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Abstract: We consider theCapacitated Multi-Layer Network Design with Unsplit-
table demands (CMLND-U) problem. Given a two-layer network and a set of
traffic demands, this problem consists in installing minimum cost capacities on
the upper layer so that each demand is routed along a unique "virtual” path (even
using aunique capacity on each link) in this layer, and each installed capacity is in
turn associated a "physical” path in the lower layer. This particular hierarchical
and unsplittable requirement for routing arises in the design of optical networks,
including optical OFDM based networks. In this paper, we give an ILP formu-
lation to the CMLND-U problem and we take advantage of its sub-problems to
provide a partial characterization of the CMLND-U polytope including several
families of facets. Based on this polyhedral study, we develop a branch-and-cut
algorithm for the problem and show its effectiveness though a set of experiments,

conducted on random, realistic and real instances.
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1 Introduction

User demand in traffic has increased significantly during the last decades. Nowadays telecommu-
nication networks are already reaching their limits, and it is necessary to upgrade their transport
capacity. Indeed, the arising of new services, mainly driven by internet applications and multi-
media contents, requires more flexible and cost-effective network infrastructures. To overcome
this explosive growth of traffic (estimated at 45 % per year in averagg, (telecommunication
industry actors investigate new technologies that provide a solution to the increasing capacity re-
quirements, as well as the flexibility needed to use smartly this capacity.

Telecommunication networks can be seen as an overlapping of multiple layers, upon which
different services may be furnished. In particular, optical fibers networks consist of two layers : a
physical layer and a virtual layer. The physical layer is based on optical fibers, while the virtual
one supports the WDM (Wavelength Division Multiplexing) technology. Such a process is based
on a set of devices referred to as multiplexers, interconnected by optical links, made of several
wavelengths. Both layers are connected, as the wavelengths of the virtual layer use the optical
fibers of the physical layer as a support to carry the customers traffic.

Although WDM technology is currently used to transport informations over long distances
(metropolitan areas, submarine communication cables), with wavelength capacities of 2.5, 10 or
40Gb/s, it is not possible to reach similar distances with higher capacities. In fact, the existence
of physical phenomena, also called transmission impairmég)s that affect the optical fibers,
highlights the difficulty of setting up higher capacitated wavelengths on long distances. Recent in-
novations in optical fibers comunications concerning a new technology called Multi-band Orthog-
onal Frequency Division Multiplexing (OFDM) have shown very promising results, and should
enable the transition of WDM-based infrastructures to high capacitated wavelengths (100 Gb/s
and more) over long distances. OFDM is based on the division of each available wavelength into
many subwavelengths, also called subbands, this is kno@pasal Multi-band OFDM network

Now consider an optical multi-band OFDM network that consists of an OFDM/WDM network
over a fiber layer. The OFDM/WDM layer is calladrtual layer and the fiber layer is called

physical layeras well. The OFDM/WDM layer is composed of devices calReconfigurable



Optical Add-Drop MultiplexerfROADM), which are interconnected by virtual link. A virtual

link may receive one or many OFDM subbands. Note that, although a subband is said to be
installed over a virtual link, it is in fact generated by a pair of ROADMs at the extremities of the
link. The physical layer is composed of several transmission nodes interconnected by physical
links. Each physical link contains two optical fibers, so that the traffic can be transported in both
directions. The physical and virtual layers are communicating via an interface referred to as OEO

(Optical-Electrical-Optical) interface.
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Figure 1: Example of multilayer network

Each ROADM in the virtual layer is associated with a transmission node in the physical layer.
And every link in the virtual layer carries one or several subbands. We suppose that there exists a
link between each pair of ROADMs in the virtual layer, as one or many subbands may eventually
be installed between any pair of devices. Each subband installed over a virtual link is assigned a
path in the physical layer. A link in the physical layer can be assigned to several different sub-
bands. However, due to technical aspects of OFDM technology, a physical link can be assigned
at most once to an installed subband. In practice, one or many ROADMs may be installed upon

a transmission node. However, we assume that all the subbands installed over a virtual link are
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produced by a unique pair of ROADMSs, set up on the extremitigkis link. In addition, estab-
lishing a subband yields a certain cost, which is the cost of ROADMSs that generate this subband.
We assume that we have a traffic matrix, where each element is a point-to-point traffic demand
that may correspond to a given service, internet application or a multimedia content. This traffic
demand has a value that is an amount of informations measured in Mb/s or Gb/s.

Figure 1 shows a bilayer network. The virtual layer includes four ROADMSs deroteR,, R
and R4, while physical layer contains six transmission nodes deribtéd7;. We can see that,,

Ry, R; andR, are connected td,, 15, T5 andT, via OEQ interfaces. In addition, there exists a link
between each pair of installed ROADMs. Remark that ndéeand Rs have not been represented

in the figure, as they do not carry any ROADM. Furthermore, three subbands are represented in
the figure, respectively installed on the linkB,, R,), (R1, R3) and (R, R4). The traffic using

these virtual links is in fact transmitted through paths made of optical fibres in the physical layer.
Indeed, the link R, R») is associated with the pathii, T5), while (R;, R3) is assigned the path
(T1,Ty), (T4, T5) and(Ry, Ry4) is physically routed by}, Ts), (75, 74). It should be pointed out

that there are two levels of routing in such networks. The traffic is routed using subbands installed
on the virtual links, and the subbands themselves may be seen as demands for the physical layer.
Thus, when given those two layers of network and a traffic matrix, one may determine the set of
virtual links that will receive the subbands, and the set of physical links involved in the routing of
those subbands, and establish the traffic commodities routing.

In this context, we are interested in a problem related to the design of OFDM/WDM networks.
Thereby, assume that we are given an optical fiber layer, an OFDM/WDM layer and a traffic
matrix. TheCapacitated Multi-Layer Network Design with Unsplittable Dema(@sILND-U)
problem consists in determining the number of subbands to be installed over the virtual links, and
their physical path as well, so that the traffic can be routed on the virtual layer and the cost of the
design is minimum. This work was initially motivated by a collaboration with Orange Labs, whose
engineers are also interested in evaluating the performances of OFDM-based networks. For this
reason, and throughout the paper, we will use this context to explain our model and the results we

will provide.



Actually, the problem of designing layered networks havenbsadied first by 15). Authors
wish to set up a set of virtual links referred to as “pipes” on the physical layer. They propose an
integer linear programming formulation based on cut constraints for the problem. They study the
associated polytope and provide several classes of valid inequalities that define facets under some
conditions which are described. They also provide a cutting planes based algorithm embedding
their theoretical results. Further works consider exact methods for different variants of the mul-
tilayer network design. In fact, in2¢), Orlowski etal. propose a cutting planes approach for
solving two-layer network design problems, using different MIP-based heuristic allowing to find
good solutions early in the Branch-and-Cut tree. Belottle(7) investigate the design of multi-
layer networks using MPLS technology. They propose a mathematical programming formulation
based on paths, then apply a Lagrangian relaxation working with a column generation procedure
to solve their model. We also cite a more recent work of Raghavan and Stan@2vibdt study
the two-layer network design arising in WDM optical networks. They consider the non-splittable
traffic demands and propose a path based formulation for the problem. They provide an exact
Branch-and-Price algorithm which solves simultaneously the WDM topology design and the traffic
routing subproblems. Ir2@), the authors address the problem of planning multilayer SDH/WDM
networks. They consider the minimum cost installation of link and node hardware for both lay-
ers, under various practical constraints such as heterogeneity of traffic bit-rates, node capacities
and survivability issues. They propose a mixed integer programming formulation and develop a
Branch-and-Cut algorithm using non-trivial valid inequalities, from the single-layer network de-
sign problem, to solve it. In1), the authors study the multi-layer network design problem. They
propose a Branch-and-Cut algorithm to solve a capacity formulation based on the so-called metric
inequalities, enhancing the results obtaine®®) for the same formulation. Ir2@), Mattia studies
two versions of the two-layer network design problem. In particular, the author proposes capacity
formulations for both versions and investigates the associated polyhedra. Some polyhedral results
are provided for both versions of the problem, specifically proving that the so-called tight metric
inequalities, introduced irbj, define all the facets of the considered polyhedra. The author shows

how to extend these polyhedral results to an arbitrary number of layers2)lrBorne etal. study



the problem of designing an IP-over-WDM network with surtiiidy against failures of the links.
They conduce a polyhedral study of the problem, give several facet defining valid inequalities, and
propose a Branch-and-Cut algorithm to solve the problem.

Our contribution

The capacitated design of single-layer networks has received a lot of attention in the litera-
ture, and a big amount of research has been conducted on the associated polyhedron. Yet the
investigation of capacitated multilayer network design problems received only a limited atten-
tion, specifically in a polyhedral point of view. The objective of this paper is to investigate the
CMLND-U problem within a polyhedral framework, and to provide an efficient Branch-and-Cut
algorithm to solve it. In this context, we give an integer linear programming formulation for the
problem and study the polyhedron associated with its solutions. We then introduce further classes
of valid inequalities and study their facial structure. These inequalities are used within an efficient
Branch-and-Cut algorithm for the CMLND-U problem.

The rest of the paper is organized as follows. In Section 2, we describe the CMLND-U problem
in terms of graphs and give an ILP formulation to model it. In Section 3, we present the CMLND-
U polyhedron and study its basic properties. We then introduce several classes of facet-defining
valid inequalities. These results are used to devise a Branch-and-Cut algorithm which is described
in Section 4. Several series of experiments are conducted and Section 5 is devoted to present a
summary of the obtained numerical results. Finally, we give some concluding remarks in Section

6.

2 The capacitated multi-layer network design problem with
unsplittable demands

2.1 Definition and notations

In terms of graphs, the CMLND-U problem can be presented as follows. We associate with the
virtual layer, a directed grapfi; = (V1, A;). G, is a complete graph wheilg is the set of nodes
and A, the set of arcs. Each node € V; corresponds to a ROADM and each arce A,

corresponds to a virtual link between a pair of ROADMSs. In addit@njs a bi-directed graph,



i.e. there exists two arqs:, v) € A; and(v,u) € A, connecting each pair of nodesandv of
V1. Consider the directed grafgh, = (14, As) that represents the physical layer of the optical
network. V5, denotes the set of nodes andlis the set of arcs. Each nodee V; corresponds to a
transmission node and each are A, corresponds to an optical fibre. Every nadm V; has its
corresponding node’ in V5. The graph(z, is such that if there exists an afe¢’, v') between two
nodesu’ andv’ of V3, then(v', ') is also inA,. In this way, the link can be used in both directions
between.’ andv’.

Suppose that we have € Z* available subbands. We denote By = {1,2,...,n}, the set
of indices associated with these subbands. Every subbaad has a certain capacity and
a costc(w) > 0. Moreover, a subband installed over an are A; can be seen as a copy of this
arc. Each paife, w) such thatw is installed over the are = (u, v), is associated with a path in
(G, connecting nodes’ andv’. The same path id’, may be assigned to different subbands of
W. Nevertheless, an arce A, can be associated at most once with a given subbarid other
words, if the subband is installedp times,p € Z*, over different arcs,, ..., e, of A;, then the
pairs(e;, w),i = 1,...,p, have to be assignedpaths inG, that are arc-disjoint. This comes from
an engineering restriction and will be called disjunction constraint. In addition to the design cost,
we will also attribute a physical routing cost denotétl(a) for every arca of A, involved in the
routing of a paire, w) such thatw is installed ore.

Now let K be a set of commodities id;. Each commodity: € K has an origin node;, € V7,
a destination nodé,, € V; and a traffic valueD, > 0. We suppose, thad* < C, forall k € K.
Note that there might exist different commodities with the same origin and destination. A routing
path inGG; has to be assigned to each commodity K connecting its origin and its destination.
Every section of a routing path uses the subbands installed over the at¢s Dhereby, we will
say that a paife, w), e € A;, w € W is used by a commodity, if w is installed ore and (e, w)
is involved in the routing of. Furthermore, several commodities are allowed to use the same
subbande, w), if they fit in its capacity. However, one commodity can not be split into several

subbands or several paths.

Definition 1. Capacitated Multi-Layer Network Design with Unsplittable demands (CMLND-U)



problem: Given two bi-directed graplis, and GG», a set of subbandg’, the installation cost(w)
for each subbanad, and a set of commoditids, determine a set of subbands to be installed over

the arcs ofG; such that

(i) the commodities can be routed@ using these subbands,
(i) pathsinG,, respecting the disjunction constraint, are associated with the installed subbands,

(i) the total cost is minimum.

2.2 Integer linear programming formulation

Given a digraphG = (V/, A) and a node sét’ C V, we denote bwgm (resp. 55@))’ the set of
arcs ofA having their initial node (resp. terminal node)iinand their terminal node (resp. initial
node) inV'\ 7' thatis to say/,,, = {a = (u,v) € Awithu € T andv ¢ T'}.

Now we will present an integer linear programming formulation using three sets of variables.
First, let thedesign variableg € R4*" be such that, for each aecc A, and for each subband
w € W, y.., takes the value 1, ifv is installed one, and 0 otherwise. Let theuting in G
variablesz € R41xWx42 pe sych that for each arce A;, for each subband € W and for
each ara: € A,, z.., takes the value 1 i& belongs to the path i, associated with pair(w),
and 0 otherwise. Finally, we denote byc R¥*4:*W the routing variables such that for each
commodityk € K, for each are € A; and for each subband € W, ., takes the value 1 i
uses ¢,w) for its routing in G, and 0 otherwise.

An instance of CMLND-U is defined by the quadruplét;, Gs, K, C). Let S(G1, G2, K, C)
denote the set of feasible solutions of the CMLND-U problem, associated with an in§fancs, K, C').

The CMLND-U problem is then equivalent to the following ILP:



min Z Z (W)Yo + Z Z Z b’ (a)Zewa (1)

ec Ay weW e€A1 weW a€As
Vk e K,NT C V
Z Z Thew = 17 ’ ! (2)
T #Vi,op €T, d, ¢&T,
eedg; (T) wEW AT # W0 i
> Drren < Cews Veec A,YweW, (3)
keK
Ve = (u,v) € A;,Yw € W,
Z Zewa Z Yew, VI CVo,0 #£#T £ Vo, € T)v' ¢ T, (4)
aG&éQ(T)
Z Zewa S 17 Yw € VV,Va € AQ, (5)
ecAy
Tpew € {0,1}, Vk € K,Ve € A;,Yw € W, (6)
Yew € {O, 1}, e & Al,Vw € VV7 (7)
Zewa € {0, 1}, Ve € A1,Yw € W,Va € A,. (8)

Inequalities (2) are theut constraints They will also be referred to amnnectivity constraints
They ensure that a path (®, exists for each commodity between nodes, andd,. Inequalities
(3) are thecapacity constraintfor each subband installed over an arcQf They express the fact
that the flow using the subbamdon arce does not exceed the capacity.ef They also ensure that
the overall capacity installed on atr¢s large enough to carry the traffic usiaginequalities (4) are
the subband connectivity constrainf8hey guarantee, for each péir, w) wherew is installed on
e = (u,v), that a path irG, is associated witle, w) between nodes’ andv’. Inequalities (5) are

referred to aslisjunction constraintFinally, inequalities (6)-(8) are thategrality constraints

3 Associated polyhedron and valid inequalities

In this section, we introduce and discuss the CMLND-U polytope, that is the convex hull of the
solutions of problem (1)-(8). In what follows, we will assume that= (15, A,) is also a complete
graph. This is a reasonable assumption, since the problemdhismot complete can be reduced

to the case whefyr, is complete by introducing dummy arcs with large costs. We also make the
assumption that the numbig¥’| of available subbands is sufficiently large for allowing the routing

of all commodities over a single arce A, if this necessary. Note that such an assumption is
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resonable because the maximum number of subbands that canemigdly installed in practice
is indeed large regarding to the number of commodities. Of course, the costs will prevent the
installation of unnecessary subbands.

Given an instance of CMLND-U, defined by the quadruglet, G, K, C), we denote by
P(G1, Gq, K, C) the convex hull of the incidence vectors®fG, G, K, C), that is

P(G1, Gy, K,C) = conv{(z,y, z) € REXAXW  RAXIW o RArxWxdz
(x,y,z) satisfies (2)- (8)}

In what follows, we will characterize the dimension of polytap&~,, G2, K, C') and investi-

gate the facial aspect of inequalities (2)-(8).
Theorem 1. P(G4, G, K, C) is full dimensional.

Proof. See Appendix A. O

3.1 Capacitated Cutset Inequalities

Consider a partition of/; nodes in two subsef andT =V, \ T', we denote by (T') (respectively
K (T)) the commodities of having their origin and destination nodes in the sulbsgespectively
in T'), while the remaining subset @€ will be denoted byK*(T") and K~ (T'). Note thatK *(T')
(respectivelyK — (7)) is the subset of commodities having their origin nod&ifrespectively in
T) and their destination node ifi (respectively inT"). We will also denote byD(K*(T)) the
total traffic amount of K" (7'). In other words,D(K™(T')) = > ) re+(r) D*, andD(K—(T)) =

> hek—(T) D*. We further denote by3 P(K*+(T)) (resp. BP(K~(T))) the smallest number of
subbands required iy (T') to route the commodities df * (7). Actually, this value corresponds
to the optimal solution of th&éin packingproblem with K*(T") (resp. K~ (7)) being the set of
items to be packed ard the capacity of a bin. For example Af*(T) is composed by 3 demands
with 6 units of traffic and” = 10, thenBP(K*(T')) = 3. Again, this happens because the traffic

of a commaodity can not be split into distinct subbands, even if they are installed in the same arc.

Proposition 1. Let() # T' C V4, then the following inequality

Z Z ew/ M—I (9)

6657L (T) weW
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is valid for P(G1, G2, K, C).

Proof. The total capacity of the subbands installed over the cut must be greater than or equal to
the traffic amount of the commodities going frafito 7 = V;\T and using the arcs of that cut.

Then, inequality

C > > Yew= DEH(T))

e€5+ U)EW

is clearly valid forP(G1, G, K, C). By dividing this byC' and rounding up the right-hand side,

we obtain inequality (9)] O

Theorem 2. Inequalities(9) define facets aP (G, G, K, C) only if [2EZIN] = Bp(K+(T)).

Proof. Given two nodes andv of V, we let K (u, v) be the set of commodities such th&tu, v)
={k € K : o, = u,d;, = v}. Now suppose thaﬂM} < BP(K(u,v)). In this case, (9)

can not be tight, since the commoditiesiofu, v) can not fit in[ 22 subbands, and thus (9)

could not induce a proper facel O

Example 1. For example, itk (u,v) = {ky, ko, k3} with D¥ = D*2 = Dks = 6, while C = 10. In

this case, there is no solution &G, G, K, C) such that2866g ) > wew Yew = [K(g’”W = 2.
1

Theorem 3. Inequalities(9) define facets oP (G4, Go, K, C) if the following conditions hold.
(i) [2EEE2) = BP(KH(T)),
(i) BP(K*(T)U{k})= BP(K*(T)),forallk e K\ K™(T),
(iii) forall ¥ € K*(T), there existd” € K*+(T) such thatD* + D" < C,
(iv) forall k e K*(T), BP(K*(T)\ {k})= BP(K*(T)) - 1.
Proof. See Appendix B. O
3.2 Flow Cutset inequalities

In what follows, we will describe a set of valid inequalities f&(G,, G», K, C') that are a general-
ization of the capacitated cutset inequalities (9). Similar inequalities have been introdudell by (
and were discussed ir8); (10) and @1) for network design problems where discrete modular

capacities are installed on the arcs of the graph.
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Proposition 2. Consider a non empty subset of nodésC V; and a partitionF', F of the cut
6¢,(T) induced byr". The following flow-cutset inequalities

Z Z Yew + Z Z Z xkew w—l . (10)

weW ecF weW ¢cF ke K+H(T

are valid for P(G4, Go, K, C).

Proof. It is clear that the following inequalities

Z Z Trew =1, forallk e K*(T),

weWw e€5+

are valid forP(G1, G, K, C'), as they express the connectivity constraints for the commodities of
K*(T). Multiplying both sides of this inequality bip* and summing ovek *(T') yields

Z Z Z D xkew = (K+<T)) (11)

weW e€5+ (T) keK+(T
In addition, we have from the capacity constraints (3), restricted to the commodifies(af) and
the arcs ofF', that
Z D*tpewy — Cyery <0, foralle € F,w e W.
keKT(T)
By summing these inequalities, we obtain
Z chew Z Z Z DF Tgew 2 0. (12)
weW eeF weW ecF ke K+(T
As 6t (T) = FUF, by summing (11), (12), and dividing by, we get
D(KH(T
IPITED D) D PIEAFEL-L e 09
weW ecF weW ocF ke K+(T)
Moreover, we have the following trivial inequality

Z Z Z 1 - A xkew > 07 (14)

WEW ecF ke K+(T)

By summing (13), (14) and rouding up the right-hand side, we get (ID) . O

Theorem 4. A flow-cutset inequality10) defines a facet oP (G4, Go, K, C), different from(9)

only if the following hold

12



() F£0#F,
(i) D(K*(T)) > C andD(K*(T))is not a multiple of,
(iiiy [2EZEN) = BP(KH(T),
(iv) BP(K*(T)) < |K*(T)],
(v) there existg C K*(T) such thatBP(K*(T) \ q) < BP(K*(T)) — |4,
(viy BP(KH(T)U {k}) < BP(K*(T)),forall k € K\ K+(T).
Proof. See Appendix C. O

Theorem 5. A flow-cutset inequality10) defines a facet aP (G, Gs, K, C), different from(9) if

the following conditions are satisfied
(i) conditions(i) to (vi) of Theorem 4,
(i) if |F| =1, foreachk € K*(T), BP(K*(T)\ {k}) < BP(K*(T)) - 1,
(iii) if |F| =1, for eachk € K*(T), there exist&’ € K+(T) such thatD* + D* < C.

Proof. Similar to proof of Theorem 3. 0

3.3 Clique inequalities

In what follows, we will study an additional class of inequalities that are valifar,, G, K, C).
These inequalities are based on the so-callieghe inequalitiesntroduced by Padber@9) in the
context of thestable set polytopmvestigation. Similar inequalities have also been studie®)in (
for theBalanced Induced Subgraph problemore generally, clique inequalities arise in problems
whereconflictsmay occur between objects (sdd (20). In order to identify these facet-defining

inequalities, we will introduce first the concept of conflict graph.

Definition 2. Given an instance of the CMLND-U problem, we consider a graphk (V, E),
called conflict graph where each node 6fis associated with a commodity i§ and two com-
moditiesk;, ko, are connected by an eddgek, € E if and only ifk; andk, cannot be packed in a

subbband together. In other words, there exists an édéein £ if and only if D¥ + D*2 > (.

13



A cliqgueC C N inagraph is a set of nodes such that every two distinct nodesiia adjacent.
A clique( is said to bemaximalif it is not strictly contained in a clique.

We have the following.

Proposition 3. LetC C K be a clique in the conflict grapi/, and (e, w) € A; x W, then the
following clique-based inequality

Z Thew — Yew < 07 (15)
keC

is valid for P(G1, G2, K, C).

Proof. It is clear that if a subband is installed ore, then at most one commodity 6fcan be

routed ore usingw. If not, thenz,.,, = 0 for all £ € C, and the constraint is trivially satisfied ]

3.4 Cover inequalities

A coverZ C K is a subset of commodities such tha, ., D* > C. A cover is said to beninimal

if it does not contain any cover as a subset.

Proposition 4. Consider an are € A;, a subbandv € W and a subset of commoditigsC K
defining a cover. Then, the following inequality

Zxkew < (|I"1>yew (16)

kel

is valid for P(G1, Go, K, C).

Proof. If ., =0, then itis clear that no commodity can usendw, that is to sayt;.,, = 0, for all
k € K, in particular for allk € Z. Now suppose thaj.,, = 1, and) , .7 Zrew = (|Z]-1)yew + 1 =
|Z|. This means that all the commoditiesblse ¢,w). In other wordsyy.,, =1, forallk € Z,

but this is impossible sincg, ., D* > C. O

Cover inequalities define facets under some conditions #rktiapsack polytope (segf,
33)). They should also define facets f&X G, G2, K, C') polytope with appropriate additional
conditions. Furthermore, facets based on covers and extensions of covers may be derived by using

lifting procedure (seel@, 30).
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3.5 Min set | inequalities

We introduce here a further class of valid inequalities induced by a subset of commaodities for
each arc. This class of inequalities has been described fif8} far(the unsplittable non-additive
capacitated network design (UNACND) problem. They have been identified using the fact that the

single arc UNACND problem reduces to the bin packing problem.

Proposition 5. Given a subsef C K of commodities and a non negative integee Z*, in-
equalities

D Thew < ) vew+p, foralle € Ay, (17)

weW keS weW

are valid for P(G4, G2, K, C) ifand only ifp > |S| — BP(S5).

whereBP(S), likewise in inequalities (9) and (10), denotes the minimum number of subbands

(with capacityC) necessary to pack the commoditiessin

Proof. The following inequalities

D ab <yo+p, foralle e A, (18)
kesS

Introduced in ) for theUnsplittable non-additive capacitated network design proldeenclearly
valid for P(G1, Gy, K, C) if p > |S|— BP(S). Indeed, by introducing new “aggregated” variables
xF € {0,1},Vk € K,Ve € Ay, andy, € Z*, Ve € A;, we can use the following transformation

xk = Y wew Thew @ANAye = > o Yew. This is possible since a commodity cannot be split over

e

several subbands installed on the samesagcA;. Thus, using the original variables to write (18)

yields inequality (17). O
Theorem 6. Inequality(17) defines a facet aP (G, G2, K, C) if and only if the following hold
() p=5]-BP(S),
(i) BP(SU{s})= BP(S) =S| - p, wheres is the largest element i \ S,
(i) BP(S\{s})=BP(S)-1=|S|-p-1, wheres is the smallest element is\

Proof. See Appendix D. O
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3.6 Min set Il inequalities

Likewise Min Set I, this class of inequalities has been presented fif8) an¢l originates from the

study of the arc-set UNACND polyhedron.

Proposition 6. Let.S be a subset ok, andp andg, two non negative integer parameters such that
q = 2. Then, the inequality

ZZxﬁwéquew—l—p, Ve € Ay (19)

weW keS weW

is valid for P(G4, Go, K, C) if p > (|S"| — ¢BP(S")), forall S” C S.
Proof. Similar to proof of Proposition 5. O

Note that Proposition 5, Theorem 6 and Proposition 6 are atlaptof results in§), where
the facial structure of both Min Set | and Min Set Il inequalities is investigated in details. The
authors give necessary and sufficient conditions for these inequalities to define facets for the arc-

set unsplittable non-additive capacitated network design polyhedron.

4 Branch-and-Cut algorithm

In this section we present a Branch-and-Cut algorithm for the CMLND-U problem. Our purpose is
to substantiate the efficiency of the valid inequalities described in the previous section, and provide

exact solutions for realistic and real instances of networks.

4.1 Overview

We describe the framework of our algorithm. Suppose that we are given two graphg/;, A;)
andG, = (14, Ay), that instantiate the virtual layer and the physical layer of the network, respec-
tively. Also suppose given a set of commoditi§svhere each commodity is characterized by a
pair (ox, d;,) € Vi x V4 and a traffic valueD*. We consider a sét’ of available subbands having

a capacityC'. A cost vector € RYF"X"“, is given as well.
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To start the optimization, we set up the following restridiedar program.

Min Z Z c(w)y + Z Z Z z2Y

8€A1 wew 6€A1 weW G,EAQ

s.t:

Z Z ko>, Vk € K, s € {oy, di},
wewe&ggl(s)

> Dk, < Oy, Ve € Ay, Yw € W,
keK

» o<, Vw € W,Va € A,
ecAq

0<ak <1, Vk € K, e € Ay,
0 <y <1, Yw e W,e € Ay,
0< 2% <1, Ve € Ay, Vw € W,Va € A,.

We denote by, 7,%), T € REXWxAL 77 ¢ RWxAL 7 ¢ RWxAix4z the optimal solution of
the restricted linear relaxation of the CMLND-U problem. This solution is feasible for the problem
if (Z,7,z) is an integer vector that satisfies all the cut constraints of type (2) and (4). In most of the
cases, the solution obtained this way is not feasible for the CMLND-U problem. We then manage
to identify, at each iteration of the algorithm, valid inequalities that are violated by the solution
of the current restricted linear program. This is referred to aséparation problem Namely,
given a class of valid inequalities, the separation problem is to check whether the s@iutjon)
meets all the inequalities of this class, and, if this is not the case, to find an inequality that is
violated by (7,7, z). The detected inequalities are then added to the current linear program, and
such procedure is reiterated until no violated inequality can be identified. The algorithm uses then
to branch over the fractional variables.

The Branch-and-Cut algorithm includes the inequalities described in the previous chapter, and

their separations are accomplished in the following order

1. basic cut constraints ((2), (4))
2. min set | inequalities
3. capacitated cutset inequalities
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4. flow-cutset inequalities
5. cligue-based inequalities
6. cover inequalities

7. min set Il inequalities

Observe that all the inequalities are global (i.e., valid for the whole Branch-and-Cut tree), and
several inequalities may be added at each iteration. Furthermore, we move to the next class only if
no violated inequalities of the current class are identified. Our strategy is to try to detect violated
inequalities at each node of the Branch-and-Cut tree, in order to obtain the best possible lower
bound by strengthening the linear relaxation, and thus limit the number of generated nodes.

In the sequel, we describe the separation procedures embedded in our algorithm. We use exact
and heuristic algorithms as well, depending on the class of inequalities. Except for cut inequalities

(4), all the separation routines are applied on the gr@ph

4.2 Separation of basic Cut constraints

Algorithm 1: Separation of basic cut inequalities (2)
Data: avector(z7, v, z)
Result: a setCl of cut inequalities (2) violated byz, 7, %)
for each commodity € K do
Associate a weight(e, w) = 7% to each paird, w)e A; x W;
Use Goldberg-Tarjan push relabel algorithb8)(to find the min cut separating, from
d,. regarding to the assigned weights;
Let 6% (T') denote this cut, wher& C V; (T containso, but does not contaid);
if cut inequality(2) induced byy* (T') is violated by(Z, 7, Z) then
| add this inequality t&I;

return the identified cut inequalitie8l to be added to the current LP;

We used the implementantion of Goldberg and Tarjan algoritimax flow/min cut available
in LEMON GRAPH C++ library R). It has a worst case complexity 6f(n?,/m;) wheren,; and
m, are the number of nodes and arcg44f respectively. Therefore, the exact separation algorithm
for cut constraints (2) runs i@ (nit,/m;), wheret = | K|.

For the cut constraints (4), we have to solve the separation problem that consists in computing

for each paire = (u,v),w) € A; x W, such thatj,,, > 0, the minimum cut inG, separating
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v’ from v’ consideringz...,, as the arc capacities. Using the same Goldberg and Tarjan min cut

algorithm, the full exact separation has complexityn2m,|W |, /ms).

4.3 Separation of capacitated cutset inequalities

The separation problem associated with the cutset inequalities has been proven NP-hard in general
(9). In our case, the separation problem related to capacitated cut-set inequalities (9) is also NP-
hard. Therefore, we have developed two heuristics to separate these inequalities, one of which is
based on the so-called n-cut heuristic, proposed by Bienstock et &) for(the minimum cost
capacity installation for multicommodity network flows. We adapt this heuristic in order to make
it suitable for our problem.

This heuristic works as follows. For any commoditye K, we check whether there is a
path inG; connecting nodes;. andd,,, and using only pairgée, w), e € A;, w € W with 7% >
0. Since this can be performed by any path finding algorithm, we use Dijkstra’s algorithm. If
such a path does not exist, then it is clear that a capacitated cutset inequality is violated. This
inequality is induced by a subset of nodEsuch thato, € T andd, ¢ T. If a path between
or andd,, is identified inG, for each commodity:, then we randomly pick a subset of nodes,
sayT C Vi, 0 # T # Vi, and identify the subset of commoditi&s™ having their origin node
in 7" and their destination ify; \ 7'. After that, we compute the right-hand side, and we check
if the constraint thus constructed is violated. Since we check the existence of a path for each
commodity between its origin and its destination, the worst-case complexity of this procedure is

(’)(|K|(m1|W| + 7’L1l0g(n1))), Wherem = |‘/1| andm1 = |A1|
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Algorithm 2: Separation of capacitated cutset inequalities (9)
Data: avector(z, 7, %)
Result: a setCCS of capacitated cutset inequalities (9) violated(byy, z)
Associate a weight(e, w) = 7,,, to each paird, w)e A; x W;
for each commodity € K do
Check if there exists a path @, from o, to d;. using pairs ¢, w) withg,,, > 0;

if such path does not exigten
L a capacitated cutset inequality induced by a subsstviolated and must be added

to CCS;

if there is a path for each betweerv, andd; then

Randomly pick a subset of nodésin V7;

Construct the subset of commoditi&s (7") such thatK(T') =
{k€K:opeTandd, & THif Xcsiir) Spew Tew < [ 22T then
| A violated capacitated cutset inequality is identified andine added t6CS

return the identified cut inequalitieSCS to be added to the current LP;
In the second separation heuristic, we use Goldberg-Targanaffaw algorithm to find violated

capacitated cut-set inequalities (9). We attribute to each(pair) € A; x W the capacityy,
and determine for eadh € K a minimumo*d*-dicut in G, sayéé;1 (T*), with T* C V. We then
identify the subset of commoditids* (7') C K passing through this directed cut. We finally add

inequality

>3 gz (2O

6652@1 (T*) weW
in case it is violated. This procedure is based on max-flow computations, thus the worst case

complexity isO(n?t,/my).
4.4 Separation of flow-cutset inequalities

We now discuss our separation procedure for the flow-cutset inequalities (10). Atamtirk shows
in (3) that the separation problem associated with a more general form of flow-cutset inequalities
is NP-hard even for one commodity. In case of a multiple commodity set, the complexity of
simultaneously determining™* (7") and F' is not known 81). As we do not know an efficient
procedure to separate flow-cutset inequalities in general, we use here a simple heuristic based on

Goldberg-Tarjan max-flow algorithm.
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Algorithm 3: Separation of flow-cutset inequalities (10)
Data: avector(z, 7, %)
Result: a setFCS of flow-cutset inequalities (10) violated B¥, 7, 2)
for each commodity € K do
Associate a weight(e, w) =z* +7_, to each paird, w)e A, x W;
Use Goldberg-Tarjan push relabel algorithb8)(to find the min cut separating, from
d,, regarding to the assigned weights;
Let 67 (T') denote this cut, wher& C V; (T containso, but does not contaid);
if flow-cutset inequalityl0)induced by* (7)) is violated by(z, 7, z) then
| add this inequality toFCS;

return the identified cut inequalitie&CS to be added to the current LP;
The main idea consists in identifying, for each commodity mfieimum cut separating its

origin and its destination, then derivating the subset of commodities whose origin and destination
nodes are separated by the same cut (see Algorithm 3. In other words, far eakh we assign
the capacityy,,, + Tre t0 €ach paife, w) € A; x W, and compute the minimum cut separating
o* from d* in the graphG,. Let 6331 (T™), T* C Vi, denote this cut. We then pick an arbitrary
subset of arcs, saf* of 65 (T*), such thal) # F* # 6/ (T*), and we determine the subset of
commoditiesk * (T*) C K usingd/; (T*). If D(K*(T))/C is not integer, we add the succeeding
flow-cutset inequality

)ODILTED DD D PEWES Lt li]

e€F* weW EEK+(T*) eeF* wEW

if it is violated by the current fractional solutidm, 7, z).

4.5 Separation of clique-based inequalities

Given a fractional solutio(, 7, z), and a paifé, w) € A; x W, the separation problem associated
with the clique-based inequalities (15) consists in identifying a cligum the conflict graphi,

such that

Z szew > yewv

keC*
if any. To do so, we use a greedy algorithm introduced2®) for the independent set problem.

This heuristic works as follows. We first construct the conflict graph (V, E') where each node
v € V corresponds to a commodity i§ and an edge € E exists between two nodesv € V' if

D"+ D" > C. For each paife, w) € A; x W, we assign a weight to each nodef V' that isz?

ew!
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then we choose a node, sayhaving the largest weight and we g&t= {«}. We then iteratively
add toC* the maximum weighted node &f \ C* whenever it is neighbouring all the nodes of the

current cliqueC*. We add the clique-based inequality induced’byf it is violated.

4.6 Separation of cover inequalities

We use a similar approach to identify violated cover inequalities (16) if any. Indeed, we put the

largest weighted node in A'*, then we repeat the following operation

Let v be the maximum weighted node Bf\ N'*, then we simply insernt to N* if N* U {v} does

not form a clique

until a cover is obtained)(,. . D* > C). Every nodev € N* such thady >, ..\, D' > C'is
deleted from the subs@f*. Finally, we add the inequality

> abh, < (N[ =1y,

keN*
if it is violated. Note that there exists plenty more sophisticated algorithms to solve the separation
problem associated with cover inequalities (see for exandp1) and references therein for the
separation of cover inequalities), but our first idea was to take advantage from the separation per-
formed for the clique-based inequalities and try to find subsets of commodities that form covers,
if the heuristic fails to identify a clique. Besides, we consider only violated clique (respectively

cover) inequalities wher€*| > 3 (respectively\/*| > 3) in our Branch-and-Cut algorithm.

4.7 Separation of Min Set | and Min Set Il inequalities

Given a fractional solutiof, 7, Z), deciding whether there exists a Min Set | (respectively Min Set
I) inequality which is violated byz, 7, Z) is not an easy problem, since it requires solving the bin
packing problem (which is NP-hard in gener&r)). We use for the separation of these inequalities
heuristic procedures inspired from those propose@)iaiid adapted for the CMLND-U problem.
The idea, for both algorithms, is to identify for every are A; a subset of commodities, that

may induce a violated Min Set | (respectively Min Set Il) inequality. If such inequality exists, then

it is added to the current LP.
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5 Computational experiments

We have conducted several series of experiments to test the efficiency of our Branch-and-Cut
algorithm. The purpose of this experimental study is first to give an insight of the effectiveness of
the introduced valid inequalities in strengthening the linear relaxation of our model. Our second
objective is to identify the classes of instances that are hard to solve in practice, regardless to their
sSize.

The results shown in this chapter have been obtained by solving instances coming from real
networks as well as realistic topologies. For all the instances, the gfaptpresenting the virtual
layer is supposed to be complete. The costinduced by installing each subband is gitenbyl
+ w)c, wherew is the subband index ands a fixed cost associated with the ROADMSs generating
the subband. This cost is justified by our wish to install the subbands progressively on one hand,
and a sake of compliance with practical costs on the other hand. In other words, a subband
is not used beforay;_; is installed. We also take into account the length of routing patfi,in
associated with each installed subband. This length is given in terms of number of sections in the
path. Note that we use the same objective function for both classes of instances.

The realistic instances come from SNDI (ibrary. The graph, corresponds to the topol-
ogy of each instance whilg is obtained by considering an edge between each pair of nodes (we
add the complementary arcs so as to have a complete graph). Moreover, if the topology corre-
sponds to a non directed graph, we replace each edge by two anti-parallel arcsd# oG .
The number of available subbands per arc is sétifo= 5 for all the instances. Based on these
topologies, we have considered two sub-classes of instances. The first one is obtained by using
SNDIib topologies with randomly generated traffic commodities. We have tested 3 examples of
each instance size and give the average of the results for these examples. The second sub-clas
uses SNDIib topologies and traffic matrices. We pick ghenost important commaodities for each
topology and traffic matrix. We have considered the topologais polska nobelus atlanta,
newyork nobelgermany geant tal, france andindia35.

The real instances are derived from real network topologies provided by Orange (formerly

France Télécom, the French historical telecommunication operator). Three topologies of real in-
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stances are considered here, all related to Bretagne arkbdbhoetwork. The traffic commodi-

ties, as well as the subbands capacities are also given by Orange. For each topology, we have
considered three subband capacities 10 Gbit/s,C' = 12.5 Gbit/s and” = 25 Gbit/s, so as to
compare the performances of each type of OFDM multi-band solution. Our experimental results

are reported in the tables of the following sections. The entries of the columns in these tables are:

|Va| . number of nodes iG's,

| As| : number of arcs,

| K| :  number of commodities,

Ncl . number of generated connectivity constraints,

Ncll . number of generated subband connectivity constraints,

NMSI : number of Min Set | inequalities generated,

NCCS : number of capacitated cutset inequalities generated,

NFCS : number of flow-cutset inequalities generated,

NC :number of clique inequalities generated,

NCo :  number of cover inequalities generated,

NMSIlI : number of Min Set Il inequalities generated,

nodes : number of nodes in the Branch-and-Cut tree,

o/p : number of problem solved to optimality over number of tested
instances (only for instances with randomly generated traffic),

Gap . the relative error between the best upper bound (optimal

solution if the problem has been solved to optimality) and the lower
bound obtained at the root node of the Branch-and-Cut tree
(before branching),
TT . total CPU time in h:m:s,
TTsep : CPU time spentin performing the constraints separation, in seconds.
Note that in all the tables, the entries are reported in italic for the instances that could not be

solved to optimality within the fixed CPU time limit.

5.1 Effectiveness of the constraints

Before giving the results of our experiments for the instances described above, we first propose
to evaluate the impact of the valid inequalities that we use within the Branch-and-Cut algorithm.
To this end, we show some numerical results obtained by considering, on one hand the basic
cut formulation (2)-(8), and adding the valid inequalities on the other hand. We have tested our
approach on a subset of instances whose topologies are pdh, polskaysabelvyork and geant.

We rely here on three criteria to make our comparison: the gap, the number of nodes in the Branch-
andt-Cut tree, and the CPU time computation. The results are reported in Table 1.

Table 1 shows results obtained for graphs having up to 22 nodes, and 72 arcs. It clearly ap-
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Table 1:The impact of adding valid inequalities

Basic B&C B&C with valid inequalities

Instance |V2| |A2| |K| Gap  Nodes TT Gap  Nodes TT

pdh 10 68 10 25.64 34709 18000 22.54 6 1593
pdh 10 68 12 1754 2454 3573 4.63 104 4833
pdh 10 68 14 1.39 31 560 0.00 1 133
polska 12 36 10 13.40 34896 18000 3.95 56 2059
polska 12 36 12 36.75 30954 18000 13.19 3114 18000
polska 12 36 14 34.48 14983 18000 8.27 1115 13768

nobelus 14 42 10 36.89 15682 18000 7.74 205 12653
nobelus 14 42 12 41.20 5479 18000 7.77 322 12016
nobelus 14 42 14 4295 10937 18000 28.33 513 18000

newyork 16 98 10 13.87 44 306 3.22 11 6102
newyork 16 98 12 33.09 18179 18000 11.65 88 18000
newyork 16 98 14 14.97 7769 9942 0.00 1 1064
geant 22 72 10 15.18 24635 18000 3.57 17 8716
geant 22 72 12 47.27 20686 18000 5.75 2 18000
geant 22 72 14 41.46 17057 18000 6.23 14 18000

pears from this table that the formulation with valid inedfiesg performs much more better than
the basic formulation on all the instances. In fact, we first notice that using valid inequalities en-
ables solving some instances that could not be solved to optimality when considering the basic
formulation. For example instance polska with 10 commodities could not solved to optimality
within 5 hours when using the basic formulation whereas around 30 mns were enough to solve it
to optimality with the new inequalities. Also we can see that both gap value and CPU time are
smaller when adding the valid inequalities, for all the considered instances. Furthermore, observe
that the number of nodes in the Branch-and-Cut tree decreases drastically when introducing valid
inequalities. For example for instance geaft where the Branch-and-Cut algorithm for basic
formulation explores no less than 24635 nodes, while this number drops to 17 nodes, by adding
valid inequalities, and a similar improvment can be reported forJfalh All these observations
lead us to conclude that using valid inequalities to strengthen the linear relaxation of (2)-(8) is a
key issue to solve efficiently the CMLND-U problem. As we could see, this enabled to improve
significantly the gap value, number of Branch-and-Cut tree as well as the time for computation.
Table 2 shows more accurately the gap evolution when adding the valid inequalities progres-
sively. In fact, the column Gap(0) contains the gap value for basic formulation and Gap(6) contains

the gap value when considering all the cuts. The remaining columns are intermediate gap value
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Table 2: Effectiveness of the cuts - Gap evolution

Instance| [Va|  |A2] |K| Gap(0) Gap(l) Gap(2) Gap(3) Gap(4) Gap(5) Gap(6)

pdh 10 68 10 25.64 22.67 22.54 22.54 22.54 22.54 22.54
pdh 10 68 12 17.54 6.63 4.76 4.63 4.63 4.63 4.63
pdh 10 68 14 1.39 0.29 0.00 0.00 0.00 0.00 0.00
polska 12 36 10 13.40 4.03 3.95 3.95 3.95 3.95 3.95
polska 12 36 12 36.75 13.50 13.50 13.47 13.19 13.19 13.19
polska 12 36 14 34.48 15.63 9.60 8.27 8.27 8.27 8.27

nobelus 14 42 10 36.89 16.00 8.84 8.16 7.74 7.74 7.74
nobelus 14 42 12 41.20 41.13 41.13 8.10 .77 7.77 .77
nobelus 14 42 14 42.95 33.82 32.41 28.33 28.33 28.33 28.33

newyork 16 98 10 13.87 4.27 3.27 3.27 3.27 3.22 3.22
newyork 16 98 12 33.09 24.08 11.97 11.65 11.65 11.65 11.65
newyork 16 98 14 14.97 1.35 0.00 0.00 0.00 0.00 0.00

geant 22 72 10 15.18 5.54 4.14 4.14 3.57 3.57 3.57
geant 22 72 12 47.27 16.96 8.71 8.46 8.46 5.85 5.75
geant 22 72 14 41.46 17.60 14.37 13.42 13.42 6.23 6.23

obtained by considering an additional family of valid inelifies. The constraints are separated

in the order given in Section 4. Thus, Gap(1) corresponds to when adding Min set | inequalities,
Gap(2) when adding capacitated cut inequalities and so on. It appears that the gap value decrease:
when adding valid inequalities. However, it seems that some inequalities are more efficient than
others in strengthening the linear relaxation. In fact, the most significant improvement is observed
when adding Min Set | inequalities (see columns Gap(0) and Gap(1)). Adding capacitated cutset
and flow-cutset inequalities also allows to improve the gap value, while only a slight gain is no-
tified when adding the remaining families of valid inequalities. In practice, their interest lies in
the number of nodes in the Branch-and-Cut tree, which gets smaller as further families of valid

inequalities are being separated.

5.2 Random instances

Our first series of experiments concerns the SNDIib topologies with randomly generated traffic
commodities. The instances considered here have graphs with 10 up to 24 nodes and vary from
sparse (like for polska) to highly meshed (like for tal) topology. The number of commodities for
each size of graphs ranges from 10 to 18 with values generated uniformly in the if¢érval,

with € = 0.2 for these instances. For each instance size, we have generated 3 examples. The result:
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are reported in Table 3.

Instance\ [Va| |As| |K| Opt Ncl Ncll  Nmsl NCCS NFCS NC NCo Nmsll Nodes Gap TT
pdh 10 68 10 3/3 247.00 832.67 74.33 33.00 83.67 2.33 0.67 0.00 740.8.19 350.93

pdh 10 68 12 3/3 625.67 1504.00 150.67 72.33 1389.67 31.67 6.33 3 1.394.67 10.29 2244.68
pdh 10 68 14 3/3 450.33 1030.00 113.00 57.33 1031.33 11.00 6.33 0 0.063.33 5.95 1259.59
pdh 10 68 16 2/3 478.67 1047.33 133.00 23.00 7021.67 17.33 3.67 7 0.691.67 2.83 6061.61
pdh 10 68 18 0/3 3602.67 1703.33 124.67 40.67 11683.67 12.00 ®15.®.00 493.33 6.54 18000.00

polska 12 36 10 2/3 536.33 278233 185.33 61.33 6473.33 12.00 1.67 0 @63.67 9.08 6142.68
polska 12 36 12 3/3 1071.67 3042.00 197.33 81.33 5191.00 57.00 29.6733 0549.33 6.30 6224.30
polska 12 36 14 2/3 1019.67 3896.33 259.67 73.67 7919.00 31.33 42.6700 0918.33 11.53 9440.76
polska 12 36 16 2/3 955.33 3484.33 166.33 62.33 7991.67 30.67 15.3333 0.852.33 13.81 10248.26
polska 12 36 18 2/3 1234.67 3881.33 286.00 46.00 7527.67 78.33 14.6733 (@098.00 8.77 12166.49

nobelus| 14 42 10 2/3 1504.67 5064.67 214.00 120.67 4303.33 30.67 34.6¥67 1388.67 19.05 14031.90
nobelus| 14 42 12 2/3 1529.00 4793.00 294.33 93.67 4377.67 76.00 1.6733 21350.67 14.83 15391.00
nobelus| 14 42 14 0/3 1543.33 4569.33 256.67 116.33 8392.33 59.00 19.3300 877.33 26.14 18000.00
nobelus| 14 42 16 1/3 1755.33 5120.33 301.67 105.33 4693.33 114.33 0.6700 828.33 16.35 17840.40
nobelus| 14 42 18 1/3 1440.67 3590.33 318.33 55.00 8551.00 78.67 8.3300 0.211.33 13.53 15614.03

newyork| 16 98 10 2/3 664.00 2763.67 186.33 43.67 1554.67 9.67 3.33 0.8I5.00 14.74 8385.19
newyork| 16 98 12 1/3 1102.33 4453.67 217.00 104.00 915.33  52.00 8.0000 0.672.33 24.31 13484.55
newyork| 16 98 14 2/3 1721.00 4043.33 245.33 109.00 1822.67 38.67 4.3300 0308.67 15.01 17578.47
newyork| 16 98 16 2/3 911.67 3468.00 170.67 107.67 1484.33 16.67 8.3300 0.291.00 10.37 14519.00
newyork| 16 98 18 1/3 1428.33 3492.00 264.33 105.00 1924.00 48.00 6.3333 0330.00 6.35 16097.23

tal 24 102 10 2/3 169.00 3551.67 19.33 32.67 82.33 0.33 0.00 0.00 33 2.7.10 810.45
tal 24 102 12 2/3 2.67 287.67 5.33 0.00 0.00 0.00 0.00 0.00 15.02620. 357.88
tal 24 102 14 0/3 779.89 6955.22 148.11 166.00 199.00 19.00 4.6700 0.146.00 14.74 18000.00
tal 24 102 16 0/3 249.33 3414.00 23.33 33.00 93.00 4.00 0.33  0.005.061 21.16 18000.00
tal 24 102 18 0/3 996.33 10244.33 157.67 150.33 1187.33 45.33 1.e700 185.67 15.51 18000.00

Table 3: Branch-and-Cut results for SNDIib instances witidanly generated traffic

It appears from this table that 20 over 25 groups of instances have been solved to optimality
within the fixed time limit. Observe that no more than 4 groups of instances among those solved
to optimality have a gap value greater than 20%. Table 3 also shows that the difficulty of solving
an instance is not only related to its size, but also to the size of the commodities. For example,
instances polska with 12 commodities are solved to optimality within the time limit, while 2 over
3 instances polska with 10 commaodities are solved to optimality. Even though the instances of the
second group are larger in size, they are solved more easily. Moreover, it should be emphasized
again that in practice, the subbands installed on the ar¢§ a@ire considered as additional com-
modities. Indeed, since two levels of routing must be performed, thet&are |[W|(ny(n; — 1))

commodities, where; = |V}

K| being the traffic demands and’|(n,(n, — 1)) the number of
subbands that can be installedif. Remark also that an important number of Min Set |, capaci-

tated cutset and flows-cutset inequalities are being generated along the Branch-and-Cut tree, which
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means that they are helpful for solving the problem. Howawernumber of clique and cover in-
equalities separated is smaller. This can be explained by the fact that eachcarpatentially

induces the same cliques (respectively cover subsets), since it depends on the commodities size.
Thus, if all the commodities are "small” regarding to the capacity of a subband, then clique and

eventually cover inequalities are unlikely to appear.

5.3 Realistic instances

The second series of experiments that we have conducted concerns SNDIib instances with realistic
traffic commodities. We have considered instances with graphs having 10 to 35 nodes. 11 instances
have been tested, and 6 instances among them have been solved to optimality within the time limit.
The remaining instances, often having more than 14 commodities, could not reach the optimal
solution after 5 hours of computation. Also we can see in Table 4 that, for the instances that
could be solved to optimality, the gap value does not exceed 20% and the number of nodes in

the Branch-and-Cut tree remains reasonable (less than 300 for most of the instances). All the

Instance| |V5| |As| |K| Necl  Nell Nmsl NCCS NFCS NC NCo Nmsll Nodes Gap TT TTsep

pdh 10 68 10 5861 1082 2000 8 217 0 2 1340 4500 340
pdh 10 68 14 1494 1738 647 24 2004 0 177 250 4939 1312
pdh 10 68 20 3641 1840 2000 6 164 0 7337.40 18000 122

nobelus| 14 42 10 1759 5245 180 147 8795 41
nobelus| 14 42 14 1706 4514 298 109 7611 123
nobelus| 14 42 20 1528 9023 263 66 9378
newyork| 16 98 10 658 3041 108 60 368
newyork | 16 98 14 1047 2708 233 96 871
newyork| 16 98 20 1328 10245 261 103 11389
france 25 90 10 1118 4079 0 119 16
india 35 160 8 1146 5074 0 143 23

0

0

0

0 67 17.74 1239 654
1 210 5.67 1443 740
0 126 19.37 12343 4528
0 281 9.58 9081 6686
1 2264.70 18000 12322

0 267.94 18000 3171
1391.24 18000 5507

0 22.34 18000 5386

OO0 00T row
o

()]
wwm\]\l\‘

Table 4: Branch-and-Cut results for SNDIib instances wittlistic traffic

instances for which the algorithm provided an optimal solution have been solved in less than 3
hours. Similarly to random instances, some instances may be more difficult to solve than other
instances, even larger in size. Besides, it should be pointed out that the CPU time spent by the
algorithm in performing separation of valid inequalities can be important. In fact, we noticed

that this time could reach more than 50% of the total CPU time of computation (see for example
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instances newyork with 10 and 12 commodities). More pregiset noticed that the separation

procedure for generating flow-cutset inequalities is the most time consuming routine.

5.4 Real instances

The tested real instances have graphs with 9 to 45 nodes and a number of commodities that varies
between 15 and 30 for the smaller instances. In particular, we have consjdéred4 for all

the instances, and three possible subband capacities, nahely0 Gbit/s, 12.5 Gbit/s and 25
Ghit/s. Table 5 shows the results obtained for two over the three families of instances considered.
We further give and example of solution obtained when solving an instance with 45 nodes and 10

commodities.

Instance \|V2| |As] |K| NMSI NCCS NFCS NC NCo NMSIlI Nodes Gap TT

bretagnelO 9 20 15 36 39 597 0 2 0 42 29.49 107
bretagnel0 9 20 20 36 38 353 8 6 0 24 35.34 104
bretagnel0 9 20 30 30 23 2341 O 0 0 433.77 18000
bretagnel?2 9 20 15 24 24 951 0 4 1 22 44.53 76
bretagnel?2 9 20 20 42 41 98 0 11 0 22 48.63 46
bretagnel?2 9 20 30 24 35 443 0 2 0 2847.68 18000
bretagne25 9 20 15 49 74 652 0 11 0 249 28.33 1036
bretagne25 9 20 20 73 44 821 5 6 0 327 33.33 1100
bretagne25 9 20 30 112 81 789 11 4 0 235099.93 18000
bretagnel0| 22 52 15 21 8 347 0 0 0 38 41.30 1242
bretagnel0| 22 52 20 21 4 5 0 0 0 14 36.96 247
bretagnel0| 22 52 30 28 28 1076 1 0 0 1647.71 18000
bretagnel2 | 22 52 15 6 0 3 0 5 0 38 43.76 209
bretagnel2 | 22 52 20 36 17 3825 1 13 2 60 44.788000
bretagnel2 | 22 52 30 26 33 1483 0 0 0 16 37.948000
bretagne25| 22 52 5 511 419 4465 21 14 3 714%1.00 18000
bretagne25| 22 52 10 9 22 3308 O 0 4 27349.00 18000
bretagne25| 22 52 15 38 12 9825 0 0 21 87653.00 18000

Table 5: Branch-and-Cut results for real instances

It appears from Table 5 that 9 instances among the 18 instances tested were solved to optimality
within the CPU time limit. An optimal solution could be obtained within one hour for all the solved
instances. Several observations can be made based on these results. First concerning instance

Bretagne with 9 nodes, we can see that we get better results when using a larger subband capacity
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C'. This is due to the topology of these instances which is quite sparse compared to the original
network with 45 nodes. Basically, finding a feasible routing for the commaodities by using less
subbands is a challenging task because of the graph topology. Indeed, the disjunction constraints
make difficult to reuse the same paths(sn for the installed subbands. Besides, whérr 25

Gbit/s, commodities are more likely to be packed in the same subbands, which makes easier to
find a good solution within the fixed time limit. We also notice from Table 5 that results for
instances with 22 nodes gets better wiiérn 10 Gbit/s. In fact, since the graph holds more nodes

and arcs, it offers more possible paths, and hence more routing alternatives for both commodities
and subbands. Finally, we notice that an important number of cover inequalities are generated for
these instances. In fact, the traffic commodities here are relatively small and tend to be uniform in

size. Cover inequalities are then more expected to appear than clique based inequalities.

6 Concluding remarks

In this paper we have studied a multilayer network design problem with specific requirements aris-
ing in optical OFDM networks. We have proposed a cut-based ILP formulation for the problem and
studied its basic polyhedral properties. Exploiting the underlying sub-problems, we have proposed
several families of valid inequalities and investigated their facial structure. These inequalities have
been embedded within a branch-and-cut algorithm to solve the problem.

The focus made on the hierarchical routing and the traffic indivisibility increases the computa-
tional challenges and makes the problem further difficult to solve. The proposed valid inequalities
have helped a lot in strengthening the linear relaxation of the problem, yet the associated sepa-
ration procedures are still time-consuming and could be enhanced. In addition, derivating good
upper bounds from the fractional solutions is a non-trivial task but would hopefully allow to bet-
ter manage the size of the branch-and-cut tree. Finally, we expect that further valid inequalities,
involving the demands structure (traffic amount compared to the capacity value) would be very
interesting and increase the efficiency of the algorithm, especially on real instances where a wide

disparity may exist among the demands.
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Appendices

Definition 3. A solutionS of the CMLND-U problem is given by two subsets of drgsEy of A,
(with F, eventually empty),K| subsets of arc§, ..., C, of A;, a subset of subband¥ of W
installed on the arcs of; U F;, a subset of arca\ of A,, and|A;| x |W| subsets of arca\.,,

e € Ay, w e W, of A, in such a way that
(i) atleast one subband is installed on each ardofJ F;,
(i) F1=Upek Crs

(i) Ci, k € K, contains a path between anddy,

(iv) A= UeEFlLJFQ,wEW Acw,

(v) with every arce = (u,v) € F; U F, andw € W, one can associate an arc subsgt,
(which may be empty), in such a way thatifs installed ore, thenA.,, contains a path, say

P., € A, between/ andv’,

(vi) for everyw € W, any arc ofA belongs to at most one paff,,, fore € Fy U F5.

We will denote byT" the pairs(e, w) such thate € (Fy, U F;) andw € W such thatw is
installed one. We then define the solutiosi by S = (Fy, F», A, W). The incidence vector of,

(x57 yS’ ZS) c RKXA1><W % RA1><W X RAl ><W><A2' WI” be given by

s )1, ifeeCand(e,w)el,
] 0, otherwise

s J 1, ifweW,ee FUF,and(e,w) €T,
Yoo =9 0, otherwise

ZS (a) _ 1, ifCLEAew,
0, otherwise
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A Sketch of the proof for Theorem 1

Assume thaP’(G1, G, K, C) is contained in a hyperplane given by the linear equation
ar+ fy+yz =9 (20)

wherea = (af k€ Kie € Aj,w € W) € REXAXW 3 — (3w ¢ ¢ Aj,w € W) €
RAW v = (% e € Aj,w € W,a € Ay) € RAWWx42 gnd§ € R. We will show that

a=0, =0, v=0. ThereforeP(G,, G+, K,C') can not be included in a hyperplane, thus imply-

ing that P(G4, G», K, C) is full dimensional. To this end, let us first construct a solutiyn=

(FP, FY, A° WY) of the problem.

For each commodity: € K, we consider a path iG/; between its origin and destination
nodes, consisting of afey, di). This is possible sinc€'; is complete. We install over this arc one
subband. In other words, every subband is assigned at most to one commodity. Note that every
arc (u, v) receives as much subbands as there are demands going: from All the installed
subbands are supposed to be different. After that, we associate with each subband, installed over
(or,dy), k € K, apath inG, consisting of the ar(o, , d ). Again, this is possible singg, is also a
complete graph. Le§® = (F?, FY, A%, W?), be the solution given by = {(ox, d.), k € K}, Fy
=0, A% ={(0},d,), k € K}, whereA® ={(o},d,)} if e=(oy,d;) andw the subband installed on
e, andA? = () otherwise.lW? denotes the subset pK| different subbands installed on the arcs
of F. Now consider a paife, w) € A; x W. LetS* = (F}, F}, A', 7W'!) be a solution obtained

from S° by adding an arg € A, to A?

ew?

while the other elements ¢f° remain the same. (In
other wordsS! is such thaty! = F?, F) = FY, A' = AU{f}, andW' = W) Itis clear that both,

S% and S* are feasible for the problem and, in consequence, their incidence vectors both satisfy
equality (20). This implies that{” = 0. As f, e andw are chosen arbitrarily inly, A, andV,
respectively, we obtain that” = 0, for all f in A,, e € A; andw € . By similar arguments, we

can show that the remaining coefficients of the hyperplane (20) are equal tazero.
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B Proof of Theorem 3

Suppose that conditiong) to (iv) of Theorem 3 are fulfilled. Let us denote by + sy + vz > 0

inequality (9). LetF denote the face induced by inequality (9). Then,

F={(x,y,2) € P(G1,G2, K,.C): > Y weu = (D(gﬂ}}-

cesl, (T) weW

We first show thafF is a proper face o (G4, Go, K, C). To do this, let us construct a feasible
solutionSY that satisfies (9) with equality.

For each pair of nodegs, t) € T (respectively inV; \ T), we install BP(K (s, t)) different
subbands on the afe, t) of A;. Notice that if there is no commodity € K such thab, = s and
dr =t we do not usés, t) in the solution. Moreover, each commodityn & (7' (respectively in
K(Vi \ T)) is associated with path(oy, d)} and the subband,. Note that, in this solution, a
subbandw; may be associated with more than one commodity (see Figure B). Now, we choose
anodeu € T and a noder € V; \ T. Observe thatu,v) € 6% (T). We then install on the
arc (o, u) (respectively(v, di)) of Ay, BP(K (ox,u)) (respectivelyBP(K (v, dy))) new subbands
of W, while (u, v) receivesBP (K (u,v)) new subbands. Note thét, v) is the only arc of the
cutégl(T) that is used in this solution. We do the same operation for the commoditi€s ().
Furthermore, we associate with each pairv) such thatv is installed ore = (4, j) the arc(7’, ;') of
As. Thisis possible sinc@’, is a complete graph. Notice that, in this solution, each commadity
K(T) (respectivelys € K (V;\ T)) uses the subband, on path{e,}, e, = (ox, d;;) for its routing,

while the commodities of{ " (7") have a path of length at most thré@;, u), (u,v), (v,d;)}, i €

K™*(T). The nodeu (respectivelyv) can obviously be equal to some (respectivelyd;), i €

K+(T). Moreover, in this solution, every commodity Afuses at least one subband for its routing,

and we assume that all the set up subbands are different so that the disjunction constraints (5) are
satisfied. Also note that many commodities may share the same subband, howBVe(/&s, t))
subbands are installed on each pair of nodesc 7 and (4 \ T), we ensure that the capacity
constraints (3) are satisfied.

In this solution, a path inG; is assigned to each commodity &f. Moreover, a path is

also associated with every pdi, w) such thatw is installed one. Furthermore, both capacity
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Figure 3 Solution 5

constraints (3) and disjunction constraints (5), are satlsfas enough different subbands are in-
stalled on each arc used in the solution. It is not hard to seeSthiaduces a feasible solution of
P(G,Gs, K, C') whose incidence vector satisfies + 3y + vz > § with equality. HenceF # 0.

As P(Gy, Gy, K,C) \ F # (), we have thaf" is a proper face oP (G, G, K, C).

Now suppose that there exists a facet defining inequality .y + vz > £ such that
FCF={(x,y,2) € P(G1,G2, K,C) : Az + py + vz = £}

We will show that there exists a scajae R such thai«, 5,v) = p(A, i, V).

Let us first show that” = 0, for alle € A;, w € W anda € A,. Consider an arag € A, \ A°,
and a pairle*, w*) € A; x W. Clearly, the solutiort! = (F?, F?, A = AYU {a}, W?), where
AL, =AY if (e, w;) = (ef, w*) andAL.,. = AL . U{a} is a solution of theP (G, G», K, C).
Moreover, its incidence vector satisfies + 3y + vz > § with equality. It then follows that¢ "
=0, and therefore

ve =0, foralle € Aj,w e W,a € A,. (21)

By similar arguments, we can easily show that

ew __ + (T
{u =0, forallee A;\ 6 (T),weW (22)

A, =0, forallk e K,ee A\ o5 (T),weW.
Now consider a commodity* € K. We will show that the coefficienta related to the
commodities ofK” and arcs ofi;, (T are equal to zero. We distinguish two cases.
Case 1.k* € K\ K*(T)
Thusk* is not supposed to pass through the cut for its routing. Consider ari anSgl (T)

and a subband* of . We will assume that* = (u, v) and thatw* is installed ore*. Consider
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the solutionS?, obtained fromS® by associating* to k* in addition to its routing. In other words,
S = (FYU{e*}, FY, A%, W) andCZ. = CP. U {e*}. Condition(ii) makes the solution feasible for
the problem, as it allows capacity constraints to be satisfied. Thus, both solgtiams 5? are
feasible and belong t& as well. Hence)". . = 0. Ask*, e* andw* are arbitrary ink \ K+ (1),

55, (T) andW, respectively, we obtain that

Ab, =0, forallk € K\ K*(T),e € 65 (T),w e W. (23)

Case 2.k* € K+(T)

Let k& be some commodity ok *(7T") such thatD*" + D* < C. Such a commodity exists
because of conditiofiii). Lete* = (s,t) be an arc ob, (T) and letw* be one of the subbands
installed on(u, v). Recall thatBP(K*(T')) different subbands have been installed(onv). We
will construct a solutionS® obtained fromS° by movingw* from arc (u,v) to arc (s, t), and
associating with((s, t), w*) the path{(s’,#)} in Gs. In this solution, we will also replacg@:, v)
in the routing path of* by {(u, s), e*, (t,v)}, where(u, s) and(¢, v) are two arcs ofd; \ 6251(T).
(u, s) and(t,v) also receive the subband" and are assigned the pathg/, s')} and{(¢',v)},
in G, respectively. Since we know by conditi¢iv), the capacity constraints (3) are satisfied. It
follows thatS? is feasible. Now let us derive a solutisit which slightly differs fromS? in that
we associatés, t) to k in addition to its routing. Again, this is possible thanks to conditiai).
This variation in the solution yields;, , .. = 1 whilez,, . = 0. SolutionS* is clearly feasible,
and both incidence vectofs*®, 4>°, 25°) and (25", y%*, 25") are inF, and then, also itF. Thus,
we obtain that\{, , .. = 0. Sincek*, ¢, andw are chosen arbitrarily id*(T), 65, (T) andW,

respectively, we get
Ab, =0, forallk € K™(T),e € 6% (T),w e W. (24)
And, by (22), (23) and (24), we finally obtain
MNo=0, forallk e K,e € Ay,w € W. (25)

Now, we still have to show that all the coefficients” are the same for the arcs of the cut
55, (T).
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Indeed, lete* = (s, t) be an arc of, (T), different from (u,v). Recall thatBP(K*(T))
different subbands are installed over the @rcv). Letw be one of these subbands. Consider the
solution S where we replace the paifu, v),w) in S° by ((u, s),w), ((s,t),w) and ((¢,v), w),
with (u, s), (t,v) € Ay \ (FY U FY). By comparing solutions® and S® and by (21) and (22), we

obtain thatu (¥ = (% Since(s, t) is arbitrary ins}, (T K T), we get

* + (T
e = { p, forsomep € R*, foralle € 6 (T),w € W, (26)

0, otherwise

Hence, from (21)-(26)«, 5,7) = p(A, i1, ), and the proof is completél

C Proof of Theorem 4

Let T be a subset of nodes &f andT = V; \ T'. Consider the cui/; (T') induced byT’, and letF,
F be a partition ofég;1 (T"). Now consider the flow-cutset inequality inducedbwand

Z Z Yew + Z Z Z xkew w—l

eeF weW ecF weEW ke K+ (T

(i) If F=0,then (10)is equivalent to

Z Zyew = M—Ia

weW ecF
which reduces to the cutset inequality (9) whe#“~")] = BP(K*(T)). Hence, (10)
cannot be a facet aP(G1, G», K, C) different from (9). If F = 0, thenF = 6/, (T') and (10)

is equivalent to

DD DD DEEWE b @7)

665+ (T) wGW ke K+(T)
which implies that the number of commodities allowed to use thé gfl") is greater than

or equal to[ 22N Note that| 2E2E) ] < |K+(T)|, asD* < C, forall k € K+(T).

Thus, inequality (27) is dominated by inequality

ST DT whew = KD,

k€K +(T) e€5+ (T) weW

which is the sum of the connectivity constraints (2) over the commoditiés'afl’). Thus,

(10) cannot define a facet fét(G1, G, K, C).
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(ii)

Now if D(K*(T)) < C. Then (10) is equivalent to

PIDUTEDIDIDD e 20

weW eeF wEW ocF ke K+ (T
which is nothing but a linear combination of trivial inequalitigs, > 0, andz., > 0,

summed up over the subsétsWW and K+ (T'), F, W, respectively.

(i) If D(K*(T))/C isinteger, then (10) can be obtained from inequalities (2), (3) and the trivial

(iv)

v)

(vi)

constraintsey.,, = 0.

Suppose thaf 24 (1)

1 < BP(K™(T)). Then inequality (10) does not induce a proper

face, as it may be empty.

Now assume thaBP(K*(T)) = |K*(T)|. Then, inequality (10) is equivalent to the fol-
lowing expression

SN vt D 3 e = BPEH(T)) = |[KH(T)],

ecF weW keEKH(T) ecF weW
which is a linear combination of inequalities (27) and trivial constrajpts> 0 summed up

over F'andWW. Hence, (10) cannot define a facet.

Suppose that conditiofvi) is not verified, that is to sag P(K*(T") \ q) > BP(K*(T)) —
q+1forallg C K*(T). Then we cannot find a solution with,,, = 1, for some commaodity

k€ K*(T),e € F andw € W. In other words, the face induced by (10) is included in

F={(2,y,2) € P(G1,G3,K,C) : Tper =0, fork € g,e € F,w € W},

and then, (10) cannot define a facet. Now if there exists a commédityx” \ P* such that
BP(P*™\ {k}) > BP(P") + 1. Then itis not possible to identify a solution of the problem
with 2., = 1, fore € FUF, w € W. Also in this case, the face induced by (10) is included
in

F={(2,9,2) € P(G1,G3,K,C) : Tper =0, fork € g,e € F,w € W},

and then, (10) cannot define a facet.
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D Proof of Theorem 6

Necessity

(i) The validity condition for inequalities (17) states that= |S| - BP(.S). Itis clear that any
value ofp > |S| — BP(S) would induce a valid inequality which is redundant regarding to

DY thew < ) ew + (S| = BP(S)), foralle € Ay,

weW kesS weWw

and thus, that could not define a facet®(iG;, G2, K, C).

(i) Now let us denote by the largest element ok \ S such thatBP(S U {s}) = BP(S) + 1.
Then, inequality (17) with respect HU {s} can be written as
Z Z xkewg Zyew+|s|+1_BPSU{S} Zyew+p
weW keSsup{s} weW weWw

However, (ii) dominates (17). Thus the latter cannot define a facB{6f, G, K, C).

(iii) Now let s" denote the smallest element®fand suppose tha&@P(S \ {s'}) = BP(S) = |5]|
- p. Then, inequality (17) with respect £\ {s’} can be written as

Z Z Zyew+|5|_1_BPS\{S Zyew_l'p_l (28)
weW keS\{s'} weW weW

Note that inequalities (17) can be obtained as a linear combination of 28y ang zye., <

1, which is valid (by definition of the CMLND-U problem).

Sufficiency
Suppose that conditior{s) to (zii) of Thorem 6 are fulfilled. Let us denote byt + Sy + vz > 0

the inequality (17) induced by andé = (u,v), and letF be the face defined as follows

F={(2,y,2) € P(G1,G2, K,C): D> pew = Y, yew +p}-

keS weW weW

We first show thafF is a proper face of (G1, G, K, C'). To this end, we construct a feasible

solutionS*, whose incidence vector belongsfo
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The solutionS! is obtained from the solutiof® introduced in the proof of Theorem 1 as
follows. We install a set of3(S) non previously used and different subbaitisC W over

C

the arcé and we add the pairg, w), w € W to S°. In other words, we lets, = 45 + 1, for

all w € V. We then associate to every p&it w), w € W of the solution a path i, that is
the arca = (u/,v') € A,. This is possible since the subbands6fare newly installed and are
not assigned physical paths in the solutitth The disjunction constraints are therefore satisfied.
Now let us associate with the commoditiesthe pairs(é, w), w € W, in addition to their initial
routing paths. Such assignment is possible since there are enough subbands instafledat
the capacity constraint (3) for every péir, w) such thaty € W is installed ore is satisfied. It is
clear that the solutiof" is feasible andz®", ', z°") belongs taF. Hence,F # (), and therefore,

is a proper face o (G4, Go, K, C).

Now suppose that there exists a facet-defining inequality .y + vz > &, such that
FCF={(z,y,2) € P(Gy,G, K,C) : \&- 4 puy + vz = £}

We will show that there exists a scajae R such that«, 3, ) = p(A, i, v).

Consider a paife,w) € A; x W. Let S? be the solution obtained froifi' by adding an arc
f € Ay to Al . We suppose without loss of generality thfat (uv/,v) ¢ Al (if this is not true,
then we can add two ar¢s/, s), (s,v'), s € V5 to the current solution, and remoy®. In other
words, S? is such thatF? = F!, F} = Fy, A2 = AV U {f} andWW? = W', ltis clear thatS? is
feasible and its incidence vector belongsAo Comparing both incidence vectors §f and S2
implies that/$ = 0. As f, e andw are chosen arbitrarily ialy, A; andW, we obtain that/;* =
0,foralle € A}, w € W anda € A,. By similar arguments, we can show that, = 0, for all
ec A\ {&},weWand\:, =0, forallk € K\ S,ec A\ {¢} andw € W.

Itis easy to show that* =0, for any commodity: € S,e e A\{é},w € W, by constructing
further feasible solutions wheteis shifted to a routing path that avoids using arBesides, if
we pick a commodity: in K \ S, and a subband installed @nsay @, then we can easily see
that a solution obtained by associating the pairi() to % in addition to its routing path remains
feasible and its incidence vector belongs to htand F (by condition(ii) of Theorem 6). This

observation implies thatt, =0, forallk € K\ S, w € W.
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Now let k& be a commodity arbitrarily choosen #, and letw be the subband d# such that
(¢, ) is associated with the routing & We will construct a solutiors* from S° such that all
the commodities o5 \ {k} useW \ {w@} for their routing andi> is completely devoted to the
commodityk. Such a solution is feasible and its incidence vector belongsas well asF thanks
to condition(zii) of Theorem 6.

Now if we remove some commodity, sayof S from é and shift it to a routing path that does no
longer use, then by conditior{iii) of Theorem 6, setting ., yew tO BP(S) - 1 keeps the new
solution feasible. Moreover, its incidence vector belong& tand then taF. As a consequence,
we obtain, by comparing both solutions, tb\é.gj = pzp. Since,k andw are arbitrarily chosen i

andWV, respectively, we obtain that

u = p, forallw e W, (29)

A= p forallk e S weW, (30)

wherep € R. From (29) and (30), we obtain thé&t, 5,~) = p(\, i, v), and the proof is

complete.
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