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PROGRAMMATION LIMERAIRE MULTICRITH
AVEC COMSTRUCTION INTERACTIVE O'UNE FONCTI

RESUME

Ce cahier présents une nouvelie méthode de programmation iinéaire
multicritare.

£lle consista an trois étapes

1) Génération d'un ensemble de solutions efficaces (de
représentatives que possible ds 1'ensemble des soiuticns i

2) Construction d'une fonction d'utilitéd additive a 1
thode interactive (PREFCALC).

3) Optimisation de la fonction d'utilité sur 1'ensamble des solutions
réalisables de départ.

Cette méthode oermet & |'utilisateur de trouver une solution afficace
qui peut &tre différente d'un sommet du polyédre. £1le est particuiigre-
ment adaptée & la résolution de problzmes de grande taille ol des méthodes
existantes sont trop coliteuses & utiliser. En effet, dans cette métheode,
seule la seconde phase st interactive et a lieu sur micro-ordinateur. las
phases 1 et 3 pouvant &tre exécutées sur un gros ou mini-ordinataur.

Une version micro-ordinateur de la méthode (PREFCHAT) est opération-
nelle et actuellement en cours de test & AIR FRANCE.



MOLP WITH AN INTERACTIVE ASSESSMENT
OF A PIECEWISE LINEAR UTILITY FUNCTICN

ABSTRACT

The paper presents a methodology for Multi-Objective Linear Program-
ming (OLP) oroblems.

[t relies on three stepns
utions (from 10

1) Generation of a subset of feasib

le af7
to 50) as reorasentative as gossible of the eff

iciant sol
icient seat.

2] Assessment of an additive utility function using an interactive
method {PREFCALC).

3) Optimization of the additive utility function on the original set
of faasible alternatives.

Following this methodology enables the user to find compromise solu-
tions which can be different from the vertices. [t is particularly adap-
ted for iarge scale linear programs where traditional multiobjective me-
thods would be too costly to use, since the interactive ohase is limited
to step 2, using PREFCALC on a micro-computer.

A micro-computer version of the mathod (PREFCHAT) is available and is
currently tested at AIR FRANCE. '



1 - QUTLINE OF THE METHOD

This paper presents a new method to support Cecisior
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Why a new method ? Many have been proposed, most of them are
interactive, many ars operational under the form of computer programs

(see for instance SLOWINSKI (13), VINCKE (15) ,... ¥

Most of the previous methods, when they are interactive, use tna
concept of "local praferences" . In consequence, one has to solve one
or more optimizations of the initial linear program at sach iteration.
This can be costly and time consuming, preventing quick answers in the

rocess, and making the method less intsractive .
? (=)

The method proposed here relies on a complete different principle. It

consists in three steps .

(1) Generation of a subset of efficient solutions,

Preferences do not always pre-exist. It is therefore important to show
some feasible alternatives to the decision-meker and their values on
the criteria in order to enable him to react entering so in a learning
process of his preferences. In order to show him interesting solu-
tions, we suggest to generate a few efficient solutions. This technical

step is not interactive and does not require the presence of the DM.



(2) Interactive assessment of an overall utilirv function.

e propose to use PREFCALC Method (
JACQUET-LAGREZE (6)). The DM wo

efficient solutions generated in step 1, using a micro-compucter, and

see JACQUET-LAGREZE and SHAXUN (7
1

ks with a rather smal

o)

=i

the output of this process is an additive piecewise-linear utility

function. The wmethod is highly interactive and the computer program

user friendly supporting in an efficient way the learning process ot

the D,

(3) Optimization of the utility function on the original set of

This 4is again a non interactive step. We use procedures developad in

the context of separable convex programming te solve the problea.

1)

Briefly speaking, it is possible to transform the proolem into a new

linear program.

Although this method 1is £fully operational on a micro-computer,
whenever the utility assessed in step 2 is concave for each marginal
utility Ffunction, it seems particularly adapted as a part of a DSS
(Decision Support System) for large problems which would require the

sower of a mainframe as suggested in fig.l

MAINFRAME MICRO-COMPUTER
1y;

( compﬁter center ) ( Di's desk )

(1)- Generation of efficient solu—k

IN

E&\\ (2)- Assessnment of an
N

additive utility
function wusing

PREFCALC

(3)- Optimisation of the additive

utility function

Fig.1 The method, in 3 steps




Sreps 1 and 2 which are not interactive could be solved on 2 mainirame
(or mini) in a computsr center, or even on a systam which is at a long

Step 2 is to take place on the DM's desk , in his office, using ais
personnal computer. t 1s the subjective part of the method which
requires his presence, far from the technical problems he thinks in a
quiet and familiar environment to the pros. and cons. of the problem
he has to solve, having a clear idea of what 1is feasible and

interesting (the efficient solutions).
In the next 3 sections {2 to 4) we present in detail sach step, using
a simple dillustrative exampls proposed by GOICOECHEA, HANSEYN and

DUCKSTEIN (4).

2- STEP 1 - GENERATION OF EFFICIENT POINTS

Fa Ny

The objective of this step is to propose to the DM a sample of feasi-
ble and interesting solutions. We suggest to compute efficisnt
solutions although non efficient solutions could also be generated at
the condition they also are interesting to consider for assessing the

Di's preferences.

2-1, The method

=h
W

There are several possible ways of generating efficient poiats o
t

=y

multiobjective 1linear program. Let us only mention the possibility o

combining the multiparametric linear programming  methods

(5),(16),(17),(18), with filtering techniques presentad ia (10),(14).

In this aper we shall wuse however, another method which 1is
P ,
particularly tractable and permits an easy control of dispersion of

e generated efficient opoints, not confined to vertices of the

=y

=
efficient region only; moreover it uses linear programming as a main
computational procedure. This 1is the first step of the interactiva
algorithm for multicriteria programming by CHOC and ATXINS (2). Let us

start with an informal description of the method .



Lat us denote by, the feasible set, G = {Gl,Gﬁ,....GT) tha ideal
nolnt where sz @oa x g,.(x) Cksly syl )y and the efficiant
X E 5
: 0 0 3 e B e e e L
solution v = (yl, yg,..., yk) closast to G in the sense of tne

weightad Chebyshev norm ia the criteria space :

¢ -
=
ma x ﬁk(uk— yk) =min @max %'(bk‘ gk(;)).
k x€S k
G is defined by the diagonal of the pay-off table calculated for the
» . 0 : ; N L
MOLP oroblem , and y results <£rom an optimal solution to tne
following LP problem :
(P1) min 2
‘n s Lo w
s.t z 2 gkk G, - 3k(£)) (k=1,...,%)

. . . i ; S, ;
The weights ‘%k > 0 are chosen a priori so as keep ¥ in the
"cantral" area of the feasible resgion. B, can be calculatzd as
i

follows
Be= 1/ (6~ F) (k=1,...,%) (1)

where F is a smallest element in the k-th column of the pay-orLif
k pay

table.

F is wusually celled the nadir point and let us observe that l/S,

N
k=1 e directi fficient f the straicht line nassing
(k=1,...,K are irection coefficients of the straight line passing
through the ideal and the nadir points, and that zi lies on this

direction too. Point y? becomes a starting point for generating

other efficient points using the search direction from G to F.



L2 S
To this ead, let us consider s extra Doints ¥ ,¥ ,....Y% ,
regularly distributsd on tie search dirsction between /% and 7. Then
taking each criterion in turm, say =41 first, we maxinize 2

subject to all other criteria being zt least equal to their value at
s

1 2 . S . .
v, then v~ , all the way to vy . This will give a sequencs
e e r—

5 e : il 12 1s
of trial efficient points ¥y y ¥ yeevy Y for
; ; 21 22 2s ; ;
ceiverion. 1, ¥ & B sser ¥ for eriterion 2; eleus,
.. K1 £2 {s : ; B ! .
until vy , ¥y ,..., ¥  for criterion i,The procedures is

illustrated in f£ig.2 for a two criteria case.
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ation of efficient solutions
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Let us remark that both the definition of F and the use o

Chebyshev norm do not guarantee the generated points to be afficien
in a strong sense. So, stridly speaking, we obtain in general weakly

efficient points.



g, (x) for all k. In other words, weak efficiency means t

s

obtained osoint can be dominated only by another feasible point lying

on the boundary of the positive orthant with the origin at tihe

obtained point. This feature does not decrease, however, toe
usefulness of the zeneration method since the efficiency of solutions

belonging to the reference set 1s not necessary requirement of our

approach.

4 detailed description of the generation method is presentsd in the

following steps :

Step 0. Calculate the pay-off table of the MOLP problem and define
the ideal and the nadir points, G and F, respectively,

Calculate @,_(k

(29

—

yeseyx) according to (1).

o

Step

w

Mo

=1
Step 2. Solve problem (Pl). We obtain x and the first (weakly)
cps i 0 a o
efficient point y'= (¥, ypi««vy 7)), where
Ja — -
0 B B
Yk = 3k(£ ) (=l ookl
Step 3. For a given s, r=l,...,s and k=l,...,K , solve the

following LP problem :
(P2) ma x gk(i)

a L s 1 78 T
s.t. g.(x)> yj— r/s (yjﬂ F.0o (d=l,..,% j#k)

S
4
x €5

-
- . . . Ky 5 |
We obtain (weakly) efficient points v (k=1,...,X ; r=l,..,s).

If the values taken by different objective functions differ a lot for
the same x , it 1is worth normalizing them by multiplying each
2

i

objective k by dk =

AR

2 i
1 )°, where ¢, . are cost

kJ
(Ralpwes® 3 3=l s

coefficients of g,

S
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To illustrzte <the above generation method, coasider the Zollowing
3 ; A

two-criteria LP problem, taken from ((4),example 2.3-~1):

s.t. = S| + X, $ 3.3
S $ 3.5

2xl T, & 8

%y $ 4

ST 2,0

Tae feasible region in the criteria space is shown in £ig.3. The
thicken border of the feasible region can be identified as the
all efficient points. The results of particular steps of the algoritham

are as follows :

Step 0. The pay-off table :

8; 89
2, 4.0 -1o
L
3, |-10.5 3.3

]
()
[
[
L

Hence, the ideal point G = ( 4.9, 3.5 ), and the
point F = ( -10.5 , =16 )
Step 1. &l= 0.069 , $2= 0.051
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given

Step 3. For s=5 we obtain the efficient points

A g2
4+ G

a1

Fig.3 Illustration on the example

. Trial eff. point g, 8,
¥ 0.35 ~1.4
vll 1.08 -4,33

<
~
[T

1

—

[0 4]

[O%)

(@}

(@)Y

—

- 1.81 -7.25
22
y -4.0 1.33
g 2.54 | -10.17
g2 ~6.17 2.06
g4 3.27 | -13.09
2
y -8.34 2.78
e 4.0 -16.0
v <1B8 3.5

Table 1
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= STEP 2 - ASSESSING AN ADOLILNE PIECEWISE=L

This step is interactive and requires the participation of the I,

(@8]

|
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As said before, we use the PREFCALC method and micro-computer package

to support the Dil in the task .

r
a, the efficient solutions) and their wvalues

(
on each criterion. Formally speaking, we know set &, g,.(a) for all
N

We assume that the preference is a non-decreasing or noa—increasing

function of each criterion (i.e. ¢, (z,.) is monotone), and the
Y

<
overall oprafersnce can be representad by an additive piscewise-iinear
function :

Ukh{i__

Yen |—

wihere g,, and 8y, renresent the extremal values encountered in
.‘L" L

the data file wusad as an input for PREFCALC. Generally these values

the least and the most preferread values on criterion

0
o
(=1
~
(1)
w
©
o
=
0 o
ot
o]



Using the D caa zerform the followinz tas«s
ale
- lodify g3,. or g,_ . Ln particular increase tae minimum valus
e ™

m

means add a subjective constraint such that ao solution ziving

value under this level should be considered.

Ja

(3, ).

- Draw marginal utility function (give a certain anumber of linear

pieces g, ,, 0=l,..., ¢, ) and give the values of u, (2, ).
wal RS i~ Ak
—~ TZFstimate indirsctly the values uh(ghh)
N Nl
function 1is as consistent as possible with a wholistic oreference

on some alternatives (ordinal regression
n
SISX0S (B8) and SISXOS (12). Small linear prograns are solved o

3-2, Application to the example

-~ The Db examines 11 efficient solutions. He does not want tO modify

the values of Ty % and 2

- Instead of giving weights to the criteria, ne prefers to start tne

O

He following five alternatives.

rr

interactive procedure by crdering

—
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X
=87 -6.2 2.1 4
¥ 2511 | -10.5 3.5 5
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pessible to assess a function. As suggested by the program, the i
increases tha number of linear opieces. Actually he uses 2 linear
pieces <for the 2nd criterion feeling that his preierence does not

increase in a linear way with this criterion.

- ds a result, the preference order becomes consistent, giviag the

solution of fig. 3.

Note the 3 curves for each marginal function; these curv
the stability (dimprecision) in the sstimacion procedurs (30
analysis 1in the ordinal regression phase of PREFCALC). The utility
function proposed by PREFCALC is an average one (giving weights .20

and .20 ).

i”‘"Gl B0 62 2877 4
solution

S4
S18
NG
$7
Si1

(space)-CONTINUE H-RELP

5 Zstimated utility function with PREFCALC

Ty
-
00




— DM agrees wit

=2
becomes almost

the wutility

saves that function and sends it back for optimization

noo:
i

cr

flat above valus -56.25 and actually a

cunceicn

-

he marginal utility function on crite

shown 1in fio. & with weights .8

Gl 88 G2 L2877
B |
B
|

“{H5

=

) €A G LD
- =1 D = e

.

value

.86
.83
.88
.44
.28

{space)-CONTIRUE H-HELP
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o
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4 - STEP 3
t-1, Problen formulation and the alsorithm
4s the result .of using PREFCALC, we obtain an additive u
function and each marginal utility  function ul(gl
uq(gq)ro--’ r form. Let (g i

= =

U,
[\

h) be the

breakpoints of uk(gk) i .

L
11

I

which

are known (see fig. 4&). Then each objective function 3, and each
™~
partial utilicy uk(g“) can be axprassaed as a combination of the
& &
oreakpoints
A
8. Z f\!.f Si,:
r h=l Kl X
. gs
u (3,) = & Aun Ui
=1
Ef
A= 1
Azl ki
A3 0 forhel,ig ko kel
where, at most, two adjacent A,,.'s are positive for each k.
N
Since the overall utility function U is the sum of partial utility
n
functions, and g, = Z ¢, . x. ( x=1,...,%), the problem of
D\‘( \é=l ch J 3
finding x maximizing U can be formulated as follows :
K Sy
{3} max U= zz A u,,
k:l h=! il L0
n
s.Ek. z:; a;: X, < b, (i=l,..:,m)
A:l ) J +
n ‘*KA
Y oo x~2A 520 (kal,...,5)
=) ®] ") way Kh ®kh
°<K
X, =1 (k=1,...,%)
K=\ kh

A
a
o

nd, at most, two adjace

L-

.y Kk

n

)

ac A

. 's are positive for each

kh



problem (23) ons can

ad-basis—-entry

L
[
n
('I'
H
(r

into the basis only 1f it improves the objective function and ii the

new basis has no more than two adjacent ALH'S that are positive for
i

It can easily be proved ((1), theorem 11.3.1) that if all partial

jos |
a
I
7
0O
v
)
(=)
i
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ry
m
W
ct
4
H
O

utility functions ars concave, we Caij

entry rule and adopt the ordinary simplex aloorithm,
P - . Y =2

particularly =fficient version of the simplex algorithm that can

maximize any concave separable piecewise-linear ob

C
linear constraints, has bDeen suggested by FOURER (3), along
comprenensive unified cCtreatment of b
Diacewissa linear

bounded-variable

To enc¢ with the concave case, let us remark that an opntimal solution
of (P3) dis either an eifficient vartex of the Ieasible s=t or ancther
point of the efficient border of the 0L? problem; tiwe first case
occurs 1f ip the optimal solution exactly two Z are positive for
sach &, and tha second, if for at l=ast one k, there exists h suc!
AIL\ 1. In the Ilatter cases, the optimal solution is a

fficient border anc¢ an isoorszferencs curve in

he e
its breakpoint (case of the example, see



FTor non-concave nartial utility functions, the solution odtained using
the simplex algorithm with the restricted-basis-gatry rule is an
optimal solution of problem (23) im a local sense only; if the problem

ossasses mors than one local optimum, there is no gtarantes thac best

"o

from among them will be found (10).

Let us continua with example (ZX). As result of using PREZCAL

[ 5]

_l.
<
[R%)
>

I~2
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- 16 =

S.t. - X S % 3.5
X+ X, £ 5.5
Zxy v %y § )
Xy < 4

¢ =3xy +10.5 A =4 A= 0
~hxy +x, +16 >‘21 +6.25 A,y =3.5 %23= o

Since partisl wutility <functions ars concave, We can discard
1

a
The optimal solution of the above LP problem is the following :

v

constraint that, at most, two adjacant k s are positive.
™

=
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—

g2

U= 0.8655

7 Ootimal solution of the piecewis

-

g7

~8.25
-8

Fig
g,
This solution is
criteria space of
family  of isoopr

iscawise~linear c¢

the

represanted in £ig.7 . Let us remark that in the

problem (EX), the wutility function U dafines a
efereace  curves in the torm  of parallel
urves; two of them are shown in fiz.7 aad tha
srowtn of utility 1is marked with an arrow. The
5 a tangential point of the efficient bordar and an
e in its breakpoint. It is worth stressing that it
nt which is not a vertex of the feasibles set,
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nicro-computar version of the method (PREFC
an IEM-PC and it is possible to test it on medium size probdlems (30
variables, 30 censtraints and 10 criceria) on an IBM-PC. The cemputing
time in step 1 has been greatly reduced by avoiding to ontimize

pgrately the objective functions. We start from an optimal feasible
solution for one criterion in order to find an optimal soluticn for
another criterion. The order chosea 1is not arbitrary and an heuristic

enables to reduce the computing time, These results should be reportad

in a next paper.
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As sugnested before i
in order to initialize the secoand step. Therefore PREFCHAT allows alse
to generate non efficient solutions computed as weizhtad averages of
the X solutions computed to get ths ideal point.

wt ™A " '

In practical problems the solutions proposed to the DM at the end of

step 1 should be prasented in the most attractive and meanpingful way

5y

to the DM to facilitate his reactions and learning process of nis
preferences. In the problem currently studied for AIR FRANCE, it is
possible to represent any x soluticn in a natural graphic form which

. s
oL th

(7}]
1Y

is familiar to the DM, With such graphic representation

o

=)
L=

=i

solutions the DM 1is able to compare them more easily and rank t!

-

3
]

2l

0
O

nerefore the ordinal n

3

according to bhis preferences. ares

r

]

implemented in PREFCALC (step 2) should become a relevant mean t

support the assesment of the utility function.

The utility function assessed using PREFCALC is additive., This means
that preferential independence has to be satisfied. It could be a
limitation for some bproblems although we never encounterad such
limitations in the practical discrete cases for which PREFCALC has
been used. The advantage of the simplicity to use the method sesms to
compensate this theoretical limitation. Nevertheless othner means to
assess some non additive wutility functions exist and could be used

instead of PREFCALC for the second step.
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The computer program for step 3 works only when the marginal utili

functions are concave. The extension to the convex case as discussed
earlier should be implemented. It could be also interesting to perform
some sensitivity analysis in step 3 depending on some residual

imprecision of the assessment of the utility function. For instance

the ordinal regression routine implemented in PREFCALC yields often a
ti £ the D,

set of utility Ffunctions all consistent with the preference o
An interesting gquestion is then what is the set of the optimal
solutions in sten 3 when we consider not a single utility function sut

a set of them, all egually rspresentative of the preference of the DU,
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