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LES STRUCTURES DE PREFERENCE NON COMPENSATOIRES
ET LEUR GENERALISATION

RESUME

Ce cahier propose une étude théorique de la notion de structure de préfa-
rence non compensatoire. Aprés avoir rappelé quelques résultats connus

sur ces structures, on montre comment elles permettent de formaliser et
d'axijomatiser de facon rigoureuse la notion de concordance. On propose
ensuite une généralisation importante de la notion de non compensation
permettant de prendre en compte 1'idée de discordance et, sous certaines
hypothéses additionnelles, celle de veto. Les grandes lignes d'une méthode
d'aide & 1a décision (TACTIC) utilisant de telles structures sont ensuite
esquissées. '

NONCOMPENSATORY AND GENERALIZED NONCOMPENSATORY
PREFERENCE STRUCTURES

ABSTRACT

This paper provides a theoretical study of noncompensatory preference struc-
tures. Previous results about these structures are recalled, and it is
shown how they can be used to formalize and axiomatize the notion of con-
cordance. We then propose a generalization of noncompensation allowing

for the possibility of discordance and veto effects. In conclusion we
outline the principles of a decision-aid method (TACTIC) using these
structures.
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ABSTRACT

This paper provides a theoretical study of noncompensatory preference
structures. Previous results about these structures are recalled, and
it is shown how they can be used to formalize and axiomatize the notion
of concordance. We then propose a generalization of noncompensation
allowing for the possibility of discordance and veto effects. In con-
clusion we outline the principles of a decision-aid method (TACTIC)
using these structures.



1. INTRODUCTION

The aim of this paper is to provide a general study of noncompensatory
preference structures. These structures have not been studied very much
yet, the attention of most decision theorists being almost exclusively de-
voted to structures allowing some kind of utility representation. They ne-
vertheless appear frequently in practice both as heuristic approaches to
analyze multidimensional eva]uations'(e.g. disjunctive and lexicoaraphic
models, see Mac Crimmon (1973)) and as easy to implement methods to per-
form an aggregation of several attributes for decision-aid (ELECTRE methods,
see Roy (1968) and (1971}, Roy and Bertier (1972)).

The paper is organized as follows. We present our notations in section
2. In section 3 we recall some definitions and propositions about noncom-
pensatory preference structures and introduce the notion of concordance
preference structure. In section 4 we propose a generalization of these
notions introducing the idea of discordance. Section 5 provides a brief
description of how such preference structures can be used for decision-aid.

2. NOTATIONS AND PRELIMINARY DEFINITIONS

Throughout the paper we will note :

Rg the set of strictly positive real numbers,
N={0,1,2, ...}, mo =N \ {0},
={1, 2, ..., n} with neN and n =z 2,

G{ﬂ the set of all subsets of @,

S the set of all pairsof disjoint subsets of 0, S = {(A, B " A, B¢
@) and A n B =P},

Xl, X2, . Xn, n nonempty sets which can be interpreted as n sets
of levels defining n attributes in a multi-attribute decision problem,

n _
X = X Xi the cartesian product of these sets,
(

1
(X; Y; ) 1.) the element of X (yl, Yoo wees Yi_po X5 Yigp o000 yn)s



% an asymmetric binary relation on X which can be interpreted as a
{strict) preference relation.

(X, ¥) will be called a Preference Structure (P.S.}.
We will classically note ~ the binary relation on X defined by
X~y iff not (x> y) and not {y » x) and % the binary relation on

X such that x »y iff not (y > x).

Definition 2.1 : For all 1 ¢ @ we define a binary relation > on X5
] i
by X.i ﬁ'y.i iff (X.i, (a\])‘j#.i) e (y.i, (aj)jii) for all (a‘})ji.i €

X oX..
jui
From » we define ~ and 3; as above.
i j i

The asymmetry of > obviously implies the asymmetry of each ~. The

definition of %’ does not imply any notion of preferential 1ndepeﬁdence
i

since we have x, ?-yi only if (x,, (aj)jxi) >—(yi, (aj)jzi) for all

vectors (aj i

Definition 2.2 : An attribute X, is essential iff X5 > Y5 for some

i
X_i, y.i € X_i-

We will assume hereafter that all attributes are essential which will
prove unrestrictive for our purposes.

Definition 2.3 : For each ordered pair (x, ¥) « X2 we will note

P(x, y) = {ieq { Xs b yi}'
i

Thus P(x, y) denotes the set of attributes for which there is a par-

tial preference for x on y. The asymmetry of each S implies that
.i
P(x, ¥) n P{y, x) =B for all x, y ¢ X.

Definition 2.4 : We will note » and = the binary relations on ()

defined respectively by

A>B iff (P(x, ¥), P(y, x)) = (A, B) for some x, y « X such that
X >y and '

A~B iff AnB=0 and not (A> B) and not (B P A).



It is clear-that Ap B 1implies (A, B) e S and that the following
Temma holds for all A, B « #(f).

Lemma 2.1 : ARB <> AnB =0 and [¥ x, ¥y e X : (P(x, ¥), P(y, X))
= (A, B) = X ~ y].

Definition 2.5 : We will note >> the binary relation on &(Q) defi-

ned by : _
A>>B iff AnB=0 and [¥ x, yc X : (P(X,¥), P(y, x)) = (A, B)
=> X »>y1.

Contrary to >, >> 1is asymmetric when all attributes are essential.
According to definition 2.5, >> can be interpreted as a "more important

than" relation on ®(Q).

Definition 2.6 : A P.S. (X, ») has the properties :

- P]_

super additivity iff [(AuC)n (BuD)=p, ADB and C > D]

= AuC&B LD,

- P2
Ps
p

decisivity iff [{(A, B} ¢ S and (A, B) = (§, #)1 = not (A=~ B),
attribute acyclicity iff > has no cycles,”
attribute transitivity iff [AP B, B> C and AnC=0] =

CADC,

double essentiality iff ¥ 1 ¢ q, X5 Y5 and Yi > 24 for some
i i

CXie Yy 24 Xy

3. NONCOMPENSATORY PREFERENCE STRUCTURES (N.P.S.)

In this section we first recall some definitions and propositions about
the notion of noncompensatory preference structures introduced independently
by Fishburn (1974, 1975 and 1976) and Plott et al. (1975). Two special im-
portant cases of N.P.S. are analysed : the classical lexicographic prefe-

rences and the new concept of concordance preference structures.

Definition 3.1 : A P.S. (X, %) 1is noncompensatory iff ¥ x, y, z, w

¢ X @



1°) E(P(x, ¥)}» P(¥s X)) = (P(z, W), P(w, 2))] => (X ¥y = Z > w)}.
2°) [P(x, y) =0 and Py, x) =0]= x Fy.

The idea of noncompensation appears clearly in this definition since
the global preference of x on y only depends on the subsets of Q on
which there is a partial preference of x on y andof y on x. This
definition corresponds to a "regular noncompensatory preference structure”
in Fishburn (1976). Condition 2°) of definition 3.1 could be omitted, but
from a practical point of view only redular structures are of interest.

It results immediately from definition 3.1 that if (X, 3 is a N.P.S.
then the attributes are mutually preferentially independent (cf. Keeney and
Raiffa (1976)) (which can be shown to be impTied by condition 1°) alone).

We have :

Lemma 3.1 : AP.S. (X, ») 1is a N.P.S. iff :
1°) ¥ A, Be®Q), AbB= A>B.
2°) YA e®0) NP, A> 0.

Proof : Left to the reader.

Condition 1°) of lemma 3.1 obviously implies that for a N.P.S. © s
asymwetric and that @~ p.

Lexicographic preference structures are an important particular case
of N.P.S.

Definition 3.2 : A P.S. (X, ») is lexicographic iff there is a permu--

tation o on @ such that ¥ x, y « X, x >y iff not (% ~y;) for
i

some 1 e and XS(4) og%)uya(i) for the smallest 1 for which

ot oty 5y Yot

Fishburn (1976) theorem 1, proves the following results :

Theorem 3.1 : If (X, %) is a N.P.S., then :
a) P, and Py = Pgs



b) P1 and P2

c) Py and 7 is a weak order => (X, ») is lexicographic.

and P3 <= (X, ») 1is lexicographic,

The notion of N.P.S. also provides a new insight into the idea of con-
cordance which appears in a wide variety of multicriteria decision-aid me-
thods such as ELECTRE. We formalize here this notion using an idea intro-
duced by Vansnick (1984). For another approach to the idea of concordance
we refer to Huber (1974) and (1979).

Definition 3.3 : A P.S. (X, ») 1is a concordance P.S. of type »p
(CPSp) with p =-1 a rational number iff
- f1s fos oiis fn eZR; such that ¥ x, y ¢ X

Xy <= I 'Fi;»p T 'Fj.
1eP(X,y) JeP(y.x)

Figure 3.1 gives a graphical interpretation of this condition.

Yy > X

X >y

Figure 3.1 : Graphical interpretation of a CPSp (here o = 1/tg 8)



b) Pl and P, and P3 <= (X, ») is lexicographic, _
c) P; and ¥ dis a weak order => (X, » fis lexicographic.

The notion of N.P.S. also provides a new insight into the idea of con-
cordance which appears in a wide variety of multicriteria dec1s?oﬁ”5;ﬁ me:t}
thods such as ELECTRE. We formalize here this notion using an idea intro-
duced by Vansnick (1984) For another approach to the idea of. concordance
we refer to Huber (1974) and (1979)

Definition 3.3 : A P.S. (X, ) is a concordance P.S. of type 0
(CPSp) with p =1 a rational number iff
Hfl, fos vens ne]RO such that ¥ x, y e X

X >y <= I fs20 I fJ-.
1eP(x,y) JeP(y,x)

Insert Figure 1 about here



Figure 1 : Graphical interpretation of a CPSp (here p = 1/tg @)



We have the following lemmas :
lemma 3.2 : ¥ p = 1, a CPSp is a N.P.S. verifying P4.
Proof : Obvious {left to the reader).

Lemma 3.3 : A Texicographic N.P.S. is a CPSI1.

Proof : Follows immediatly from taking f_ .y = 2(M+1=1),

The following theorem gives necessary and sufficient conditions for
the existence of a CPSp. These conditions are very similar to those ap-
pearing in representation theorems of comparative probabilities (see Scott
(1964), Domotorand Stelzer (1971), Fishburn (1969), Krantz et al, (1971)
chap. 9, Roberts (1979) chap. 8). This is not surprising because the re-
lation "more important than" between attributes has strong connections
with a "more probable than" relation between events. In this theorem,
VX, ¥ e X, M(x, y) will denote the 1 xn matrix (aj .op . «-+ ay)
where ¥ 1 ¢ Q, a; = 1 iff X; ? Y; and oy = 0 otherwise.

Theorem 3.2 : A P.S. (X, ») is a CPSp iff :

(X, ¥) is a N.P.S. and (3.1)
¥m, kel |

m . . . . m . .
IR T T T [ CAC LR\ 00 S TR eD B LD S
i=1 ' . 0<j<k i=1
om0y | (3.2)
O<j<k

whenever

X('i‘)’ y(1) c ¥ and X(T) b y(1) Vie{l,2, ..., m}
Z(J)’ wld) e X and wii) L 00) jeN such that 0 < j < k.

Let us notice that condition (3.2) of theorem 3.2 contains in fact an
infinity of conditions which are rather delicate to intérpret as this is
the case for the théory of comparativé probability. We refer to Vansnick
(1984) for a more génera] presentation of a similar theorem including a
threshold.

Proof : Theorem 3.2 can be stated :
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& ),»s{i[ Fanb CH -
@Q?\(L%w‘;%% et

Qud o py o o 3
Q. A

fy

f
F =1 .2 | crR ™! such that, ¥ x, y < X

fn

X vy =>MX,y)«F>pMy, x) ~F
X~y = Mx, y) « F<pMy, x)F
iff (3.1).and (3.2).

a) Necessity

The necessity of (3.1) is obvious. Let m. k e N, (1) 5 yU) g
e {1, ..., m}, and w(J) ~ 2(3) ¥ jeN such that 0 < j < k.

+_nxl

By assumption, there is a F ¢ [E% ] such that

X( )) Fo¥iel{l, , mH
())F ¥JeN suchthat 0<j<k-

M(X(i) (i )) F>p My (1)
((J) wOhF s wel)y

-?--./ W

After summation, we obtain :

cronedt), vy e g m@) W@y F s
i=1 0<j<k

N S B G ) TN € B €D IS
i=1 O<j<k

which implies (3.2).
b} Sufficiency

Let us observe that it is sufficient to establish that (3.1) and (3.2)
imply ¢

)

R
JF = | 2le ™ such that, ¥ x, y ¢ X :



xSy = M(x, y).F > p My, x).F and } (3.3)
X ~y=>Mx, y}.F < p My, x}.F

since (3.1) and (3.3) imply that fi >0 ¥1i¢Q. Wewill show that (3.1)
and not (3.3) => not (3.2). Let Y2 be a set containing one element from
each equivalence class of the relation E defined on X2 by :

(x, ¥) E (z, w) iff P(x, y) =P(z, w) and P(y, x) = P(w, z).

n being finite, Y2 contains a finite number of elements.

1]

Let {(S(T), t(i?) fi=1,2, ..., I} be the set of elements in v2

such that s(T) 5 t(1)
Let {(u(?), v(j%) fi=1,2, ..., d} be the set of elements in Y2
such that u(J) ~ V(J).

Given (3.1}, not (3.3) is equivalent to :
ZfF ¢ R such that :

ms0, ey p s e U e v cqn, 2, o, 1 and
M), VO r <o mee), WO vy e, 2, L, 0.
Each attribute being essential, we have IZﬁéUZZZTEéféfo?é?Jaéﬁgfﬁfﬁd:w;
to Motzkin's transposition. theorem (see Vansnick (1984)), there are Aps
+ B .
Aps ees Aps Hys Hos wxes 1y e R with Ay # 0 for at least one i ¢ {1,
2, ..., I} such that

. . J
A4 msiid, 0l + o 3
1 j=1

w1 N . J
o I A 'M_(}'t_(‘), sy 4 3

0D



as the elements of M(st1), t(1)), me(T), s()y, my(3), 4{d)y  and
M{u ( ) V(J)) are either O or 1 and p s a rational number, there exist
11, AZ’ cees Af, u;, u;, cees ug eIN such that

. J ) )
A M(s(1), (7)) + 0 El “J M(v ( ) u(J)) =
I . 33 . .
o T l; M(t(1) ( )) + 3 oul M(u(J), V(J))
j=1 9 (3.4)

(3.4) implies that (3.2) does not hold. Indeed, if we let :

I J
1) m= 3 Ask= 3 uj+1
i=1 J=1
2) for i=1,2, ..., 1 and h=1,2, , M
() ) g ) ()
i<l . i
if 3 A<h and he 1 N
1=0 1=0
3) for j=1,2, ..., J and hi eN such that 0 < h'<k
W0 W3 ang 201D ()
=1 i,
if % pp<h® and h' < 3 4y
1=0 1=0 -

we have :

Kk, me m'
x(h) sy (h) ¥hedl,2, ..., m}

w(h ) z(h') ¥ h' ¢ N such that .0 < h' <k

and (3.4) can be written

T LB N T
h=1 0<hj<k
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o omyM, %My p ), )
h=1 0<h' <k

which completes the proof.
Q.E.D.

4. GENERALIZED NONCOMPENSATORY PREFERENCE STRUCTURES (GNPS)

It is often interesting, from a practical point of view, to weaken the
absolute noncompensation of NPS in order to obtain more realistic compari-
sons (see Roy (1974), Huber (1979) and Vansnick (1984)). This is the pur-
pose of the following definition :

Definition 4.1 : A P.S. (X, &) s a GNPS iff ¥ x, y, z, we X :
%) C(P(xs ¥)» Py, x)) = (P(z, w), P(w, 2)}]1 =[x by =z pwl.
2°) [P(x, ¥) =P and Py, x) =01 = x5 VY.

This definition represents a natural generalisation of definition 3.1
allowing to have at the same time (P(x, y¥), P(¥, x)) = (P(z, w), P{w, 2)),
x %y and z ~w. The possibility of an absence of preference between =z
and w aims to encompass the notion of discordance between evaluations
(see Roy (1968) and Roy and Bertier (1972}). In fact, when the difference
between the evaluations of z and w becomes important on the attributes
belonging to P(w, z} it is unrealistic to suppose z % w.

Definition 4.1 obviously implies mutual preferential independence in
a GNPS. We have :

Lemma 4.1 : A P.S. (X,p) 1is a GNPS iff
1°) &> s asymmetric.
2°) ¥ Ae o)\ 0, A > 0.

Proof : Followsimmediately from essentiality and definition 4.1.
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It is obvious from the definition that a NPS is also a GNPS. The fol-
lowing definition establishes an interesting Tlink between NPS and GNPS.

Definition 4.2 : Let (X, %) be a GNPS. We define on X a binary re-
lation “% by
xSy iff P(x, y¥) » Py, x).

We have :

Lemma 4.2 + If (X, &) 1is a GNPS, then ¥ x, y ¢ X :
1°) X%y = x .
2°) (X, ¥) s a NPS.

Proof : Obvious ; Teft to the reader.
Thus, there is a natura] way to extend a GNPS into a NPS. For instance

let X = {Xl’ yl} x3{fx2, y2, 22}{ We can represent a P.S. by mean of the

following matrix :

s %) [ (x5 ¥o) (X5 2p) [{¥gs %9) [{¥ys ¥p) |(¥ys Z5)
(xl, xz) ~ e b > b >
(xy> ¥p) ~ o be Y 7
Axq» 2p) ~ ~ ~ >
(Y1> %3) ~ ks »
(Y15 ¥5) ~ >
(¥q» 25) ~

It is easily seen that this P.S. is a GNPS with X1 e Yis X ¥ Yoo
1 2
Yp ¥ Zps X5 7 2, and {1} >> p, {2} > @, {1, 2} >> @ and {1} & {2}.
_ 5 5 _

In order to obtain its corresponding NPS, it suffices to add (xl, 22)
>(y1a XZ)‘ and (x]_’ 22) >(.y1= yz)
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Any configuration in the darkened area of the matrix with at least one
S would have Tead to the same associated NPS.

The following considerations allow to specify better the way the dis-
cordance effect can work in a GNPS.

Definition 4.3 : A GNPS is discordant iff
¥ X, y e X such that x Sy :

[¥ JeP(y, x), E[(X1)1z3 (y 1)11J € 153 X, such that

()45 %5) 7 () g,40 4501 = X 5y

In order to be able to interpret this definition, we will use the fol-
lowing :

Definition 4.4 : ¥ J ¢ 0, we define a binary relation V. on X, by

v, £f * X J !
xJ i yJ i 24 X; 1¢J 1)i¢j € e X such that

The following lemma establishes the link between these two definitions :

Lema 4.3 : In a discordant GNPS
X %y iff x ;_y and not yj Vj X3 for all J & P{y, x).

Proof : Follows immediatly from definitions 4.3 and 4.4.

Therefore, in a discordant GNPS, the discordance effect is introduced
whenever there is an attribute J in P(y, x) for which y; erxj which
can be interpreted as “yj is far better than xj“. It_shouId be noticed
that this definition implies that each attribute must be considered sepa-
rately in order to decide for the discordance. Thus, there is no possibi-
lity of interaction between the attributés in® P(y, x).

We have :
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Lemma 4.4 : ¥ j e Q, Vj is asymmetric.

T X, . imnlies initi V. X, V. X,
?foof xJ 5 yJ ! by definition not yJ VJ xJ Thus yJ VJ xJ
impTies :
- eijther yj ? xj and xj Vj yj is impossible |
- or yj ~ xj. The definition of a GNPS and essentially of attribute
\- i
k- thus imply
* *)
(‘yk’ .Vjs (‘y'i)‘iik,j) b (Xk, xjs (.Y-] 'I:tk,j)
for some (y:) e X X
ifi=k, ] ik, j i
Thus we cannot have xj Vj yj.
Q.E.D.

In the case where a weak order underlies each %, some monotonicity
i

conditions on %, give rise to a semi-order structure for each Vj‘

Let us first recall (see for instance Vincke (1980)} that if » is a
i

semi-order on Xi’ the binary relation Ti on Xi defined by :

I~

e
-

. = Z, Xs
1 > 1

1
=> ¥. .
‘y'l : Z'I

>

. =Y =y
N
aly

is transitive and strongly connected.

Its asymmetric part T?‘ is thus a weak order and its symmetric part T?
an equivalence,

We can now state the following :
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Theorem 4.1 : If a discordant GNPS is such that :
1°) % is a semi-order ¥ j € Q, (4.1)

J
2° = j R . . T W,
) XSYy=[¥Jjef,¥ Wy e XJ such that Y; TJ Wy

7 ((V3)4.50 w5205 (4.2)
then each Vj is an interval order. Furthermore, if the GNPS also -

verifies
a . . A
3°) x vy =¥ §e@ ¥z5eX; suchthat z; TY x,
((x'i)'ia:j" ZJ) T Yl ' (4.3)

then Vj is a semi-order.
In order to prove theorem 4.1, we need the following :

Lemma 4.5 : Under the assumptions (4.1} and (4.2);we have, ¥ j € @,

Y; VJ xJ iff yj Tj Zj for all Z; ¢ S(x J) .
where S(xy) = {yj e X; such that -] (x1 j2j (y1)1¢j-€ 153 X

VErifying ((X?)izj’ xj) be ((yi)i:j’ Y5t

Proof of the Temma : Suppose that Z Tj ¥y for some Zy € S(xj). We

((x:)1¢3’ X5) % ((z?)iij, z;) for some

(G )ias (Z3)i 5 € XX
i/iz] 17%=2] i

(4.2) implies ((x*)1¢J ) ¥ ((z 1)1¢J, Y; ) which contrad1cts Y5 V X

The other part of the 1mp11cat1on is estabTTSHed as F0]1ous L
Suppose that not.yj Vj xj. Then :

* * *
s > for so s s N T X X “and
((x1)4,.57 %50 ¥ ((y1)1¢J yﬂ) or some (xj)1¢J (¥3)i.5 € X n
thus y. j this completes the proof.

S(x5).
je (xJ) As not Y; T,

j!
Q.E.D.
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Proof of theorem 4.1 :

1°) (4.1) and (4.2) = V _Interval order. By lemma 4.4, Vj is asym-

metric. Thus, all we have to prove is that, ¥ xj, yj, zj, wj € Xj :

and = or
. V. ow. . V.oy.
25 Vi Y 25 Y5 Y

By lemma 4.5, we have :

A :
X3 Tﬂ ¥; for all Yi e S(yj)
Z TJ for all Wy e S(wj)
. T. X, W, e S{w:).
Suppzse now that n:t (xJ VJ wJ) so that W, T3 X, for 502e Wy e (wJ)
1 1 1

As T J and X; Tj Y; for all Yj € S(yj), we have Z3 Tj Y] for
all 5 S(¥4)s T? being a weak order. Thus 2y V5 5

2°) (4.1), (4.2} and (4.3) = V semi-order. Given the first part of

the theorem, all we have to prove is that ¥ Xj0 Yjo Zj € ) -

J J
V.. V.
SISRE . %55
and = ¥ wj e X5 or .
Y5 Y525 Yi Y57
) A 7! :
First suppose ;hat wj Tj yj. As yj V. z R yJ TJ i for all zj €
‘Z.). . T, z8 f 4 .
S(ZJ) Thus W TJ zy for all zy € S(zJ) and W V 23
Suppose now that Y3 T? Wi For any Qj € S(w-), we have (wj, (W?)izj)
* ~ &
(w s (w1)1¢J) for some (W1)1¢J (w1)1¢J e X X and by (4.3)q3 o
;(y,, (W )1¢J}) } ( J=,(W )1¢]) Wh1ch 1m911es that T‘EfStyT:“ for a]T o |
Wi e S(Wj)-' ”e have x5 Vg vy oo therefore %, TA Y3 for a11 yi- '§(yjfﬁhf ‘
T .‘.__f” i - . e S !
jﬂs. S(wjg a.S(y ) we have: X3 VJ wJ

Q.E.D.
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Theorem 4.1 is particularly useful because it generally allows (when
there is a numerical representation of the relation Vj) to define for -
each X5 @ "veto threshold". '

The reader may be puzzled by the dissymmetry existing between (4.2)
and (4.3), (4.3) being slightly weaker than (4.2). Hereafter, we study
the consequences of replacing (4.3} by :

= i . . LT X,
X Py =[¥ JeQ, ¥ zJ ¢ XJ such that zJ j xJ

((%3)4,57 24 ) ¥ ¥l (4.4)

Let us first observe that, denoting by U the trans1t1ve and stron-
g]y connected retation underlyina Viy ne1thar U a. T nor. Tj cigq,_is
& IOgncaT conseﬁUence of theorem 4, 1 when V 1s emntV, it s va10us'

that U € T does :not hold. In order to nrove that wermay not have -
‘_f1lchp1 1et us cons1der the f0110w1ng example of GNPS :

XI = {Xls .y]_: Zl}
< X1 % Y1 %2 21 %5 X1 Y9 Y192 Z) Yo
X1 %o ~ 2 ? > > ?
¥i %5 ~ ~ ) * ?
Zy %y ~ ~ IS »
X1 Yo ~ > >
Y1 Yy | \ ~ ~
19, ~
We have :

xl”l’ 7 X 1}21
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Xzzyz

{1} > @, {2} >>p
{1, 2} >> 0

{2} > {1}.

It can be verified that this GNPS is discordant, that each ? is a
j
weak-order and that > satisfies (4.2), (4.3) but not (4.4) because :

(Y1= Xg) } (X1, YQ) and (le Xz) ~ (Xl, Y2)s
though z TS y
EES TS 6L
In this example, V, 1s empty and we have X V; zy. We have therefore
Xq U1 295 Xq U1 ¥q andl ¥q U1 zy
but, at the same time
X1 T1 Zy5 X1 T1 Yy yl T1 z1 and Zq T1 Yy
We complete our study of discordant GNPS by establishing :

Theorem 4.2 : In a discordant GNPS verifying (4.1), (4.2) and (4.4),
we have Tj c Uj ¥ je Q.

Remark before proof : Tj
. . S S A A

5 < Us . .
implies j UJ and UJ c TJ

and Uj being strongly connected, Tj = Uj'

Proof of theorem 4.2 : Suppose Y3 Tj X5 aha ‘not (yj Uj Xj)' Not
(yj Uj Xj) implies :
either zj Vj yj and not z, V., Xj for some zj € Xj
or xj Vj wj and not yj Vj wj for some Wj € Xj'

‘ * * *
Not (zj Vj xj) > (Xj’ (xi)izj) (Zj’ (Zi)iij) for some (Xi)

e X A,
iz] !

i2)?

()

EN
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(4.4) therefore implies :

*
(Yjs (x'i)‘i;tj)> (z; K (21)113)
which contradicts zj Vj yj.

w®

Not (y: Vi ws) => (wis (W5)i i) ¥ (vis (¥§)j,;) for some
J J ) J 12] J J
*

*
Widinge Widing e KoK

and the application of (4.2) contrad1cts X3 V Wj
Q.E.D.

5. GNPS AND DECISION-AID

We mentioned in the introduction that the concent of noncompensation has
been used in several muiti-attribute decision-aid methods. Our purpose in
this section is to outline how the theoretical considerations developed -
above can be helpful in order to design a new method using these concepts
(the TACTIC method} and to implement it.

The idea of the TACTIC method is to "build" a global preference rela-
tion (see Bouyssou (1984) and Roy and Bouyssou (1984) on this notion of
construction) given a set of actions evaluated on several attributes. Tech-
nically, the global preference relation takes the form of a discordant GNPS
verifying the conditions (4.1), (4.2) and (4.4), which associated NPS is a
CPSp. Following Vansnick (1984), we will call such P.S. 'noncompensatory
preference structures with veto". The method first seeks to determine, in
agreement with the decision-maker, the semi-orders > and V for each
attribute 1, with V c 5 This can be done s1mp1y by assessing a mea-
surable value funct1on onleach attribute and determ1n1ng two constant
thresholds. The_method then asks the decision-maker to compare several
simple actions in order to obtain inter-criteria information. From this
information, it determines simultaneously, following a number of reasonable
principles, the "weights" fi and the coefficient p. Once this informa-
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tion is obtained, the determination of » for the complete set of actions
is performed easily. For more details on this topic, we refer to Vansnick
(1984). C
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