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DE NCUVELLES IMPLEMENTATIONS DE L ALGORITHME DE KHRMARKAR

. ppsnur

Des travaux récents ont montré que T'algorithme de Karmarkar peut étre en
fait mis en oeuvre de facon @ réduire significativement le nombre d'itéra-
tions. Cependant, 1'effort de calcul par itération (qui implique Ta pro-
Jjection d'un vecteur sur le sous-espace hul d'une matrice ayant les dimen-
sions de la matrice des contraintes) apparait alors comme la principale
source d'inefficacité dans le calcul. :

Ce papier se veut é&tre un pas vers des mises en oeuvre pratiques plus effi-
caces de 1'algorithme de Karmarkar. On montre d'abcrd que le sous-probléme
de recherche de Ta direction de déplacement peut se formuler comme un npro-
bléme d'optimisation quadratique sans contrainte dans un sous-espace de di-
mension généralement plus petite que celle du probléme original. On montre
ensuite comment 1'application de diverses procédures de type "gradient con-
jugué" permet de résoudre ce probléme soit de facon exacte, soit de fagon
approchée, et conduit ainsi & toute une famille d'implémentations ol existe
une grande souplesse de choix concernant Tes compromis précision—effort de
calcul. Indépendamment de sa souplesse et de sa facilité de mise en oeuvre,
cette nouvelle approche permet de tirer avantage, au m1eux, de la faible
densité des matrices de contraintes.
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NEW SUGGESTED IMPLEMENTATIONS OF KARMARKAR's ALGORITHM

ABSTRACT

Recent work has shown that Karmarkar's algorithm can indeed be implemented
in such a way as to get significant reduction in the number of iterations.
However, the computational effort per iteration (projecting a vector onto
the null space of a matrix of the same size as the constraint matrix) then
appears to be the main source of computational inefficiency.

This paper is intended as a step towards more practical and efficient im-
plementations of Karmarkar's method. First it is shown that the direction-
finding subproblem can be reformulated as an unconstrained quadratic mini-
mization problem on a subspace of dimension usually significantly smaller
than the dimension of the original probTem. Then it is shown how various
conjugate gradient procedures can be applied to solve this problem, either
exactly or approximately, leading to a whole family of implementations with
high flexibility regarding the choice of the best tradeoffs between accura-
cy and computation effort in the solution of the direction-finding subpro-
blems. Besides its flexibility and ease of implementation, the new approach
takes full advantage of the srarsity of the original constraint matrix.



1. INTRODUCTION

The new polynomial algorithm due to N. KARMARKAR (1984} for solving
linear programs is cértain]y one of the most significant progress recently
achieved in the Mathematical Programming area. However some controversy
soon arose around the author's claims of the new method being "50 to 100
times faster than the simplex method". 1In fact, various computational ex-
periments carried out independently by a number of researchers {see e.q.
TOMLIN (1985), LUSTIG (1985), NICKELS, RODDER, XU and ZIMMERMANN (1985))
soon led to the conclusion that the asserted superiority of the new algo-
rithm might not be that overwhelming. Indeed, if it is now recognized that
KARMARKAR's methods can be implemented in such a way as to produce a very
Tow number of iterations on the average (see e.g. NICKELS & alii, LISSER,
MACULAN & MINOUX (1985)) the computational effort per iteration involves
the calculation of the pseudoinverse of a matrix with roughly the same size

as the constraint matrix, and this may be prohibitive.

In this paper, we suggest possible ways of improving the practical ef-
ficiency and ease of implementation of Karmarkar's method by showing that :

- the projection subproblem to be solved at each iteration can be re-
placed by the problem of unconstrained minimization of a convex quadratic
function defined on a subspace of reduced dimension ; '

- that this quadratic problém'can be solved either exactly or, more
interestingly, apprcximatély via a conjugaté gradiént method 3

- that this conjugate gradient approach is well suited for exploiting
the sparsity (if any) of the original constraint matrix.

2. KARMARKAR's ALGORITHM IN BRIEF

For simplicity we will consider here the method as presented originally
in Karmarkar (1984). Of course, the improved implementation suggested here
could be extended in a rather obvious way to most of the variants eventually



described by a number of authors (see e.g. MEGGIDO (1985), LUSTIG (1985),
GAY (1985), TODD & BURRELL (1985)). This is, in particular, the case of
the variant which consists in performing an exact or approximate one-dimen-
sional minimization of the potential function at each iteration as sugges-
ted in TODD & BURRELL (1985) and, independently, in LISSER, MACULAN & MI-
NOUX (1985).

Let the problem be stated in the following "canonical" form :

F e a T
Minimize ¢ X

subject to :
A.x =20
(P} { n
L X. =1
i=1 !
Xz 0

N n Fixn
where n>m and x«R', ceR , AcR xn,

As in KARMARKAR (1985) we make the assumption that the initial point
21 - X
X = ﬁ(l’ 1, ...) = ﬁ.e

is a feasible solution to (P) (here e denotes the n-vector with all com-
ponents equal to 1).

This assumption is justified by the fact that it is always possible to
convert any linear program given in standard form and for which a feasible
solution is known, into the form (P) with % e as a feasible solution (see
section 5 of KARMARKAR's paper).

The constraint set of (P) is the intersection of the null space of A
n . .
(a Tinear variety) and the simplex S ={x/ x20, I Xy = 1}. Note also
_ - j=1
that the starting point xO = %—e is nothing but that the center of the

simplex S.



The algorithm generates a sequence of iterates xO, xl, ...s X ac-
cording to the following process :

Current iteration of Karmarkar's algorithm

(a) Let X = (dl’ d2, cees dn)T be the current point. Set D =
diag(dl, cies dn), the diagonal matrix with di as the 1th diagonal entry.

Let B = [3%1 be the {(m + 1) x n watrix formed by matrix AD aug-
e

mented with a row of all 1's.

(b) Compute &, the orthogonal projection of the vector Dc onto the
null space of B, i.e. :
& =rI-8(8)"¢ BT DC.

Let u = be the unit vector in the direction of E.

o o

(c) Let b' = %ne - 8 u be the point obtained by moving from the cen-
ter of the simplex S (%—e) a step of length @ 1in the direction - u
(the main restriction on g is that all components of b' should be > 0).

(d) The next iterate xk+1 is obtained by applying to b' the (pro-
jective) transformation

Db

X =h = -
e Db

Concerning the choice of step Tengths ‘g, Karmarkar's original recom-
mendation is to take

6 = o.r
where r 1 is the radius of the largest sphere inscribed in the
yn{n-T1) '
simplex S and g = lu As shown in Karmarkar (1984) this choice is suf-

q
ficient .to ensure polynomiality of the algorithm. However it leads to a



number of iterations growing as a linear function of the number n of
variables. Experimental results reported by NICKELS, RODDER, XU and
ZIMMERMANN (1985) and LISSER, MACULAN & MINOUX (1985) show that allowing
much longer step sizes (with the restriction of staying in the interior of
the simplex S) may Tead to a dramatic reduction in the overall number of
jterations. Since the cost of evaluating the potential function value at
specific points is much lower than the cost of computing the search direc-
tion u, the best strategy at present, seems to be to perform an approximate
minimization of the potential function along - u.

As shown in LISSER, MACULAN and MINOUX, only a rough approximation of
the optimal stepin the direction is sufficient for achieving very good con-
vergence properties (4 to 6 function evaluation at each step). The expe-
rimental number of iterations of Karmarkar's algorithm then seems to grow
roughly as a logarithmic function of the number of variables. Moreover it
is easily realized that, if the maximum number of potential function evalua-
tions allowed in the approximate one dimensional optimization is bounded by
a fixed constant, then the polynomiality of the algorithm is preserved (this
is because (i) computing the potential function at some point is polynomial ;
(i1) the actual reduction in the potential function resulting from the ap-
’proximate one—dimensiona1'search is at least equal to the reduction achie-

ved by Karmarkar's step).
We now turn to discuss possible ways of reducing the computational ef-

fort for getting the search direction u at step (b) of the algorithm.

3. SOLVING THE DIRECTION FINDING PROBLEM BY A CONJUGATE GRADIENT ALGORITHM
IN A "SUBSPACE OF REDUCED DIMENSIONS

Looking for the projection of some vector y=Dce R" onto the null

space of B (a {(m+ 1} x n matrix) can be stated as the least squares
problem of minimizing the L~ norm :

Ix - yll
(I}4 under the constraints :
Bx=20



Some proposals following this idea of treating the direction-finding
subproblem in Karmarkar's algorithm as a least squares problem have alrea-
dy been made, e.g. in LUSTIG (1985) (where efficient algorithms developped
in PAIGE & SAUNDERS (1982) are used). However, in these approaches, the
resulting least squares problem is stated in the n dimensional space of

the original variables. One of the advantages of the new approach sugges-
ted below is to lead to a least squares problem in a subspace of signifi-

cantly reduced dimension.

Problem (I) above is a constrained quadratic minimization problem. The
jdea here is to reformulate it as an unconstrained quadratic minimization

problem. Assuming A to bea mxn matrix of full rank m (m<n) - a

fairly standard assumption indeed in Tinear programming - consider any ba-

sis of A (*), i.e. a mxm regular submatrix A; corresponding to
some subset I = {1, ..., m} of m basic columns.

Now, the system : B.x = 0 which is equivalent to

I

{ ADx =0 _
e x =20 | (2)

can be rewritten (premultiplying (1) by A;l) as :

-1 _ :
1 Dy x + Ay Dy x; =0 | (1')

el x =0 (2)
where the partition of A into [A[, AJ] (J being the subset of indices

of the non basic columns)} induces the partition ExI, ij of the variables
and [DI,_DJJ“Qf the diagonal matrix D.

(*)  Observe that finding a basis of a linear system may be a difficult pro-
blem.in itself. However, in practice a.basis is often at hand or easy
to derive from the structure of the problem dealt with. Moreover, if
this were not the case, it would always be possible to augment the gi-
ven system by m artificial variables (with sufficiently large cost
coefficients) in order to obtain a mx m unit matrix as a basis.
Notice that in the Tatter case, the full rank hypothesis is automati-

cally fullfilled.



-1 -
We denote Ar” Ay by R= (ris)ir R is thusa mx (n-m) matrix.

Jed
Note here that, contrary to what occurs in the simplex method, there is
no restriction, a priori (suchas feasibility conditions), on the choice of
a basis AIW

Assuming, for notational simplicity, that the basic varﬁab1es are the
first m variables, the system (1')-(2) can then be rewritten as :

dy x; + JEJ T3 dJ xJ =0 ¥i=1, ..., m {3)
n .
X =0 | (4)
- k=1

The first m equations (3) can be used to eliminate the variables xI
from the last one yielding for (4) :

1
IIME

(ﬁL- Lo d X.)+ & x,=0
[~

=1 jed 37 g 3

or equivalently :

m .
r o (1- 3¢ Ay =0 (5)
Jed i=

The prob]em of projecting the vector y = D ¢ onto the null space of
B is thus equivalent to finding the minimum of ||x - yII subject to (3)-

(5).
. 2 2 2
Writing [[x - y|[" = {[xp - y7[I" + x5 - ¥l

and eliminating the basic variables X1 by (3) yields



] r.: d
Minimize f(x) = I (y; + I —-3 x)2 4+ 1 (% -y.)°
i=1 jed Y el .
(I1) { subject to
I ps; X: =0 (6)
jéa 3 d
m r,, d.
where, ¥ j e J, o5 = 1- ¥ 1.
i=l Y%

This is a {convex) quadratic minimization problem with only one linear
constraint (6) and no sign restrictions on the variables.

We suggest to apply to (II) a conjugate gradient algorithm. Indeed,
in the present context, conjugate gradient algorithms enjoy several desi-
rable properties : ease of implementation, low storage space requirements,
no matrix manipulations (contrasting with Newton or Quasi-Newton methods).

They usually réquire a rather high accuracy in the one-dimensional minimi-
zation process, but this is by no means a drawback here since the cost
function being quadratic, the exact minimum in the direction can be obtai-
ned at Tow computational cost (see Appendix).

Due to constraint (6} the gradient will be projected at each step onto
the hyperplane with equation

I py X, =.0 (6)
je-.]‘]‘]
thus resulting in a conjugate gradient method in the corresponding subspace
of dimension n - m - 1. However, we note that the projection operation
onto a hyperplane is easy and computationally 1nexpensive t0 carry out
(see formulae (7)-(8)).

The jth componént of the gradiént of f at any point x reads :
m N S r.s d.

of 1J 2 LN

= =2 I {y, + 7 Xs) + 2(X, - y:).

T e S T TR T o7



Thus Vf may be efficiently computed as follows :

(a) First, the m quantities

r.. d.

_ id o

By =Yy v I —q
JeJ 1

X
J

for the current point x are determined, requiring ©{m(n - m)) opera-
tions in the case of a 100 % dense matrix R, and &(8 m(n - m)) opera-
tions in the case of a sparse matrix R with density & (percentage of
nonzero elements}).

(b) Each component of the gradient is then obtained by

thus requiring 6(s m n) elementary operations. The overall complexity
for computing the gradient is thus (s m n) and it is seen that full ad-
vantage can be takén, with this approach, of the sparsity of the matrix R.
Moreover since the initial choice of the basic matrix AI {(which allows
eliminating m constraints from the problem) can be made more or less ar-
bitrarily, this flexibjlity can be éxp]oited by choosing as basic matrix
AI one Teading to the minimum number of nonzero terms in R = AE AJ.
Furthermore, note that (as is frequently the case in practice) if the ma-
trix A already contains a unit matrix, sparsity of the initial matrix A

is preserved in the matrix R.

Once the unconstrained gradiént vf = (Vl’ Vos wees vn)T has been ob-
tained, the projectéd gradient g(x) onto the hyperplane of equation (6)
is easily deduced by : ‘

g{x) =v+up (7)
T
_p

with p = = ﬂ—p—ﬂ%. (8)



This is this vector ¢(x) which should be taken as the gradient at
the current point x in the implementation of the conjugate gradient al-
gorithm.

We now turn to describe the basic p-step conjugate gradient procedure,

where p s a specified integer parameter, chosen here in the range 1 <
p<m-n-1 (since m=-n-1 1is the dimension of the subspace of the
independent variables)-

. The p-step conjugate gradient (CG) procedure

0

(a) Let x0 be the chosen starting point. Set w = - g(xo)

the
starting search direction. Set k <« 0,

(b) Current step Kk : choose X 2 0 such that xk + Ay wk minimi-
zes f(xk + A wk) over X =z 0.

Let : xk+1 = xk + wk‘

Compute g(xk+l) and then :

wk+1 - _ g(xk+1) + Bk wk
T ﬁéi:?%z'

(c) Stopping test : if k = p, STOP. Otherwise, set k « k +1 and
return to (b).

It is a well-known property of conjugate gradient algorithms that an
exact optimal solution is produced in a finite number of steps when ap-
plied to a quadratic function, Here f is a quadratic function of n - m
variables xj (j ¢ J) restricted to a subspace of dimension n-m-1
(defined by the hyperplane constraint (6)) thus running a p-step conjugate

gradient procedure with p =m.-n - 1 will produce (up to the computer's
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numerical accuracy) an exact optimal solution to the least squares pro-
blem (II) hence to the direction needed in Karmarkar's algorithm.

4. A FAMILY OF APPROXIMATE DIRECTION-FINDING PROCEDURES BASED ON CONJU-
GATE GRADTENTS

However, though as already pointed out, the C-G procedure can easily
take advantage of the possible sparsity of the constraint matrix A, run-
ning p=m-n- 1 steps may be computationally too expensive. One of
the interesting features of the approach suggested here is that it leads
very naturally to a whole family of numerical schemes depending on the le-
vel of accuracy at which the least-squares direction-finding subproblem is
solved. This is obtained by just replacing the standard C-G procedure on
m-n-1 steps by an .itéerated p-step conjugate gradient procedure (where
p is chosen much smaller than m - n - 1) which can be stated as follows :

Iterated p-step conjugate gradient

(a) Choose p, an integer (p<<m=-n --1}. Let xo be the chosen
starting point. Let k « 0 (iteration number).

(b) At iteration t, xt is the current point. Run a p-step C-G al-

gorithm with x* as the starting point. Call xt+1 the resulting point.

(¢c) Termination test : if satisfied, STOP. Otherwise, set t« t +1

and return to (b).

Many possible termination tests can be used. A simple one based on
the absolute error is to check whether ||xt+1 - X ||< e, where ¢ s some

fixed predeterminéd tolerance. A possibly better choice could be to re-

quire that :

t+1 t
x> - x|l . N

lly - x~||
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where n s some fixed predetermined tolerance (in this case, the stopping
test is based on a relative error involving the vector y which is to be
projected).

Observe that an interesting feature of this approximation scheme fis
that, whatever the stage atwhich the iterations are stopped, the resulting
approximate point xt defines a direction of displacement for Karmarkar's
algorithm which exactly 1ies in the null space of matrix B : this guaran-

tees that all the points obtained by moving in the direction will be fea-
sible for (P). | '

It is the author's opinion that allowing, as suggested above, approxi-
mate sclutions (to within contrp11ab1e accuracy) to the direction-finding
subproblems at each iteration in Karmarkar's algorithm may open the way to

considerable computational savings eventually leading to practical imple-
mentations actually competitive with the simplex method. '

Though a thorough analysis of the influence of inaccuracies in the di-
rection on the overall behaviour 6f the algorithm (average number of re--
quired iterations) has not been carried out yet, there are some good rea-
sons why this influence should be small. In particular :

- since, at each iteration, a projective transformation maps back the
current point to the center of the simp]éx S, there is no risk that by
choosing a direction which is not exactly the right one, too small step
sizes will result leading to premature convergence of the sequence of points 3

- for the direction defined by an approximate solution xk to the least
squares problem (II) to be a descént direction for the linear function
(D c)T x, hence for the potential function (*), even a relatively small

reduction in the norm ka - y|| is sufficient.

(*) p ¢ can be shown to be the gradient of the potential function at the
current point.
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We expect that computational experiments will confirm this, while ma-
king more precise the kind of tradeoff between the tolerance levwel and
the computational effort at each iteration for minimizing the overall
running time of Karmarkar's algorithm.
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APPENDIX : Efficient computation of the exact minimum
along the conjugate gradient direction

It is well-known (see e.g. MINOUX (1983), chapter 4) that in order to
obtain full benefit of the good convergence propertiés of conjugate gra-
dient methods, a rather high accuracy is required in the solution of the
one-dimensional minimization subproblem at each step.

For the direction-finding problem in Karmarkar's algorithm, we are in
the favourable situation of minimizing a quadratic function, which allows

getting the exact minimum of this one-dimensional subproblem at Tow compu-
tational cost. Indeed, knowing the coefficients a, b, ¢ of the cost
function (a 62 + b e +c) along the current conjugate gradient direc-
tion w, when expressed as a function of & (the step size) leads to the
exact value of the optimal step : 6™ = - %%u However, getting the values
of the coefficients a, b, ¢ 1in our problem in“terms of the data at hand
(the ris coefficients and the dj values) would be computationally ra-
ther expensive. We propose, instead another method (a variant of quadra-
tic interpolation) requiring only to evaluate the function value at only
one additional point of the form X' =x+pw (wé omit the iteration su-
perstript"k' for notationa]-simp]icity) for some arbitréri]y chosen posi-
tive value of the parameter p (the only restriction on p is to avoid
very small oklvery'1arge values to eliminate pbésib1e influence of round-

off errors).

Indeed, let f{x}, f(x'} be the function values at x and x' res-
pectively, and g the gradient of f at x. The directional derivative
of f along the direction w at the current poﬁnt X is g = gT.w (of
course, 8 < 0 since w is a descent direction). |

. Simple identification then Teads to :
¢ = f(x) (function value for 6 = 0),

b = g (derivative at. o = 0),
apl+bptes f(x') (function value for 9 = p),
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for which we deduce :

a = 7
@]
hence
?
* _ 1 p- B
I TR TR )

From a practical point of view, a good way of choosing the parameter
p at each iteration of the conjugate gradient algorithm is to set p egqual

to the optimal step size 6% obtained at the previous iteration (this "dy-
namic rule"” ensures that at each step, the o paraméﬁer keeps on being of
the same order of magnitude as the actual optimal step size, thus reducing
the effect of numerical inacurracies). At the start of the process, the
first value of p has to be chosen arbitrarily : a good precaution is

then to check that the corresponding value e; of ¢° (computed by (9))
is not much smaller or much larger than o (in such cases, there might be
some significant numerical error on 8% ; a good precaution could be then
to recompute a better value of the optimal step size 6" at the first
jteration, by setting o = e; “and evaluating f at x' = x + ei W
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