
la
m
sa

d
e

LAMSADE

Laboratoire d’Analyse et Modélisation de Systèmes pour 
l’Aide à la Décision

UMR 7243F

Avril 2016

A continuity Question of Dubins and Savage

                                    R. Laraki, W.Sudderth 

CAHIER DU 
                  374

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine



A Continuity Question of Dubins and Savage

R. Laraki∗and W. Sudderth†

April 9, 2016

Abstract

Lester Dubins and Leonard Savage posed the question as to what
extent the optimal reward function U of a gambling problem varies
continuously in the gambling house Γ and utility function u. Here
a distance is defined for measurable houses with a Borel state space
and a bounded Borel measurable utility. A trivial example shows
that the mapping Γ 7→ U is not always continuous. However, it is
lower semicontinuous in the sense that, if Γn converges to Γ, then
lim inf Un ≥ U .

Dubins and Savage observed that a failure of continuity occurs
when a sequence of superfair casinos converges to a fair casino, and
queried whether this is the only source of discontinuity for the special
gambling problems called casinos. For the distance used here, an ex-
ample shows that there can be discontinuity even when all the casinos
are subfair.
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1 Introduction

A basic question about any problem of mathematics is how the solution
depends on the conditions. For a stochastic control problem, it is thus natural
to ask how the optimal reward varies as a function of the stochastic processes
available to the controller and of the reward structure. In the Dubins-Savage
(1965) formulation, the processes available are specified by a gambling house
Γ and the reward is in terms of a utility function u. (Definitions are in the
next section.) Dubins and Savage ([2], page 76) suggest that a notion of
convergence be defined for gambling houses so that the continuity properties
of the mapping from Γ to the optimal reward function U can be studied. For
the notion of convergence introduced in section 3 below, a trivial example
in section 4 shows that the mapping Γ 7→ U is not continuous in general.
However, by Theorem 1 below, it is lower semicontinuous in the sense that,
for Γn converging to Γ, lim inf Un ≥ U . Also, by Theorem 2, the mapping
is continuous from below in the sense that, when the Γn increase to Γ, then
limUn = U .

Dubins and Savage studied in detail the interesting special class of gam-
bling problems they called casinos. They observed ([2], page 76) that a
discontinuity occurs when a sequence of superfair casinos converges to a fair
casino (cf. Example 3 below). They surmised that this might be the only
source of discontinuity for casinos with a fixed goal. For the definition of
convergence used here, Example 5 shows that a discontinuity can occur even
when all the casinos are subfair. However, Dubins and Meilijson (1974)
proved a continuity theorem for subfair casinos using a quite different notion
of distance.

There is related work available for control problems formulated as Markov
decision processes including some very general results for finite horizon and
discounted models given by Langen (1981). There is little overlap with the
main results here, which concern infinite horizon problems with no discount-
ing.

The next section presents the necessary definitions and some general back-
ground material on the Dubins-Savage theory; section 3 defines the notion
of convergence to be used; section 4 has the main convergence results; and
sections 5 and 6 are about the special case of casinos.
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2 Preliminaries

A Dubins-Savage gambling problem is composed of a state space or fortune
space X, a gambling house Γ, and a utility function u. The gambling prob-
lems of this paper are assumed to be measurable in the sense of Strauch
(1967). This means that X is assumed to be a nonempty Borel subset of a
complete separable metric space. So, in particular, X is separable metric.
The gambling house Γ is a function that assigns to each x ∈ X a nonempty
set Γ(x) of probability measures defined on the Borel subsets B(X) of X.
Let P(X) be the set of all probability measures defined on B(X) and give
P(X) the usual weak* topology. The set {(x, γ) : γ ∈ Γ(x)} is assumed to
be a Borel subset of the product space X × P(X). The utility function is
a mapping from X to the real numbers with the usual interpretation that
u(x) represents the value to a player of each state x ∈ X. In this paper we
assume that u is bounded and Borel measurable.

A strategy σ is a sequence σ0, σ1, . . . such that σ0 ∈ P(X), and, for n ≥ 1,
σn is a universally measurable mapping from Xn into P(X). A strategy σ is
available in Γ at x if σ0 ∈ Γ(x) and σn(x1, . . . , xn) ∈ Γ(xn) for every n ≥ 1
and (x1, . . . , xn) ∈ Xn.

Every strategy σ determines a probability measure, also denoted by σ, on
the Borel subsets of the infinite history space H = X×X×· · · with its prod-
uct topology. Let X1, X2, . . . be the coordinate process on H. Then, under
σ, X1 has distribution σ0 and, for n ≥ 1, Xn+1 has conditional distribution
σn(x1, . . . , xn) given X1 = x1, . . . , Xn = xn.

We will concentrate on leavable gambling problems in which a player
chooses a time to stop play as well as a strategy. A stop rule is a universally
measurable function from H into {0, 1, . . .} such that whenever t(h) = n and
h′ agrees with h in the first n coordinates, then t(h′) = n. It is convenient to
assume, as we now do, that, for all x, the point mass measure δ(x) ∈ Γ(x).
This does not affect the value of the optimal reward function defined below,
but does simplify some algebraic expressions in the sequel.

A player, who begins with fortune x selects a strategy σ available at x
and a stop rule t. The player’s expected reward is then∫

u(Xt) dσ
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where X0 = x. The optimal reward function is defined for x ∈ X to be

U(x) = sup

∫
u(Xt) dσ

where the supremum is over all σ at x and all stop rules t. The n-day optimal
reward function Un is defined, for n ≥ 1 in the same way except that stop
rules are restricted to satisfy t ≤ n.

The one-day operator G = GΓ is defined on the collection M(X) of
bounded universally measurable functions g by

Gg(x) = sup{
∫
g dγ : γ ∈ Γ(x)}, x ∈ X.

By Theorem 2.15.1 of [2], the n-day optimal rewards Un can be calculated
by backward induction using G:

U1 = Gu, Un+1 = GUn. (2.1)

Because the universal measurability of the Un was shown in [8], the operator
G is well-defined on these n-day optimal reward functions. Notice that

Un = Gnu (2.2)

where Gn is the composition of G with itself n times. Furthermore, it follows
easily from the definitions of U and the Un that

Un ≤ Un+1 ≤ U and U = lim
n
Un. (2.3)

3 Convergence of gambling houses

To define a notion of convergence for gambling houses on X, first let dV be
the total variation distance defined for probability measures γ, λ ∈ P(X) by

dV (γ, λ) = sup{|
∫
g dγ −

∫
g dλ| : g ∈M(X), ‖g‖ ≤ 1}

where ‖g‖ = sup{|g(x)| : x ∈ X} is the supremum norm.
Next let dH be the Hausdorff distance on subsets of P(X) associated with

dV ; that is, for subsets C, D of P(X) let

dH(C,D) = inf{ε ≥ 0 : C ⊆ Dε, D ⊆ Cε},
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where Dε (respectively, Cε) is the set of all γ ∈ P(X) such that dV (γ,D) ≤ ε
(respectively, dV (γ, C) ≤ ε). Finally, for gambling houses Γ,Λ on X, let

D(Γ,Λ) = sup
x∈X

dH(Γ(x),Λ(x)).

A sequence of houses Γn is now said to converge to Γ if D(Γn,Γ)→ 0 and we
write Γn → Γ if this holds. Note that Γn → Γ means that dH(Γn(x),Γ(x))→
0 uniformly in x.

Remark 1. Other measures of distance for gambling houses can be obtained
by following the procedure above starting from a different measure of distance
on P(X). For example, suppose that the topology on the state space X is
given by a bounded metric, say ρ : X × X 7→ [0, 1] and define the space of
1-Lipschitz functions:

L(X) = {g : g : X 7→ R, (∀x, y)(|g(x)− g(y)| ≤ ρ(x, y))}.

The well-known Kantorovich metric on P(X) is

dK(γ, λ) = sup{
∫
g dγ −

∫
g dλ : g ∈ L(X)}

= sup{|
∫
g dγ −

∫
g dλ| : g ∈ L(X)}.

The corresponding Hausdorff distance dHK on subsets of P(X) and the dis-
tance DK on gambling houses can be defined by analogy with dH and D above.
It is easy to see (and probably well-known) that dK is dominated by dV . It
follows that DK is dominated by D.

4 Continuity

The following trivial example shows that the mapping Γ 7→ U is not con-
tinuous in general for the distance D defined above. Some more interesting
examples will be given in the final section.

Notation: When a sequence {Γn} is considered below, the notation Un is
used for the optimal reward function of the house Γn, for each n, in order
to avoid confusing it with the n-day optimal reward Un of a given house Γ.
Similarly, Un

k = Gk
Γn
u is written for the k-day optimal reward function for

Γn.
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Example 1. Let X = {0, 1} and u(0) = 0, u(1) = 1. Suppose that Γ(0) =
{δ(0)} , Γ(1) = {δ(1)} and, for n ≥ 1, Γn(0) = {δ(0), (1 − 1/n)δ(0) +
(1/n)δ(1)} ,Γn(1) = {δ(1)}. Then Γn → Γ, but Un(0) = 1 for all n ≥ 1
and U(0) = 0.

Continuity does hold for finite horizon problems and there is a form of
lower semicontinuity in general.

Theorem 1. Suppose that Γn → Γ. Then

(a) ‖Un
k − Uk‖ → 0 as n→∞, for all k ≥ 1,

(b) lim infn U
n(x) ≥ U(x), for all x ∈ X.

A lemma is needed for the proof.

Lemma 1. Let u, v ∈ M(X); γ, λ ∈ P(X); C,D be nonempty subsets of
P(X); and Γ and Λ be gambling houses on X. Then the following hold:

(i) |
∫
u dγ −

∫
u dλ| ≤ ‖u‖ · dV (γ, λ),

(ii) | supγ∈C
∫
u dγ − supλ∈D

∫
u dλ| ≤ ‖u‖ · dH(C,D),

(iii) |GΓu(x)−GΛu(x)| ≤ ‖u‖ · dH(Γ(x),Λ(x)) ≤ ‖u‖ ·D(Γ,Λ), x ∈ X,

(iv) | supγ∈C
∫
u dγ − supγ∈C

∫
v dγ| ≤ ‖u− v‖,

(v) |GΓu(x)−GΓv(x)| ≤ ‖u− v‖, x ∈ X,

(vi) ‖Gk
Γu−Gk

Λu‖ ≤ k‖u‖ ·D(Γ,Λ).

Proof. Part (i) is clear if ‖u‖ = 0. If not, then

|
∫
u dγ −

∫
u dλ| = ‖u‖ · |

∫
u

‖u‖
dγ −

∫
u

‖u‖
dλ| ≤ ‖u‖ · dV (γ, λ)

where the inequality is by definition of dV .
For part (ii), let ε > 0 and choose γ∗ ∈ C such that∫

u dγ∗ ≥ sup
γ∈C

∫
u dγ − ε.
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Then

sup
γ∈C

∫
u dγ − sup

λ∈D

∫
u dλ ≤

∫
u dγ ∗ − sup

λ∈D

∫
u dλ+ ε

= inf
λ∈D

[

∫
u dγ ∗ −

∫
u dλ] + ε

≤‖u‖ · inf
λ∈D

dV (γ∗, λ) + ε

=‖u‖ · dV (γ∗, D) + ε ≤ ‖u‖ · dH(C,D) + ε.

The second inequality in the calculation above is by part (i). Because ε is
arbitrary, it follows that

sup
γ∈C

∫
u dγ − sup

λ∈D

∫
u dλ ≤ ‖u‖ · dH(C,D).

By symmetry, the same inequality holds when the left hand side is replaced
by its negative. So part (ii) follows.

The first inequality of part (iii) is the special case of part (ii) when C =
Γ(x) and D = Λ(x). The second inequality is by definition of the distance
D.

For part (iv), calculate as follows:

sup
γ∈C

∫
u dγ = sup

γ∈C

∫
((u− v) + v) dγ

≤ sup
γ∈C

∫
(u− v) dγ + sup

γ∈C

∫
v dγ

≤‖u− v‖+ sup
γ∈C

∫
v dγ.

By symmetry, the same inequality holds with u and v interchanged, and part
(iv) follows.

Part (v) is the special case of part (iv) when C = Γ(x).
The proof of part (vi) is by induction on k. The case k = 1 is by part

(iii). Assume the desired inequality holds for k, and calculate as follows:

‖Gk+1
Γ u−Gk+1

Λ u‖ =‖GΓ(Gk
Γu)−GΛ(Gk

Λu)‖
≤‖GΓ(Gk

Γu)−GΛ(Gk
Γu)‖+ ‖GΛ(Gk

Γu)−GΛ(Gk
Λu)‖

≤‖Gk
Γu‖ ·D(Γ,Λ) + ‖Gk

Γu−Gk
Λu‖

≤‖u‖ ·D(Γ,Λ) + k‖u‖ ·D(Γ,Λ).
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The penultimate inequality uses parts (iii) and (v); the final inequality uses
the easily checked fact that ‖Gk

Γu‖ ≤ ‖u‖ and the inductive assumption.

Now, to prove part (a) of Theorem 1, apply part (vi) of the lemma to see
that

‖Un
k − Uk‖ = ‖Gk

Γn
u−Gk

Γu‖ ≤ k‖u‖ ·D(Γn,Γ),

which converges to 0 as n→∞ by hypothesis.
To prove part (b) of the theorem, let ε > 0 and x ∈ X. By (2.3) there

exists k so that Uk(x) = Gk
Γu(x) ≥ U(x)− ε. By part (a),

|Un
k (x)− Uk(x)| → 0 as n→∞.

Hence,
lim inf

n
Un(x) ≥ lim inf

n
Un
k (x) = Uk(x) ≥ U(x)− ε.

Because ε is arbitrary, the proof of part (b) is complete.

Remark 2. A version of Theorem 1 can be proved for the distance DK, which
arises from the Kantorovich distance dK on P(X) as explained in Remark
1. For the proof of the analogue of part (vi) of Lemma 1, one needs to know
that if u is 1-Lipschitz, then the same is true of GΓu and GΛu. A condition
on a gambling house Γ, called Λ(1), is given in [4] that guarantees that GΓ

preserves the space L(X) of 1-Lipschitz functions. Using this result, one can
show that if Γn converges to GΓ in DK distance and if GΓ and all the Γn
satisfy Λ(1), then parts (a) and (b) of Theorem 1 hold as before.

Suppose now that the houses Γn approach Γ from below so that, in partic-
ular, Un ≤ U for all n. Thus, if D(Γn,Γ)→ 0, then, by Theorem 1, Un → U .
However, the convergence condition is not needed in this case.

Theorem 2. Suppose that, for all x ∈ X and all n, Γn(x) ⊆ Γn+1(x) ⊆ Γ(x),
and ∪nΓn(x) = Γ(x). Then limn U

n(x) = U(x) for all x.

Proof. Let Q = limn U
n. The limit is well-defined since Un ≤ Un+1 for all

n. These inequalities hold because all strategies available in each Γn are also
available in Γn+1. Also u ≤ Q ≤ U because u ≤ Un ≤ U for all n. To show
Q ≥ U , it suffices to verify that Q is excessive for Γ ([2], Theorem 2.12.1 or
[5], Lemma 3.1.2). That is, it suffices to show that, for x ∈ X and γ ∈ Γ(x),
that

∫
Qdγ ≤ Q(x). Now γ ∈ Γ(x) implies that γ ∈ Γn(x) for n sufficiently
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large. Also Un is excessive for Γn ([2], Theorem 2.14.1 or [5], Lemma 3.1.4),
so

∫
Un dγ ≤ Un(x) for n sufficiently large. Hence, for γ ∈ Γ(x),∫

Qdγ =

∫
lim
n
Un dγ = lim

n

∫
Un dγ ≤ lim

n
Un(x) = Q(x).

There is no result analogous to Theorem 2 for the case when the Γn
approach Γ from above. This is illustrated by the following example.

Example 2. Let X, u,Γ be as they were in Example 1. For n ≥ 1, define

Γn(1) = {δ(1)}, Γn(0) = {δ(0)} ∪ {(1− 1/k)δ(0) + (1/k)δ(1) : k ≥ n}.

Then Γn+1(x) ⊆ Γn(x), and ∩nΓn(x) = Γ(x) for all n and x = 0, 1. However,
U(0) = 0 and Un(0) = 1 for all n.

5 Red-and-Black Casinos

Dubins and Savage ([2], page 76) expressed particular interest in the conti-
nuity properties of the special class of gambling problems they called casinos
with a fixed goal. These problems have the fortune space X = [0,∞) and
the utility function u equal to the indicator of [1,∞). So the objective of a
gambler is to reach a fortune of at least 1. The gambling house must satisfy
two conditions expressed colorfully in [2] as “a rich gambler can do whatever
a poor one can do” and “a poor gambler can, on a small scale, imitate a rich
one.” For the formal definition, see [2], page 64.

The next section has three examples to illustrate how discontinuities can
occur in the special case of casinos with a fixed goal, and to answer, in part,
the question raised by Dubins and Savage about such discontinuities. See
Dubins and Meilijson [1] for another approach to the same question.

The examples to follow will, for convenience, be based on the red-and-
black casinos of Dubins and Savage ([2], Chapter 5). For each w ∈ [0, 1], the
red-and-black casino with parameter w is the gambling house Γw defined by

Γw(x) = {γw(s, x) : 0 ≤ s ≤ x}, x ∈ [0,∞)

where
γw(s, x) = wδ(x+ s) + w̄δ(x− s).

9



(Here δ(y) is the point mass at y and w̄ = 1 − w.) The optimal reward
function for Γw is denoted by Uw.

Here are a few facts from [2]:

1. For 1/2 < w ≤ 1, Γw is superfair and Uw(x) = 1 for all x > 0.

2. For w = 1/2, Γw is fair and Uw(x) = x for 0 ≤ x ≤ 1.

3. If 0 < w < 1/2, Γw is subfair and Uw is continuous, strictly increasing
on [0,1] with 0 < Uw(x) < x for 0 < x < 1. An optimal strategy for Γw in
the subfair case is bold play which stakes s(x) = min(x, 1− x) whenever the
current state is x ∈ [0, 1]; that is, bold play uses the gamble γw(s(x), x) at x.

4. If 0 < w < w′ < 1/2, then Uw(x) < Uw′(x) for 0 < x < 1. (This follows
from item 3 since it is easily seen that bold play in Γw is less likely to reach
one than bold play in Γw′ from an x ∈ (0, 1).)

5. For w = 0, Γw is trivial and Uw(x) = 0 for 0 ≤ x < 1.

Another trivial casino is ΓT defined by ΓT (x) = {δ(x)} for all x. Obvi-
ously, the optimal reward function UT of ΓT satisfies VT (x) = 0 for 0 ≤ x < 1.

6 Three Examples

The first example is an instance of the phenomenon mentioned by Dubins
and Savage ([2], page 76).

Example 3. A sequence of superfair casinos converging to a fair casino.
Let 1/2 < wn < 1 for all n and suppose that wn → 1/2 as n→∞. A sim-

ple calculation shows, for all x ≥ 0, 0 ≤ s ≤ x, that dV (γwn(s, x), γ1/2(s, x)) ≤
2(wn−1/2). Consequently, dH(Γwn(x),Γ1/2(x)) ≤ 2(wn−1/2) for all x so that
Γwn → Γ1/2. However, by items 1 and 2 of the previous section, Uwn(x) = 1
and U1/2(x) = x for 0 < x < 1. Hence Uwn does not converge to U1/2.

The next two examples use modifications of red-and-black defined for
0 ≤ w ≤ 1, x ≥ 0, n ≥ 1 by

Γw,n(x) = {γw(s, x, n) : 0 ≤ s ≤ x}

where

γw(s, x, n) =
w

n
δ(x+ s) + (1− 1

n
)δ(x) +

w̄

n
δ(x− s).
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Notice that a gambler playing at position x in the casino Γw,n, n > 1 can,
by repeatedly using γw(s, x, n), eventually achieve the same outcome as a
gambler playing at position x in Γw = Γw,1 who uses γw(s, x).

By bold play in the house Γw,n is meant the strategy that uses the gamble
γw(s(x), x, n) whenever the current state is x ∈ [0, 1]. As before s(x) =
min(x, 1− x).

Lemma 2. Assume 0 < w ≤ 1/2. Then, for all n ≥ 1, bold play is optimal
in the house Γw,n and the optimal reward function Uw,n for Γw,n equals the
optimal reward function Uw for Γw.

Proof. Let x,X1, X2, . . . be the process of fortunes of a gambler who begins
with x and plays boldly in the house Γw,n. Let Y1 be the first Xn that
differs from x. Clearly, the distribution of Y1 is γw(s(x), x). If Y1 equals 0
or 1, let Y2 = Y1. If 0 < Y1 < 1, let Y2 be the next Xn different from Y1.
Then the conditional distribution of Y2 given that Y1 = y1 is γw(s(y1), y1).
Continue in this fashion to define x, Y1, Y2, . . . and note that this process has
the same distribution as the process of fortunes for a gambler who begins with
x and plays boldly in the house Γw. Now the probability that the process
x,X1, X2, . . . reaches 1 is the same as that for the process x, Y1, Y2, . . ., and
this probability equals Uw(x) by item 3 of the previous section. So the
gambler playing in Γw,n can reach 1 from x with probability at least Uw(x)
and, hence, Uw,n(x) ≥ Uw(x).

For the opposite inequality, it suffices to show that Uw is excessive for
Γw,n ([2], Theorem 2.12.1 or [5], Theorem 3.1.1). To see that this is so, let
0 < x < 1, 0 ≤ x ≤ s and consider∫

Uw dγw(s, x, n) =
w

n
· Uw(x+ s) + (1− 1

n
) · Uw(x) +

w̄

n
· Uw(xs)

=
1

n
·
∫
Uw dγw(s, x) + (1− 1

n
) · Uw(x)

≤ Uw(x).

The last inequality holds because Uw is excessive for Γw ([2], Theorem 2.14.1
or [5], Theorem 3.1.1).

It now follows that bold play is optimal at x in the house Γw,n because it
reaches 1 with probability Uw(x) = Uw,n(x).
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Example 4. A sequence of subfair casinos converging to a trivial casino.
Let 0 < w < 1/2 and consider the sequence of casinos Γw,n. If 0 <

x < 1, 0 ≤ s ≤ x, then dV (γw(s, x, n), δ(x)) ≤ 1/n and it follows that
dH(Γw,n(x),ΓT (x)) ≤ 1/n where ΓT is the trivial house from the previous
section. Thus Γw,n → ΓT . By Lemma 1 and item 3 of the previous section,
Uw,n(x) = Uw(x) > 0 = UT (x) for 0 < x < 1. So Uw,n does not converge to
UT .

Example 5. A sequence of subfair casinos converging to a subfair casino.
Let 0 < w < w′ < 1/2 and define Γn(x) = Γw(x) ∪ Γw′,n(x) for all n ≥ 1

and x ≥ 0.

Lemma 3. For every n ≥ 1 an optimal strategy in Γn is to play boldly in
Γw′,n. Hence, the optimal reward function of Γn is Un = Uw′ for all n.

Proof. By Lemma 1, Uw′ = Uw′,n for all n and bold play is optimal for the
house Γw′,n. Clearly, Un ≥ Uw′ because every strategy available in Γw′,n is also
available in the larger house Γn. To see that the reverse inequality Un ≤ Uw′

also holds, it suffices to show that Uw′ is excessive for Γn ([2], Theorem
2.12.1). Now Uw′ is certainly excessive for Γw′,n since it is the optimal reward
function for this house. So it suffices to show that γw(s, x)Uw′ ≤ Uw′(x) for
x ≥ 0, 0 ≤ s ≤ x. But∫

Uw′ dγw(s, x) = w · Uw′(x+ s) + w̄ · Uw′(x− s)

≤ w′ · Uw′(x+ s) + w̄′ · Uw′(x− s)

=

∫
Uw′ dγw′(s, x) ≤ Uw′(x).

The first inequality above holds because w < w′ and Uw′ is nondecreasing;
the final inequality holds because Uw′ is excessive for Γw′ .

As in the previous example, Γw′,n converges to the trivial house ΓT . Since
δ(x) = γw(0, x) ∈ Γw(x) for all x, the trivial house is a subhouse of Γw. So
it is easy to conclude that Γn converges to Γw. By item 4 of the previous
section, Uw(x) < Uw′(x) for 0 < x < 1; so the optimal reward functions
Un = Uw′ do not converge to the value function Uw
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Remark 3. It was proved in [4] that subfair casinos satisfy the condition
Λ(1) mentioned in Remark 2 and also that they are non-expansive for the
Kantorovitch metric, that is dK(Γ(x),Γ(y)) ≤ d(x, y). Moreover, a subfair
casino induces an acyclic law of motion (any monotone and strictly con-
cave function decreases in expectation along the trajectories). Nevertheless,
example 5 shows that continuity fails even in that case.

7 Continuous-time problems

Perhaps there is a version of Theorem 1 that holds for continuous-time
stochastic control problems, and perhaps the results of Dubins and Meili-
json [1] generalize to the case of continuous-time casinos as formulated by
Pestien and Sudderth [6]. It does seem likely that the examples of section 6
can be adapted to continuous-time.

Acknowledgement We thank Roger Purves for reminding us of the article
by Dubins and Meilijson.
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