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DES GRANDS PAS DE DEPLACEMENT PERMETTANT DE CONSERVER
LA POLYNOMIALITE DE L'ALGORITHME DE KARMARKAR

RESUME

L'objet de cette note est de montrer comment des pas de déplacement plus
grands que ceux proposés par N. KARMARKAR (1984) peuvent Etre utilisés
tout en conservant la polynomialité de la méthode.

Ainsi, la classe de méthodes de recherche mono~-dimensionnelle pronosée
dans cette note peut étre utilisée dans 1'implémentation de 1'algorithme
de Karmarkar permettant d'obtenir une meilleure efficacité aussi bien sur
le plan théorigue que pratique. _

LARGE STEPS PRESERVING POLYNOMIALITY
IN KARMARKAR'S ALGORITHM

ABSTRACT

The purpose of this note is to show how much larger step sizes than the
one originally proposed by N. KARMARKAR {(1984) can be allowed while pre-
serving polynomiality of the method.

Thus, the class of one~-dimensional search schemes suggested in this note
can be used to obtain implementations of Karmarkar's algorithm achieving
both theoretical and practical efficiency.



1. INTRODUCTION

Karmarkar's polynomial time algorithm for linear programming (see KAR-
MARKAR (1984)) finds an optimal solution to problems stated into the form :
e T
(LP} minimize ¢ X

subject to x e 2 0§ -

where ¢ g Zn, x ¢ R and the solution set is the intersection of the sim-
plex S ={x ¢ R" eT x =1, x>0} and the Tinear subspace Q ={Xxe R"
| Ax=0}, e

n columns, and m < n, rank {A) = m.

= {1, 1, ..., 1), A 1is an integer matrix with m rows and

In addition one assumes that :

- - Sl L L
i} the center of the simplex Xg = (n’ rAREERY n)

Tution to (LP), thus it can be taken as a starting point ;

T is a feasible so-

ii) (LP) has an optimal solution x* such that ¢l x* =0,

At each iteration Kk where the current point is xk, the problem is
transformed by appiying a projective transformation L such that the
image yk of the current point xk is, again, the center of the simplex
$={yeR" | sl y =1,y >0t Adirection h, such that [{h]l =1, is
then computed in the transformed space, the next iteration in this space

js defined by :

+1 k
yk -

|
2

+
£33
-
o

1
vn(n - 1)
and o 1is a positive (step size) coefficient. By appiying the inverse

projective transformation (vk)-i, yk+1 is then mapped back to xk+1,

is the radius of the largest sphere inscribed in §

where r

the next iterate in the original space.

The proof of the polynomiality of the algorithm depends on a proper

k+1

choice of the parameter . First of all, to ensure that y still lies

in the simplex S for any move direction h, ¢ should not be taken greater



than 1. Indeed, even smaller values of o are required in the proof, and
the constant value a = @ = % is suggested by KARMARKAR {1984) as a good

compromise,

However, when the constant Ay <1 1is taken throughout, the maximum
number of iterations required by the algorithm to achieve a target reduc-
tion factor Z-f (f > 0) on the objective function value is of order

O[n(f + Tog n)].

Computational experiments confirm in that case that the number of steps
grows, on the average, linearly with respect to the dimension of the pro-
blem. Since the work per iteration in Karmarkar's algorithm is significan-
tly greater than in the simplex method (DANTZIG (1963)), it is seen that
such a choice of the o parameter cannot result in competitive implemen-

tations.

A number of 1mplementations set up independently by various research
workers in the field tried the natural idea of allowing larger step sizes
to be taken in the course of the algorithm (see for instance NICKELS and al.

(1985)).

In all cases, significant reductions in the number of iterations nece-
ssary to get a given accuracy were reported, but the price to pay for prac-
tical efficiency was that nane of these schemes were able to maintain theo-
retical efficiency, i.e. polynomial complexity.

The purpose of this note is to show that it is indeed possible to im-
plement Karmarkar's algorithm with large adaptive step sizes in order to
preserve the same worst case polynomial complexity behaviour and to achie=

ve better practical efficiency.

2. KARMARKAR'S ALGORITHM WITH AN EMBECDED ONE DIMENSIONAL SEARCH SCHEME

The basic idea of the proposed scheme consists in carrying out a one
dimensional search along the same displacement direction as defined in



KARMARKAR (1984), in order to approximate the minimum of the potential func-

tion in this direction.

Recall that the potential function is defined by :

T

n
f(x} = £ Tlog CX X (1)
=1 i

This potential function is defined at every point x Tying in the in-
terior of the simplex S and goes to infinity as one approaches ffﬁbm the
interior) any point x of the boundary such that CT x.> 0. Moreover, it
can be shown (see TODD and BURREL (1985)), that f 1is linearly unimodal
(the level sets are convex sets). Looking at the function along a parti-
cular move direction h, this means that the function is unimodal and goes
to infinity as the step size o approaches Cpa? the maximum value of «

for which yk +ar h stays in the simplex S (see figure 1). Of course,

% ax > 1, and it is easy to verify that amax. can be as large as (n - 1)
since the distance between the center and any extreme point of the simplex
. n-1
is —

|
)
|
!
}

GK‘-?O,ZS 1 o*

Figure 1

Now, we wish to approximate o* where the minimum of f along h is
attained,by computing the value of T at a number of points, but since we
want to perform all computations in polynomial time, we introduce the fol-

lowing restrictions :

- A fixed upper bound M on the number of potential function evalua-

tions is imposed ;



- A1l arithmetic computations are carried out using numbers represen-
table by a fixed number of digits {(in practice, the size of the words as-
sociated with the computer) and assuming that the output of each arithme-
tic computation can be given some contidence interval {depending on the
accuracy of the built-in arithmetic functions) ; so, if an arithmetic ope-
ration Op 1is applied to an argument u, [hp(u}ﬂ {resp. LOP(u)J) will
denote the largest (resp. the smailest) value in the confidence interval ;
since all computations are carried out on numbers with constant size re-
presentations, both values [Op(u)l and |[Op(u)] can be computed in cons-
tant time 0(1).

We can then state :

Lemma 1 : For f defined by (1), obtaining [f(x)] and [f(xJ] for
any input x can be done in polynomial time Ofn}).

Proof : Just chserve that :

[F{x)] = [n[log et x| - [Tog x1_| and
i=1

neM= ims33
—

=
[=]
«w
>
a

[f{x)] n|log cT x]] - :

We know that at the current iterations the original problem is transfor-
med via a projective transformation, then the potential function is transfor-
med under the form :

— (2)

1]
| gt i 1
l=4
w0

a(y)

where a = xk and Da is the diagonal matrix whose diagonal elements are
the components of vector a. As shown in KARMARKAR (1984) when x and ¥y
T 0,y
correspond through the projective transformation vy &y x = T 2 then
e Dy
f{x) and g(y) only differ by a constant factor, so any reductdon in g(y)

results 1n the same reduction in f(x).

Obviously, many possible search procedures using the unimodality pro-
perty such as golden section search, Fibonacci search, etc. could be used



(see for instance MINOUX (1983, chapter 3)). However, here, since the di-
rectional optimum is,in most cases, located near the boundary of the simpiex

(resulting in o values close to “max) even simpler schemes can be used,

such as the one proposed below (yk and nh denote the current point and
the search direction in transformed space).

Procedure 1

(i} Choose M > 1 (maximum number of function evaluations)
set o := 0.25,
T =1,
compute [z} :

L2

[@(yk + o r A and
Lg(yk+ar hi ;

(i1) (current step) If t > M goto (iii), otherwise
a' = a ¢t Emiﬁg——i,
compute [z'7] := rg(y? +a' r h)] and
[z'} := [_g(yK +a’rh|
1T [z7 > [z (no guaranteed improvement on the potential func-
tion) goto (iii),

otherwise o := o

2} := 2]
lzi = (2]
t =t + 1

return to (ii) ;

(111) The best step size found is .

Qutput yk+l = yk +ar h (the new current point in the trans-
formed space).

The above search scheme enjoys the following properties :

k+1 k+1) ¢

Property 1 : If vy is the output of Procedure 1, then g(y
g(yk + 0.25 r h}, in other words the new point obtained gives the poten-
tial function a value which can only be better than the Karmarkar step

(ak = 0.25).



Property 2 : When a constant maximum number of function evaluations
is imposed then the worst case time complexity of Procedure 1 is 0O(n).

In fact we show in next section that any search procedure enjoying pro-
perties 1 and 2 would work.

3. COMPLEXITY ANALYSIS

[t is worth observing that proverty 2 is not only of theoretical inte-
rest. In fact it should be compared with the complexity of the direction
finding probiem at each iteration which is 0(n2'5) per step on the ave-
rage in the refined version of the algorithm (the simpler version gives

0(n3) per step).

Since in practice, very small values of M (in-the range 5 to i0) will
be sufficient to get a pretty good approximation to the minimum, we see
that the work involved by the one dimensional searching will stay in all
cases negligible as compared with the global computational effort for one
iteration. This can be formalized by the property below.

Property 3 : The compiexity of one Karmarkar‘s iteration does not change
when embedding any one dimensional search procedure satisfying property 2.

We are not ready to state the main result,

Theorem : The worst case complexity of Karmarkar's algorithm with any
embedded one dimensional search procedure satisfying properties 1 and 2 is
the same as that of the original algorithm.

Proof : in view of property 3 we have only to show that the number of

f

iterations to achieve any given reduction factor (27" say) in the objec-

tive function is the same (in the worst case sense} for the two algorithms.

Following Karmarkar's proof, taking o = o = 0.25 we get :



gly  + @ r h) < g(yk) - &, where

8§ is the quantity appearing in Theorem & of KARMARKAR (1984) (& = 3).

Qol—

Now applying a one-dimensional search procedure satisfying property 1

we get a yk+l such that

+
yk 1 k

k
gly” ") <9y + o r h) <gly™) -8,
and since the original potential function f and the transformed potential

function g differ only by a constant term, we get

k+1 k+1

where X is the image of vy in the original space.

0f course in general, due to the one-dimensional search procedure
f(xk+1) << f(xk) - & will be achieved, but (3) states that, in the worst
case, one obtains at least the same decrease in the potential function as
in the fixed step method with o, = 0.25.

Now, in this worst case situation, we can apply exactly the same proof
as that of theorem 1 in KARMARKAR (1984), Teading to the same upper bound
O(n{f + Tog n)] on the number of steps o

As a final remark, since the work per iteration of Karmarkar's method

2‘5) on the average, we observe that we could even afford much more

is Q(n
accurate line searches at each iteration : indeed, as long as the number of
potential function evaluations does not exceed O(nl's) the complexity of
the whole algorithm remains unaffected. This is because, contrary to what
occurs in most mathematical programming algorithms, one function evaluation
here is very cheap to obtain when compared with the other computations to

be performed.



4. WNUMERICAL RESULTS

Jests have been carried out on minimal cost fiow problems. The linear

programs take the following form :

Minimize cT X
= A x < IAS

I x < I8P
0

X

Iv

with

X, ct and IBP (bounds) : (N x 1) integer vectors.

IAS : (Right hand side) : {M x 1) integer vector.
A : (M x N) integer matrix ; each of its columns contain two non zero
elements. - 1 and 1.

The row. indices were randomly generated between 1 and M (number of

rows of A).

The components of the cost vector and of the RHS were chosen randomly
between 1 and 10,

Test problems were randomiy generated with respectively 10 rows and 30
columns, 20 rows and 60 columns, 30 rows and 90 columns, 40 rows and 120
columns and 50 rows and 150 columns. No sparsity patterns were impaosed
on the matrix A. The modified algorithm treats the primal and dual forms

simultansously.

Two 1inear programming codes were used : PRIFLO and MPSX/MIP plus one
implementing Karmarkar's method coded in FORTRAN and tested on IBM 3090
in double precision arithmetic. The Cholesky decomposition was implemen-
ted and used in the calculus of the projection of the fector Dc. Table I
contains the results for the three codes, the number of iterations and the
CPU time, where convergence was attained when A (artificial variable} <

1078 and the step size o = .95.



Note that the CPU time of Karmarkar's code is markedly Tlarger than the
one obtained by the two other codes. The reason for this is essentially
the explicit computation of the orthogonal projection at each iteration.

Tables II ano III contain the results of the algorithm of Karmarkar
on the first two probiems for various fixed values of o (from o = .25
up to o« = .99),

Larger values of o markedly decrease the number of iterations (from
293 iterations for o = .25 to 74 iterations for o = .99 for the first
test proolem) and the CPU time was divided by a factor 8. The value of
a suggested by Karmarkar (o = .25) gives the maximum number of itera-

tions.

Tables 4, 5, 6, 7 and 8 contain the result of the modified algorithm
using the dichotomy method described in the previous sections. The poten-
tial function is computed 12 times at each iteration to obtain the value
of o which corresponds to the best approximation to the minimum of the
potential function. Two important facts are observed.

The first is the number of iterations which 1s about 12 for all the
problems, the modified algorithm is 10 timesfaster than the original me-
thod with o = .95,

The second prominent feature is that the value of o 1is always signi-
ficantly greater than 1 and can reach (n - 1) (i.e. the ratio between
the radius of the circumscribed sphere and the inscribed sphere}.

Finally, the modified algorithm appears stable and its efficiency could
be further improved if the sparsity of the matrix was exploited and if the
bounds were treated separately like in the simplex method. Tests of those
remain for future implementations.
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~ TABLES I, III : Iteration counts, CPU time and different stepsizes
Tor karmarkar s -algovithm on two seiected test problems

TEST 1

Dimension Objective [terations CPU time Alpha max
10-30 412 293 28.7 .25
10~30 412 147 14.13 .5
10-30 412 28 : 8.5 .75
10-30 412 78 7.6 .95
10-30 412 74 7.3 .99

TEST 2
20-60 1019 393 349.75 .25
20-60 1019 197 175.25 .5
20-60 1019 131 115.85 .75
20-60 1019 104 89.68 .95

20-60 1019 100 86.4 .99
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TABLES IV, v, W1, VII, VII . Computational results with the dichotomy method
applied—te—Karmarkar's algorithm

- TJABLE IV, TEST 1

Dimension Iterations Objective CPU time Alpha max Optimal vaiue of «
10-30 1 140 .103 3.56 3.46
2 233 . 5.16 5.01
3 322 " 5.23 5.08
4 368 " 4.43 4.31
5 400 " 6.01 5.83
6 409 " 5.74 5.57
7 411.3 " 6.45 6.26
8 411.8 " 5.01 4.87
9 411.9 " 5.92 5.57
10 411.99 " "~ 5.63 5.29
11 411.99 " 5.23 4.92
12 411.999 ! 6.03 5.67
1.24

TABLE V. TEST 2"

20-60 1 374 .893 5.05 4.90
2 585 y 1.15 6.93
3 775 f 6.3 6.11
4 919 ! 7.12 6.91
5 989 ! 8.08 7.84
6 1009 ! 6.94 6.73
7 1017 ! 10.54 10.22
8 1018 ! 5.79 5.62
9 1018.9 " 8.59 8.07

10 1018.97 " 1.74 7.171
11 1018.99 ! 7.13 6.92
12 1018.998 . 8.39 8.14



TABLE WI. TEST'3

Dimension Iterations Objective CPLU time Alpha max Optimal value of «

30-90 1 481 4.75 5.37 5.21
2 795 : 8.33 8.06
3 1049 ! 6.43 6.23
4 1286 ! 8.08 7.84
5 1443 ) 10.08 9.77
6 1472 ! 4.48 4,35
7 1507 " 11.47 11.12
8 1513 " 8.57 8.32
9 1515.8 ! 12.92 12.52
10 1515.83 ! 6.24 6.05
11 1515.96 ! 10.28 9.96
12 1515.99 ! 9.49 8.91
13 1515.996 ! 9.16 8.88

61,65
- TABLE VII, TEST 4

40-120 1 612 13.61 5.39 5,23
2 902 f 7.24 7.01
3 1418 ! 10.15 9.84
4 1744 ! 8.46 8.2
5 1969 * 10.28 9.97
6 2047 * 8.1 7.86
7 2095 " 13.43 13.02
8 2103 ) 8.85 8.57
9 2107.6 ! 17.39 16.86
10 2107.8 ! 4.76 4.62
11 2107.9 ! 8.24 7.99
12 2107.99 ! 14.98 14,52
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TABLE /1 1, TEST 5

Dimension  Iterations Objective CPU time Alpha max Optimal value of o

50-150 1 709 27.4 5.86 5.68
2 1153 " 9.54 9.24
3 1751 i, 10.47 10.15
4 2148 ! 9.02 8.74
5 2443 " 11.5 11.15
6 2536 " 8.6l 8.34
7 2582 " 9.18 8.9
8 2614 N 17.26 16.73
9 2617 . 7.99 7.75

10 2618.8 ! 18.91 18.33
11 2618.88 " 4.91 4.77
12 2618.97 ! 13.5 13.09
13 2618.99 ! 13.4 12.99
356.23
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