CAHIER DU LAMSADE

Laboratoire d'Analyse et Modélisation de Systemes pour 1'Aide & Ta Décision
(Université de Paris-Dauphine)
Unité Associée au C.N.R.S. n° 825

A PROJECTED GRADIENT METHOD
" FOR LINEAR PROGRAMMING

gﬁ?éEﬁgg; 79 E. JACQUET-LAGREZE

CONTENTS

RESUME
ABSTRACT

Introduction
2. feasible directions and projection methods
2.1 Preliminary definitions and notations
2.2 The orthogonal projection method of Rosen

2.3 A non orthogonal projection method
2.3.1 Definition of the projection matrix P
2.3.2 Preparation of P with a new active constraint
2.2.3 Search of the variable which will Teave P

2.3.4 Privoting
3. The algorithm
3.1 Description of the atgorithm
3.2 Duality and post-optimal analysis
3.3 An illustrative exampie
4. Efficiency and computer implementation
4.1 First results
4.2 Some remarks on the computer program

5. Conclusions

Refarences

Pages

W W 0 ~ B BB L Y RN —

Il el e e
0 ~N oy Y O

-y
[Le]

[

UNE METHODE DE GRADIENT PROJETE
EN PROGRAMMATION LINEAIRE

RESUME

On présente dans ce texte une méthode de gradient projeté congue spécia-
lement pour résoudre des programmes linéaires.

La projection n'est pas orthogonale et est effectuée en utilisant un
pivotage sur une matrice de n colonnes et dont le nombre de lignes croft
progressivement de 1 a un nombre inférieur ou égal a n (n étant le nombre
de variables de décision).

La méthode permet d'obtenir la solution duale et permet également
d'effectuer une analyse post-optimale.

La méthode a été programmée en PASCAL (Turbo Pascal) sur IBM-PC. Elle

donne des temps de calcu! plus rapides que la méthode révisée du
Simplexe.

A PROJECTED GRADIENT METHOD
FOR LINEAR PROGAMMING

ABSTRACT

We present in this paper a Projection Gradient Method specially designed

to solve linear Programs.

The projection is not orthogonal and is done using pivoting rules on a
matrix of n columns and for which the number of rows progressively
increase from 1 to a number not greater than n { n being the number of

initial variables).

The method gives also the dual solution and enables to achieve

post-optimality analysis.

The method has been programmed in PASCAL (Turbo Pascal) on an IBM-PC .
The method yields run time apparently significantly faster than the
Revised Simplex Method.

1. INTRODUCTION -

The idea to use the gradient vector and its projection in order to solve
linear programs is both natural and not original. In 1823, FOURIER studied vy
a regression mode! for which he proposed to minimize the maximum
deviation yielding so a linear programming formulation. FOURIER (18286)
describes in the following terms his method.

Pour atteindre promptement le point inférieur du vase, on éléve en
un point quelconque du plan horizontal, par exemple a l'origine des
x et y, une ordonnée verticale jusqu'a la rencontre du plan le plus
élevé, c'est-a-dire que, parmi tous les points d'intersection que
I'on trouve sur cette verticale, on choisit le plus distant du plan des
x et y. Soit m; ce point d'intersection placé sur le plan extréme. On

descend sur ce méme plan depuis le point my jusqu'a un point m,

d'une aréte du polyédre et, en suivant cette aréte, on descend depuis
le point m, jusqu'au sommet m; commun a trois plans extrémes. A

partir du point mg , on continue de descendre suivant une seconde
aréte Jusqu'a un sommet m, et I'on contihue l'application du méme

procédé en suivant toujours celle des deux arétes qui conduit a un
sommet moins élevé. On arrive ainsi trés prochainement au point le
plus bas du polyédre.

This text of FOURIER is quoted by A. SCHRIJVER (1985) as the first ideas
yielding the famous simplex method clearly stated by DANTZIG (1951).

But if we read carefully the text of FOURIER it is the description of the
projected gradient method.

We start initially in R", improving the value of the objective function
moving in the direction of the gradient vector. Then we meet a first
constraint which becomes active ("le plan"), we move on this plane on a
direction which is actually the first projection of the initial gradient
vector, moving so in R"™'. Then we meet a second constraint. Then two
things may happen. Either it is more interesting to quit the first
constraint and move along the projection of the gradient vector on the
second constraint remaining so in R™' or it is better to keep both
constraints active, moving so on a direction defined in R"™2, an edge
("aréte") in the case of three dimensions described by FOURIER. At each
iteration of this process we keep at the same level or we reduce the
dimension of the space. After a number of iterations we move on edges
(R") from a vertex to an adjacent vertex as in the simplex algorithm.

Let us remark here that the simplex method is also a projected gradient
method. But we impose in that method that at each step the gradient has
to be projected on an edge (R') instead of a subspace of dimension k, k
- decreasing from n to 0 if n is the initial dimension of the space.

We consider in this paper an implementation of a projected gradient
method as roughly described just above. Although some previous
comparisons of the simplex method and the classical projection method
developed by ROSEN (1960), made for instance by FAURE and HUARD
(1965) tend to show thai the simplex method is more efficient, the
method presented here and specially developed for Linear Programs seems
to behave significantly better both in term of number or iterations and
running time than the simplex algorithm even in its advance revised form
(more than twice or even three times faster).

Two reasons can explain the difference of results. The first is that our
method is designed only for linear programs. Therefore we do not need to
implement the search of an optimal move whenever a new direction is
computed, and we know that we have to move as far as we can in the
direction till we meet (activate) a new constraint. The second which may
appear more important is that we do not implement an orthogonal
projection as suggested in the classical projection gradient method of
Rosen, but instead we make a projection such that the new direction is an
increasing one, not necesseraly optimal in the sens of minimizing the
product scalar of the direction and the gradient of the objective function.

The next section is devoted to the introduction of the mathematical
notations and to the projection method. The following section presents the
algorithm itself and results on the duality. Section 4 presenis some
considerations of the computer implementation and the efficiency of the
method.

2. FEASIBLE DIRECTIONS AND PROJECTION METHODS
2.1 Preliminary Definitions and Notations
We .consider a linear program in this canonical form:

Max cx

(1) Ax<b
I<x €u

where | and u are respectively the lower and upper bounds of x. We do not
impose x =0 and some of the variables may be negative.

Le us denote n (j=1,n) the number of variables, m (i=1,m) the number of
constraints, A being so a m x n matrix.

Direction

Assume that at the iteration k we get a feasible solution xX, then it
satisfies the constraints of (1). Let us call d® a direction of move. The
next solution x**' is given by :

(2) x*1 = xk 4+t dk

where t = 0 is a parameter.

k+1

For t small enough x remains feasible if and only if the direction d* is

feasible .
Feasible direction

Let us consider A°the submaitrix of A corresponding to the active
constraints at point x®, d* is feasible if it satisfies:

A°d* <0
(3¢ d=20 ifx= !
d< 0 if X = U

When necessary we shall also use slack variables e, (A°d + e = 0).

2.2 The orthogonal projection method of Rosen

Let us consider the gradient vector ¢. At each iteration we want to find a
new feasible direction d* which is as close as possible to the gradient
vector ¢ , i.e. whose angle with ¢ is minimum. If d¥ is normalized to 1, we
get such a direction in solving at each iteration the following program:

Max < d¥c
s.t. (3)
| d* | =1

It can be shown (see for instance Minoux (1983)), that a solution of this
program is given by:

(4) d=(I- A°T (A° A°T)T A%) ¢
P is then normalized yielding
di=d /|| d]||

Since usually A° differs at each iteration from only one row, it is possible
to update the projection matrix without computing (4) all over again at
each iteration.

Nevertheless the computations seem to be costly in running time,
compared to the simplicty of some pivoting operation.

The purpose of the non orthogonal projection method developed in the next
paragraph is to allow an update of the direction using only simple pivoting
rules.

2.3 A non orthogonal projection method

Let us define a matrix P with n+1columns and n+1 rows. For computation
efficiency it is possible and better to use a matrix with a number of rows
which will progressively increase from 1 to a number not greater than
n+1, but for the presentation of the method let us use a matrix with n+1
rows. -

2.3.1. Definition of the projection matrix P

Let us introduce slack variables Z; for the direction d representing the
deviation of d from the initial gradient vector ¢ (Z, is of any sign)

(5) d=c+2

The first row of P contains the scalar product expressed with the

variables Z; . Note that we use a similar presentation in the tableau form

of the simplex when we express the objective function in ferms or the
variables out of the basis.

(6) <dye>=2%dg =2 cj2+2 G Z;
j J]

Let us put the opposite of the constant term in the column 0 , although it
is not necessary to update this value :

P0,0='ch2

Initially the first row will contain the C; each column of P correspon-

ding to a variable Z; POj =G
If we write equation (5) putting the constant terms on the right-hand side
we get :

d-z=c¢

This equation written in matrix form gives the initial P matrix where we
put the right-hand side ¢ in column 0 , and where we do not write
explicitly n columns for vector d.

] © z, zZ, z
[
0 | <dic>| c, 5 o
1 c, -1
P 2 C, 0 -1 0
n C, 0 o -

- At first the z, are present in the matrix and play the role of variables out
of a "basis". If we put the value of Z, to 0 we get the corresponding values

of d in the column 0. Later some of the zjwill be replaced by the slack

variables ® of the active constraints. At any iteration the variables in

the columns of P will be put to 0 (variables Z;or &) in order to get the
values of direction d .

2.3.2 Preparation of P with a new active constraint

The mairix P is modified by a pivoting rule whenever a new constraint i,

becomes active. (Generally the active constraint will be the first one
encountered when we move using the previous direction d).

The constraint i, becomes active , so the corresponding slack variable
will take place of one of the column variables jp of the matrix P , the
corresponding variable (zj.or e) playing then the role of an "entering

variable into the basis" and having then a positive value that we do not
need to take care of.

case of ia is a constraint i < m

From (3) and using the corresponding slack variable , we get the equality:

(7) Xa
j

{(7) has to be expressed in function of the variables of P so we need to use
classical pivoting rules , once for each row of P corresponding to a coef-
ficient Ay different from 0 since each of these rows gives the value of

20 *+€a=0

dj expressed in terms of the variables of P.

case of i, Iis a constraint di =20 (or dj < 0)

From (3) and using the corresponding slack variable, we get the equality:

(8) dj-eja=0 or (9) dj+eja=0

For equation (8) or (9), we do not need any pivoting operation since we can
find in P the corresponding row showing how dj is expressed in terms of

the variables of P .

Whatever the case is, we use equation (7), (8) ,or (9) as an additional

working row and we also need a temporary additional column for the slack
variable e or €, - This column has 0 everywhere except in the additional
row where we put P_.. . = +1 or -1 depending of the sign of the
coefficient of the slack variable in the additional row (7) , or (8) , or (9)

Now the matrix P is prepared but before we can perform the pivoting rule

yielding the new direction d we need to find which variable of P has to
quit P

2.3.3 Search of the variable which will leave P.

The new direction will differ from the previous one because we have the
new constraint active with the corresponding slack variable entering P

but also because a variable (zjor e) has to leave.

To determine the leaving variable or corresponding pivot column jp , we try
to keep the product scalar <d,c> as great as possible. In order to avoid
long computations, we suggest to use the following criterion (10).
Consider rows 0 and n+1 and let us denote w, the variable associated to

column j (wj = zjor e)

variables (wj = Z,0r ej) w, W, W e,
<d,c> Pos Peo - - - Py, 0 e
additional row F)r1+1,0 n+1,1 n+1,2 * ° " n+ln n+1,n+1

Find column j among the columns for which the variable is either zj or e;,

a slack variable of a non binding constraint, for which POJ. *Plio >0
such that

*P,/ P

(10) Max Sign(P,i4) " Py / Pry)

J

The reason of this criterion is the following. The two rows correspond to
equations (11) and (12).

(11) <d,c> =Y P, w,

(12) P w, + P e

n+1,0 netl,j n+1,n+1 ia

-3 P
j
Before the constraint becomes active, e is different from 0. The
constraint becomes active, e, will enter in P and therefore will have to

become null. To achieve this goal, and looking at equation (12) we see that
one of the W, has to become different from 0, and will leave P after

pivoting.

To maintain equation (12) true, ijill take the value (P /P

n+1,0 n+1,])
yielding so a variation of <d,c> equal to Po; "{P10/P This

value is normaly negative and <d,¢> will decrease at each iteration. Since
we wish to maximize <d,c> , we wish to minimize the amount of the
negative decrease, therefore to maximize this negative value. Since P_ . .

does not depend of j, we get criterion (10).

n+1,j))

Applying criterion (10) gives a column jp and the corresponding leaving

variable ij(Z;, or ejp).

2.3.4 Pivoting

P is modified using the standard pivoting fomula, the pivot being P__, ip

After this pivoting operation,the pivot column can be removed from P, the
additional column can take its place and we move so the column n+1
corresponding to the new variable e, in place of the pivot column jp .
We do not use anymore equation (12), therefore we can erase the
corresponding row n+1 in P in order to leave place for a new active
constraint (7) , (8) , or (9) . The additional column n+1 is again free for a
new iteration as explained in § 2.3.2.

All the relevants variables are expressed in function of the new set of
variables, and in particular the values of P are updated in this process
giving so the new projected gradient in column 0.

3. THE ALGORITHM

Now that we have described the projection method, we can design
different algorithms based on it.

We present in § 3.1 an algorithm which gives an optimal solution whenever
we reach a feasible solution. The same algorithm can be used for
problems where the initial solution (the origin for instance) is not
feasible. We did get an optimal solution for all the problems we solved,
starting from the origin, except for a particular example we built in order
to show that the optimality condition can sometimes be fullfilled before
we reach a feasible solution.

To garaniee feasibility in all situations requires nevertheless the
adjunction of some artificial variables. This point is not discussed in
details in this paper, because we need more experience using the
algorithm. Let us just remark that since we work with inequality
constraints, we need just one artificial variable for all the inequality
constraints.

3.1 Description of the algorithm

[nitialization

Choose any feasible or non-feasible solution x° . It can be the origin, and
this choice generally yields better results.

Initialize P as done in § 2.3.1. The initial direction is then the gradient

vector d° = ¢.

Find the first active constraint as explained thereafter and the
corresponding value of t°.

Compute x! = x% + {0 d°
lteration k

Update the matrix P using the entering active constraint as described in
§ 2.3.2, 2.3.3 and 2.3.4. We get in row 0 of P the projected gradient
vector d

Determine the new active constraint encountered when moving in direction
d¥ and the corresponding minimum value t*. To do so, we consider all the
constraints similar to those of system (3).

Nevertheless, it is not necessary to consider a constraint which is already
active, nor a constraint that would necessarily remain satisfied
considering a move in direction dX . We keep the most restrictive of the
considered constraints and get the corresponding minimum value k.

Compute xK*! = xX + < dk

10

Optimality test

The test is derived from the Kuhn and Tucker conditions of optimality. It is
performed just after the projection of d<! that is to say after the
updating of P. It is rather complex because in some situations we get a
null vector for dXbefore we get an optimal solution. We need then to
choose a new direction. Sometimes we can find an optimal solution in less

than n iterations, then some of the zj remain in P.

Let us define E ={j/wj= ej.} andZ={j/wj= Z, }, (11) can be
expressed by (13) :

(18) <de> =X Py e , X Py
j€E jez

Suppose first Z = @, then if POJ. is negative for all |, we have an optimal

solution, unless wj = ej. and ej is the slack variable associated to a

binding constraint in which case Poj'can be of any sign.

If Z# o , then if the previous condition remains true for all j belonging to

E , and if X; = IJ. for all j belonging to Z, then it is possible to stop the

algorithm .

3.2 Duality and post-optimal analysis
The method provides the values of the dual variables.

At the optimum we can interprete equation (13) as giving the dual prices
of the constraints.

If Z =@ then the optimal solution is basic in the sens of the simplex
theory , and we have exactly n active constraints corresponding to n

hyperplanes whose intersection give the solution. Then each coefficient

POJ. gives the symetric of the dual price of the corresponding constraint. A
decrease of 1 unit of the slack variable g off the frontier, or an increase
of 1 unit of ressource bj which is an equivalent statement, would allow

an increase of P0j unit of the economic function.

11

Therefore if the slack variable e corresponds to an active constraint i of
system (3) and if we denote y,the dual variable, then we obtain the dual
values using equation (14):

(14) y;= - POj for all j cotresponding to the associated
constraint |

If Z = g then the optimal solution is hot a basic one which means that

the optimal solution is not unique and that we end up with a solution
which belongs to a subspace of dimension card(Z), this subspace (a
polyedron) being the set of optimal solutions.

P at the optimum enables a post-optimal analysis. In a matrix form we
can write :

(15) d

Pw =Pee+Pzz

Assume first that Z

g, then let us choose a slack variable e,
corresponding to a non binding constraint and for which we give a positive

increase, keeping all the other slack variables to their null level (i.e.
keeping all the other constraints active). Doing so we shall go down an
edge of the polyedron, leaving the chosen constraint. We shall decrease the

objective value according to the dual price Poj. But thanks to (15) we

know in which direction we should move in order to perform this
post-optimal analysis :

(16) d =-P, fori=1n

So if Z = @ , each of the n columns correspond to the n directions of the
edges adjacent to the optimal solution .

If Z# @ then either we choose a j belonging to E and we move on a facet
yielding a decrease of the objective function, or we choose a j belonging
to Z and then we move on a facet of the sub-polyedron of the optimal
solutions yielding another optimal solution.

12

3.3 An illustrative example
Let us illustrate the method on the following example.

Max2x1+ ><2+8x3

s.t.
- Xi- X+ X, £05 ¢
- X4 - x2+2x352 ¢,
X, £2 Cy
X, <2 C,

X5 Xo, x320

The geometric representation of this LP is given in fig. 1

2.2)

X
3
4 2,2,3)

(0,1,15)

(2,2,0)

fig 1

The method gives the optimal solution in the 4 following iterations

13

[teration

Starting point : x° = (0,0,0)

d® = ¢ = (2,1,8) which gives the following table for P

i | ol 1 2 3

active contraints
<d,c> 2 1 8
i d
1 2 -1 0 0
1
8

2
3

d® = (2,1,8) which yields solution x* = (0.2, 0.1, 0.8)

[teration 1
After preparing the first active constraint (C,), P becomes

i o1 2 3 14

variables

active contraints

<d,c> -2 1 8 0
i d
1 2 -1 0 0 0
po 2 1 0 -1 0 0
3 8 0 0 -1 0

4 |51 @ 1 1]

Applying criterion (10) , we get jp = 1.
After pivoting , we get P,

14

j 0 |1 2 3 {4
variables z, z, zy |e,
active contraints 1

<d,c> 0 -1 10 2

i d

1 7 0 1 -1 -1

p' 2 1 o -1 0 0
3 8 0 0 -t 0
4 5 1 1 -1 -1

We then remove the pivot column j=1,

column 4
| 0 1 2 3.
variables e, zZ, Zg
active contraints 1
<d,c> 2 -1 10
i d
1 7 -1 1 -1
P 2 1 0 - 0
3 8 0 0 -1
dl = (7,1,8) which yields solution x? = (0.813, 0.188, 1.5)
lteration 2
] 0| 1 2 3
variables &, Z, Z
active contraints 2
<d,c> 2 -1 12
i d
1 15 -1 1 -2
p? 2 -1 0
3 8 0 0 -1

d? = { 15,1,8)

and copy in its place the additional

which vields solution x® = (2, 0.267, 2.13)

15

lteration 3
j 1 2 3
variables e, 8, I
active contraints 2 3
<d,c> 1 -1 10
i
1 0 0 1 0
pe 2 |16 | 1 -1 -2
3 8 0 -1
d3® = (0,16,8) which yields solution x*= (2, 2,3)
lteration 4
] 0 1 2 3
variables e, ©€; €
active contraints 2 3 4
<d,c> -4 -6 -5
i e
1 0 0 1 0
p* 2 0 0 0 1
3 0 05 0.5 05

Poi

| < 0 for all j , so the optimality test is satified.

The dual variables y,are given in the first row:

y1=0 (c

A post-optimal

4 Is not active)

YQ=4

analysis can be performed in choosing the directions

given in each column of P* . These directions represent the adjacent edges
to the optimal solution. For instance, if we choose direction opposite to
(1, 0, 0.5), we quit the constraint C; and variable e, takes a positive value.

16

4 Efficilency and Computer implementation

A first version of this algorithm has been programmed on an IBM-PC using
TURBO-PASCAL language. The results in term of efficiency seem to be
extremely good compared to other computer codes we had. It is not
possible to give yet a systematic comparison with the best computer
codes existing on a PC and further experimentation is needed. We give
some results in § 4.1 and give some information on the program in § 4.2.

4.1 First results

In the following table, nbv is the number of bounded variables when these

bounds are different from 0 and +e , and nel is the number of elements
different from 0 in matrix A.

Since it is possible to use the arithmetic co-processor 8087, we give the
computer time in seconds for an IBM-PC running at 4.77 MHz and equiped

without (8088 only) and with (8087) such a chip. On an AT, computing
time are roughly divided by 3.

PROBLEM n m nvl:I nel| iterations| time(sec) | time (sec)
8088 8087
J1 3 4 0 8 4 0.2 0.2
LIND2-D 20 22 |14 52 21 5.1 2.7
LIND2-P 34 20 0 64 48 13.9 7.4
CUTTING 37| 4 0 | 64 4 1.0 0.7
PLANIF 17 | 11 0 |160 20 10.5 5.0
AIR FRANCE 1| 72| 865 0 | 850 22 17.5 12.8
AIR FRANCE 2| 295 | 24 0 3202 29 32.0
RNUR 64| 85128 | 363 70 41.2 25.3
KLEE-MINTY 10 | 10 0 55 19 1.9
KLEE-MINTY 20 20 0]210 39 10.1
PLAN-P 1441 97| 72| 287 142 139 (219" | 88(1'28"
PLAN-D 169 | 96124 | 311 222 (3'52") (2'42")

In the name, extention -D (-P) refers to the dual (primal).

PLAN-P has been solved with "TURBO-SIMPLEX" alsoc written in

Turbo-Pascal language, in 9'32" and with 271 iterations (103 for phase 1
and 168 for phase 2).

17

J1 is the problem solved in the previous section.

Some of these problems have {0,1} coefficients in matrix A which enables
faster computations and which explains a smaller difference of
performance between 8088 and 8087. Problems PLANIF and LIND2 have
almost all their coefficients different from 0 and 1, the 8087 version is
then roughly twice faster,

We could solve the Klee-Minty problems up to n = 22. We got numerical
problems with n greater. The primal forms are solved in 2n-1 iterations
instead of 2"-1 iterations with the simplex algorithm. The dual forms are
solved in 1 iteration.

With the Hilbert problems we get the same numerical difficulties as with
the simplex method.

4.2 Some remarks on the computer program.

In order to experiment the method and also to use it on real problems for
AIR-FRANCE and RENAULT, we wrote a TURBO-PASCAL version of the -
method called GRADIENT-LP.

Only the elements of A different from 0 are stored in an array in RAM. This
enables to handle large problems and allows more efficiency in speed,
especially that we do not modify this array. The upper and lower bounds
do not reduce so much computing time. '

The matrix P is also stored in RAM. To be more efficient, the matrix is
built progressively. It has n+1 columns and a number of rows between 1
and n. At each iteration, the number of rows is equal to card(E), (cf. § 3.2).
In the illustrative example of § 3.3, the matrix P2 has still just 1 row at
the end of iteration 2.

In order to handle relatively large problems, P is defined as a pointer of an
array of dimension 300 at most, this enables to handle easily in RAM a
matrix with n = 300 . To store P we need 300 * 300 = 90,000 words of 6
bytes , equal to 540 K. With Turbo-Pascal version 8087, a word is stored
on 8 bytes so in practice we should not go above n = 250. Remember though
that we do not use slack variables, and often just one artificial variable,
so the limit refers to the initial decision variables.

18

Since the method gives the dual variables, we can solve the dual if n » m,
in that case we need to store a matrix P of dimension m*m only. So
practically 250 is the maximum of the smallest value of n and m, the
other being easily 3 to 6 times larger. But we have not expertmented such
large problems yet.

The allocation of the memory for P is dynamic since P is defined by a
pointer, this allows to use this memory space for previous work such as
preparing the data of the problem in order to build system (1). We may
wish to explicite A in order to find redundant constraints for example. If
A is also defined dynamically with a pointer, then space can be released
after the array of the non-null elements has been built.

We plan also to write a FORTRAN version of GRADIENT-LP in order to be
able to make more comparisons with the simplex method, since most of
the computer codes are written in this langage.

5. CONCLUSIONS
These first resulis seem very promising.

Research is needed in order to study the mathematical convergence of the
projected gradient method as defined in this paper. We believe that the
number of iterations should not exceed n+m at least for the true
orthogonal projection method of ROSEN, but this is just a conjecture.

More experimentation of the method is needed in order to study the
oroblem of non feasible solutions and how to handle the artificial
variable(s). The choice of a starting solution is also related to this
problem. Since we do not work only with vertices, it is easier to choose
any feasible solution as a starting one. Some experiments revealed how a
good starting solution can increase the efficiency or the method.

Since the first versions we wrote in july 1986, the computer code we have
- now in june 1987 has been considerably improved, both in running times
and in precision. We are currently working in order fo save memory space.
Actually for almost all the real cases we solved, the percentage of non
null elements of our "big" matrix P is between 5% and 50%. If we manage

19

in a better way this hollow structure of P, we should reduce the space,
and may-be the running time.

REFERENCES

Dantzig, G.B. , (1951), "Maximization of a linear function of variables
subjected to linear inequalities". T.C. Koopmans (ed.). Activity Analysis of
Production and Allocation, John Wiley & Sons, New-York, 338-347.

Faure P., Huard P., (1965) "Résolution de programmes mathématiques a
fonction non linéaire par [a méthode du gradient réduit", Revie Francaise
de Recherche Opérationnelle, 36, 167-206

Fourier J. , (1826), "Analyse des travaux de ['Académie Royale des
Sciences pendant l'année 1823, Partie Mathématique. Histoire de
I'Académie Royale des Sciences de l'Institut de France 6, xxix-xli.

Rosen J., (1960) "The Gradient Projection Method for Nonlinear
Programming, |. Linears Constraints", J. Soc. Indust. Appl. Math. 8,
181-197

Schrijver A. (1985), "The New Linear Programming Method of Karmarkar"
CWI NewsLetter, Erasmus University Rotterdam.

