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QUELQUES REMARQUES SUR LA NOTION DE COMPENSATION
DANS LES METHODES MULTICRITERES

RESUME

Ce cahier présente des définitions générales des notions de compensation
et de non compensation dans le cadre des "Structures de Préférence Multi-
attribut". On aborde ensuite 1'intérét d'utiliser en pratique une méthode
d'agrégation plus ou moins compensatoire. Des procédures d'agrégation trés
générales permettant de combiner des aspects compensatoires et non compen-
satoires de maniére cohérente sont proposées. La derniére section de ce
cahier est consacrée & 1'analyse de ces procédures d'un point de vue axio-
matique.

Mots-clés : Critéres Multiples, Théorie de 1a Dé&cision, Compensation.

SOME REMARKS ON THE NOTION OF COMPENSATION IN MCDM

ABSTRACT

This paper presents general definitions of compensation and noncompensation
in MCDM within the framework of Multiattribute Preference Structures. The
interest of using a more or less compensatory aggregation procedure is
discussed. General aggregation procedures, that allow to mix compensatory
and noncompensatory features in a consistent way, are introduced. They
receive a complete axiomatic treatment for the two-attribute case, and it
is shown that they contain most currently used aggregation procedures as
particular cases.

Keywords : Multiple Criteria, Decision Theory, Compensation, Measurement.
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INTRODUCTION

Aggregating several dimensions, as this 1s done in MCDM, impliés
taking a poéition on the problem of "compensation”. Surprisingly enough, this
toplc is absent from the subject index of most textbooks on MCDM (see:Zeleny
(1982), Goicochea et al. (1982), Chankong and Haimes (1983), Keeney and Raiffa
(1976)). When it is dealt with explicitely, compensation seems a controversial
topic since, for instance, Hwarng and Yoon (1981, p. 25) classify ELECTRE I and
II as "compensatdry“, whereas Bouyssou and Vansnick (1985) use them to 1llug-
trate “"noncompeunsatory” aggregation procedures. Névertbeless, the literature
on MCDM very often appeals to notions -such as “"welghts", “"tradeoffs", "lexico-
graphic order®... which, intuitivelj: are. closely related to the probleﬁ of

compensation.

This paper intends to clarify this notion. Its first section is

devoted to the study of possible formal definitions of compensation. In a

second section, we shall analyse some desirable;proPérties of MCDM aggregation

procedures {MCDM a.p. in the_éequel) as regards to compensation. The last two

sections will analyse a number of MCDM a.p. in the light of these properties.
1. ON POSSIBLE DEFINITIONS OF COMPENSATION

The aim of this section is to propose fairly general definitions'of
the noticen of compensation. We first argue'thét meaningful definitions of
compensation can only be obtained within the framework of the preference struc—

tures encountered in MCDM. The rest of the section is devoted to new defini-

tione of noncompensation and compensation.

1.1 Multiattribute Preference Structures

Intuitively, compensation refers to the existence of "tradeoffs",
i.e. the possibility of offsetting a “disadvantage" on pomé attribute by a
sufficiently large "advantage” on anotﬁer_attribute - whereas smaller "advantﬁ-
ges” would not do the same. Previous.works on the notion of compensatibn-(é.g.zﬁﬂ
Plott et al. (1975), Fishburn (1976 and 1978), Bouyssou and Vamsnick (1985))

have concentrated on the problem of the "compensatoriness” of a preference'
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relation on multiattributed alternatives. The basic idea used in these papers
is simple: a preference relation is noncompensatory if no tradeoffs occur and
is compensatory otherwise. The definition of compensation therefore bolls down
to that of a tradeoff.

~

In -order to arrive at such a definition, it 1s essentfal to know what
is to be considered as an “"advantage" or as a "disadvantage” on an attribute or
on a group of attributes. In the general case (e.g. when no independence hypo-
theses are 1nvolved) this 1s obviously very difficult and of little practical
interest. In this section, we shall restrict our attention to a particular -

case that seems to us representative .of the type of situations encountered in

MCDM.

Let X, @ set of alternatives, be the cartesian product of n nonempty

sets X.. X, ..., %

n An MCDM a.p. can be seen as & way of building a global

preference vrelation >, on X (throughout the paper We use } and ~~ in the
usual way, 1, e x}y iff x},y and not y>,x, X~y ifFf x}y and y);x) an the
basis of a bret‘m‘ence relation }-i on each Xi and "some other information".
This is mostly done supposing some kind of numerical translation of the >}i
and the “"other information". Given >f1, ?;2,,__, >/;1, .we expect >/ to satisfy
a number or properties, i_F it has been obtained using an MCDM a.p.. We shall

say that [:&),., >,1, }ﬂr_,,..., é’n) s a Multiattribute Preference Structure (MHPS)

*

1f:

1) >} 15 reflexive and independent (see Erantsz et al. (1971, p.301) for a

definition); ke denote o}rI the binary relation on X Xi deduced
1€X

From }, by independence;

2) for all i €41, 2, ... |}, %

% 15 complete and Xy >;i Y iff X O}l ¥i

3) for all x, v € ¥, for all i €{1,2,...,n} and 2, ®; € X, x Yy and Z; ‘>i X

imply (zi,(xj)‘ )}y; x}y and Y >1 L9 imply x>(wi,(‘yj) )

j#i

JF1

The reflexivity of >, is hardly a limitation. The independence hypothese

may seem much more restrictive. Nevertheless most MCDM a.p., often impli-
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citely, use independence 1in order to arrive at % . Part two of the definition

requires each‘% to be complete, which seems unrestrictive at least in the de-

terministic case.

It.also requires that each 21'13 "preserved” in the global preference
relation. This seems plausible if }3 is interpreted as a preference relation
between "real™ evaluations (as opposed to "ideal" ones — see Roy and Bouyssou
(1985, a and b) or Roy (1985) on this point). Therefore, we shall not distin-—
gulsh %_from 33 in the sequel. The last condition is the most Important part
of this definition. It states a monotonicity condition that, in our opinion,
allows to speak of "advantages" and "disédvantages" in & consistent way. It is
éasily seen that in a conjunction witﬁ (1) and (2), it entails the transitivi;y

of each 7, and that x, » y, for all 1 ¢ I & {1,2,...,11} implies [x) ﬁ'
i i1 19,11

i
(yi) - As will become apparent later, a much more demanding condition is
1el . . :
obtained if we replace >1 by ?i in part three of the definition. Although

these conditions may seem overly restrictive from a purely theoretical point of

view, we are not aware'dfnﬁﬁgmMCDM a.p.wéhat does not produce MP3.

1.2 Noncompensatory MPS

Within the framework of a MPS, the definition of an "advantage" and
of a "disadvantage" is rather obvious. When comparing x to y, attributes for
which xi71 Yy favor x and attributes for which yi:ﬁ x, favor y. Given part 3)

of our definition, it makes sense to partition {1, 2, ...,'n} into, three sets:

P(x, y) = {1 € {1, 2, ..., n} : Xi‘a yi}

P(y, x) {i E {ls 2y von, n} : Yi i xi} and
I(x, y) = I{y, x) = { i1e {1: 2, vsuy n} : xj_ 'I yi}

In this context, it seems legitimate to say that P(x, y) Eepresents an "advan-

tage” when comparing x to y and P(y, x) a "disadvantage”. However the status
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of attributes in I (x, y) 1s ambiguous. In previous definitions of noncompen~ :-
sation, it was implicitely assumed that they were neutral relétivel_y to the
comparison of x and y. When all}i are transitive this .8eems, in general, rea-
sonable. However if 7 are not supposed to be transitive this 1s much more open
to criticism. In fact our definition of a MPS does not exclude cases like: X,
T ¥y for all i e I and ((%;), 1, (zj)jﬂ)ﬂ(yi), iaI’(zj)jafI)’ in which the
conjunction of "non—noticeable" advantages on. some attributes may create an
overall effect. TIf the non—-transitivity of 7 1s due to perception thresholds

i
we might want to exclude this possibility (xi ~ y.,would mean in this context

that it is impossible to distinguish Xy from yi).i H:wever as argued by Roy and
Bouyssou (1985b), the non tranmsitivity of 1 is much more often due to the fact
that it is essential to build a convincing preference structure on each attri-
bute before aggregating them, a case 1n which attributes in I(x, ¥) might not-
be neutral. (An intermediate situation arise when there is a unique weak order
underlying each ),; , e.g. wWhen >: is a semi-order. 1In this case, it would be
possible, using the underlying weak orders, to partition further I(x,y) bet-

ﬁeen, neutral, slightly favorable and slightly unfavorable attributes).
Within this framework we propose the following:
Definition A MPS (X,}, R >£, }E y see, >;n) is
a)} Totally noncompensatory‘ iff for all X, ¥, 2, W E K,
(x, y) M(z, w) — [x)y 1§f z 5w |
b) Noncompensatory iff for all x, y, z, w € X,
(x, y) M(z, W) == [(x ¥y =——> Not w¥2) and

(x vy =—— Not wpy z and Not 2y w)]

) .
where M 1is a binary relation on X~ that reads "have the same preferential

profile than" and 1s defined by:
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- either (x, v) M (z, w) iff P(x, y) = P(z, w) and P(y, x) = P({w, z) . (Ml)'

- or (x, y) M (z, w) 1iff P(x, y) = P(z, W) ,

P(y, x) = P(w, 2) and x_ = Yy 2y =Wy for all i £ I(x, y¥) - (MZ)

1

#

Using Ml y our definition of total noncompensation amounts to- the
"regular noncompensatory preference structures” in Fishburn (1976). From the
preceding discussion 1t is clear that this definition of M should only be used
either when all k& are transitlive or when we have good reasons to consider that
the conjunction of small differences remains a small difference. The implica-
tions of this type of noncompensation -(in fact a slightly more restrictive one
since }_ is not supposed to be complete here) have been thoroughly studied by
Fishburn (1976) aand Bouyssou and Vansnick (1985). It will suffice to say that
i1t allows the definition of a "more important than" relation between disjoint
subsets of attributes (I >» J iff x % v for some x, v € X éuch that‘P(x, y) =
I, P(y, x) = J,I »J 1ff » ~y for some x, y € X such that P(x, y) = I, P(y, x)
= J) that can'be, under certain conditions, represented by means of additive
welghts. When this 1s the case, the model obtained is very close to the con-
cordance part of the ELECTRE 1 and II methods (Roy (1968), Roy and Bertier
(1973)). It can be shown that the lexicographic order is a particular case of
our definition. - As noted in Fishburn (1978) the conjunctive and disjunctive
screening models do not fit too well into this definition. This is due to the
fact that they do not aiﬁ at constructing a global preference but rather at

geparing acceptable from unacceptable actions. \

S5till using Ml' the notion of noncompensation Introduced here is very '
close to the idea of "generalized noncompensation” in Bouyssou and. Vansnick
(1985). As total noncompensation, it forbids reversals of preference when
actions have the same preferential profile . but introduces the possibility of
incomparability. (Not wi z implies elther that z » w or that z and w are incom-
parable). It allows to account for possible discordance effects, as introdﬁced
in the ELECTRE methods. It is easily seen that within this case, it is also
possible to define an importance relation on disjoint subsets of attributes.
It has been shown in the aforementioned paper that when the discordance effects"

are sufficiently well-behaved, it 1s possible to define some kind of wveto
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thresholds, avoiding to have x % y when there 1is an attribute in P(y, x) for
which y 1s judged "far better” than x. The implications of noncompensation
underlie the ELECTRE I and II methods and have been fully exploited iIn the

TACTIC method (Vansnick (1985)).

Obviously, much more general definitions of noncompensation are ob-
talned using M2 instead of Ml- - These definitions have not been studied.in
literature for they do not guarantee any more the existence of an unambiguous .
correspondence between ¥ on X and an importance relation on the set of subsets

of attributes.

1.3 Compensatory MPS

Counsidering the fact that noncompensation amounts to forbidding tra-
deoffs, it seems reasonable to say that a MPS is minimally compensatory when it
is not noncompensatory. Using Mz, we thus obtain a definition of minimal com~

pensation that generalizes that of Fishburn (1978):

Definition A MPS (X,Y ’%} E, cee, kh) is minimally compensatory iff
P(x, y) = P(z, w), P(y, x) = P(w, z), xi'= vy and
z, =w, for all 1 e I(x, y), x% yand v » z

i i _
for some Xy, ¥y, 2, W e X.

In this case we say that the attributes .in P(x, y) minimally compen-—

sate those in P(y, x).

Though compensation has traditionally been associated, often impli-~
citly, with the possibility of "matching” exactly some positive difference on I
by some negative difference on J (this 1s the idea underlying the use of indif-

ference curves), this definition appears much too restrictive when X is- suppo-

sed to be finite. This notion of minimal-coﬁpeusation can be strengthened 1n

several directions. A notlon of "total minimal cdmpensa:}on" can be obtained
if we require that given any nonempty disjoint subsets of attributes I and J, I
minimally compensates J. Furthermore, it is possible to say that I “strongly
compensates” J requiring that for all x, y € X such that x% y, P(x, y) = J,
P(y, x) = I, there is a2 z ¢ X such that z % x and z, = yifor all i‘¢.fa
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Therefore a notion of perfect compensation 1is at hand 1f we ask for strong.
compensation to hold both ways between any two disjoint (nonempty) subsets of
attributes. Strong compensation Imposes severe structural restrictions on X.
The reader may find interesting to compare this notion with the solvability:

agsumptions used in additive conjoint measurement (Krantz et a} (1971, chap.

6)).

1.4 Compensatory and Noncompensatory MCDM a. p.

Though, in our opinion, no MCDM a.p. can pretend to be able to deal,
in a reasonable way, with any type of-set X and of preferences ¥, >2? res, 2;
(the case in which n is large but X contains a small number of actions is typi-
cally not covered by most MCDM a.p.), they generally have a domain of applica-
tion including many types of X and of ﬁf

The way each a.p. transforms information in order to arrive at ¥ can
be called its "aggregation convention"”, which is generally well illustréted by
the numerical traunsformation used. 1In order to avold useless definition,‘we.
just propose at this point to say that the aggregation convention of an-a.p. is
ninimally compensatory if for some set X, some %, _}2, vee, >’n (.and some.o't;her
information), it can produce a relation » in which I minimally compensates J,

for some I, J and nondompensatory otherwigse. Clearly, the convention under-

n n S
lying the additive utility model (x % y iff L ui(xi) > L ui(yi)) iz minimally
i=1 ~ i=1

compensatory whereas a lexicographic or a concordance-discordance coavention 1s

noncompensatory.

From a practical point of view, these definitions are far from being
completely satisfactory since they do not allow to rank a.p. from the most to
the least compensatory (but from the preceding discussion we feel that such an
objective will probably be very difficult to reach in the general case). They
nevertheless give a basis to discuss the desirable properties that an a.p.

s

should exhibit as regards to compensation.
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2. THE "COMPENSATORINESS" OF AGGREGATION PROCEDURES

The idea that MCDM a.p. should be minimally compensatory underlies
most of the work that has been done in this area, notable exceptions being the
methods using outranking relations based on a concordance-discordance princi-
ple. In fact, the additive utility model is certainly the most popular a.p. in
the fileld of MCDM. However, noncompensatory .a.p. do have a number of very
interesting features. First, by definition, they only require "inter—attribu—

te” iInformation in terms of an importance relation and a discordance set.
Within the context of highly complex and conflictual decision processes, this
may prove fruitful since such a.p. do not force the decision~ makers to express
tradeoffs -~ a highly sensitive information indeed.- Secondly, noncompensatory
a.p., when they appeal to the 1dea of a veto effect, tend to "rank" actions
with "well-balanced” evaluations before actions that may be well evaluated on a
number of attributes but are very bad on others (in some situations, compensa-
tory a.p. may produce a reverse ranking). Such a tendency. appears to be very
desirable since it may facilitate negociations between actors having strongly
conflictual value systems (Bouyssou (1984)). It follows from there that one
may wish to use an a.p. having soﬁe noncompensatory features, without ignoring
the fact that people do make tradeoffs, but simply because such a.p. can prove
very efficient to construct a reasonable global preference relation (for argu-

ments favoring the use of some noncompensation in other contexts, we refer to

Elnhorn (1970)).

1

As local tradeoffs are generally easily expressed, it may thus be
interesting in many situations to use an a.p. that is sufficiently flexible
to admit compensation for small "preference differences" and noncompensation
elsewhere (see also Luce (1978) who emphasizes the interest of such models.from

a desériptive point of view). This idea underlies the next two sections.

It should be emphasized that standard compensatory a.p. {e.g. the
additive utility model or the additive difference model) can be used to genera-
te preference relations exhibiting only local tradeoffs 1In certain cases (in a
“paramorphic” sense, see Einhorn (1970) on this point). However the non._com—
pensatory component (this could be formally defined saying that the MPS (X, % , .
?1, >2, cary >’n) is minimally compensatory but that for some }i,'b}é,..., }r'l)_
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such that >:'L < ¥ for all ie {1, 2, «v. 10}, X,%, },i, },é, vesy };I'l) is noncom—
pensatory) of preference relations exhibited by such compensatory a.p. is not
truly noncompensatory in that it is only due to the particular evaluations of
the alternatives and not to the way they are aggregated. TFrom a practical

point of view (in a constructive perspective) this is essential since, in order

toe implement -such a.p., the analyst has to gather inter-attribute information

with a compensatory scheme in mind. Here we are interested In a.p. that are
flexible enough to allow to gather information using a "tradeoff reasoning” for

small preference differences and a noncompensatory one elsewhere.

At this point, 1t may be worth mentioning that a common argument
against the use of noncompensatory a.p. is that they may produce non-transitive
global preferences ). As we shall see, thils is not specific to noncompensatory
a.p. As regards to the transitivity of % (that of ~ is liable to the classical
criticisms of the transitivity of indifference), let us only mention that from
the descripfive (May (1954), Tversky (1969)), normative (Burros. (1979)) and
prescriptive (see the numerous applications of the ELECTRE methods As reported
in Siskos et al (1983)) points of view, it does not seem to be a compulsory
requirement. When intransitivities do exist then, depending on the nature of
the decisionrproblem, one may implement a number of methods to use ¥ in order-
to arrive at a decision prescription. Since this is out of the scope of the
a.p. we shall not deal with this problem explicitly. Let us only mention here
that these methods may soﬁetimes obscure the more or less compensatory nature

of the preference relation produced by the a.p. .
3. A REVIEW OF SOME AGGREGATION PROCEDURES

This section will review a number of a.p. being rather flexible as
regards to compensation. We will identify an a.p. with the numerical transla-
tion of preferential information it uses. The problem of the axiomatic founda-

tions of MCDM a.p. is differed to the next section.
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In a recent and illuminating paper Jacquet-Lagrége (1982) has- shown
how most MCDM a.p. derive from the same general and, in fact, very intuitive
principles. 1In order to compare x to y, a very general procedure consists in
weighting the pros and cons of the assertion "x is at least as good as y" and
in déclaring-that "x is at least as good as y" if the pros clearly outweigh the
cons. Obviously, one may be more or less confident in the assertion depending
on the difference in "weights". It should be noticed that, when more than two
actions are to be compared, this "welghting” technique does not guarantee that
comparisons will be transitive, since transitivity is essentially a ternary

property.

Jacquet-Lagrége (1982) has éhown that most MCDM methods evaluate the
pros (resp. the cons) as the sum of pros (resp. cons) on each attribute, and
that on each attribute pros and cons are evaluated on the basis of a binary
relation kﬁ and "some other information” mainly concerning the Importance of
the attribute and evaluation of "preference differences". This general frame-—
work proves very fruitful for analysing MCDM a.p. from the point of view of
compensation for it is sufficiently general to include compensatory and noncom—
pensatory a.p. as particular cases. We shall restrict our attention in this

paper to a.p. exhibiting only one type of global preference relation.

The additive'difference model was proposed by Tversky (1969) in order
to account for intransitive %, using a very natural intra-dimensional informa-
tion processing strategy perfectly in line with the idea of additivity of pros
and cona. Stated formally a preference relation % satisfies the additive dif-
ference model if there exist real-valued functions Ugs Ugy eeey U and increa-

sing functioms &¢., &, , +++, @n defined on some real intervals such that:

i’ 2

n .
X py 1ff iiléi (ui(xi) - u i(yi) > 0 and | (1)
@i (- 8) = - @i[ﬁ) for all i € {1, 2, +.., n} and for 31; (1'a)
§ - - . )

e R such thatlui(xi) ui(yi) § for some Xy yie Xi

Keeping in line with the original work of Tversky, it has always Been _

understood that the difference functions ¢i should be strictly increasing.
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Apart from the fact that (1) and (1'a) implies that % is complete,
which may not always be realistiec for decision-aid purposes (see Roy {1985)),
the additive difference model has two major drawbacks that were already noted
by Fishburan (1980}. Eqs. (1) and (1'a), together with the hypothese of
strictly increasing ¢i, obviously implies that % has no truly noncompensatory
component and that the preference relations on each attribute (which are
unambiguously defined since (1) and (1'a) implies that ¥ is independent) are

complete and transitive.

These two severe limitations are absent if we suppose that the diffe-
rence functions are only increasing"(i.e. § » &' =2 ¢1(6) » @i(ﬁ')). This
gives rise to what we could call a "weak additive difference model”. Though
flat portions of @i may seem strange, they aliow to drop the assumption of the
transitivity oflz_;etaining only that afé, which seems realistic in many con-
texts. Furthermore the weak additive difference model allows to mix compensa-—
tory and noncompensatory aspects in the same model, keeping in line with a
growing literature on this topic (see Luce (1978) and Fishburn (1980)). It is
easy to see that a flat @i around O entails a nontransitive T whereas a flat

@i for large differences indicates that only local tradeoffs oeccur.

Keeping in line with the idea of additivity of pros and cons, it is .
possible to envisage a'mugh more general MCDM a.p. requiliring the existence of

real valued functiomns p, or Xi such that:

n .
X yy Iff I pi(xi,yi) > 0 and _ (2)

i=1

IZ e = s ]
pi(xi, yi) pi(yi, xi) for all i=l,Z...,n and for all Xis Y46 Xi (2'a)

Conditions (l'a) and (2'a) impose a strong rationality requirement on
the weights of pros and cons implying that_b.is necesgsarily cqmplete. "Much
more general models can be obtalned respectively replacing these conditions

by:

2,(8) . ©.(=6) <0 for all i¢ {1,2,...,n} and for all 6 € R such that u, (x,)-
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ui(yi) § for some Xis ¥y € Xi and (1'b)

- < e ® 0
pi(#i, yi) pi(yi’ xi) 0 for all i € {1,2, ,n] and for all LI A Xi

£

Using these conditions, (1) et (2) allow incomparability and take
into account possible discordance effects that .imply that some cons are "into-
lerable™. The price to pay fot the generality of these models is that discor-
dance is introduced additively, which may be open to criticism.

All these models imply that-% is independent and, denoting by 33 the

relation induced on Xi by independence we have:

ProEosition:

1) If » on X satisfies (1) with either (1'a) or (1'b), then

(%%, bl' bé,...,kh) is a MPS.
2)If ¥ on X satisfles (2) with either (2'a) or (2'b) then

X, %, },1, \?}2,.,}}11) is a MPS if |

x, % vy PR, z‘i) > p;(y;s 2;) and (3)
p(zi, yi) » pi(zi’ xi)_for all i ¢ {1,2,...,n} and for all Xys ¥y 24 € Xi'

Proof: Left to the reader. *

The additive utilitj model or the TACTIC method (as presented in
Bouyssou and Vansnick (1985) obviously are particular cases of these models.
This is not the case for ELECTRE I and II due to their treatment of attributes

in I{x,y). Taking them into account would require a reformulation of (1'b) and

(2'b).

The link between these models and methods building a valued global
preference relation (such as ELECTRE III - see Roy (1978) or PROMETHEE =~ see
Brans and Vincke (1982) and also the ploneering work of Goodman (1951)) is more

subtle since, in general, these methods directly use the valued preference

relation to arrive at a prescription without bullding, as an intermediate step,

a non-necessarily transitive 3 , which could be analyzed in our framework.

(2

b
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However if we interpret the valued preference relation by declaring x % ¥y 1££
the value attached to the arc (x,y) is greater or equal than the value attached
to (y,x) — and we feel that this interpretation is in line with the “flow"
technique used in PROMETHEE - the link becomes obvious. On the contrary, 1f -
as the distillation algorithm of ELECTRE III suggests - we declare that x ¥y
iff the value attached to the arc (x,y) exceeds some threshold,pour model would

require some more sophistication to encompass this case.

A rather wunpleasant feature of these a.p. is that they imply the
neutrality of attributes in I(x,y). As discussed earlier, this 1is probably
overly restrictive. The addition of a threshold in the formulation of (1) and
(2) would overcome this difficulty but, since this was not critical for our

purposes, we did not analyse this point further.

The a.p. presented in this section may seem éxceedingly general and
are compatible with many different Interpretations, some of which being ob-
viously out of the scope of MCDM. Their interest nevertheless lies in the fact
that they contailn many methods aé particular cases and remain completely flexi-

ble from the point of view of both transitivity and compensation.
4. ON THE AXIOMATIZATION OF MCDM AGGREGATION PROCEDURES

In the preceeding section we introduced a variety of rather flexible
a.p. and it may be interesting to know whether they can be axiomatized from a
measurement theoretic point of view. Though it would be illusory to think that
such an axiomatic analysis'can\give a Justification to those a.p. (see Roy and
Bouyssou (1985a)), it surely allows a deeper understanding of the methods using

them.

All the structures we introduced fall into what Krantz et al. (1971)
called nondecomposable conjoint structures. Until recently this kind of struc-
tures recelved little attention, most of the axiomatic work dealing with multi-
attribute preferences having been done within the framework of classical utili- |
ty theory. However, beginning with the work of Tversky (1969), there seems to
be a growing interest in this toplic as shown by the works of Fishburn (1978,
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1980, 1985), Luce (1978), Huber (1979), Roy {(1985), Croon (1984), Bouyssou and
Vansnick (1985).

With the emphasis on compensation, an important problem is the choice
of appropriate structural assumptions in order to obtain the desired represen-
tation, since those structural assumptions may render void some interpretations
of the a.p.. For instance if we need to use unrestricted solvability (See
Krantz et al. (1971, p. 256) for a precise definition) in our axioms then any
kind of noncompensation is obviously excluded. In order to maintain the flexi-
bility of the interpretatibn of these models, one 1s bound to use restricted
solvabllity - see Krantz et al. (19741) = or a density condition. Thus thé‘
choice between two sets of structural assumptions is much more critical here
than 1t is for standard additive conjoint measurement. This problem is not
purely technical since it is well-known that unicity results vitaly dependf'dn
structural assumptions. One possible way to avoid this problem has been taken
by Luce (1978). 1In order to combine a two—component additive utility model for
small differences and a lexicographic ordering gisewhere, he explicitly states
in his axioms where compensation is supposed to take place (the notion of
"small® differences 1s captured through the definition of "indifference inter-
vals”), i.e. where structural assumptions can be safely imposed. A similar
step has been taken by Fishburn (1980), though his use of topological concepts
renders difficult the intgrpretation of his structural assumptions (that Croon
(1984) attempted to recast into an algebraic format using extremely strong sol-
vability conditiouns), in order to axiomatize a two~component additive differen-
ce model for "small" differences together with a lexicographic ordering. It
should also be mentloned that Beals et al. (1968) and Tversky and Krantz (1970)
have proposed in the context of similarity judgements models ressembliﬁg (1)
and (2). However thelr axioms are not easily transposable into a preferential

context.

Throughout the rest of the paper we shall restrict our attention to
the n=2 case. As will become apparent, this case is fundamentally different
from the n»3 case for it is strongly related  to ordinal rather than conjoint
measurement (and this explains why we will not state unicity results here). We

have the following:
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Theorem 1:

Let % be a binary relatlon on a finite or denumerable set Xl x Xz.
These exist two real-valued functions satisfying (2) and (2'a) iff:
Al:}is complete i.e. x 3y or y#x for all x, y € X and ) |

AZ:}}verifies‘triple cancellation i.e. for all X1 Yy Zpo vy E'Xl, Xps Vo3 Zps
W, € XZ’ x1x2>, Y1Yps ylzz‘f,xlwz and 2 wrzh'fw1 z, — z, %, }?Wl Y, ¢

Proof: Necessity is obvious. Sufficiency is straightforward. First observe
that we can always suppose without loss of generality that X]_(\K2 = ﬂ', since we
can build a disjoint duplication of these sets as thils 1s done in Doignon et

al. (1984). Let us consider the binary relation B on Xi U Xg defined by:

)\,Gsxzandaf}ﬂ)\

A, § € X and § a » A B
1

¢, B, A, ¢ £ X, and aB%)\’d

a, B, A,Sstand GB% A6

o« BB AGS 1ff o, B eX

where:

X, yl% z, W iff X)» Yy Zps W € Xl and [xl xz} ¥ 9, and v, yzaz', zy xz] or
[xl x, % Yy Yo and wiY, Y zy x2] for some Xyy ¥y € X2 and Xy Yo 0y By Wy i1ff
X Yoo Z,s v, € X2 ‘.':md [x1 xz} v, Y, and Yy Wy % Xy 22] or [_xl x, » Y1 Y5
and Y%, bs Xy 2.2] for some X1, ¥y € Xl.

Given the definition of B we clalm that the desired representation
: 2 2
exists if B is asymmetric and negatively transitive. Indeed, since Xl U XZ

is countable, 1t admits a numerical representation h and we have:

X, X, S ¥, ¥, 1ff h(xl, yl) > h(yz, xz) iff h(xz, 'yz) >,h(y1, xl). .To ob-

tain the desired representation, it suffices to take:
pl(xls }'1) = h(xli y].) - h(yl’ xl) and

pz(xzs Yz) = h(xzs Yz) - h(Yz, xz) .

and A, imply that B is a weak order is long but straightfor-

The proof that Al 2
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ward and is left to the reader.
Q.E.D.

This very simple result prompts a serles of remarks-. First,};. being
reflexive by Al’ A2 implies that 1t is iIndependent which is unsurprising..
Secondly, 1t is easily seen that the representation obtained is not regular
(i.e. pi(xl,y‘.) = pi(zi’ Wi) does not imply that.pi(xi, yi) = _pi(zi, wi) for all
_other admissible representations p:'[)- Thirdly, using an appropriate order
density condition, this result can be generalized to the non-countable case.
Fourthly, we conjecture that no such results are available for the n » 3 case
(note that necessary and sufficient conditions can straightforwardly be obtai~

ned using the method of Scott (1964) in the finlte case).

We state without proof the following:

Efw: Let }, be a binary relation on a finite or denumerable set X1 x Xp.
There exist two real—_valued functions satisfying (2), (2'a) and (3) iff

- Al and Ao,

— Azt For all xy, yq, X}, ¥] € X1» X5 Yps Xh, ¥ € Xy3
- X) Xp % ¥y Yy and X %y ¥ %% —> %] %) % ¥ ¥y
Xy ¥ WYy Yp and x) x5 > Xy —> x X5 %Yy Yyl

- Ry Ky W ¥y Yy and ) X ¥ VX = xy %) ¥ y] Vys
X] Xy ¥y Yy and X ¥y YRV x Xy B Y ¥y

Given a binary relation ); on Xl x X

) % ¥ iff x;, y; € X and x, xz}( ¥, %y for all x, € X, and

g We define }1 and Eby: _

X, },Z y, 1iff x,, y, €X, and x x, ¥ X, ¥, for all x; € X;. We use >1, T

% and % in the usual way. We have the following:
2 2

Theorem 2:

Let ¥ be a binary relation on a countable set Xl X Xz. There exist

two real-valued functions satisfying (2) and (2'b) iff:

- A4 Strong independence: zand ¥ are. complete,
b
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- A5 Monotonicity: For all X5 ¥y € Xl and Xps ¥y E X2,
xlbl 1 and xzé Yo =7=F Xy X, > yl Yy and I1f either
x1>1 y, or x, }2 Y, then X, %, s\ yy ¥y -

- A6 Weak cancellation: for all Xs Vs Zys Wi £ Xl. and X3 Yo zz, W, €
X :
LI 3N pa Y, ¥, and z, 2, },wl W, imply either X, .2, > Y, W, orf
z, 'K'2>‘(Wl Yoo

Proof:

Necessity.

Since (2'b) impliés pi(xi, xi) = 0, we have xi>;i Yy — pi(xi, yi) > 0. Thus
- >

Not xi‘@. vy and Not yi% xi- imply pi(xi’ yi) pi(yi, xi) > 0 which shows

the necessity of A4. The necessity of the first part of A5 is obvious. Suppo-—
% . > >

se that X, % ¥y and x2>2 Yo Thus, pl(xl, yl) o, pz(xz, yz) 0, and
L4 . ' <

pz(yz, xz) 0 From (2'b) we have pl(yl, xl) 0, so that % xz}r Yy Y9 and

Not Yy Y9 }( X, X, which show the necessity of A_. Suppose now that X xz};

5
Y1Y,s 21 2, A W Wy, Not L3 z27;, Y1 ¥y and Not 2, %, b Wy Yo Thus pl(xl,
¥ ¥ py(xys ¥,) 2 0y pi(z), W) +p,(2,, W2_> 2 0, pi(xy, ¥p) + py(zy, wy) <
0, and pl(zl, Wl) + p2(x2’ yz) < 0 which leads to pl(xl, yl)ﬁ, pl(zl, Wl)
and pl(zl, wl) < pl(xl’ yl), a contradiction. Hence AGiS necessary.

Sufficiency.

2 2
As before we shall unrestrictively suppose that Xy n X, = g . We

2 2 .
define a relation D between Xl and X2 by: X, ¥y D Yy X iff X X, } ¥ Y
AS implies that D 1is a biorder in the sense of Doignon et al (1984). Thus,
as all sets are countable, thelr proposition 7 implies the existence of a real-

valued function h defined up to a positive monotone transformation such that:

X, yz\,( VAN iff h(xl, yl) > h(xz, yz),

for all Xy ¥y € Xy, [zlxz} W, Yy .xl-xz\(,yl yz] 1ff h(:;l, yl) » h(zl, Wl.)’
for all X, ¥, € Xl [xl yz\q, AR e wz}? Y1 z2] iff h(xz, yz) » h(zz, wz),
for all Zyy Wy € Xl’ Zyy Wy € XZ’ [z1 Yy >, Wy X, ‘and X W, 3 Yy %y st z W, },
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v, zz] iff h(XZ’ yz) b h(xl, yljo We know from A5 that X7V and X, 5 Y,
imply Xy ¥, % Yy X, 80 that h(xl, yl) > h(xz, yz)- Suppose now that for some
2., W, € Xl and Zyy W, € X, we have 2, ¥, % W) X, Xy W, >.y1 z, and Not z) v,
P Wy Zge From A, and A_ we have either Wy )i z or 7‘2?2 Wy for otherwise z]_}fl

4 5 1

} L]
and v, % z, would imply Zy W, ¥ v, Z, But using A, again we see that.w

W

1 5 1
? , .
?z;, and x, %y, imply v x, > z) Yo, & contradiction. Similarly z, E w, 1s

impossible since yl.%_xl and A_ would imply ¥y zz'> Xy Wye Thus h(xz, yz) »

5
h(xl, yl). Therefore X 7Y kz 3 Y, imply h(xl, yl) = h(xz, YZ) = § and we

can always choose h so that & = 0,

We now claim that taking:
'pl(xl, yl) = h(xl, Yl) for all X5 ¥, € Xl aqd
pz(xz, yz) = —h(yz, xz) for all Xys ¥y E X2 gives the desired representation.
Indeed, we have X, %, 2 Y1 Y, iff pl(xl’ yl) + pz(xz, yz) >0 Furthgrmore,
X, 1Yy implies pi(xi, yi) . pi(yi' xi) =0 for i =1,2. But xi)i ¥y im—
plies pi(xi’ yi) # 0 and pi(yi, xi) < 0 So that pi(xi, yi) . pi(yi, xi) %
0 . This completes the proof.

Q.E.D.
A4 and AS asgert that incomparability only occur when criteria are conflicting
and are rather uanrestrictive within the framework of an MPS. A6 is a rather
weak cancellation condition, which is implied by triple cancellation when & is
complete. It amounts'to.defining a biorder in the sense of Doignon et al.
(1984} on Xi % X§ and implies on its own the existence of two functions such -
that X %, p2 Y1 ¥y iff pl(xl, yl) + p2(x2’ yz)a> 0. Agaln, using an appro-
priate density condition, this result can be generalized -to the non-countable
case. As in the case of theorem 1, we are not presently aware of any satilsfac-
tory generalization of this result for the n » 3 case. An immediate corrolary

of Theorem 2 is:
Theorem 2':
Let % be a binary relation on a finite or denumerable set of Xj x X,.

There exist real-valued functions satisfying (2}, (2'b) ‘and (3) 1iff A3, Ay, 45
and As o
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The case of the weak additive difference model 1s more difficult in
the general case. However in the finite case, it 1is straightforward to give
necessary and sufficient conditions for (1). As 1in the proof of Theorem 1 we
define x, ylﬁi z, v, 1ff [x; x, % vy, vy, and w, y2 P x,] or [x; x, » Y1 Yy
and v, ¥, }‘zl xz] for some X, ¥, € X2 and %, yz} z2 2 1ff [x x2>y1 Y,
and I Vs >r’x'1 zz] or [x1 X, },yl Yo and Y1 ¥y % Xy 2} for some X1, ¥ € Xl
We have the following:

Theorem 3:

Let }, be a bilnary relation on a finite set Xl X Xz - There exist
real-valued functions Uys Uy, @1, <D2 satisfying (1) and (1'a) with <I>1 and ¢2 '
increasing 1ff:

- Al and A

2 ' 1 2 m 1 2
- A7: For L =1, 2, for allm=2, 3, ... and [xi, Xys vovy Xys Yis Fis ey
m zl 72 " wl w2 . ooy 1 < 1 mo
yi’ i* %y reey 2 Wys Wis eeey Wi] mi’ [xig .r-j.ﬁf: 3: Y39 teny Yi
a permutation of z., «vv, 2y, Wiy ees, W, and Wy yi>i- ; %y for each ]
< m] ——=+ Not Wy ym $ xm zm.
i1 171 i
Proof: The necessity of Al and Az is obvious. The necessity of A7 is proved

* 3 *
observing that wf y‘i] v %7 Z'i] implies 9@ (ui(wg) - u (yi)) pIR (u (xj)

i. 71

ui(z‘jj_)). Thus slnce @iis increasing, u (wj)~* ui(yg) ru (xj) - u(zJ) and Wi yi
E xil z? contradicts the permutation hypothesis.

To show sufficiency it suffices to observe that Al and A2 implies the
existence of real-valued functions Py and Py satisfying (2) and (2'a) and

> ' i =

pi(xi, Yi) pi(zi’ Wi) i1ff Xy ¥y oz W for 1 1, 2. A7 implies, by
theorem 6.1 in Fishburn (1970), the existence of real-valued functions uy and

u2 such that:

x yi> w, — U (x y - ui(p > u, (zi) - ui(wi). We define tbi on {A: A e
R and ui(xi) - ui(yi) A for some Xgo ¥y E Xi} by ¢>i(ui(xi) - ui(yi)) = pi.(xi,
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.“
yi). Given the properties of 1 and )l, ¢, is obviously well-defined. To show

i

that it is increasing suppose that u (x ) -u (y y » uy (z ) = uy (w ) then Not
»w

z, W, ? X

i 19 % Y Thus pi(zi’ w ) < pi(xi, yi) g0 that ¢i is increasing.

Q.E.D.

Given the nature of A7, this result is far from being satisfactory.

It can be shown that A7 does not imply A2 or A1 and that Al"AZ and A7 holding
for 1 = 1 (resp. 2) does not imply that A7 holds for 1= 2 (resp. 1). Though A7
is rather difficult to interpret, it implies that } is transitive for 1 = 1, 2.
In fact suppose that x, } Yi» ¥y 8% > z, and zi}ﬁ x, thus x yi> Xz, ¥ B
X, z, and x yi> z, Y4 which is impossible since (xi, Xes Zys Yoo 24 yi) is a

i i i
permutation of (zi, Zys Yy Xy Yy Xi)

The reader will check that, on the basis of Theorem 2, it 1s possible

to obtain a counterpart of Theorem 3 using (1'b) instead of (1l'a).
CONCLUSIONS

We shall briefly indicate in this section some directions thatlseem
to offer good opportunities for future research on the subject of this paper.
First, we restricted our attention throughout the paper to MCDM a.p. exhibiting
only one type of prefefenqe relation and it would be interesting to know if our
dafinitions and results can be extended to the case of valued preference rela-
tions. Secondly, we used rather a restrictive interpretation of Jacquet-—
Lagréze's ideas in order to obtain simple aggregation models. The validity of
this interpretation certainly deserves closer scrutinity. Thirdly, it séems
cruclal to know whether there exist satisfactory sufficient axiomatizations of
models (1) and (2) for the n2»3 case using structural assumptions that do not
exclude the presence of noncompenéatory components in these models. Lastly,
one could envisage the definition of a "more compensatory than” relation bet-

ween a.p. on the basis of the numerical representation used in (1) or (2).
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