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Abstract: We consider theCapacitated Multi-Layer Network Design with Unsplit-

table demands (CMLND-U) problem. Given a two-layer network and a set of

traffic demands, this problem consists in installing minimum cost capacities on

the upper layer so that each demand is routed along a unique ”virtual” path (even

using aunique capacity on each link) in this layer, and each installed capacity is in

turn associated a ”physical” path in the lower layer. This particular hierarchical

and unsplittable requirement for routing arises in the design of optical networks,

including optical OFDM based networks. In this paper, we give an ILP formu-

lation to the CMLND-U problem and we take advantage of its sub-problems to

provide a partial characterization of the CMLND-U polytope including several

families of facets. Based on this polyhedral study, we develop a branch-and-cut

algorithm for the problem and show its effectiveness though a set of experiments,

conducted on random, realistic and real instances.

Key words: Multi-layer network design, optical networks, polytope, facet, branch-

and-cut
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1 Introduction

User demand in traffic has increased significantly during the last decades. Nowadays telecommu-

nication networks are already reaching their limits, and it is necessary to upgrade their transport

capacity. Indeed, the arising of new services, mainly driven by internet applications and multi-

media contents, requires more flexible and cost-effective network infrastructures. To overcome

this explosive growth of traffic (estimated at 45 % per year in average (23)), telecommunication

industry actors investigate new technologies that provide a solution to the increasing capacity re-

quirements, as well as the flexibility needed to use smartly this capacity.

Telecommunication networks can be seen as an overlapping of multiple layers, upon which

different services may be furnished. In particular, optical fibers networks consist of two layers : a

physical layer and a virtual layer. The physical layer is based on optical fibers, while the virtual

one supports the WDM (Wavelength Division Multiplexing) technology. Such a process is based

on a set of devices referred to as multiplexers, interconnected by optical links, made of several

wavelengths. Both layers are connected, as the wavelengths of the virtual layer use the optical

fibers of the physical layer as a support to carry the customers traffic.

Although WDM technology is currently used to transport informations over long distances

(metropolitan areas, submarine communication cables), with wavelength capacities of 2.5, 10 or

40Gb/s, it is not possible to reach similar distances with higher capacities. In fact, the existence

of physical phenomena, also called transmission impairments (13), that affect the optical fibers,

highlights the difficulty of setting up higher capacitated wavelengths on long distances. Recent in-

novations in optical fibers comunications concerning a new technology called Multi-band Orthog-

onal Frequency Division Multiplexing (OFDM) have shown very promising results, and should

enable the transition of WDM-based infrastructures to high capacitated wavelengths (100 Gb/s

and more) over long distances. OFDM is based on the division of each available wavelength into

many subwavelengths, also called subbands, this is known asOptical Multi-band OFDM network.

Now consider an optical multi-band OFDM network that consists of an OFDM/WDM network

over a fiber layer. The OFDM/WDM layer is calledvirtual layer and the fiber layer is called

physical layeras well. The OFDM/WDM layer is composed of devices calledReconfigurable
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Optical Add-Drop Multiplexers(ROADM), which are interconnected by virtual link. A virtual

link may receive one or many OFDM subbands. Note that, although a subband is said to be

installed over a virtual link, it is in fact generated by a pair of ROADMs at the extremities of the

link. The physical layer is composed of several transmission nodes interconnected by physical

links. Each physical link contains two optical fibers, so that the traffic can be transported in both

directions. The physical and virtual layers are communicating via an interface referred to as OEO

(Optical-Electrical-Optical) interface.

Figure 1: Example of multilayer network

Each ROADM in the virtual layer is associated with a transmission node in the physical layer.

And every link in the virtual layer carries one or several subbands. We suppose that there exists a

link between each pair of ROADMs in the virtual layer, as one or many subbands may eventually

be installed between any pair of devices. Each subband installed over a virtual link is assigned a

path in the physical layer. A link in the physical layer can be assigned to several different sub-

bands. However, due to technical aspects of OFDM technology, a physical link can be assigned

at most once to an installed subband. In practice, one or many ROADMs may be installed upon

a transmission node. However, we assume that all the subbands installed over a virtual link are
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produced by a unique pair of ROADMs, set up on the extremities of this link. In addition, estab-

lishing a subband yields a certain cost, which is the cost of ROADMs that generate this subband.

We assume that we have a traffic matrix, where each element is a point-to-point traffic demand

that may correspond to a given service, internet application or a multimedia content. This traffic

demand has a value that is an amount of informations measured in Mb/s or Gb/s.

Figure 1 shows a bilayer network. The virtual layer includes four ROADMs denotedR1,R2,R3

andR4, while physical layer contains six transmission nodes denotedT1 toT6. We can see thatR1,

R2,R3 andR4 are connected toT1, T2, T3 andT4 via OEO interfaces. In addition, there exists a link

between each pair of installed ROADMs. Remark that nodesR5 andR6 have not been represented

in the figure, as they do not carry any ROADM. Furthermore, three subbands are represented in

the figure, respectively installed on the links(R1, R2), (R1, R3) and(R1, R4). The traffic using

these virtual links is in fact transmitted through paths made of optical fibres in the physical layer.

Indeed, the link(R1, R2) is associated with the path(T1, T2), while (R1, R3) is assigned the path

(T1, T4), (T4, T3) and(R1, R4) is physically routed by(T1, T6), (T6, T4). It should be pointed out

that there are two levels of routing in such networks. The traffic is routed using subbands installed

on the virtual links, and the subbands themselves may be seen as demands for the physical layer.

Thus, when given those two layers of network and a traffic matrix, one may determine the set of

virtual links that will receive the subbands, and the set of physical links involved in the routing of

those subbands, and establish the traffic commodities routing.

In this context, we are interested in a problem related to the design of OFDM/WDM networks.

Thereby, assume that we are given an optical fiber layer, an OFDM/WDM layer and a traffic

matrix. TheCapacitated Multi-Layer Network Design with Unsplittable Demands(CMLND-U)

problem consists in determining the number of subbands to be installed over the virtual links, and

their physical path as well, so that the traffic can be routed on the virtual layer and the cost of the

design is minimum. This work was initially motivated by a collaboration with Orange Labs, whose

engineers are also interested in evaluating the performances of OFDM-based networks. For this

reason, and throughout the paper, we will use this context to explain our model and the results we

will provide.
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Actually, the problem of designing layered networks have been studied first by (15). Authors

wish to set up a set of virtual links referred to as “pipes” on the physical layer. They propose an

integer linear programming formulation based on cut constraints for the problem. They study the

associated polytope and provide several classes of valid inequalities that define facets under some

conditions which are described. They also provide a cutting planes based algorithm embedding

their theoretical results. Further works consider exact methods for different variants of the mul-

tilayer network design. In fact, in (27), Orlowski etal. propose a cutting planes approach for

solving two-layer network design problems, using different MIP-based heuristic allowing to find

good solutions early in the Branch-and-Cut tree. Belotti etal. (7) investigate the design of multi-

layer networks using MPLS technology. They propose a mathematical programming formulation

based on paths, then apply a Lagrangian relaxation working with a column generation procedure

to solve their model. We also cite a more recent work of Raghavan and Stanojević (32) that study

the two-layer network design arising in WDM optical networks. They consider the non-splittable

traffic demands and propose a path based formulation for the problem. They provide an exact

Branch-and-Price algorithm which solves simultaneously the WDM topology design and the traffic

routing subproblems. In (28), the authors address the problem of planning multilayer SDH/WDM

networks. They consider the minimum cost installation of link and node hardware for both lay-

ers, under various practical constraints such as heterogeneity of traffic bit-rates, node capacities

and survivability issues. They propose a mixed integer programming formulation and develop a

Branch-and-Cut algorithm using non-trivial valid inequalities, from the single-layer network de-

sign problem, to solve it. In (16), the authors study the multi-layer network design problem. They

propose a Branch-and-Cut algorithm to solve a capacity formulation based on the so-called metric

inequalities, enhancing the results obtained in (22) for the same formulation. In (24), Mattia studies

two versions of the two-layer network design problem. In particular, the author proposes capacity

formulations for both versions and investigates the associated polyhedra. Some polyhedral results

are provided for both versions of the problem, specifically proving that the so-called tight metric

inequalities, introduced in (5), define all the facets of the considered polyhedra. The author shows

how to extend these polyhedral results to an arbitrary number of layers. In (12), Borne etal. study
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the problem of designing an IP-over-WDM network with survivability against failures of the links.

They conduce a polyhedral study of the problem, give several facet defining valid inequalities, and

propose a Branch-and-Cut algorithm to solve the problem.

Our contribution

The capacitated design of single-layer networks has received a lot of attention in the litera-

ture, and a big amount of research has been conducted on the associated polyhedron. Yet the

investigation of capacitated multilayer network design problems received only a limited atten-

tion, specifically in a polyhedral point of view. The objective of this paper is to investigate the

CMLND-U problem within a polyhedral framework, and to provide an efficient Branch-and-Cut

algorithm to solve it. In this context, we give an integer linear programming formulation for the

problem and study the polyhedron associated with its solutions. We then introduce further classes

of valid inequalities and study their facial structure. These inequalities are used within an efficient

Branch-and-Cut algorithm for the CMLND-U problem.

The rest of the paper is organized as follows. In Section 2, we describe the CMLND-U problem

in terms of graphs and give an ILP formulation to model it. In Section 3, we present the CMLND-

U polyhedron and study its basic properties. We then introduce several classes of facet-defining

valid inequalities. These results are used to devise a Branch-and-Cut algorithm which is described

in Section 4. Several series of experiments are conducted and Section 5 is devoted to present a

summary of the obtained numerical results. Finally, we give some concluding remarks in Section

6.

2 The capacitated multi-layer network design problem with
unsplittable demands

2.1 Definition and notations

In terms of graphs, the CMLND-U problem can be presented as follows. We associate with the

virtual layer, a directed graphG1 = (V1, A1). G1 is a complete graph whereV1 is the set of nodes

andA1 the set of arcs. Each nodev ∈ V1 corresponds to a ROADM and each arce ∈ A1

corresponds to a virtual link between a pair of ROADMs. In addition,G1 is a bi-directed graph,

6



i.e. there exists two arcs(u, v) ∈ A1 and(v, u) ∈ A1, connecting each pair of nodesu andv of

V1. Consider the directed graphG2 = (V2, A2) that represents the physical layer of the optical

network.V2 denotes the set of nodes andA2 is the set of arcs. Each nodev′ ∈ V2 corresponds to a

transmission node and each arca ∈ A2 corresponds to an optical fibre. Every nodeu in V1 has its

corresponding nodeu′ in V2. The graphG2 is such that if there exists an arc(u′, v′) between two

nodesu′ andv′ of V2, then(v′, u′) is also inA2. In this way, the link can be used in both directions

betweenu′ andv′.

Suppose that we haven ∈ Z+ available subbands. We denote byW = {1, 2, ..., n}, the set

of indices associated with these subbands. Every subbandw ∈ W has a certain capacityC and

a costc(w) > 0. Moreover, a subband installed over an arce ∈ A1 can be seen as a copy of this

arc. Each pair(e, w) such thatw is installed over the arce = (u, v), is associated with a path in

G2 connecting nodesu′ andv′. The same path inG2 may be assigned to different subbands of

W . Nevertheless, an arca ∈ A2 can be associated at most once with a given subbandw. In other

words, if the subbandw is installedp times,p ∈ Z+, over different arcse1, . . . , ep of A1, then the

pairs(ei, w), i = 1, . . . , p, have to be assignedp paths inG2 that are arc-disjoint. This comes from

an engineering restriction and will be called disjunction constraint. In addition to the design cost,

we will also attribute a physical routing cost denotedbew(a) for every arca of A2 involved in the

routing of a pair(e, w) such thatw is installed one.

Now letK be a set of commodities inG1. Each commodityk ∈ K has an origin nodeok ∈ V1,

a destination nodedk ∈ V1 and a traffic valueDk > 0. We suppose, thatDk ≤ C, for all k ∈ K.

Note that there might exist different commodities with the same origin and destination. A routing

path inG1 has to be assigned to each commodityk ∈ K connecting its origin and its destination.

Every section of a routing path uses the subbands installed over the arcs ofA1. Thereby, we will

say that a pair(e, w), e ∈ A1, w ∈ W is used by a commodityk, if w is installed one and(e, w)

is involved in the routing ofk. Furthermore, several commodities are allowed to use the same

subband(e, w), if they fit in its capacity. However, one commodity can not be split into several

subbands or several paths.

Definition 1. Capacitated Multi-Layer Network Design with Unsplittable demands (CMLND-U)
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problem: Given two bi-directed graphsG1 andG2, a set of subbandsW , the installation costc(w)

for each subbandw, and a set of commoditiesK, determine a set of subbands to be installed over

the arcs ofG1 such that

(i) the commodities can be routed inG1 using these subbands,

(ii) paths inG2, respecting the disjunction constraint, are associated with the installed subbands,

(iii) the total cost is minimum.

2.2 Integer linear programming formulation

Given a digraphG = (V , A) and a node setT ⊂ V , we denote byδ+
G(T ) (resp. δ−

G(T )), the set of

arcs ofA having their initial node (resp. terminal node) inT and their terminal node (resp. initial

node) inV \ T , that is to sayδ+
G(T ) = {a = (u, v) ∈ A with u ∈ T andv /∈ T}.

Now we will present an integer linear programming formulation using three sets of variables.

First, let thedesign variablesy ∈ RA1×W be such that, for each arce ∈ A1 and for each subband

w ∈ W , yew takes the value 1, ifw is installed one, and 0 otherwise. Let therouting in G2

variablesz ∈ RA1×W×A2 be such that for each arce ∈ A1, for each subbandw ∈ W and for

each arca ∈ A2, zewa takes the value 1 ifa belongs to the path inG2 associated with pair (e, w),

and 0 otherwise. Finally, we denote byx ∈ RK×A1×W the routing variables such that for each

commodityk ∈ K, for each arce ∈ A1 and for each subbandw ∈ W , xkew takes the value 1 ifk

uses (e,w) for its routing inG1, and 0 otherwise.

An instance of CMLND-U is defined by the quadruplet(G1, G2, K, C). Let S(G1, G2, K, C)

denote the set of feasible solutions of the CMLND-U problem, associated with an instance(G1, G2, K, C).

The CMLND-U problem is then equivalent to the following ILP:
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min
∑

e∈A1

∑

w∈W

c(w)yew +
∑

e∈A1

∑

w∈W

∑

a∈A2

bew(a)zewa (1)

∑

e∈δ+
G1

(T )

∑

w∈W

xkew ≥ 1,
∀k ∈ K, ∀T ⊂ V1,
∅ 6= T 6= V1, ok ∈ T, dk /∈ T,

(2)

∑

k∈K

Dkxkew ≤ Cyew, ∀e ∈ A1, ∀w ∈ W, (3)

∑

a∈δ+
G2

(T )

zewa ≥ yew,
∀e = (u, v) ∈ A1, ∀w ∈ W,
∀T ⊂ V2, ∅ 6= T 6= V2, u

′ ∈ T, v′ /∈ T,
(4)

∑

e∈A1

zewa ≤ 1, ∀w ∈ W, ∀a ∈ A2, (5)

xkew ∈ {0, 1}, ∀k ∈ K, ∀e ∈ A1, ∀w ∈ W, (6)

yew ∈ {0, 1}, e ∈ A1, ∀w ∈ W, (7)

zewa ∈ {0, 1}, ∀e ∈ A1, ∀w ∈ W, ∀a ∈ A2. (8)

Inequalities (2) are thecut constraints. They will also be referred to asconnectivity constraints.

They ensure that a path inG1 exists for each commodityk between nodesok anddk. Inequalities

(3) are thecapacity constraintsfor each subband installed over an arc ofG1. They express the fact

that the flow using the subbandw on arce does not exceed the capacity ofw. They also ensure that

the overall capacity installed on arce is large enough to carry the traffic usinge. Inequalities (4) are

thesubband connectivity constraints. They guarantee, for each pair(e, w) wherew is installed on

e = (u, v), that a path inG2 is associated with(e, w) between nodesu′ andv′. Inequalities (5) are

referred to asdisjunction constraint. Finally, inequalities (6)-(8) are theintegrality constraints.

3 Associated polyhedron and valid inequalities

In this section, we introduce and discuss the CMLND-U polytope, that is the convex hull of the

solutions of problem (1)-(8). In what follows, we will assume thatG2 = (V2, A2) is also a complete

graph. This is a reasonable assumption, since the problem whenG2 is not complete can be reduced

to the case whenG2 is complete by introducing dummy arcs with large costs. We also make the

assumption that the number|W | of available subbands is sufficiently large for allowing the routing

of all commodities over a single arce ∈ A1, if this necessary. Note that such an assumption is
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resonable because the maximum number of subbands that can be potentially installed in practice

is indeed large regarding to the number of commodities. Of course, the costs will prevent the

installation of unnecessary subbands.

Given an instance of CMLND-U, defined by the quadruplet(G1, G2, K, C), we denote by

P (G1, G2, K, C) the convex hull of the incidence vectors ofS(G1, G2, K, C), that is

P (G1, G2, K, C) := conv{(x, y, z) ∈ RK×A1×W × RA1×W × RA1×W×A2 :

(x, y, z) satisfies (2)− (8)}

In what follows, we will characterize the dimension of polytopeP (G1, G2, K, C) and investi-

gate the facial aspect of inequalities (2)-(8).

Theorem 1. P (G1, G2, K, C) is full dimensional.

Proof. See Appendix A.

3.1 Capacitated Cutset Inequalities

Consider a partition ofG1 nodes in two subsetsT andT = V1\T , we denote byK(T ) (respectively

K(T )) the commodities ofK having their origin and destination nodes in the subsetT (respectively

in T ), while the remaining subset ofK will be denoted byK+(T ) andK−(T ). Note thatK+(T )

(respectivelyK−(T )) is the subset of commodities having their origin node inT (respectively in

T ) and their destination node inT (respectively inT ). We will also denote byD(K+(T )) the

total traffic amount ofK+(T ). In other words,D(K+(T )) =
∑

k∈K+(T ) D
k, andD(K−(T )) =

∑

k∈K−(T ) D
k. We further denote byBP (K+(T )) (resp. BP (K−(T ))) the smallest number of

subbands required inδ+G1
(T ) to route the commodities ofK+(T ). Actually, this value corresponds

to the optimal solution of thebin packingproblem withK+(T ) (resp. K−(T )) being the set of

items to be packed andC the capacity of a bin. For example, ifK+(T ) is composed by 3 demands

with 6 units of traffic andC = 10, thenBP (K+(T )) = 3. Again, this happens because the traffic

of a commodity can not be split into distinct subbands, even if they are installed in the same arc.

Proposition 1. Let∅ 6= T ( V1, then the following inequality

∑

e∈δ+
G1

(T )

∑

w∈W

yew > ⌈D(K+(T ))

C
⌉ (9)
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is valid forP (G1, G2, K, C).

Proof. The total capacity of the subbands installed over the cut must be greater than or equal to

the traffic amount of the commodities going fromT to T = V1\T and using the arcs of that cut.

Then, inequality

C
∑

e∈δ+
G1

(T )

∑

w∈W

yew > D(K+(T ))

is clearly valid forP (G1, G2, K, C). By dividing this byC and rounding up the right-hand side,

we obtain inequality (9).�

Theorem 2. Inequalities(9) define facets ofP (G1, G2, K, C) only if ⌈D(K+(T ))
C

⌉ = BP (K+(T )).

Proof. Given two nodesu andv of V1, we letK(u, v) be the set of commodities such thatK(u, v)

= {k ∈ K : ok = u, dk = v}. Now suppose that⌈D(K(u,v))
C

⌉ < BP (K(u, v)). In this case, (9)

can not be tight, since the commodities ofK(u, v) can not fit in⌈D(K(u,v))
C

⌉ subbands, and thus (9)

could not induce a proper face.�

Example 1. For example, ifK(u, v) = {k1, k2, k3} with Dk1 = Dk2 = Dk3 = 6, whileC = 10. In

this case, there is no solution ofP (G1, G2, K, C) such that
∑

e∈δ+
G1

(T )

∑

w∈W yew = ⌈K(u,v)
C

⌉ = 2.

Theorem 3. Inequalities(9) define facets ofP (G1, G2, K, C) if the following conditions hold.

(i) ⌈D(K+(T ))
C

⌉ = BP (K+(T )),

(ii) BP (K+(T ) ∪ {k}) = BP (K+(T )), for all k ∈ K \K+(T ),

(iii) for all k′ ∈ K+(T ), there existsk′′ ∈ K+(T ) such thatDk′ + Dk′′ 6 C,

(iv) for all k ∈ K+(T ), BP (K+(T ) \ {k}) = BP (K+(T )) - 1.

Proof. See Appendix B.

3.2 Flow Cutset inequalities

In what follows, we will describe a set of valid inequalities forP (G1, G2, K, C) that are a general-

ization of the capacitated cutset inequalities (9). Similar inequalities have been introduced by (14)

and were discussed in (3), (10) and (31) for network design problems where discrete modular

capacities are installed on the arcs of the graph.
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Proposition 2. Consider a non empty subset of nodesT ⊆ V1 and a partitionF , F of the cut

δ+G1
(T ) induced byT . The following flow-cutset inequalities

∑

w∈W

∑

e∈F

yew +
∑

w∈W

∑

e∈F

∑

k∈K+(T )

xkew > ⌈D(K+(T ))

C
⌉. (10)

are valid forP (G1, G2, K, C).

Proof. It is clear that the following inequalities

∑

w∈W

∑

e∈δ+
G1

(T )

xkew > 1, for all k ∈ K+(T ),

are valid forP (G1, G2, K, C), as they express the connectivity constraints for the commodities of

K+(T ). Multiplying both sides of this inequality byDk and summing overK+(T ) yields

∑

w∈W

∑

e∈δ+
G1

(T )

∑

k∈K+(T )

Dkxkew > D(K+(T )), (11)

In addition, we have from the capacity constraints (3), restricted to the commodities ofK+(T ) and

the arcs ofF , that

∑

k∈K+(T )

Dkxkew − Cyew 6 0, for all e ∈ F,w ∈ W.

By summing these inequalities, we obtain

∑

w∈W

∑

e∈F

Cyew −
∑

w∈W

∑

e∈F

∑

k∈K+(T )

Dkxkew > 0. (12)

As δ+G1
(T ) = F ∪ F , by summing (11), (12), and dividing byC, we get

∑

w∈W

∑

e∈F

yew +
∑

w∈W

∑

e∈F

∑

k∈K+(T )

Dk

C
xkew >

D(K+(T ))

C
, (13)

Moreover, we have the following trivial inequality

∑

w∈W

∑

e∈F

∑

k∈K+(T )

(1− Dk

C
)xkew > 0, (14)

By summing (13), (14) and rouding up the right-hand side, we get (10) .�

Theorem 4. A flow-cutset inequality(10) defines a facet ofP (G1, G2, K, C), different from(9)

only if the following hold
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(i) F 6= ∅ 6= F ,

(ii) D(K+(T )) > C andD(K+(T )) is not a multiple ofC,

(iii) ⌈D(K+(T ))
C

⌉ = BP (K+(T )),

(iv) BP (K+(T )) < |K+(T )|,

(v) there existsq ( K+(T ) such thatBP (K+(T ) \ q) 6 BP (K+(T ))− |q|,

(vi) BP (K+(T ) ∪ {k}) 6 BP (K+(T )), for all k ∈ K \K+(T ).

Proof. See Appendix C.

Theorem 5. A flow-cutset inequality(10) defines a facet ofP (G1, G2, K, C), different from(9) if

the following conditions are satisfied

(i) conditions(i) to (vi) of Theorem 4,

(ii) if |F | = 1, for eachk ∈ K+(T ), BP (K+(T ) \ {k}) 6 BP (K+(T )) - 1,

(iii) if |F | = 1, for eachk ∈ K+(T ), there existsk′ ∈ K+(T ) such thatDk + Dk′ 6 C.

Proof. Similar to proof of Theorem 3.

3.3 Clique inequalities

In what follows, we will study an additional class of inequalities that are valid forP (G1, G2, K, C).

These inequalities are based on the so-calledclique inequalitiesintroduced by Padberg (29) in the

context of thestable set polytopeinvestigation. Similar inequalities have also been studied in (6)

for theBalanced Induced Subgraph problem. More generally, clique inequalities arise in problems

whereconflictsmay occur between objects (see (11, 20)). In order to identify these facet-defining

inequalities, we will introduce first the concept of conflict graph.

Definition 2. Given an instance of the CMLND-U problem, we consider a graphH = (V , E),

called conflict graph where each node ofV is associated with a commodity inK and two com-

moditiesk1, k2 are connected by an edgek1k2 ∈ E if and only ifk1 andk2 cannot be packed in a

subbband together. In other words, there exists an edgek1k2 in E if and only ifDk1 + Dk2 > C.
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A cliqueC ⊆ N in a graph is a set of nodes such that every two distinct nodes inC are adjacent.

A cliqueC is said to bemaximalif it is not strictly contained in a clique.

We have the following.

Proposition 3. Let C ⊆ K be a clique in the conflict graphH, and(e, w) ∈ A1 × W , then the

following clique-based inequality
∑

k∈C

xkew − yew 6 0, (15)

is valid forP (G1, G2, K, C).

Proof. It is clear that if a subbandw is installed one, then at most one commodity ofC can be

routed one usingw. If not, thenxkew = 0 for all k ∈ C, and the constraint is trivially satisfied.

3.4 Cover inequalities

A coverI ⊆ K is a subset of commodities such that
∑

k∈I D
k > C. A cover is said to beminimal

if it does not contain any cover as a subset.

Proposition 4. Consider an arce ∈ A1, a subbandw ∈ W and a subset of commoditiesI ⊆ K

defining a cover. Then, the following inequality

∑

k∈I

xkew 6 (|I|-1)yew (16)

is valid forP (G1, G2, K, C).

Proof. If yew = 0, then it is clear that no commodity can usee andw, that is to sayxkew = 0, for all

k ∈ K, in particular for allk ∈ I. Now suppose thatyew = 1, and
∑

k∈I xkew > (|I|-1)yew + 1 =

|I|. This means that all the commodities ofI use (e,w). In other words,xkew = 1, for all k ∈ I,

but this is impossible since
∑

k∈I D
k > C.

Cover inequalities define facets under some conditions for the knapsack polytope (see (26,

33)). They should also define facets forP (G1, G2, K, C) polytope with appropriate additional

conditions. Furthermore, facets based on covers and extensions of covers may be derived by using

lifting procedure (see (19,30)).
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3.5 Min set I inequalities

We introduce here a further class of valid inequalities induced by a subset of commodities for

each arc. This class of inequalities has been described first in (8) for the unsplittable non-additive

capacitated network design (UNACND) problem. They have been identified using the fact that the

single arc UNACND problem reduces to the bin packing problem.

Proposition 5. Given a subsetS ⊆ K of commodities and a non negative integerp ∈ Z+, in-

equalities
∑

w∈W

∑

k∈S

xkew 6
∑

w∈W

yew + p, for all e ∈ A1, (17)

are valid forP (G1, G2, K, C) if and only ifp > |S| −BP (S).

whereBP (S), likewise in inequalities (9) and (10), denotes the minimum number of subbands

(with capacityC) necessary to pack the commodities inS.

Proof. The following inequalities

∑

k∈S

xk
e 6 ye + p, for all e ∈ A1, (18)

Introduced in (8) for theUnsplittable non-additive capacitated network design problemare clearly

valid forP (G1, G2, K, C) if p > |S|−BP (S). Indeed, by introducing new “aggregated” variables

xk
e ∈ {0, 1}, ∀k ∈ K, ∀e ∈ A1, andye ∈ Z+, ∀e ∈ A1, we can use the following transformation

xk
e =

∑

w∈W xkew andye =
∑

w∈W yew. This is possible since a commodity cannot be split over

several subbands installed on the same arce ∈ A1. Thus, using the original variables to write (18)

yields inequality (17).

Theorem 6. Inequality(17)defines a facet ofP (G1, G2, K, C) if and only if the following hold

(i) p = |S| - BP (S),

(ii) BP (S ∪ {s}) = BP (S) = |S| - p, wheres is the largest element inK \ S,

(iii) BP (S \ {s}) = BP (S) - 1 = |S| - p - 1, wheres is the smallest element inS.

Proof. See Appendix D.
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3.6 Min set II inequalities

Likewise Min Set I, this class of inequalities has been presented first in (8) and originates from the

study of the arc-set UNACND polyhedron.

Proposition 6. LetS be a subset ofK, andp andq, two non negative integer parameters such that

q > 2. Then, the inequality

∑

w∈W

∑

k∈S

xk
ew 6 q

∑

w∈W

yew + p, ∀e ∈ A1 (19)

is valid forP (G1, G2, K, C) if p > (|S ′| − qBP (S ′)), for all S ′ ⊆ S.

Proof. Similar to proof of Proposition 5.

Note that Proposition 5, Theorem 6 and Proposition 6 are adaptation of results in (8), where

the facial structure of both Min Set I and Min Set II inequalities is investigated in details. The

authors give necessary and sufficient conditions for these inequalities to define facets for the arc-

set unsplittable non-additive capacitated network design polyhedron.

4 Branch-and-Cut algorithm

In this section we present a Branch-and-Cut algorithm for the CMLND-U problem. Our purpose is

to substantiate the efficiency of the valid inequalities described in the previous section, and provide

exact solutions for realistic and real instances of networks.

4.1 Overview

We describe the framework of our algorithm. Suppose that we are given two graphsG1 = (V1, A1)

andG2 = (V2, A2), that instantiate the virtual layer and the physical layer of the network, respec-

tively. Also suppose given a set of commoditiesK where each commodityk is characterized by a

pair (ok, dk) ∈ V1 × V1 and a traffic valueDk. We consider a setW of available subbands having

a capacityC. A cost vectorc ∈ RW×A1

+ , is given as well.
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To start the optimization, we set up the following restrictedlinear program.

Min
∑

e∈A1

∑

w∈W

c(w)yew +
∑

e∈A1

∑

w∈W

∑

a∈A2

zewa

s.t :

∑

w∈W

∑

e∈δ+
G1

(s)

xk
ew ≥ 1, ∀k ∈ K, s ∈ {ok, dk},

∑

k∈K

Dkxk
ew ≤ Cyew, ∀e ∈ A1, ∀w ∈ W,

∑

e∈A1

zewa ≤ 1, ∀w ∈ W, ∀a ∈ A2,

0 ≤ xk
ew ≤ 1, ∀k ∈ K, e ∈ A1,

0 ≤ yew ≤ 1, ∀w ∈ W, e ∈ A1,

0 ≤ zewa ≤ 1, ∀e ∈ A1, ∀w ∈ W, ∀a ∈ A2.

We denote by(x, y, z), x ∈ RK×W×A1, y ∈ RW×A1, z ∈ RW×A1×A2 , the optimal solution of

the restricted linear relaxation of the CMLND-U problem. This solution is feasible for the problem

if (x, y, z) is an integer vector that satisfies all the cut constraints of type (2) and (4). In most of the

cases, the solution obtained this way is not feasible for the CMLND-U problem. We then manage

to identify, at each iteration of the algorithm, valid inequalities that are violated by the solution

of the current restricted linear program. This is referred to as theseparation problem. Namely,

given a class of valid inequalities, the separation problem is to check whether the solution(x, y, z)

meets all the inequalities of this class, and, if this is not the case, to find an inequality that is

violated by(x, y, z). The detected inequalities are then added to the current linear program, and

such procedure is reiterated until no violated inequality can be identified. The algorithm uses then

to branch over the fractional variables.

The Branch-and-Cut algorithm includes the inequalities described in the previous chapter, and

their separations are accomplished in the following order

1. basic cut constraints ((2), (4))

2. min set I inequalities

3. capacitated cutset inequalities
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4. flow-cutset inequalities

5. clique-based inequalities

6. cover inequalities

7. min set II inequalities

Observe that all the inequalities are global (i.e., valid for the whole Branch-and-Cut tree), and

several inequalities may be added at each iteration. Furthermore, we move to the next class only if

no violated inequalities of the current class are identified. Our strategy is to try to detect violated

inequalities at each node of the Branch-and-Cut tree, in order to obtain the best possible lower

bound by strengthening the linear relaxation, and thus limit the number of generated nodes.

In the sequel, we describe the separation procedures embedded in our algorithm. We use exact

and heuristic algorithms as well, depending on the class of inequalities. Except for cut inequalities

(4), all the separation routines are applied on the graphG1.

4.2 Separation of basic Cut constraints

Algorithm 1: Separation of basic cut inequalities (2)
Data: avector(x, y, z)
Result: a setCI of cut inequalities (2) violated by(x, y, z)
for each commodityk ∈ K do

Associate a weightc(e, w) = xk
ew to each pair (e, w)∈ A1 ×W ;

Use Goldberg-Tarjan push relabel algorithm (18) to find the min cut separatingok from
dk regarding to the assigned weights;

Let δ+(T ) denote this cut, whereT ( V1 (T containsok but does not containdk);
if cut inequality(2) induced byδ+(T ) is violated by(x, y, z) then

add this inequality toCI;

return the identified cut inequalitiesCI to be added to the current LP;

We used the implementantion of Goldberg and Tarjan algorithmfor max flow/min cut available

in LEMON GRAPH C++ library (2). It has a worst case complexity ofO(n2
1

√
m1) wheren1 and

m1 are the number of nodes and arcs ofG1, respectively. Therefore, the exact separation algorithm

for cut constraints (2) runs inO(n2
1t
√
m1), wheret = |K|.

For the cut constraints (4), we have to solve the separation problem that consists in computing

for each pair(e = (u, v), w) ∈ A1 × W , such thatyew > 0, the minimum cut inG2 separating
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u′ from v′ consideringzewa as the arc capacities. Using the same Goldberg and Tarjan min cut

algorithm, the full exact separation has complexityO(n2
2m2|W |√m2).

4.3 Separation of capacitated cutset inequalities

The separation problem associated with the cutset inequalities has been proven NP-hard in general

(9). In our case, the separation problem related to capacitated cut-set inequalities (9) is also NP-

hard. Therefore, we have developed two heuristics to separate these inequalities, one of which is

based on the so-called n-cut heuristic, proposed by Bienstock et al. in (9) for the minimum cost

capacity installation for multicommodity network flows. We adapt this heuristic in order to make

it suitable for our problem.

This heuristic works as follows. For any commodityk ∈ K, we check whether there is a

path inG1 connecting nodesok anddk, and using only pairs(e, w), e ∈ A1, w ∈ W with yew >

0. Since this can be performed by any path finding algorithm, we use Dijkstra’s algorithm. If

such a path does not exist, then it is clear that a capacitated cutset inequality is violated. This

inequality is induced by a subset of nodesT such thatok ∈ T anddk /∈ T . If a path between

ok anddk is identified inG1 for each commodityk, then we randomly pick a subset of nodes,

sayT ⊆ V1, 0 6= T 6= V1, and identify the subset of commoditiesP+ having their origin node

in T and their destination inV1 \ T . After that, we compute the right-hand side, and we check

if the constraint thus constructed is violated. Since we check the existence of a path for each

commodity between its origin and its destination, the worst-case complexity of this procedure is

O(|K|(m1|W |+ n1log(n1))), wheren1 = |V1| andm1 = |A1|.
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Algorithm 2: Separation of capacitated cutset inequalities (9)
Data: avector(x, y, z)
Result: a setCCS of capacitated cutset inequalities (9) violated by(x, y, z)
Associate a weightc(e, w) = yew to each pair (e, w)∈ A1 ×W ;
for each commodityk ∈ K do

Check if there exists a path inG1 from ok to dk using pairs (e, w) with yew > 0 ;
if such path does not existthen

a capacitated cutset inequality induced by a subsetT is violated and must be added
to CCS;

if there is a path for eachk betweenok anddk then
Randomly pick a subset of nodesT in V1;
Construct the subset of commoditiesK+(T ) such thatK+(T ) =
{k ∈ K : ok ∈ T anddk /∈ T} if

∑

e∈δ+(T )

∑

w∈W yew < ⌈D(K+(T ))
C

⌉ then
A violated capacitated cutset inequality is identified and must be added toCCS

return the identified cut inequalitiesCCS to be added to the current LP;

In the second separation heuristic, we use Goldberg-Tarjan max-flow algorithm to find violated

capacitated cut-set inequalities (9). We attribute to each pair(e, w) ∈ A1 × W the capacityyew,

and determine for eachk ∈ K a minimumokdk-dicut inG1, sayδ+G1
(T ∗), with T ∗ ⊆ V1. We then

identify the subset of commoditiesK+(T ) ⊆ K passing through this directed cut. We finally add

inequality
∑

e∈δ+
G1

(T ∗)

∑

w∈W

yew ≥ ⌈D(K+(T ))

C
⌉,

in case it is violated. This procedure is based on max-flow computations, thus the worst case

complexity isO(n2
1t
√
m1).

4.4 Separation of flow-cutset inequalities

We now discuss our separation procedure for the flow-cutset inequalities (10). Atamtürk shows

in (3) that the separation problem associated with a more general form of flow-cutset inequalities

is NP-hard even for one commodity. In case of a multiple commodity set, the complexity of

simultaneously determiningK+(T ) andF is not known (31). As we do not know an efficient

procedure to separate flow-cutset inequalities in general, we use here a simple heuristic based on

Goldberg-Tarjan max-flow algorithm.
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Algorithm 3: Separation of flow-cutset inequalities (10)
Data: avector(x, y, z)
Result: a setFCS of flow-cutset inequalities (10) violated by(x, y, z)
for each commodityk ∈ K do

Associate a weightc(e, w) = xk
ew + yew to each pair (e, w)∈ A1 ×W ;

Use Goldberg-Tarjan push relabel algorithm (18) to find the min cut separatingok from
dk regarding to the assigned weights;

Let δ+(T ) denote this cut, whereT ( V1 (T containsok but does not containdk);
if flow-cutset inequality(10) induced byδ+(T ) is violated by(x, y, z) then

add this inequality toFCS;

return the identified cut inequalitiesFCS to be added to the current LP;

The main idea consists in identifying, for each commodity theminimum cut separating its

origin and its destination, then derivating the subset of commodities whose origin and destination

nodes are separated by the same cut (see Algorithm 3. In other words, for eachk ∈ K, we assign

the capacityyew + xkew to each pair(e, w) ∈ A1 ×W , and compute the minimum cut separating

ok from dk in the graphG1. Let δ+G1
(T ∗), T ∗ ⊆ V1, denote this cut. We then pick an arbitrary

subset of arcs, sayF ∗ of δ+G1
(T ∗), such that∅ 6= F ∗ 6= δ+G1

(T ∗), and we determine the subset of

commoditiesK+(T ∗) ⊆ K usingδ+G1
(T ∗). If D(K+(T ))/C is not integer, we add the succeeding

flow-cutset inequality

∑

e∈F ∗

∑

w∈W

yew +
∑

k∈K+(T ∗)

∑

e∈F
∗

∑

w∈W

xkew ≥ ⌈D(K+(T ∗))

C
⌉,

if it is violated by the current fractional solution(x, y, z).

4.5 Separation of clique-based inequalities

Given a fractional solution(x, y, z), and a pair(ẽ, w̃) ∈ A1×W , the separation problem associated

with the clique-based inequalities (15) consists in identifying a cliqueC∗ in the conflict graphH,

such that
∑

k∈C∗

xkew > yew,

if any. To do so, we use a greedy algorithm introduced by (25) for the independent set problem.

This heuristic works as follows. We first construct the conflict graphH = (V,E) where each node

v ∈ V corresponds to a commodity inK and an edgee ∈ E exists between two nodesu, v ∈ V if

Du + Dv > C. For each pair(e, w) ∈ A1×W , we assign a weight to each nodev of V that isxv
ew,
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then we choose a node, sayu, having the largest weight and we setC∗ = {u}. We then iteratively

add toC∗ the maximum weighted node ofV \ C∗ whenever it is neighbouring all the nodes of the

current cliqueC∗. We add the clique-based inequality induced byC∗ if it is violated.

4.6 Separation of cover inequalities

We use a similar approach to identify violated cover inequalities (16) if any. Indeed, we put the

largest weighted nodeu in N ∗, then we repeat the following operation

Let v be the maximum weighted node ofV \ N ∗, then we simply insertv toN ∗ if N ∗ ∪ {v} does

not form a clique

until a cover is obtained (
∑

v∈N ∗ Dv > C). Every nodev ∈ N ∗ such that
∑

i∈N ∗\{v} D
i > C is

deleted from the subsetN ∗. Finally, we add the inequality

∑

k∈N ∗

xk
ew ≤ (|N ∗| − 1)yew,

if it is violated. Note that there exists plenty more sophisticated algorithms to solve the separation

problem associated with cover inequalities (see for example (4, 21) and references therein for the

separation of cover inequalities), but our first idea was to take advantage from the separation per-

formed for the clique-based inequalities and try to find subsets of commodities that form covers,

if the heuristic fails to identify a clique. Besides, we consider only violated clique (respectively

cover) inequalities where|C∗| ≥ 3 (respectively|N ∗| ≥ 3) in our Branch-and-Cut algorithm.

4.7 Separation of Min Set I and Min Set II inequalities

Given a fractional solution(x, y, z), deciding whether there exists a Min Set I (respectively Min Set

II) inequality which is violated by(x, y, z) is not an easy problem, since it requires solving the bin

packing problem (which is NP-hard in general (17)). We use for the separation of these inequalities

heuristic procedures inspired from those proposed in (8) and adapted for the CMLND-U problem.

The idea, for both algorithms, is to identify for every arca ∈ A1 a subset of commoditiesSa that

may induce a violated Min Set I (respectively Min Set II) inequality. If such inequality exists, then

it is added to the current LP.
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5 Computational experiments

We have conducted several series of experiments to test the efficiency of our Branch-and-Cut

algorithm. The purpose of this experimental study is first to give an insight of the effectiveness of

the introduced valid inequalities in strengthening the linear relaxation of our model. Our second

objective is to identify the classes of instances that are hard to solve in practice, regardless to their

size.

The results shown in this chapter have been obtained by solving instances coming from real

networks as well as realistic topologies. For all the instances, the graphG1 representing the virtual

layer is supposed to be complete. The cost induced by installing each subband is given byc(w) = (1

+ w)c, wherew is the subband index andc is a fixed cost associated with the ROADMs generating

the subband. This cost is justified by our wish to install the subbands progressively on one hand,

and a sake of compliance with practical costs on the other hand. In other words, a subbandwi

is not used beforewi−1 is installed. We also take into account the length of routing path inG2

associated with each installed subband. This length is given in terms of number of sections in the

path. Note that we use the same objective function for both classes of instances.

The realistic instances come from SNDlib (1) library. The graphG2 corresponds to the topol-

ogy of each instance whileG1 is obtained by considering an edge between each pair of nodes (we

add the complementary arcs so as to have a complete graph). Moreover, if the topology corre-

sponds to a non directed graph, we replace each edge by two anti-parallel arcs in bothG2 andG1.

The number of available subbands per arc is set to|W | = 5 for all the instances. Based on these

topologies, we have considered two sub-classes of instances. The first one is obtained by using

SNDlib topologies with randomly generated traffic commodities. We have tested 3 examples of

each instance size and give the average of the results for these examples. The second sub-class

uses SNDlib topologies and traffic matrices. We pick theK most important commodities for each

topology and traffic matrix. We have considered the topologiespdh, polska, nobelus, atlanta,

newyork, nobelgermany, geant, ta1, france, andindia35.

The real instances are derived from real network topologies provided by Orange (formerly

France Télécom, the French historical telecommunication operator). Three topologies of real in-
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stances are considered here, all related to Bretagne area backhaul network. The traffic commodi-

ties, as well as the subbands capacities are also given by Orange. For each topology, we have

considered three subband capacitiesC = 10 Gbit/s,C = 12.5 Gbit/s andC = 25 Gbit/s, so as to

compare the performances of each type of OFDM multi-band solution. Our experimental results

are reported in the tables of the following sections. The entries of the columns in these tables are:
|V2| : number of nodes inG2,
|A2| : number of arcs,
|K| : number of commodities,
NcI : number of generated connectivity constraints,
NcII : number of generated subband connectivity constraints,
NMSI : number of Min Set I inequalities generated,
NCCS : number of capacitated cutset inequalities generated,
NFCS : number of flow-cutset inequalities generated,
NC : number of clique inequalities generated,
NCo : number of cover inequalities generated,
NMSII : number of Min Set II inequalities generated,
nodes : number of nodes in the Branch-and-Cut tree,
o/p : number of problem solved to optimality over number of tested

instances (only for instances with randomly generated traffic),
Gap : the relative error between the best upper bound (optimal

solution if the problem has been solved to optimality) and the lower
bound obtained at the root node of the Branch-and-Cut tree
(before branching),

TT : total CPU time in h:m:s,
TTsep : CPU time spent in performing the constraints separation, in seconds.

Note that in all the tables, the entries are reported in italic for the instances that could not be

solved to optimality within the fixed CPU time limit.

5.1 Effectiveness of the constraints

Before giving the results of our experiments for the instances described above, we first propose

to evaluate the impact of the valid inequalities that we use within the Branch-and-Cut algorithm.

To this end, we show some numerical results obtained by considering, on one hand the basic

cut formulation (2)-(8), and adding the valid inequalities on the other hand. We have tested our

approach on a subset of instances whose topologies are pdh, polska, nobelus, newyork and geant.

We rely here on three criteria to make our comparison: the gap, the number of nodes in the Branch-

andt-Cut tree, and the CPU time computation. The results are reported in Table 1.

Table 1 shows results obtained for graphs having up to 22 nodes, and 72 arcs. It clearly ap-
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Table 1:The impact of adding valid inequalities

Basic B&C B&C with valid inequalities

Instance |V2| |A2| |K| Gap Nodes TT Gap Nodes TT

pdh 10 68 10 25.64 34709 18000 22.54 6 1593
pdh 10 68 12 17.54 2454 3573 4.63 104 4833
pdh 10 68 14 1.39 31 560 0.00 1 133

polska 12 36 10 13.40 34896 18000 3.95 56 2059
polska 12 36 12 36.75 30954 18000 13.19 3114 18000
polska 12 36 14 34.48 14983 18000 8.27 1115 13768

nobel us 14 42 10 36.89 15682 18000 7.74 205 12653
nobel us 14 42 12 41.20 5479 18000 7.77 322 12016
nobel us 14 42 14 42.95 10937 18000 28.33 513 18000

newyork 16 98 10 13.87 44 306 3.22 11 6102
newyork 16 98 12 33.09 18179 18000 11.65 88 18000
newyork 16 98 14 14.97 7769 9942 0.00 1 1064

geant 22 72 10 15.18 24635 18000 3.57 17 8716
geant 22 72 12 47.27 20686 18000 5.75 2 18000
geant 22 72 14 41.46 17057 18000 6.23 14 18000

pears from this table that the formulation with valid inequalities performs much more better than

the basic formulation on all the instances. In fact, we first notice that using valid inequalities en-

ables solving some instances that could not be solved to optimality when considering the basic

formulation. For example instance polska with 10 commodities could not solved to optimality

within 5 hours when using the basic formulation whereas around 30 mns were enough to solve it

to optimality with the new inequalities. Also we can see that both gap value and CPU time are

smaller when adding the valid inequalities, for all the considered instances. Furthermore, observe

that the number of nodes in the Branch-and-Cut tree decreases drastically when introducing valid

inequalities. For example for instance geant10, where the Branch-and-Cut algorithm for basic

formulation explores no less than 24635 nodes, while this number drops to 17 nodes, by adding

valid inequalities, and a similar improvment can be reported for pdh10. All these observations

lead us to conclude that using valid inequalities to strengthen the linear relaxation of (2)-(8) is a

key issue to solve efficiently the CMLND-U problem. As we could see, this enabled to improve

significantly the gap value, number of Branch-and-Cut tree as well as the time for computation.

Table 2 shows more accurately the gap evolution when adding the valid inequalities progres-

sively. In fact, the column Gap(0) contains the gap value for basic formulation and Gap(6) contains

the gap value when considering all the cuts. The remaining columns are intermediate gap value
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Table 2: Effectiveness of the cuts - Gap evolution

Instance |V2| |A2| |K| Gap(0) Gap(1) Gap(2) Gap(3) Gap(4) Gap(5) Gap(6)

pdh 10 68 10 25.64 22.67 22.54 22.54 22.54 22.54 22.54
pdh 10 68 12 17.54 6.63 4.76 4.63 4.63 4.63 4.63
pdh 10 68 14 1.39 0.29 0.00 0.00 0.00 0.00 0.00

polska 12 36 10 13.40 4.03 3.95 3.95 3.95 3.95 3.95
polska 12 36 12 36.75 13.50 13.50 13.47 13.19 13.19 13.19
polska 12 36 14 34.48 15.63 9.60 8.27 8.27 8.27 8.27

nobel us 14 42 10 36.89 16.00 8.84 8.16 7.74 7.74 7.74
nobel us 14 42 12 41.20 41.13 41.13 8.10 7.77 7.77 7.77
nobel us 14 42 14 42.95 33.82 32.41 28.33 28.33 28.33 28.33

newyork 16 98 10 13.87 4.27 3.27 3.27 3.27 3.22 3.22
newyork 16 98 12 33.09 24.08 11.97 11.65 11.65 11.65 11.65
newyork 16 98 14 14.97 1.35 0.00 0.00 0.00 0.00 0.00

geant 22 72 10 15.18 5.54 4.14 4.14 3.57 3.57 3.57
geant 22 72 12 47.27 16.96 8.71 8.46 8.46 5.85 5.75
geant 22 72 14 41.46 17.60 14.37 13.42 13.42 6.23 6.23

obtained by considering an additional family of valid inequalities. The constraints are separated

in the order given in Section 4. Thus, Gap(1) corresponds to when adding Min set I inequalities,

Gap(2) when adding capacitated cut inequalities and so on. It appears that the gap value decreases

when adding valid inequalities. However, it seems that some inequalities are more efficient than

others in strengthening the linear relaxation. In fact, the most significant improvement is observed

when adding Min Set I inequalities (see columns Gap(0) and Gap(1)). Adding capacitated cutset

and flow-cutset inequalities also allows to improve the gap value, while only a slight gain is no-

tified when adding the remaining families of valid inequalities. In practice, their interest lies in

the number of nodes in the Branch-and-Cut tree, which gets smaller as further families of valid

inequalities are being separated.

5.2 Random instances

Our first series of experiments concerns the SNDlib topologies with randomly generated traffic

commodities. The instances considered here have graphs with 10 up to 24 nodes and vary from

sparse (like for polska) to highly meshed (like for ta1) topology. The number of commodities for

each size of graphs ranges from 10 to 18 with values generated uniformly in the interval]ǫC, C],

with ǫ = 0.2 for these instances. For each instance size, we have generated 3 examples. The results
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are reported in Table 3.

Instance |V2| |A2| |K| Opt NcI NcII NmsI NCCS NFCS NC NCo NmsII Nodes Gap TT

pdh 10 68 10 3/3 247.00 832.67 74.33 33.00 83.67 2.33 0.67 0.00 40.67 7.19 350.93
pdh 10 68 12 3/3 625.67 1504.00 150.67 72.33 1389.67 31.67 6.33 1.33 194.67 10.29 2244.68
pdh 10 68 14 3/3 450.33 1030.00 113.00 57.33 1031.33 11.00 6.33 0.00 63.33 5.95 1259.59
pdh 10 68 16 2/3 478.67 1047.33 133.00 23.00 7021.67 17.33 3.67 0.67 191.67 2.83 6061.61
pdh 10 68 18 0/3 3602.67 1703.33 124.67 40.67 11683.67 12.00 815.00 0.00 493.33 6.54 18000.00

polska 12 36 10 2/3 536.33 2782.33 185.33 61.33 6473.33 12.00 1.67 0.00 1263.67 9.08 6142.68
polska 12 36 12 3/3 1071.67 3042.00 197.33 81.33 5191.00 57.00 29.67 0.33 549.33 6.30 6224.30
polska 12 36 14 2/3 1019.67 3896.33 259.67 73.67 7919.00 31.33 42.67 0.00 918.33 11.53 9440.76
polska 12 36 16 2/3 955.33 3484.33 166.33 62.33 7991.67 30.67 15.33 0.33 852.33 13.81 10248.26
polska 12 36 18 2/3 1234.67 3881.33 286.00 46.00 7527.67 78.33 14.67 0.33 1098.00 8.77 12166.49

nobelus 14 42 10 2/3 1504.67 5064.67 214.00 120.67 4303.33 30.67 34.670.67 1388.67 19.05 14031.90
nobelus 14 42 12 2/3 1529.00 4793.00 294.33 93.67 4377.67 76.00 1.67 2.33 1350.67 14.83 15391.00
nobelus 14 42 14 0/3 1543.33 4569.33 256.67 116.33 8392.33 59.00 19.331.00 877.33 26.14 18000.00
nobelus 14 42 16 1/3 1755.33 5120.33 301.67 105.33 4693.33 114.33 0.670.00 828.33 16.35 17840.40
nobelus 14 42 18 1/3 1440.67 3590.33 318.33 55.00 8551.00 78.67 8.33 0.00 211.33 13.53 15614.03

newyork 16 98 10 2/3 664.00 2763.67 186.33 43.67 1554.67 9.67 3.33 0.67315.00 14.74 8385.19
newyork 16 98 12 1/3 1102.33 4453.67 217.00 104.00 915.33 52.00 8.00 0.00 672.33 24.31 13484.55
newyork 16 98 14 2/3 1721.00 4043.33 245.33 109.00 1822.67 38.67 4.33 0.00 308.67 15.01 17578.47
newyork 16 98 16 2/3 911.67 3468.00 170.67 107.67 1484.33 16.67 8.33 0.00 291.00 10.37 14519.00
newyork 16 98 18 1/3 1428.33 3492.00 264.33 105.00 1924.00 48.00 6.33 0.33 330.00 6.35 16097.23

ta1 24 102 10 2/3 169.00 3551.67 19.33 32.67 82.33 0.33 0.00 0.00 2.33 7.10 810.45
ta1 24 102 12 2/3 2.67 287.67 5.33 0.00 0.00 0.00 0.00 0.00 15.00 20.26 357.88
ta1 24 102 14 0/3 779.89 6955.22 148.11 166.00 199.00 19.00 4.67 0.00 146.00 14.74 18000.00
ta1 24 102 16 0/3 249.33 3414.00 23.33 33.00 93.00 4.00 0.33 0.00 515.00 21.16 18000.00
ta1 24 102 18 0/3 996.33 10244.33 157.67 150.33 1187.33 45.33 1.670.00 185.67 15.51 18000.00

Table 3: Branch-and-Cut results for SNDlib instances with randomly generated traffic

It appears from this table that 20 over 25 groups of instances have been solved to optimality

within the fixed time limit. Observe that no more than 4 groups of instances among those solved

to optimality have a gap value greater than 20%. Table 3 also shows that the difficulty of solving

an instance is not only related to its size, but also to the size of the commodities. For example,

instances polska with 12 commodities are solved to optimality within the time limit, while 2 over

3 instances polska with 10 commodities are solved to optimality. Even though the instances of the

second group are larger in size, they are solved more easily. Moreover, it should be emphasized

again that in practice, the subbands installed on the arcs ofG1 are considered as additional com-

modities. Indeed, since two levels of routing must be performed, there are|K|+ |W |(n1(n1 − 1))

commodities, wheren1 = |V1|, |K| being the traffic demands and|W |(n1(n1 − 1)) the number of

subbands that can be installed inG1. Remark also that an important number of Min Set I, capaci-

tated cutset and flows-cutset inequalities are being generated along the Branch-and-Cut tree, which
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means that they are helpful for solving the problem. However,the number of clique and cover in-

equalities separated is smaller. This can be explained by the fact that each arc ofG1 potentially

induces the same cliques (respectively cover subsets), since it depends on the commodities size.

Thus, if all the commodities are ”small” regarding to the capacity of a subband, then clique and

eventually cover inequalities are unlikely to appear.

5.3 Realistic instances

The second series of experiments that we have conducted concerns SNDlib instances with realistic

traffic commodities. We have considered instances with graphs having 10 to 35 nodes. 11 instances

have been tested, and 6 instances among them have been solved to optimality within the time limit.

The remaining instances, often having more than 14 commodities, could not reach the optimal

solution after 5 hours of computation. Also we can see in Table 4 that, for the instances that

could be solved to optimality, the gap value does not exceed 20% and the number of nodes in

the Branch-and-Cut tree remains reasonable (less than 300 for most of the instances). All the

Instance |V2| |A2| |K| NcI NcII NmsI NCCS NFCS NC NCo NmsII Nodes Gap TT TTsep

pdh 10 68 10 5861 1082 2000 8 217 0 3 0 2 13.40 4500 340
pdh 10 68 14 1494 1738 647 24 2004 0 0 0 177 2.50 4939 1312
pdh 10 68 20 3641 1840 2000 6 164 0 1 0 7337.40 18000 122
nobelus 14 42 10 1759 5245 180 147 8795 41 56 0 67 17.74 1239 654
nobel us 14 42 14 1706 4514 298 109 7611 123 0 1 210 5.67 1443 740
nobel us 14 42 20 1528 9023 263 66 9378 57 2 0 126 19.37 12343 4528
newyork 16 98 10 658 3041 108 60 368 7 0 0 281 9.58 9081 6686
newyork 16 98 14 1047 2708 233 96 871 7 0 1 22614.70 18000 12322
newyork 16 98 20 1328 10245 261 103 11389 5 0 0 26427.94 18000 3171
france 25 90 10 1118 4079 0 119 16 3 0 0 13911.24 18000 5507
india 35 160 8 1146 5074 0 143 23 3 0 0 242.34 18000 5386

Table 4: Branch-and-Cut results for SNDlib instances with realistic traffic

instances for which the algorithm provided an optimal solution have been solved in less than 3

hours. Similarly to random instances, some instances may be more difficult to solve than other

instances, even larger in size. Besides, it should be pointed out that the CPU time spent by the

algorithm in performing separation of valid inequalities can be important. In fact, we noticed

that this time could reach more than 50% of the total CPU time of computation (see for example
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instances newyork with 10 and 12 commodities). More precisely, we noticed that the separation

procedure for generating flow-cutset inequalities is the most time consuming routine.

5.4 Real instances

The tested real instances have graphs with 9 to 45 nodes and a number of commodities that varies

between 15 and 30 for the smaller instances. In particular, we have considered|W | = 4 for all

the instances, and three possible subband capacities, namelyC = 10 Gbit/s, 12.5 Gbit/s and 25

Gbit/s. Table 5 shows the results obtained for two over the three families of instances considered.

We further give and example of solution obtained when solving an instance with 45 nodes and 10

commodities.

Instance |V2| |A2| |K| NMSI NCCS NFCS NC NCo NMSII Nodes Gap TT

bretagne10 9 20 15 36 39 597 0 2 0 42 29.49 107
bretagne10 9 20 20 36 38 353 8 6 0 24 35.34 104
bretagne10 9 20 30 30 23 2341 0 0 0 433.77 18000
bretagne12 9 20 15 24 24 951 0 4 1 22 44.53 76
bretagne12 9 20 20 42 41 98 0 11 0 22 48.63 46
bretagne12 9 20 30 24 35 443 0 2 0 2847.68 18000
bretagne25 9 20 15 49 74 652 0 11 0 249 28.33 1036
bretagne25 9 20 20 73 44 821 5 6 0 327 33.33 1100
bretagne25 9 20 30 112 81 789 11 4 0 2350939.93 18000
bretagne10 22 52 15 21 8 347 0 0 0 38 41.30 1242
bretagne10 22 52 20 21 4 5 0 0 0 14 36.96 247
bretagne10 22 52 30 28 28 1076 1 0 0 1647.71 18000
bretagne12 22 52 15 6 0 3 0 5 0 38 43.76 209
bretagne12 22 52 20 36 17 3825 1 13 2 60 44.7818000
bretagne12 22 52 30 26 33 1483 0 0 0 16 37.9618000
bretagne25 22 52 5 511 419 4465 21 14 3 714931.00 18000
bretagne25 22 52 10 9 22 3308 0 0 4 27349.00 18000
bretagne25 22 52 15 38 12 9825 0 0 21 87653.00 18000

Table 5: Branch-and-Cut results for real instances

It appears from Table 5 that 9 instances among the 18 instances tested were solved to optimality

within the CPU time limit. An optimal solution could be obtained within one hour for all the solved

instances. Several observations can be made based on these results. First concerning instances

Bretagne with 9 nodes, we can see that we get better results when using a larger subband capacity
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C. This is due to the topology of these instances which is quite sparse compared to the original

network with 45 nodes. Basically, finding a feasible routing for the commodities by using less

subbands is a challenging task because of the graph topology. Indeed, the disjunction constraints

make difficult to reuse the same paths inG2 for the installed subbands. Besides, whenC = 25

Gbit/s, commodities are more likely to be packed in the same subbands, which makes easier to

find a good solution within the fixed time limit. We also notice from Table 5 that results for

instances with 22 nodes gets better whenC = 10 Gbit/s. In fact, since the graph holds more nodes

and arcs, it offers more possible paths, and hence more routing alternatives for both commodities

and subbands. Finally, we notice that an important number of cover inequalities are generated for

these instances. In fact, the traffic commodities here are relatively small and tend to be uniform in

size. Cover inequalities are then more expected to appear than clique based inequalities.

6 Concluding remarks

In this paper we have studied a multilayer network design problem with specific requirements aris-

ing in optical OFDM networks. We have proposed a cut-based ILP formulation for the problem and

studied its basic polyhedral properties. Exploiting the underlying sub-problems, we have proposed

several families of valid inequalities and investigated their facial structure. These inequalities have

been embedded within a branch-and-cut algorithm to solve the problem.

The focus made on the hierarchical routing and the traffic indivisibility increases the computa-

tional challenges and makes the problem further difficult to solve. The proposed valid inequalities

have helped a lot in strengthening the linear relaxation of the problem, yet the associated sepa-

ration procedures are still time-consuming and could be enhanced. In addition, derivating good

upper bounds from the fractional solutions is a non-trivial task but would hopefully allow to bet-

ter manage the size of the branch-and-cut tree. Finally, we expect that further valid inequalities,

involving the demands structure (traffic amount compared to the capacity value) would be very

interesting and increase the efficiency of the algorithm, especially on real instances where a wide

disparity may exist among the demands.
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Appendices

Definition 3. A solutionS of the CMLND-U problem is given by two subsets of arcsF1, F2 of A1

(with F2 eventually empty),|K| subsets of arcsC1, . . ., Ck, of A1, a subset of subbandsW of W

installed on the arcs ofF1 ∪ F2, a subset of arcs∆ of A2, and |A1| × |W | subsets of arcs∆ew,

e ∈ A1, w ∈ W , ofA2 in such a way that

(i) at least one subband is installed on each arc ofF1 ∪ F2,

(ii) F1 =
⋃

k∈K Ck,

(iii) Ck, k ∈ K, contains a path betweenok anddk,

(iv) ∆ =
⋃

e∈F1∪F2,w∈W ∆ew,

(v) with every arce = (u, v) ∈ F1 ∪ F2 and w ∈ W , one can associate an arc subset∆ew

(which may be empty), in such a way that ifw is installed one, then∆ew contains a path, say

Pew ⊆ ∆ew betweenu′ andv′,

(vi) for everyw ∈ W , any arc of∆ belongs to at most one pathPew, for e ∈ F1 ∪ F2.

We will denote byΓ the pairs(e, w) such thate ∈ (F1 ∪ F2) andw ∈ W such thatw is

installed one. We then define the solutionS by S = (F1, F2,∆,W ). The incidence vector ofS,

(xS, yS, zS) ∈ RK×A1×W × RA1×W × RA1×W×A2, will be given by:

xS
kew =

{

1, if e ∈ Ck and(e, w) ∈ Γ,

0, otherwise.

ySew =

{

1, if w ∈ W, e ∈ F1 ∪ F2 and (e, w) ∈ Γ,

0, otherwise.

zSew(a) =

{

1, if a ∈ ∆ew,

0, otherwise.
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A Sketch of the proof for Theorem 1

Assume thatP (G1, G2, K, C) is contained in a hyperplane given by the linear equation

αx+ βy + γz = δ (20)

whereα = (αk
ew, k ∈ K, e ∈ A1, w ∈ W ) ∈ RK×A1×W , β = (βew, e ∈ A1, w ∈ W ) ∈

RA1×W , γ = (γew
a , e ∈ A1, w ∈ W, a ∈ A2) ∈ RA1×W×A2 and δ ∈ R. We will show that

α=0, β=0, γ=0. ThereforeP (G1, G2, K, C) can not be included in a hyperplane, thus imply-

ing thatP (G1, G2, K, C) is full dimensional. To this end, let us first construct a solutionS0 =

(F 0
1 , F

0
2 ,∆

0,W 0) of the problem.

For each commodityk ∈ K, we consider a path inG1 between its origin and destination

nodes, consisting of arc(ok, dk). This is possible sinceG1 is complete. We install over this arc one

subband. In other words, every subband is assigned at most to one commodity. Note that every

arc (u, v) receives as much subbands as there are demands going fromu to v. All the installed

subbands are supposed to be different. After that, we associate with each subband, installed over

(ok, dk), k ∈ K, a path inG2 consisting of the arc(o′k, d
′
k). Again, this is possible sinceG2 is also a

complete graph. LetS0 = (F 0
1 , F

0
2 ,∆

0,W 0), be the solution given byF 0
1 = {(ok, dk), k ∈ K}, F 0

2

= ∅,∆0 = {(o′k, d′k), k ∈ K}, where∆0
ew = {(o′k, d′k)} if e = (ok, dk) andw the subband installed on

e, and∆0
ew = ∅ otherwise.W 0 denotes the subset of|K| different subbands installed on the arcs

of F 0
1 . Now consider a pair(e, w) ∈ A1 ×W . Let S1 = (F 1

1 , F
1
2 ,∆

1,W 1) be a solution obtained

from S0 by adding an arcf ∈ A2 to ∆0
ew, while the other elements ofS0 remain the same. (In

other words,S1 is such thatF 1
1 = F 0

1 , F 1
2 = F 0

2 ,∆1 = ∆0∪{f}, andW 1 = W 0.) It is clear that both,

S0 andS1 are feasible for the problem and, in consequence, their incidence vectors both satisfy

equality (20). This implies thatγew
f = 0. Asf , e andw are chosen arbitrarily inA2, A1 andW ,

respectively, we obtain thatγew
f = 0, for allf in A2, e ∈ A1 andw ∈ W . By similar arguments, we

can show that the remaining coefficients of the hyperplane (20) are equal to zero.�
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B Proof of Theorem 3

Suppose that conditions(i) to (iv) of Theorem 3 are fulfilled. Let us denote byαx + βy + γz ≥ δ

inequality (9). LetF̃ denote the face induced by inequality (9). Then,

F̃ = {(x, y, z) ∈ P (G1, G2, K, C) :
∑

e∈δ+
G1

(T̃ )

∑

w∈W

yew = ⌈D(P+)

C
⌉}.

We first show thatF̃ is a proper face ofP (G1, G2, K, C). To do this, let us construct a feasible

solutionS0 that satisfies (9) with equality.

For each pair of nodes(s, t) ∈ T̃ (respectively inV1 \ T̃ ), we installBP (K(s, t)) different

subbands on the arc(s, t) of A1. Notice that if there is no commodityk ∈ K such thatok = s and

dk = t we do not use(s, t) in the solution. Moreover, each commodityk in K(T̃ ) (respectively in

K(V1 \ T̃ )) is associated with path{(ok, dk)} and the subbandwk. Note that, in this solution, a

subbandwk may be associated with more than one commodity (see Figure B). Now, we choose

a nodeu ∈ T̃ and a nodev ∈ V1 \ T̃ . Observe that(u, v) ∈ δ+G1
(T̃ ). We then install on the

arc(ok, u) (respectively(v, dk)) of A1, BP (K(ok, u)) (respectivelyBP (K(v, dk))) new subbands

of W , while (u, v) receivesBP (K(u, v)) new subbands. Note that(u, v) is the only arc of the

cut δ+G1
(T̃ ) that is used in this solution. We do the same operation for the commodities ofK−(T̃ ).

Furthermore, we associate with each pair(e, w) such thatw is installed one = (i, j) the arc(i′, j′) of

A2. This is possible sinceG2 is a complete graph. Notice that, in this solution, each commodityk ∈

K(T̃ ) (respectivelyk ∈ K(V1 \ T̃ )) uses the subbandwk on path{ek}, ek = (ok, dk) for its routing,

while the commodities ofK+(T̃ ) have a path of length at most three{(oi, u), (u, v), (v, di)}, i ∈

K+(T̃ ). The nodeu (respectivelyv) can obviously be equal to someoi (respectivelydi), i ∈

K+(T̃ ). Moreover, in this solution, every commodity ofK uses at least one subband for its routing,

and we assume that all the set up subbands are different so that the disjunction constraints (5) are

satisfied. Also note that many commodities may share the same subband, however, asBP (K(s, t))

subbands are installed on each pair of nodess, t ∈ T̃ and (V1 \ T̃ ), we ensure that the capacity

constraints (3) are satisfied.

In this solution, a path inG1 is assigned to each commodity ofK. Moreover, a path is

also associated with every pair(e, w) such thatw is installed one. Furthermore, both capacity
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constraints (3) and disjunction constraints (5), are satisfied, as enough different subbands are in-

stalled on each arc used in the solution. It is not hard to see thatS0 induces a feasible solution of

P (G1, G2, K, C) whose incidence vector satisfiesαx + βy + γz ≥ δ with equality. Hence,̃F 6= ∅.

As P (G1, G2, K, C) \ F 6= ∅, we have that̃F is a proper face ofP (G1, G2, K, C).

Now suppose that there exists a facet defining inequalityλx + µy + νz ≥ ξ such that

F̃ ⊆ F = {(x, y, z) ∈ P (G1, G2, K, C) : λx+ µy + νz = ξ}.

We will show that there exists a scalarρ ∈ R such that(α, β, γ) = ρ(λ, µ, ν).

Let us first show thatνew
a = 0, for alle ∈ A1, w ∈ W anda ∈ A2. Consider an arca ∈ A2 \∆0,

and a pair(e∗, w∗) ∈ A1 × W . Clearly, the solutionS1 = (F 0
1 , F

0
2 ,∆

1 = ∆0 ∪ {a},W 0), where

∆1
eiwi

= ∆0
eiwi

, if (ei, wi) = (e∗, w∗) and∆1
e∗w∗ = ∆0

e∗w∗ ∪{a} is a solution of theP (G1, G2, K, C).

Moreover, its incidence vector satisfiesαx + βy + γz ≥ δ with equality. It then follows thatνe∗w∗

a

= 0, and therefore

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2. (21)

By similar arguments, we can easily show that
{

µew = 0, for all e ∈ A1 \ δ+G1
(T̃ ), w ∈ W

λk
ew = 0, for all k ∈ K, e ∈ A1 \ δ+G1

(T̃ ), w ∈ W.
(22)

Now consider a commodityk∗ ∈ K. We will show that the coefficientsλ related to the

commodities ofK and arcs ofδ+G1
(T̃ ) are equal to zero. We distinguish two cases.

Case 1.k∗ ∈ K \K+(T̃ )

Thusk∗ is not supposed to pass through the cut for its routing. Consider an arce∗ of δ+G1
(T̃ )

and a subbandw∗ of W . We will assume thate∗ = (u, v) and thatw∗ is installed one∗. Consider
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the solutionS2, obtained fromS0 by associatinge∗ to k∗ in addition to its routing. In other words,

S2 = (F 0
1 ∪ {e∗}, F 0

2 ,∆
0,W 0) andC2

k∗ = C0
k∗ ∪{e∗}. Condition(ii) makes the solution feasible for

the problem, as it allows capacity constraints to be satisfied. Thus, both solutionsS0 andS2 are

feasible and belong tõF as well. Hence,λk∗

e∗w∗ = 0. Ask∗, e∗ andw∗ are arbitrary inK \K+(T̃ ),

δ+G1
(T̃ ) andW , respectively, we obtain that

λk
ew = 0, for all k ∈ K \K+(T̃ ), e ∈ δ+G1

(T̃ ), w ∈ W. (23)

Case 2.k∗ ∈ K+(T̃ )

Let k be some commodity ofK+(T̃ ) such thatDk∗ + Dk ≤ C. Such a commodity exists

because of condition(iii). Let e∗ = (s, t) be an arc ofδ+G1
(T̃ ) and letw∗ be one of the subbands

installed on(u, v). Recall thatBP (K+(T̃ )) different subbands have been installed on(u, v). We

will construct a solutionS3 obtained fromS0 by movingw∗ from arc (u, v) to arc (s, t), and

associating with((s, t), w∗) the path{(s′, t′)} in G2. In this solution, we will also replace(u, v)

in the routing path ofk∗ by {(u, s), e∗, (t, v)}, where(u, s) and(t, v) are two arcs ofA1 \ δ+G1
(T̃ ).

(u, s) and(t, v) also receive the subbandw∗ and are assigned the paths{(u′, s′)} and{(t′, v′)},

in G2, respectively. Since we know by condition(iv), the capacity constraints (3) are satisfied. It

follows thatS3 is feasible. Now let us derive a solutionS4 which slightly differs fromS3 in that

we associate(s, t) to k in addition to its routing. Again, this is possible thanks to condition(iii).

This variation in the solution yieldsxS4

k(s,t)w∗ = 1 whilexS3

k(s,t)w∗ = 0. SolutionS4 is clearly feasible,

and both incidence vectors(xS3

, yS
3

, zS
3

) and(xS4

, yS
4

, zS
4

) are inF̃ , and then, also inF . Thus,

we obtain thatλk
(s,t)w∗ = 0. Sincek∗, e, andw are chosen arbitrarily inK+(T̃ ), δ+G1

(T̃ ) andW ,

respectively, we get

λk
ew = 0, for all k ∈ K+(T̃ ), e ∈ δ+G1

(T̃ ), w ∈ W. (24)

And, by (22), (23) and (24), we finally obtain

λk
ew = 0, for all k ∈ K, e ∈ A1, w ∈ W. (25)

Now, we still have to show that all the coefficientsµew are the same for the arcs of the cut

δ+G1
(T̃ ).
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Indeed, lete∗ = (s, t) be an arc ofδ+G1
(T̃ ), different from (u, v). Recall thatBP (K+(T̃ ))

different subbands are installed over the arc(u, v). Letw be one of these subbands. Consider the

solutionS5 where we replace the pair((u, v), w) in S0 by ((u, s), w), ((s, t), w) and ((t, v), w),

with (u, s), (t, v) ∈ A1 \ (F 0
1 ∪ F 0

2 ). By comparing solutionsS0 andS5 and by (21) and (22), we

obtain thatµ(u,v)w = µ(s,t)w. Since(s, t) is arbitrary inδ+G1
(T̃ ), we get

µew =

{

ρ, for someρ ∈ R∗, for all e ∈ δ+G1
(T̃ ), w ∈ W,

0, otherwise.
(26)

Hence, from (21)-(26),(α, β, γ) = ρ(λ, µ, ν), and the proof is complete.�

C Proof of Theorem 4

Let T be a subset of nodes ofV1 andT = V1 \ T . Consider the cutδ+G1
(T ) induced byT , and letF ,

F be a partition ofδ+G1
(T ). Now consider the flow-cutset inequality induced byT andF

∑

e∈F

∑

w∈W

yew +
∑

e∈F

∑

w∈W

∑

k∈K+(T )

xkew > ⌈D(K+(T ))

C
⌉.

(i) If F = ∅, then (10) is equivalent to

∑

w∈W

∑

e∈F

yew > ⌈D(K+(T ))

C
⌉,

which reduces to the cutset inequality (9) when⌈D(K+(T ))
C

⌉ = BP (K+(T )). Hence, (10)

cannot be a facet ofP (G1, G2, K, C) different from (9). IfF = ∅, thenF = δ+G1
(T ) and (10)

is equivalent to
∑

e∈δ+
G1

(T )

∑

w∈W

∑

k∈K+(T )

xkew > ⌈D(K+(T ))

C
⌉, (27)

which implies that the number of commodities allowed to use the cutδ+G1
(T ) is greater than

or equal to⌈D(K+(T ))
C

⌉. Note that⌈D(K+(T ))
C

⌉ 6 |K+(T )|, asDk 6 C, for all k ∈ K+(T ).

Thus, inequality (27) is dominated by inequality

∑

k∈K+(T )

∑

e∈δ+
G1

(T )

∑

w∈W

xkew > |K+(T )|,

which is the sum of the connectivity constraints (2) over the commodities ofK+(T ). Thus,

(10) cannot define a facet forP (G1, G2, K, C).

36



(ii) Now if D(K+(T )) < C. Then (10) is equivalent to

∑

w∈W

∑

e∈F

yew +
∑

w∈W

∑

e∈F

∑

k∈K+(T )

xkew > 0,

which is nothing but a linear combination of trivial inequalitiesyew > 0, andxkew > 0,

summed up over the subsetsF , W andK+(T ), F , W , respectively.

(iii) If D(K+(T ))/C is integer, then (10) can be obtained from inequalities (2), (3) and the trivial

constraintsxkew > 0.

(iv) Suppose that⌈D(K+(T ))
C

⌉ < BP (K+(T )). Then inequality (10) does not induce a proper

face, as it may be empty.

(v) Now assume thatBP (K+(T )) = |K+(T )|. Then, inequality (10) is equivalent to the fol-

lowing expression

∑

e∈F

∑

w∈W

yew +
∑

k∈K+(T )

∑

e∈F

∑

w∈W

xkew > BP (K+(T )) = |K+(T )|,

which is a linear combination of inequalities (27) and trivial constraintsyew > 0 summed up

overF andW . Hence, (10) cannot define a facet.

(vi) Suppose that condition(vi) is not verified, that is to sayBP (K+(T ) \ q) > BP (K+(T ))−

q+1 for all q ( K+(T ). Then we cannot find a solution withxkew = 1, for some commodity

k ∈ K+(T ), e ∈ F andw ∈ W . In other words, the face induced by (10) is included in

F = {(x, y, z) ∈ P (G1, G2, K, C) : xkew = 0, for k ∈ q, e ∈ F ,w ∈ W},

and then, (10) cannot define a facet. Now if there exists a commodityk in K \ P+ such that

BP (P+ \ {k}) > BP (P+) + 1. Then it is not possible to identify a solution of the problem

with xkew = 1, fore ∈ F ∪F , w ∈ W . Also in this case, the face induced by (10) is included

in

F = {(x, y, z) ∈ P (G1, G2, K, C) : xkew = 0, for k ∈ q, e ∈ F ,w ∈ W},

and then, (10) cannot define a facet.
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D Proof of Theorem 6

Necessity

(i) The validity condition for inequalities (17) states thatp > |S| - BP (S). It is clear that any

value ofp > |S| − BP (S) would induce a valid inequality which is redundant regarding to

∑

w∈W

∑

k∈S

xkew ≤
∑

w∈W

yew + (|S| − BP (S)), for all e ∈ A1,

and thus, that could not define a facet ofP (G1, G2, K, C).

(ii) Now let us denote bys the largest element ofK \ S such thatBP (S ∪ {s}) = BP (S) + 1.

Then, inequality (17) with respect toS ∪ {s} can be written as

∑

w∈W

∑

k∈S sup{s}

xkew ≤
∑

w∈W

yew + |S|+ 1− BP (S ∪ {s}) =
∑

w∈W

yew + p.

However, (ii) dominates (17). Thus the latter cannot define a facet ofP (G1, G2, K, C).

(iii) Now let s′ denote the smallest element ofS, and suppose thatBP (S \ {s′}) = BP (S) = |S|

- p. Then, inequality (17) with respect toS \ {s′} can be written as

∑

w∈W

∑

k∈S\{s′}

6
∑

w∈W

yew + |S| − 1− BP (S \ {s′}) =
∑

w∈W

yew + p− 1. (28)

Note that inequalities (17) can be obtained as a linear combination of (28) and
∑

w∈W xs′ew 6

1, which is valid (by definition of the CMLND-U problem).

Sufficiency

Suppose that conditions(i) to (iii) of Thorem 6 are fulfilled. Let us denote byαx+ βy + γz > δ

the inequality (17) induced bỹS andẽ = (u, v), and letF be the face defined as follows

F̃ = {(x, y, z) ∈ P (G1, G2, K, C) :
∑

k∈S̃

∑

w∈W

xkẽw =
∑

w∈W

yẽw + p}.

We first show thatF̃ is a proper face ofP (G1, G2, K, C). To this end, we construct a feasible

solutionS1, whose incidence vector belongs tõF .
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The solutionS1 is obtained from the solutionS0 introduced in the proof of Theorem 1 as

follows. We install a set ofBP (S̃) non previously used and different subbandsW̃ ⊆ W over

the arcẽ and we add the pairs(ẽ, w), w ∈ W̃ to S0. In other words, we letyS
1

ẽw = yS
0

ẽw + 1, for

all w ∈ W̃ . We then associate to every pair(ẽ, w), w ∈ W̃ of the solution a path inG2 that is

the arcã = (u′, v′) ∈ A2. This is possible since the subbands ofW̃ are newly installed and are

not assigned physical paths in the solutionS0. The disjunction constraints are therefore satisfied.

Now let us associate with the commodities ofS̃ the pairs(ẽ, w),w ∈ W̃ , in addition to their initial

routing paths. Such assignment is possible since there are enough subbands installed onẽ so that

the capacity constraint (3) for every pair(ẽ, w) such thatw ∈ W is installed oñe is satisfied. It is

clear that the solutionS1 is feasible and(xS1

, yS
1

, zS
1

) belongs toF̃ . Hence,F̃ 6= ∅, and therefore,

is a proper face ofP (G1, G2, K, C).

Now suppose that there exists a facet-defining inequalityλx + µy + νz > ξ, such that

F̃ ⊆ F = {(x, y, z) ∈ P (G1, G2, K, C) : λx+ µy + νz = ξ}.

We will show that there exists a scalarρ ∈ R such that(α, β, γ) = ρ(λ, µ, ν).

Consider a pair(e, w) ∈ A1 ×W . Let S2 be the solution obtained fromS1 by adding an arc

f ∈ A2 to ∆1
ew. We suppose without loss of generality thatf = (u′, v′) /∈ ∆1

ew (if this is not true,

then we can add two arcs(u′, s), (s, v′), s ∈ V2 to the current solution, and removef ). In other

words,S2 is such thatF 2
1 = F 1

1 , F 2
2 = F 1

2 , ∆2 = ∆1 ∪ {f} andW 2 = W 1. It is clear thatS2 is

feasible and its incidence vector belongs toF̃ . Comparing both incidence vectors ofS1 andS2

implies thatνew
f = 0. Asf , e andw are chosen arbitrarily inA2, A1 andW , we obtain thatνew

a =

0, for all e ∈ A1, w ∈ W anda ∈ A2. By similar arguments, we can show thatµew = 0, for all

e ∈ A1 \ {ẽ}, w ∈ W andλk
ew = 0, for allk ∈ K \ S̃, e ∈ A1 \ {ẽ} andw ∈ W .

It is easy to show thatλk
ew = 0, for any commodityk ∈ S̃, e ∈ A1\{ẽ},w ∈ W , by constructing

further feasible solutions wherek is shifted to a routing path that avoids using arcẽ. Besides, if

we pick a commoditỹk in K \ S̃, and a subband installed oñe, sayw̃, then we can easily see

that a solution obtained by associating the pair (ẽ, w̃) to k̃ in addition to its routing path remains

feasible and its incidence vector belongs to bothF̃ andF (by condition(ii) of Theorem 6). This

observation implies thatλk
ẽw = 0, for allk ∈ K \ S̃, w ∈ W .
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Now let k̂ be a commodity arbitrarily choosen iñS, and letŵ be the subband ofW such that

(ẽ, ŵ) is associated with the routing ofk̂. We will construct a solutionS∗ from S0 such that all

the commodities of̃S \ {k̂} useW̃ \ {ŵ} for their routing andŵ is completely devoted to the

commodityk̂. Such a solution is feasible and its incidence vector belongs toF̃ as well asF thanks

to condition(iii) of Theorem 6.

Now if we remove some commodity, sayk̂, of S̃ from ẽ and shift it to a routing path that does no

longer usẽe, then by condition(iii) of Theorem 6, setting
∑

w∈W yẽw to BP(S̃) - 1 keeps the new

solution feasible. Moreover, its incidence vector belongs toF̃ and then toF . As a consequence,

we obtain, by comparing both solutions, thatλk̂
ẽŵ = µẽŵ. Since,̃k andw̃ are arbitrarily chosen iñS

andW , respectively, we obtain that

µẽw = ρ, for all w ∈ W, (29)

λk
ẽw = ρ, for all k ∈ S̃, w ∈ W, (30)

whereρ ∈ R. From (29) and (30), we obtain that(α, β, γ) = ρ(λ, µ, ν), and the proof is

complete.
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