4615 0.00 1 0:00:01
geant_22 0 912 0 521 0.00 1 0:00:01
france_25 0 594 0 4692 0.00 1 0:00:01
norway _27 0 793 4 8257 0.00 1 0:00:03
sun_27 0 696 0 6867 0.00 1 0:00:01
india_35 4 1324 2 640 0.00 1 0:00:08
cost266_37 0 1326 0 392 0.00 1 0:00:03
giul_39 0 1602 2 8314 0.00 1 0:00:07
pioro_40 0 1711 3 8137 0.00 1 0:00:15
germany _50 0 2610 0 156 0.00 1 0:00:12
ta2_65 0 4417 4 7631 0.00 1 0:02:01

Table 3: Results for SNDLIB instances with k = 4.
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Instance #EC #NC #FNPC COpt Gapl NSubl CPU1
bays_29 4 897 0 20945 0.00 1 0:00:01
dantzig-42 10 1858 9 1776 0.00 1 0:00:11
att_48 20 2458 5 17380 0.00 1 0:01:15
eil_51 0 2544 0 1051 0.00 1 0:00:12
berlin_52 6 2860 2 18351 0.00 1 0:00:54
€il 76 0 5981 2 1350 0.00 1 0:03:24
gr-96 62 438 76 1314 1.6 6 2:00:03
rat_99 29 10135 14 3045 0.00 1 0:49:33
kroA_100 22 15223 6 53111 0.00 1 0:32:25
rd_100 81 451 32 20341 1.9 4 2:02:38
kroB_100 95 5012 31 55182 2.5 8 0:45:09
lin_105 33 11339 4 36430 0.00 1 0:36:58
gr-120 6 14765 6 18714 0.00 1 0:48:40
pr-124 69 7553 16 144715 3.5 2 2:12:59
bier_127 30 16447 0 283154 0.00 1 0:34:22
ch_130 26 532 10 15123 2.3 23 2:06:45
kroA_150 19 595 4 68281 5.3 22 2:24:45
u_159 13 630 6 104664 7.2 15 4:38:14

Table 4: Results for TSPLIB instances with k = 4.

We can first observe that for k£ = 4 all the SNDLIB instances are solved to
optimality, in less than 2min, and this, at the root node of the Branch-and-Cut
tree. For TSPLIB instances, the problem is solved in less than 2h30 for all the
instances with few nodes (less than 23) in the Branch-and-Cut tree. For these
latter instances, 11 of them over 17 instances are solved at the root node of
the Branch-and-Cut tree. As for k = 3, several cut and node-cut inequalities
have been generated, and few F-node-partition inequalities are generated. The
comparison with £ = 3 shows that the problem seems easier when k = 4, since
the optimal solutions are obtained faster when k& = 4 for all the instances. For
example, ta_65 is solved in 43minb5sec with 9 nodes in the Branch-and-Cut
tree when k& = 3, while it is solved in 2min at the root node of the Branch-
and-Cut tree when k£ = 4. Moreover, instance u-159 is solved to optimality in
4h38minl4sec when k = 4, whereas it is not solved to optimality within 5h when

k= 3.
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We have also run our algorithm for k£ = 5. The results are given in Tables

and
Instance #EC #NC #FNPC #SPC #NPC COpt Gapl NSubl CPU1
atlanta_15 14 326 12 0 0 6239 0.00 1 0:00:01
geant_22 2 1193 0 0 2 717 0.35 12 0:00:04
france_25 25 832 40 0 1 6478 0.00 1 0:00:20
norway 27 27 944 47 0 0 11217 0.00 1 0:00:51
india_35 30 2023 21 0 0 864 0.17 1 0:00:51
sun_27 27 1296 46 0 0 9383 0.34 4 0:00:32
cost266.37 37 1677 149 0 1 527 0.19 4 0:04:38
giul_39 39 1838 75 0 0 11264 0.00 1 0:03:41
pioro_40 0 1728 4 0 0 10952 0.00 1 0:00:12
germany_50 9 2651 4 0 0 206 0.00 1 0:00:31
ta2_65 67 4723 103 0 0 10276 0.00 1 0:45:20

Table 5: Results for SNDLIB instances with k =5
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Instance #EC #NC #FNPC #SPC #NPC COpt Gapl NSubl CPU1
bays_29 30 1066 64 0 0 28504 0.00 1 0:01:09
dantzig_42 25 1989 4 1 2 1931 0.00 1 0:00:36
att_48 59 2597 25 0 4 17945 0.21 19 0:05:10
eil 51 51 3012 187 0 0 1435 0.21 6 0:27:27
berlin_52 28 5401 17 0 4 24913 0.05 1 0:04:41
il 76 0 6030 3 0 0 1792 0.00 1 0:04:27
gr_96 48 14203 32 3 4 1792 0.16 6 1:38:50
rat_99 62 561 37 0 0 4113 1.2 4 2:01:15
kroA_100 61 10496 82 0 4 72119 0.14 9 2:03:22
rd_100 73 10485 60 0 8 27273 0.07 9 2:02:07
kroB_100 44 581 55 0 6 75143 0.31 8 2:01:37
lin_105 35 588 16 0 0 50669 0.6 12 2:00:50
gr_120 0 14814 9 0 2 23135 0.00 1 1:09:03
pr-124 45 629 15 0 2 199713 3.4 2 2:03:39
bier_127 65 763 14 0 0 391092 4.1 2 2:01:48
ch-130 8 595 12 0 0 21618 3.8 2 2:09:41
kroA_150 13 681 0 0 88237 2.6 25 2:22:03
*u_159 5 630 2 0 0 75915 9.3 91 5:00:00

Table 6: Results for TSPLIB instances with k =5

Here also, we can see that several instances are solved to optimality at the
root node of the Branch-and-Cut tree for both SNDLIB and TSPLIB instances.
The comparison with k& = 3 also shows that the problem seems easier when
k = 5. Indeed, for SNDLIB graphs, 8 instances over 11 have been solved at the
root node of the Branch-and-Cut tree when k = 5 whereas only one instance
has been solved at the root node for £k = 3. The observation is the same for
TSPLIB instances. Here, 5 instances have been solved at the root node when
k = 5 whereas no instance has been solved at the root node when k = 3. Also
the CPU time is, in general, better when & = 5. For example, instance gr_120
is solved in 2h26min57sec when k = 3 and in 1h09min03sec when k£ = 5. All

these observations let suppose that the kNCSP becomes easier when k increases.
A comparison between the case k = 4 and k = 5 shows that the problem

seems easier when k£ = 4. Indeed, the CPU time is in general better when k = 4

and fewer nodes are generated in the Branch-and-Cut tree when & = 4. We can
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say from this that the problem is harder when k is odd than when k is even. The
remarks made here are similar to those made by Bendali et al. ﬂ] for the kKECSP.
They also concluded from their experiments that the kECSP is harder when k is

odd, and that the kECSP becomes easier when k increases with the same parity.

The next series of experiments concerns the efficiency of the reduction op-
erations 6y, ...,604. For this, we have run the Branch-and-Cut algorithm with
k = 3 and without the reduction operations (Run 2).The results are given by

Table [7

Instance Gapl Gap?2 NSubl NSub2 CPU1 CPU2

atlanta_15 0.01 0.02 3 15 00:00:01  00:00:32
geant_22 1.07 1.94 60 7 00:00:26  00:01:21
france_25 0.08 0.09 37 57 00:00:32  00:01:48
norway_27 0.76 1.78 15 34 00:00:43  00:02:05
india_35 0.33 2.05 8 24 00:00:53  00:02:08
giul-39 0.03 1.4 5 11 00:02:19  00:15:34
ta2_65 0.07 1.7 9 35 00:43:55  02:42:37
dantzig_42 0.03 0.79 42 74 00:14:14  01:37:37
att_48 0.02 2.4 48 68 00:42:11  02:39:38
€il_76 0.11 3.4 8 53 00:48:05  05:00:00
gr-96 0.6 7.8 2 41 02:03:11  03:24:57

Table 7: Comparison of results for £ = 3 with and without the reduction operations.

We can observe from Table [0 that, for the considered instances, the per-
formances of the Branch-and-Cut algorithm are decreased when the reduction
operations are not used. One can see that both the CPU time and the number
of nodes in the Branch-and-Cut tree are increased when the reduction opera-
tions are not used in the algorithm. Also, the gap increases for all the instances,
which indicates that a fewer number of inequalities or less efficient inequali-
ties are generated during the separation phases. Moreover, one instance, eil_76
which is solved to optimality at Run 1 is not solved to optimality within 5h
without the reduction operations. This clearly proves the efficiency of the re-

duction operations on the resolution process.

Our last series of experiments aims to check the efficiency of the F-node-
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partition, SP-node-partition and node-partition inequalities in solving the KNCSP.
For this, we have run the Branch-and-Cut algorithm in Run 3 with only the cut

and node-cut inequalities. The results are presented in Table 8l

Instance Gapl Gap3 NSubl NSub3 CPU1 CPU3

atlanta_15 0.01 0.03 3 9 00:00:01  00:00:45
geant_22 1.07 2.1 60 84 00:00:26  00:02:09
france_25 0.08 0.17 37 43 00:00:32  00:02:33
norway-27 0.76 1.97 15 60 00:00:43  00:02:51
india_35 0.33 1.71 8 17 00:00:53  00:04:14
giul_39 0.03 1.8 5 14 00:02:19  00:17:57
ta2_65 0.07 1.2 9 21 00:43:55  01:18:37
dantzig_42 0.03 1.64 42 57 00:14:14  00:45:52
att_48 0.02 1.9 48 71 00:42:11  01:34:59
€il_76 0.11 6.5 8 64 00:48:05  02:54:35
gr-96 0.6 13.2 2 34 02:03:11  05:00:00

Table 8: Comparison of results for £ = 3 with and without the F-node-partition, SP-node-

partition and node-partition inequalities.

Here also, the comparison between Run 1 and Run 3 shows that the per-
formances are decreased when F-node-partition, SP-node-partition and node-
partition inequalities are not used in the algorithm. The CPU time, the number
of nodes in the Branch-and-Cut tree and the gap are increased for all the in-
stances of Table Also, instance gr_96 is not solved to optimality within 5h
when F-node-partition, SP-node-partition and node-partition inequalities are
not used, while it is in Run 1. This also shows the efficiency of the above in-

equalities in solving the KNCSP.

We conclude this computational study by comparing the optimal solutions
obtained here for the KNCSP with those of the kECSP obtained by Bendali et al.
H] The aim is to know how often optimal solutions of the K ECSP and kNCSP
are equal. The next table, Table [ presents, for some TSPLIB instances, the
optimal solutions of the KECSP, those of the kNCSP for £k = 3 and the gap

between the two solutions, given by

_ COpt_3NCSP — COpt_3ECSP

G
ap COpt 3ECSP
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Instance COpt_3ECSP COpt_3NCSP Gap
dantzig-42 1210 1232 1.82
att_48 17499 17527 0.16
berlin_52 12601 12644 0.34
€il_76 876 947 8.11
rat_99 2029 2105 3.75
kroA_100 36337 36492 0.43
kroB_100 37179 37341 0.44
rd_100 13284 13391 0.81
gr-120 11442 11562 1.05
bier_127 198184 199863 0.85
ch_130 10400 10571 1.64
kroA_150 44718 44952 0.52

Table 9: Comparison between of the best solutions of kECSP and the kNCSP for k = 3.

From Table @ we can see that the optimal solutions of the two problems
are different for all the considered instances. However, we can see that the
gap between the two solutions is relatively small for most of them. This let us
conclude that the best solutions obtained by Bendali et al. ﬂ] for the 3ECSP are
good upper bounds of the optimal solutions of the 3NCSP. Clearly, this remark
cannot be generalized since we may find graphs for which the gap between the
optimal solutions of the kNCSP and the KECSP is more important, but solving
the kECSP could produce a good approximation of the kNCSP.

9. Conclusion

In this paper we have studied the k-node-connected subgraph problem with
high connectivity requirement, that is, when k£ > 3. We have presented some
classes of valid inequalities and described some conditions for these inequali-
ties to be facet defining for the associated polytope. We have also investigated
the structural properties of the extreme points of the linear relaxation of the
problem and presented some reduction operations. Using these results, we have
devised a Branch-and-Cut algorithm for the problem. The computational re-
sults we have obtained have shown the F-node-partition, SP-node-partition and

partition inequalities are effective for solving the problem. Also, the reduction
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operations we have used are shown to be efficient in the separation phase of the
Branch-and-Cut algorithm. The experiments also shows that, as for the kECSP,
the kENCSP becomes easier when k increases, and is harder when k is odd than

when k is even.

The study presented in this paper shows the efficiency of the some valid
inequalities, namely F-node-partition, SP-node-partition and partition inequal-
ities, in solving the kNCSP. It would be interesting to investigate the polytope
of the problem in a deeper way and identify cases in which these inequalities

completely define the polytope of the problem.

Also, one can consider the k-node-connectivity in other survivable network
design problems. For instance, one can consider the design of k-node-connected
networks with hop-constraints, that is when the length of the paths between
the nodes does not exceed a given positive integer L. The kKNCSP with hop-
constraints may be more challenging than the kNCSP itself. The investigations

on this problem will be the subject of future works.
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