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ORDONNANCEMENT DE LA PRODUCTION SUR DES MACHINES EN PARALLELE
AVEC DEMANDES EN ESCALIER

RESUME

Un ensemble de n produits indépendants doit &tre fabriqué par un ensemble
de m machines indépendantes travaillant en paralleéie en utilisant p res-
sources supplémentaires de type : moyens de transport, équipement supplémen-
taire, opérateurs, etc. ; o unités de la resource 1 sont disponibles a

chaque instant. Une machine ne peut pas travailler sur plus d'un seul pro-
duit & ia fois mais un produit peut &tre traité sur plusieurs machines si-
muttanément. Chaque paire (machine, produit) demande au plus une unité de
la ressource 1 & chaque fois. Les plans de production sont donnés sous
forme de demandes par périodes pour chaque produit. Pour chaque triplet
{machine, produit, ressource), on connait la productivité en nombre d'unités
du produit par une unité de temps. L'objectif est de minimiser 1a somme de
pénalités affectées aux écarts (algébriques) entre prévisions et réalisa-
tions pour chague période. Le colt total de changements de fabrication des
machines est considéré comme un critére secondaire. Le probléme ainsi for-
mulé est résolu par une méthode en deux phases généralisée [5] ; Ta premiére
vhase revient a résoudre un probléme de goal programming linéaire ; la deu-
xiéme phase consiste dans la construction d'un ordonnancement obtenu a lfa
suite de la résolution d'une série de recherches d'un flot réalisable dans
un réseau. '
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PRODUCTION SCHEDULING ON PARALLEL MACHINES
SUBJECT TO STAIRCASE DEMANDS

ABSTRACT

We are given a set of m unrelated machines working in parailem and a set
of n independent products which have to be produced on these machines
using p additional resources (e.g. transportation facilities, additio-
nal equipment, operators, ...) ; of units of resource 1 are available
at any time. A machine cannot work on more than one product at a time
but a product can simultaneously be produced on different machines. Each
pair (machine, product) requires at most one unit of resource 1 at a
time. Production plans are imposed in form of periodic demands for each
product. For each triple (machine, product, resource) we are given a
productivity ver time unit. The objective is to minimize the total pe-
nalty following from deviations above and below production plans. The
sum of machine set-up costs is considered as a secondary performance mea-
sure. The problem is solved by an extension of the two-phase method [5] ;
phase 1 consists in solving an LP problem and phase 2 is the construction
of the schedule which reduces to a sequence of compatible flow probiems.



1. PROBLEM STATEMENT

The production scheduling problem considered in this paper arised in
a workshop manufacturing plastic tanks for different types of car batte-
ries. Its formal statement seems to be of more general interest, so we
will drop all technical terms connected with this specific application.

We are given set {Mi}T=1 of unrelated machines working in parallel
and set {Pj}§;1 of - independent products which have to be produced on
these machines using additional renewable resources {R.I}Tf=1 (e.g. trans-

portation facilities, additional equipment, operators, ...) ; o units of
R] (1 =1, ..., p) are available at any time,

Each pair (Mi’ Pj) requires at most 1 unit of specified resource R]

at a time. A machine and a resource unit cannct produce more than one
product at a time but a product can be produced simultaneously by various
machines with additional resources.

The production of each product on one machine can be arbitrarily inter-
rupted and resumed on another machine or on the same machine but possibly
with another resource (preemption). The total machine set-up cost is con~
sidered as a secondary schedule performance measure.

The planning horizon is divided into periods of equal length It (t =
13 iil, g)i - Production. plans are imposed in form of periodic demands for
each product P, : Djt (3 =1, ..., n;t=1, ..., q), i.e. the demands

J
are staircase functions of time.

» Ry}, we are given productivity kij"l (i =1,

1, ..., P} in units of Pj produced by (Mi’

For each triple (Mi’ P

1l Caa

Lamy j=1, ..., n 1
R1) per one time unit.

Deviations above and below production plans are penalized by cost coeffi-
cients cgt and °3t (i =1, ..., n 3 t=1, ..., q), respectively. The

objective is to minimize the total cost following from deviations from
production plans.

The problem has been solved by an extension of the two-phase method
(cf. [2, 3, 5]). Phase 1 consists in solving a Tinear programming (LP)
problem and phase 2 is the construction of the schedule which reduces to
a sequence of compatible flow problems.

In the next section, the extended two-phase method is presented. In
section 3, minimization of the total machine set-up cost for a schedule
is considered. The final section draw conclusions.



2. EXTENDED TWO-PHASE METHOD

The so-called two-phase method was initially proposed for solving a
problem of preemptive scheduling of tasks on parallel unrelated machines
(cf. [2] for historical background) and then it was extended in different
ways to handle additional resources of various categories (cf. [2, 7]).

In this paper, we define the problem in terms of production scheduling
and the products correspond to tasks in previous studies. The characteris-
tics of tasks {(products) are diferent, however, since task duration has been
replaced by productivity, simultaneous produtt1on of the same product on
different machines {task mu1t1pr0cess1ng) is.- a11owed, and the -usual . time
criterion has been replaced by a cost cr1ter1on (we1ghted sum ‘of devia-
tions).

Phase 1
The decision variables are :

> 0, the time during which (Mi’ R1) works on product Pj in

period t(i=1, .., m:;3i=1, ....n:; 1 =1, ..., p;
t=1, ..., q),

1J1t

yTt’ yTt > 0, incrementing variables corresponding to the amount above
J J “and below production plan for preduct Pj in period t,

respectively (j =1, ..., n; t=1, ..., q).
Phase 1 consists in finding the values of decision variables which minimize

the weighted sum of deviations from production plans. In order to find
them we have to solve the following Tlinear goal programming problem :

M Fer oz (vt o+l v (1)
inimize : = £ I (Csp ¥i_ *tcC.. V.
t=1 j=1 it it it Y3t

m n - \ _ o o
s.t. 0% Xesqe ol (=1, ..., t=1, ..., q) (2)

i=1 j=1 idlt 17t i

P N

T I X <1 (i=1, ..., m;t=1, ..., a) (3)

121 j=1 ijlt t

t m 3] - + t

T 0% % Kisq Xesqe F Ver = ¥Yip = T Dy (4)

h=l =1 1=1 W1 WL gt gt o, Tk

(=1, ...,n;t=1, ..., q)
+ -

Xisies Yies ¥ip 2 0 (i=1, ..., m; j=1, ..., n; (5)

i fater Sy Syt 1=1, .., p3t=1, ..., )

Constraint (2) says that production times must not exceed the availa-
bility of R1 ; (3) ensures that machine Mi does not work more than It

units of time in period t ; (4) defines the incrementing variables.

1t can easily be proved that for an optimai. solution of problem (1)-
(5), ygt y;t =0(=1, ..., n;t=1, ..., a), i.e. the incrementing va-
riables are mutuaily exclusive.



Phase 2
t n
Let z{; = I xij]t (i=1, ..., m; 1 =1, ..., p; t=1, ..., q).

j=1
Given the (m x a]) matrix Zt with real entries 2:1, we have to find a

schedule in It time units (t =1, ..., q) by determining a positive in-

'teger P nonnegative numbers Af, Ces X: and (0-1)-matrices SE, A
St satisfying t
"t
Z=qz51=ast+ .+l st (6)
il 171 P
_ .t t
I = a0+ .o Art (7)
P
t v -
E (S-|'|)h_<_l (1"'13 5msh—1) 5Y|t) (8)
1=1
m
1_51 (si)y Lo (1 =21, cooypih=1, o0, ry) (9)

for t =1, ..., g.

The interpretation of phase 2 is as follows : Sﬁ = [s$1]h defines a
feasible assignment of resources to machines which is used for Ay time
units in period t (h =1, ..., e s t=1, ..., g). A schedule can al-
ways be found in phase 2, as asserted by the following theorem :

Theorem : For any X.. (i=1, ....,m; j=1, ...,n; 1 =1, ..., p ;

e T e :]J-[t-'ﬂu . . t t t
t=1; ..., q) satisfying (2)-(5) &id Z~ = [211] such that ziq =

m

T Xiitg (i=1, ..., m3;1=1, ..., p;t=1, ..., q), there exists a
j=1 M _

positive finite integer Pis nonnegative numbers AE, cens A: and (0-1)-
matrices SE, cees S: satisfying (6)-(9) for t =1, ..., a.

t _

Proof : Let us define a square ((m+ p) x (m + p)) wmatrix wt compo-
sed of four matrices :




where (Zt)T is Zt transposed, Ut = [y?j] is an {(mx m) diagonal ma-
p

trix of machine idle times, Usy = It - I ZE} (i=1, ..., m), Vt = [v?jl
1=1 m

isa (p x p) diagonal matrix of resource idle times, V?T = “TIt -3 z§1

(1 =1, ..., p). i=1

Machine Mi is said to be critical in period t iff y?i =0(i=1,
., m). Similarly, resource P] is said to be critical in period t iff

vii=0 (=1, .., p). |

Let us remark that in matrix wt, the sum of row elements is equal to
It in rows 1, ..., m and it is equal to 4 It in rows m+ 1, ...,
m+ p ; the sum of column elements is equal to oy It in columns 1, ..., p
and it is equal to It in columns p + 1, ..., p +m.

Let us substitute each row (and column) in matrix wt whose sum is equal
to o It by oy rOws (columns) with elements divided by aq, as it is shown

below :
1 Q‘ P § mp
B\
VLTI TITTT TR T TTIA = = 1
N N\ |
t D :
W™ = N N
m N N
N N B /o 1
N N | fog
o N . .
et 7T ON T T T TR T e = e Ty :
\ N .
N N /a.-l oy
mo N N
E=a]It Z=It
Y N
/a] /a1
1 e

The modified matrix w? is denoted by Nt and its dimension is
fm + p ai).k*(m +p aﬁ)l, in .wt, the sum of elements in each row as well as

the sum of elements in each column is equal to It, $0 matrix fL-wt is a
bistochastic matrix (t =1, ..., qg).

t
According to the Birkhoff-von Neumann theorem (see [1]), fL-ﬂt can al-
t A

ways be decomposed into a finite number r_ of permutation matrices SE

t



(h = l! 3 r‘t)

Lot o sttty +st st (11)

I 171 r r

t t t

r
t Eog

where ah >20(h=1, ..., L t=1, ..., q) and I 8y = 1 (t=1, ,
q). h=1

Thus, GE It = AE, and by summing up the rows and the columns correspon-

ding tg the same machine or additional resource, respectively, we can trans-
form S; to SE (h=1, ..., re ;b= 1, ..., q) so that conditions (6)-
{9) are satisfied.

Let us pass to the construction of S; and calculation of 'AE {h = 1,

cees Ty t=1, ..., q) for any solution satisfying (2)-(5}.

Matrix Sﬁ appearing in the decomposition (6) may be obtained by consi-
dering the following network Arl (Fig. 1).

Mi

Ry

t

C (X,y): CXL 1 1
L(x,y): 0 or x| if 0 0 or 1 if
R, is critical M is critical

Fig. 1. Network 1

{s, t} U {R]}ﬁ’:1 U {Mi}r{;1 is the set of vertices of‘Jfl and  c(x, y)

and 1(X, y)} denote Tower and upper bounds for a flow on arc (x, y), res-
pectively. There is an arc between R1 and Mi iff 2}1 > 0. Taking the

values (s;.CI)h of any integral feasible flow on arcs (R1, Mi) we get a

(0-1)-matrix Sﬁ.

Let us remark that Jfl is equivalent to A2 shown in Fig. 2.



c(x,y): o0 1 1 1
L{x,y):0 or ot if 0 o 0or1if
R| is critical M; is critical

Fig. 2. Network JY2

p Y- T

{s, t} U {R]}]=1 U {(R'ia pj)}lf-l,j:l {
There is an arc between R1 and (R], Pj

Pj) and Mi on the other hand iff xij1t

iti=y 1S the set of vertices oer’Z.
} on the one hand and between (R],
> 0.

U

Since Z?] >0 iff there exists j such that Xij?t > 0, and since

c(R], (R1, Pj)) =c((R], Pj)’ Mi) = C(RT’ Mi)’ we claim that if there exists

an integral filow in dfl, then it exists also in RVZ, and conversely.

Thus, any integral flow on the arcs ((R1, Pj)’ Mi) defines the assign-
ment of product Pj to machine Mi and resource R] during the time AE
in period t - this assignment is called partial schedule h.

Now, we shall explain the calculation of A;

1, ..., Ty

for a given t and h =

Let h =1 and suppose that we know a feasible integral flow in mV?_

Let us also define set E, = {i, 3, 1) | flow on ((RT’ Pj), Mi) is equal

to 1} ; of course, ¥ (i, j, 1) ¢ El’ x1j1t > 0.

min’ xmax}’ where

t_ .
Al = min{x
X =

MR (4,3, T)eE,

- 3 i (153
X nax m1n{m}n{ r—

- {(1: J) l (1.’ j: I) £ El}

jut [ep]
1 1



T . .. -
In order to find 12, one should decrease It and xij1t for (1, j, 1)

£ E1 by AE and restart calculation for a new feasible integral flow in J{Z
i.e. with EZ' This procedure ends when It = 0.

Let us observe that Aﬁ is chosen so that either one of the positive

elements x is reduced to zero or one more resource R1 or machine

131t
Mi becomes critical in period t. E&ither of these cases may happen a fi-
nite number of times thus it is another proof of the fact that the oroce-
dure is finite.

We shall illustrate the above procedure by the following numerical ex-
ample. :

Example

Two products {Pl, PZ} have to be produced on two machines {Ml’ MZ}
using two additional resources {Rl, RZ} j o T e, = 1 units of each re-

source is available at any time. For the sake of clarity we consider only
one period, I = 10 units long. Production plans concerning the two pro-

ducts are : D1 = 60, D2 = 100. The productivity of each triple (Mi’ Pj’ Ri)

is the following :

K,.. =8, k

111 121
k =6

211 = 81 Ko T T Kppp

9, k

1
co

112 = 100 Koy =
=7, k = 8, k222 = 8.

The cost coefficients penalizing deviations from production plans are all
equal to 1.

Phase 1 consists in solving the following Tinear goal programming pro-
blem :

rﬁinimize : f o= yI + yI + y; + yé
ST Xpgp FXppp T Xppp T Xppp £10

X112 ¥ Xo12 ¥ X100 Xppp £ 10
X111 * X121 * Xp12 T Xppp £10
%210 * o1 T ¥a1p T e £10
X1y * O%pyg P I0X g F B m Yty = B0
Mgy ¥ Thopp t BXppp ¥ 8Xppp = ¥y + ¥, = 100

] X5 y;, y} >0 (i=1,2;3=1,2;1=1,2)

The optimal solution is : f = 0, X101 = 3, Xopq = 7, X112 = By Xopo = 3

all other variables are egual to 0. This solution is presented graphicaliy
on the Gantt chart in Fig. 3.

>



Fig. 3. Result of phase 1

In phase 2, first we have to find an integral feasible flow in the net-
work shown in Fig. 4.

The numbers in brackets indicate lower and upper bounds on arc flows.
The feasible integral flow goes through the arcs drawn by thick lines.

The first partial schedule is defined by set 'E1 = {(1, 2, 1),.(2, 2, 2)}
and its duration XA, is calculated below.

1
Xpin = min {3, 3} =3
Xmax ~ min {min {10 6 ;Q’ = 6 9}, min {10 - 6, 10 - 73} = 3 (1)
Al = min {3, 3} = 3
I=10-3=7, x5 23-320, X;0,=3~3=0.

The second partial schedule is defined by the flow in the network shown
in Fig. 5.

(1)

A1l terms 0/0 are excluded from the expression.



Fig. 5. Network dfz for [ =7

o = {ll, 1, 2), (2, 2, 1)}
min min {6, 7} =6
i rmi - -7 .
Xnax = min {min {7 0 6’ : gt min {7 -0, 7 - 03} =7
~A2 = min {6, 7} = 6

I=7-6=1,%,=6-6=0, x5 =7=-6=1.

E
X

The flow in the network shown in Fig. 6 defines the third partial sche-
dule.

kA

Fig. 6. Network 2 for I =1



E, = {(2, 2, 1)}
X =1

X = min {l—é—l, 1 -0} =1
A, = min {1, 1} =1

I

=1-1=240, X =i-1=0.

221

Since I has been reduced to 0, the procedure terminates ; the feasible
schedule is shown in Fig. 7.

Ar=3 Ap=6 As=]
M| BB b/ Rz o
Mz P /K> P /Ry B/,
! 2 3 =— partial schedule

Fig. 7. Result of phase 2

3. MINIMIZATION OF THE TOTAL MACHINE SET-UP COST

Let us observe that set-up may take piaée only between two successive
partial schedules. To be precise, set-up cost of machine Mi is greater
than zero if there is a change in the assignment of Pj or R] to Mi
between two successive partial schedules (the idle time is also considered
as a change because during this time R, can be moved to another machine).
By convention, the set-up cost is great;r than zero for the first partial
schedule in the seqguence and it is equal to zero for the last one.

0f course, the sequence of partial schedules is not unique and it is in=~
teresting to find the sequence with the minimum total set-up cost. Similar-
Ty to 4], we will show how the problem of finding such a sequence can be
formulated as the travelling salesman problem.

For all pairs of partial schedules of a given schedule we define a square
matrix A = [aij] (i,-3 =0, 1, ..., r), where r 1is the number of partial

schedules and i =0, j = 0 represent a dummy partial schedule which starts
and finishes each sequence, respectively. aij =« if § =3 or partial

 schedule j cannot precede partial schedule i because j belongs to a
tater period than 1 : aij # = 1is the machine set-up cost when 1 imme-

diately precedes j. The total set-up cost is equal to TSC = £ a?. where
1,3

a?j is one of r + 1 elements of A which fullfil the following condi-

tions :



(a) there is exactly one element
{b) the indices of a?j form a cycle

*
au

in each row and each column,
04, 13, 3k, ..., ps, sO.

[t is evident now that the problem of minimizing TSC is equivalent to the
Since TSC is a secondary schedule performance
measure, a fast heuristic is advised to solve this problem.

travelling salesman problem.

Let us illustrate the minimization of TSC in a hypothetical schedule

shown in Fig. 8.

A A) Al A7 A3
Mol B/Ry [R[Rs| Po/Ry | Be/Ry | B/Ry
Mal P3/Rp |P4/Ro| PalRy P3[Rz F/Rs
Mol B3/Rs [B/Ro| P3/Rs | Pa/Rs | Ps/R:
Z
Mi| R/R2 [R/R| B[Rz Fo/Re ////%
I lz
1 2 3 4 5 < partial schedules
Fig. 8. Example of an optimal schedule

with regard to deviations from production plans

Matrix A defined from Fig. 8 for equal machine set-up costs has the

following form :

A 0 1 3 4 5
0 - 4 4 4 4
1 0 o 2 ® | 4
2 0 4 @ | ¢4 4
3 o | @ o 3 4
4 0 . = | = | ®
5 | @ | - . 4 -




The encircied entries of A are a?i defining the sequence of partial

schedules with the minimum TSC egqual to 15 ; the sequence is : 0-2-3-1-4-
5-0. For comparison, the original sequence : 0-1-2-3-4-5-0, gives TSC = 18.
The final schedule corresponding to the minimum TSC is shown in Fig. 9.

My | /Rs P2 /Ry /Ry

Mgl Py /Rz P3 IRz P1/R3

Ma\Pe/Re B [Rs PR3 | Fs/Re

Mi|B/Ry| Ps/R2 | R/Rz Ps [Ro 7/////
I I

Fig. 9. Optimal schedule from Fig. 8 with the minimum TSC

4. CONCLUSIONS

We have shown the way of modelling and solving .a production scheduling
problem on parallel machines with additional (renewable) resources. The
primary objective is the total cost following from deviations from produc-
tion plans given as staircase functions of time. The secondary schedule
performance measure is the total machine set-up cost. As to the computa-
tional complexity of the extended two-phase method, let us observe that the
transformation of the problem into the LP problem in phase 1 is polynomial
and that the sequence of compatible flow problems in phase 2 can be solved
in polynomial time.

Let us end with a comment about possible generalizations of the presented
approach. Firstly, as shown in [4], the two-stage approach can easily handle
multiple category resources, so apart from renewable resources we could also
consider nonrenewable and doubly-constrained resources. Secondly, it may be
worthwhile to check whether leaving an optimum with respect to the primary
criterion, it is possible to decrease the total set-up cost so that the glo-
bal utility of the schedule gets increased. The Reverse Simplex Method can
then be used in phase 1 to generate feasible solutions differing from the
optimum by a given relaxation (cf. the minimization of the number of preemp-
tions in [2]). :
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