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UN NOUVEL ALGORITHME DE PROGRAMMATION
LINEAIRE MULTIOBJECTIFS

RESUME

Ce cahier présente une méthode interactive en programmation linéair emulti-
objectifs. La méthode combine certains aspects de Ta Méthode des Buts Sa-
tisfaisants et de la théorie de 1'utilité multiattribut. La fonction d'u-
tilité du décideur est supposée localement additive. Elle est estimée par
une forme linéaire par morceaux en utilisant le modéle de régression ordi-
nale UTA. Des techniques d'optimisation linéaire par morceaux sont utili-
sées pour proposer, a chaque itération, un nouveau compromis appartenant a
1'ensemble des solutions efficaces. La méthode est illustrée sur un pro-
bléme de production bicritére.

Mots-clés : Aide a Ta décision multicritére, Programmation linéaire multi-
objectifs, Méthode interactive.

A MULTIOBJECTIVE LINEAR PROGRAMMING
ALGORITHM BASED ON SATISFACTORY GOALS
AND INTERACTIVE UTILITY ASSESSMENT

ABSTRACT

This paper presents an interactive method for Multiple Objective Linear
Programming problems. The method combines the features of both the Me-
thod of Satisfactory Goals and of Multiattribute Utility theory. The
decision maker's utility function is assumed to be locally additive and
is assessed in a piecewise linear form, using the ordinal regression mo-
del UTA. Piecewise linear optimization techniques are used to estimate,
at each iteration, a new compromise solution over the set of efficient
solutions. The proposed method is illustrated by an application to a
bicriterion production planning problem.

Keywords : Multiple Criteria Decision Making, Multiple Objective Linear
Programming, Interactive Method.



1. INTRODUCTION

Whenever a decision is to be made , the objectives involved in the
decision problem are multiple and in most cases competitive. However,
simultaneous optimization of these objectives within the frame of
Multiple Objective Mathematical Programming is usually unattainable due
to their conflicting nature. Thus, problems of this kind call for
implicit or explicit trade-off decisions in order to attain the best
compromise solution. Texts and surveys on MOMP and its applications can
-be found in Zeleny [2/], Hwang and Masud[11] , Goicoechea et al.[9]
Chankong and Haimes [4] , Evans[7] , Roy[18] and Cohon and Marks[6] .

The problem dealt with in this paper is defined as follows

(a) There are m decision variables‘§=(x1, Xgyenes xm).

(b) There is a polyhedral set of alternatives A, which is implicitly
dictated by a set of well defined linear constraints.

(c) There are n explicitly defined linear objectives 811801 +vvs
8, all real valued functions of x.

(d) There is a decision maker who has an implicit , unknown utility
function U, such that if x, y are two alternatives of the set A , x is
prefered to y iff U(g(x))> U(g(y)) and x is indifferent to y iff
U(g(x))= U(g(y)), where g(x), g(y) are the multicriteria consequences
of the alternatives x and y respectively.

This is a typical Multiple Objective Linear Programming problem which

can be expressed mathematically by the model
max gq(x),..., max g (x)

e A

[P<

Hitherto, several interactive methods for solving such problems
have been proposed. All - these methods, based on a progressive
articulation of preferences, aim to attain the best compromise
solution, usually by means of single objective optimization related to
the original MOLP. The various methods are distinguished by the kind of

information required by the decision maker (i.e implicit or explicit



trade-off information, ranking order alternatives etc.) as well as the
type of single objective program used to estimate a new compromise
solution at each iteration.

Most, if not all, of the methods seem to suffer from various kinds
of drawbacks. Naslund [17], Wallenius [21] and Hemming [10]discuss some
properties such as convergence, simplicity of information required,
insensitivity to wrong estimations, efficiency of the compromise
solutions which provide relevant criteria to compare the various methods.
Some of these methods like Benson's Method of Satisfactory Goals [3]
applied on MOLP problems, require the decision maker to set and
probably reset his aspiration levels for each objective in an
interactive way throughout the process. Although these approaches seem
to be attractive, since the final compromise lies within predetermined
bounds for the objective values, the determination of initial feasible
goals is rather difficult and usually time consuming. Furthermore, there
is lack of rationalism for the compromise solutions obtained by this kind
of methods.

Other methods exploit in a direct way the decision maker's utility
function and seek the best compromise solution through successive
maximizations of the utility functions assessed locally at each
iteration. Representative methods of this kind are the method of
Zionts and Wallenius [25] and some modifications of it [16,22] , which are
characteriged by the assumption of linearity for the utility function.
However, the compromise solutions obtained are efficient extreme
points in the decision space, a fact that lies against the ideas of
compromige programming.

Recently, Jacquet-Lagréze, Méziani and Slowinski [13] presented a
method which seeks the best compromise solution using an overall
additive wutility function and enables the decision meker to reach
compromise solutions not necessarily extreme. The assessment of the
decision maker's utility function 1s realized with the use of an
interactive method named PREFCALC [12] which is based on an ordinal
regression model. The overall utility function is elaborated on a
preference order, externalized by the decision maker over a finite subset
of feasible and efficient decision profiles. Indifference is excluded,

thus the decision maker is forced to express only strict preference.



Jacquet-Lagréze et.al suggest the first step of the algorithm of Choo and
Atkins [5] for the construction of the alternative scenarios. This
technique could be costly, so they use a heuristic in order to reduce the
computing time.

The interaction of the method is limited only to the assessment of the
decision maker's utility function. After such a function has been
formalized the method becomes direct.

The main drawback of these latter methods is the fact that,although
they scatisfy the condition of rationalism, since the best compromise
solution 1s reached by the maximization of a global criterion which
reflects the preferences of the decision maker, the solutions obtained
may lie outside inherent but undetermined satisfaction levels for each
objective.

The method presented in this paper, extending the ideas of the
method of JacquetuLagréze et al, attempts to combine the advantageous
features of both, the Method of Satisfactory Goals and
Utility-Oriented approaches. The method provides a "two-level"
interaction:

- Interactive assessment of the utility function.

— Interactive modification of the aspiration levels.

The utility function is assessed by analyzing the decision maker's
preferences (strict preference and/or indifference) over a set of
experimentally generated fictitious alternatives.

The paper is organized as follows. In section 2 the outline and the
flow-chart of the method are presented. Section 3 provides an algorithm
and some analysis. The method is i1llustrated by a numerical example in
section 4. Finally, a discussion on the proposed method and concluding

remarks are provided in section 5.

2. OUTLINE OF THE METHOD
The method presented here is for solving MOLP problems:

T T
ax X)=C Xy wee max X)=¢~ X 1
m g1 (_) g = ’ gn (_) 2 (1)

xeh



where A:{EfaRm:51§§§) x20 ; x, 811859+ +18 88 defined previously; SL is
the matrix of the coefficients of the constraints, b is the right-hand
side of the constraints and Ej:(cj1’°"’ ij) are the coefficients of
the objective g,.

The flow-chart gf the method is presented in figure 1.

The method consists of a preliminary and an iterative part.
In the preliminexry part and in the first step,after the MOLP problem has
been clearly formulated, each individual objective is optimized on the
set of the feasible solutions. In this way, the ideal values (i.e the
initial upper bounds for the objectives) are calculated and the pay-off
table is constructed. The smallest (in the case of maximization) entries

of the columns in the pay-off table define a vector, which is known in

(s3]

the literature as the nadir vector.

The anti-ideal valueé, vhich vrepresent thne initial lower bounds for the
objectives, are obtained by minimizing each objective separately.
However, in the bicriterion case, the lower bounds for the objectives
can be defined alternatively by the components of the nadir vector,
without excluding any part of the efficient set.

In a second step an initial weakly efficient point 1s estimated,
closest to the ideal with respect to the weighted Tchebycheff norm.
The weights are calculated mechanically in = way sinilar to that in Step
Method (STEM) of Benayoun et.al [2].

Little attention is paid in this preliminary step to defining
the dinitial upper and lower bounds for the objectives, as well as to
estimating the initial solution, since the method itself enables the
decision maker to modify these bounds progressively throughout the
process and to establish consistent additive utilities in an
interactive way. Thus, the decision maker 1is not involved in this
stage.

The iterative part of the method can be resolved in four major
successive stages.

STAGE I: At each iteration throughout the process, the decision

maker is faced with a new compromise solution obtained with the
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Figure 1: The flow-chart of the method.
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maximization of his utility function, except for the initial solution
which is reached in a different way described above. Whenever he

thinks that there is at least one objective not satisfied by the current
gsolution, he is asked to indicate the objectives he intends

to relax in order to improve the value of the ones not satisfied.

This piece of information given by the decision maker is used to
establish new bounds for the objectives thus, reducing the
feasible region. In fact, his intention to improve an objective value
can be interpreted as his desire not to step down from the current
value.Similarly,when he indicates that some objectives are to be

relaxed it means that these objectives have already reached satisfactory
levels far from which there is no need to go.

The iterative process terminates, during this stage, when a best
compromise solution is reached,i.e when the decision maker is not willing
to relax any objective.

STAGE II: In this stage a simple generation technique is set up to
captruct a set of decision profiles. As long as none of these profiles
ig to be taken by the decision maker as an acceptable decision,
they need not be efficient not even feasible. Thus, the set constructed
consists of fictitious alternatives which will be offered later to the
decision maeker just to reveal his preferences toward them. The alternatives
generated for this purpose should not dominate each other in order to
protect the decision maker from facing trivial situations.

In stage I the decision maker indicates the ojectives to be improved as
well as the objectives which can be relaxed. The technique suggested here
exploits this information, and, without violating the decision maker's
indications generates the alternatives after having discretized each
interval of varying the objectives. In this way the components of the
decision profiles, being normally distributed along each interval of
variation, allow the number of the generated alternatives to be completely
controlled. This is a calculation stage, thus, the decision ﬁaker is not
involved.

STAGE III: An additive utility function, which reflects the decision
maker's preferences, is assessed by the ordinal regression model UTA by
Jacquet-Lagréze and Siskos [15] and Siskos and Yannacopoulos [20].

The dinformation required of the decision maker in this stage is a weak



order, over the set of the decision profiles generated in stage II and
it is obtained through pairwise comparisons of these profiles. In order to
construct the pairs, an alternative is selected at random out of the
whole set as a basis and the decision maker is asked to compare each
other alternative with the basis. In this way, the initial set is
partitioned into three subsets: the set of the alternatives preferred to
the basis,the set of the alternatives not preferred to the basis and the
set of the alternatives that are judged by the decision maker to be
indifferent to the basis. This latter set consists of alternatives
equivalent to each other. The process is repeated for every subset of
alternatives which have not been compared to each other until an order of
equivalent classes is achieved. The resulting preference ranking is used
by the model UTA, through a trial-and-error process, to assess and
justify the decision maker's additive utility function as consistent as

possible to his ranking.

error

/////f error

Global Utility Global Utility

]
i
' I
¥ % |
/ |
« T overestinaticn ferm el
g 1 A urderestimtion

ranking

ranking
3
i

(a) _ (b)

Figure 2 : Ordinal regression curves. (a) Full consistency

achieved. (b) Case of inconsistencies.



The decision maker learns about any possible inconsistencies through
pictorial information provided by the system.lhen full consistency is
achieved, (fig. R2a) the assessment process is complete. In the case
where inconsistencies appear (fig. 2b), i.e. when the decision maker is
caught to have overestimated or underestimated some alternatives
according to the utilities dictated by the model, the method sets up a
dialogue focusing his attention on these inconsistencies.

The whole interactive process for building the decision maker's
utility function is based on the principles of the decision support
system MINORA [23] .

STAGE IV :The decision maker's utility function is optimized over the
set of feasible solutions. For this purpose, piecewise linear programming
techniques (see [8] for instance) are set up since the assessed utility
function is piecewise linear in form. This is a calculation stage thus,

the decision maker is not involved.

3. THE ALGORITHM
The complete algorithm and some analysis for solving problem (1)

with the proposed method is given below.
Step 1 . Calculate hi’ fs and lj , for ~ 4, j=1,..., n as follows:
(1.1) h, =max gi(i), Xeh.
Let 5; be the optimal solution for this problem and

gij:gj(zz) for every i,j=1,..., n
(1.2) fj=min {gij; R L [ |

i
(1.3) If n=2 then set 1l; = f; otherwise

J J

set lj = min gj(z) , X€EA

Step 2.
(2.1) Solve the linear program



(2.2)

(3.2)

(3.3)

min 2z
Sele ieAO = A (2)
(hj-gi(x) )mi<z ,i=1,..., n
720
n
where mi=di/}é§1 d,. and di:(hi_fi)/hi =1 [

Let Ej and gj be respectively the optimal solution of
problem (2) and its multiobjective consequences. The
solution gj is weakly efficient and is the closest one to the
ideal in the' sense of the weighted Tchebycheff norm, the
weights mi reflecting the sensitivity of each objective in
varying X.

Set g=1, lg=li, hg;hi for every i=1,..., n .

Here, 1? and hg are respectively the lower and the upper
bounds for the objectives, dictated initially by the problem
itself.

Modify the lower and the upper bounds for the objectives as
follows.
Ask the decision maker:

"Is there any objective satisfied in g??”
If NO, the multiple objective problem has no satisfactory
solution. Ask the decision maker to review the formulation
and restart from step 1.
If YES, go to (3.2) below.
Ask the decision maker to indicate the least satisfied
objectives he is willing to improve.
Let G be the whole set of objectives and GN the set of
objectives indicated within this step.
Ask the decision maker:

"Can any of the rem inder of the objectives

be relaxed?"
a

If NO, x}is the best compromise solution and g its



(3.4)

(3.5)

Step 4.

Step 5.

-10-

consequences. STOP.

If YES, go to (3.4) below.

Ask the decision maker to indicate the objectives to

be relaxed and form the set GY of the objectives
indicated.

Consequently, the complementary of the set GNuGY in G (say G)
is the set of the objectives not mentioned by the decision
maker.

Set 1§=gfil, h%:h?.[_1 Vv g,€GN

q_-9-1,9_.4a
;=1 hy=g; ¥ g,eCY

q_,9-1,9_,9-1 )
13=13; hy=hs ¥ g;€G

{%tﬁi%%%{EEﬁwliigﬂﬁ)ig-;iﬂ,”.,n}

i
For a given integer s and k=0,1,...,s generate the
alternative profiles.gk=(gﬂ{), i=1,..., n with respective

coordinates defined as follows:

124(k/s)*(hi-1;)  for geCNuG

gik= (3)
A (e ™ for mel
i ;i | gi

The number of the alternatives generated by this procedure

is st1, but it is easy to consider any other criteria profile
for comparison purposes.

These alternatives are fictitious, in the sense that they
are not efficient, but suitable to be offered to the
decision maker just to reveal his preferences toward them.They
do not dominate each other since there is at least one
objective increasing from its lower to its upper bound and

at least one objective decreasing.

Present to the decision maker the whole set of the

alternatives generated within step 4 and ask him to rank
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order them as follows:
(5.1) Select an alternative g?%ﬁ a basis.
(5.2) TFor every other alternative of the set, different to

the basis, calculate the differences:
Lt =g - k=0,...,8 and k# p

Here, t are trade-offs expressing the pros and cons of
preferring g% to gP .
(5.3) Present the basis to the decision maker and for each EF
ask him:
"Having g?in hand, do you accept the trade-offs
in the objectives shown in tKgn
If his answer is YES, it means_Ehat he prefers g# to
gP (noted gy gP).
Ef his an;ﬁer_is NO, it means that he prefers gP to
gk (noted gPy gk). i
Ef his ans;ér Eé INDIFFERENT, it means that gP and gk are
judged to be equivalent (noted gPwgk). -

(5.4) Get the set of the alternatives preferred to the basis and
the set of the alternatives not preferred to the basis. For
each of these sets with cardinal number greater than one,
repeat step 5 from (5.1) to (5.4) until the initial set be

partitioned into equivalent classes.

Step 6. Assess additive utilities

n
u(g) =Z u,(g,), satisfying the normalization relations
iz & S
q
W (1L )=0 3 d4=1,icuy n
1 1
i q
= ui(hi)=1

i=1

according to the steps of the UTA algorithm (c.f [15,19,20]).

(6.1) Express the global utilities of the alternatives in the



..

ranking in terms of marginal utilities

n

u(gk)=2uj€gilz k=0,1,...,8 (4)
i=1
(6.2) Discretize each interval [13, hilas follows:

1 j T
[l%: hg] =1 1(;'_1 SBias ey gi; gi,.. 185 Eh? ]i aiSS‘H

where
.4
. j(h -1)
Jt1_q i .
g =1+ ,i=1,..., n and j=0,...,a, -1
i i i
aji-1

In order to assure that at least one g, 1k lies within each
interval [gJ g1t must be a;<s+1 for every i . If
l—s+1 for somé, i then gJ 1an.d g, are identical for
j=0,...,8 and k=0,

(6.3) Using linear interpolation for g e [gj, g]':.':ﬂ] express the

marginal utllltles for g. 1k in terms of the marginal utilities
of gJ ,gJ through the relations

.
gzl].-i-_glk &8 i
u, (g, )= T ui(g*l)+ o “i(gJi ) (5)
g -g g -
1 1 i

(6.4) Introduce in (5) and consequently in (4) the variables

+
wij_ s i B—u gJ) for j= 1,...,a -1 through the relations
el
1— J: =
ui(gi)—o, ui(gi) + Wi g for J=R,wes8
d=1

(6.5) Assign an overestimation error function o (.) and an
underestimation error function ¢ (.) to each alternative

in the preference ranking.



(6.6)

(6.7)

(6.8)

A G

For each pair of consecutive alternatives in the ranking

get the expressions

+A

1 .k
a2 (g -u(g V4d1e")-5(e4)-3g T+alg )y k=0, ... 5

Here, for simplicity but without loss of generality it is
assumed that the alternatives gk are ranked in increasing
order of k, i.e. _g_'kg. gkﬂor Ekugkﬂfor every k=0,...,s-1.

Solve the following linear program to estimate a piecewise
additive utility function U4(g) as consistent as possible
with the decision maker's ranking:
. ® kK
min F= s5{o (g )+ (g )}
k=0

s.t. a(gk,g) > 5, if g5gft, for k=0,...,s-1

=@ ; 1% glogttt (6)

n a.,-1
i
A z W’i.. =1
i=1 3= M
‘IlJ'ZO 3 i='],...,1‘1, j:1,.-., 31—1

(@), () 20 k=0,..., s

& being a small positive number (c.f [15]).

Set up a stability analysis and in case of multiple or near
optimal solutions in (6) find those which maximize the weights
By
1&U§)=Z wij 5 i=1,..., 0.
j=1

q
In the last case, take as unique utility function U the mean

of the n (near)optimal utilities (see [15] for more details).

Calculate the global utility for each alternative
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and provide the decision maker with

the consequences of his judgment policy through the

utility - ranking diagram shown in fig. 2.

(a) If full consistency is achieved;i.e. when the preference
ranking is restituded by the model, go to step 7, otherwise,
go to (b) below.

(b) Ask the decision maker if he intends to modify

the marginal utilities dictated by the model in order to
preserve his ranking.

If YES, let him modify the marginal utilities and go to
(6.8)

If N0, go to (c) below.

(c¢)According to the pictorial information ask the decision
maker if he intends to modify the previously established
preference ranking.

If YES, ask him to reorder the alternatives involved in the
inconsistencies, get the new weak-order and go to (6.1)

If NO, ask the decision maker to review the multiobjective

model and restart from step 1.

Step 7.
(7.1) Solve the piecewise linear program
n a,
gax U= % % 7.: wlgd) 7)
RS
s.t Eefl (8)
8.
I
gi(ﬁ)iﬁg Tijgizo 3 i=1,..0y 0 (9)
a.
- =1 ; i=1 n (10)
= Iij : e
Ty 20 5 i=1,..., n, j=1,...,ai (11)

and at most, two adjacent rij be positive, for each 1i.

The information provided by the decision maker in step 3



(7:2)
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is used to reduce the decision space. This is realized
In (9)-(11), each objective is

expressed as a linear combination of the breakpoints gg,

through the constraints (8).

j=1,...,a; of the interval [1Cil, hfii]through the variables Ty
Throughout step 6, marginal utilities have been assigned to
the breakpoints gg , for each objective. The marginal
utilities are piecewise linear in form and can be expressed
by the analytic expressions

4

e T j .=
ui(gi(i)) Z fij ui(gi) 3 i i 1,---
j=1
Since the global utility model is assumed to be additive,
the overall utility function which will be maximized takes

the form (7).

Set gq=q+1 , let 59, gg be the compromise solution and its

consequences obtained within (7.1) and go to step 3.

A simple numerical example, taken from[24], is provided in the

next section as an illustration of the proposed method.

4. ILLUSTRATION

Assume that the MOLP problem to be solved is the following:

g.t.

max gy= -Axyt 3%,
max  g,= 7x1+ 5x2

x1+ X2Z 3

~2x,43%,< 12
(12)



s

Let Abe the feasible region of problem (12).

According to the presented algorithm the procedure lies in the
following steps:

INITTALIZATION

In table 1, the solutions and the consequences, derived from the
optimization of each individual objective of (12) are presented while

the objective space is presented in figure 3.

Table 1 : The pay-off table of problem (12)

g9 82 X e
g 12 20 0 L
-6 72 6 6

The initial lower and upper bounds for the objectives g1an¢ gare
respectively
0 0 0 0

L -6, b =12, 1,= 20, h,= 72.



s
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Figure 3 : The objective space of problem (12) with extreme
points A(9,15), B(12,20), C(6,51), D(-6,72),
E(-28,49), F(-12,21) and efficient frontier the
line BCD.

The weights, reflecting the sensitivity of the objectives are
m,= 0.68 for the objective g4and my= 0.32 for g,.

The linear program which leads to the nearest, weakly efficient
solution to the ideal, by means of the weighted Tchebycheff

norm takes the form



=B

min 2
s.t EEEAQ
—2.72x1+2.04x2+z 2 8.16
2.24x1+1.60x2+z 2 23.04

z >0

An optimal solution to the above program is X1= R x;= 6 with
consequences g1= 3.88, g;= 57.71 (point 1 in fig. 3).
ITERATION 1 (g=1).
The solution gj=(3.88, 57.71) is presented to the decision maker
and he is asked:
"Is there any objective satisfied by the solution gj=(3.88,57.71)?"
His answer is: YES.
He ig then asked:
"Which is the least satisfied objective ?"
His answer is: g
He is then asked:
"Do you intend to relax a little bit the objective g5 in order
to improve 84 il
His answer is: YES.
Throughout this dialogue the lower and upper bounds of the
objectives are modified as follows:

1= g1=3.88, h1= n0=12, 11= 19=20, nl= gl=57.71.

2 g 2
Through step 4 of the algorithm for s=5 and k=0,...,5 the following

alternatives are generated:

0 = ( 3.88, 57.711), g

( 5.50, 50.17), g~ = ( 7.12, 42.63),

o2

(10.36, 27.55), g° = (12.00, 20.00)

]
Il

( 8.74, 35.09), g*

Let go be the basis for the first set of pairwise comparisons and

g1 = g1g0 = (1.62, -7.54), £° = ¥ =(3.24, -15.08),

t3 = g2g0 = (4.86, -22.62), th = ghgV =(6.48, -30.16),

1l



=19~

E? = géfgp = [B.J12, =377 )s

The differences IJ, }?, L?, L&, L? are presented successively to the
decision maker and he is asked to answer with a YES , NO or
INDIFFERENT to a question such as:

"You have already got 3.88 for g1 and 57.71 for gg. Do you

think that an improvement of 1.62 units for gq compensates for

a loss of 7.54 units for g,? In that case would you prefer

the resulting solution ? (Y/N/I)".

osuppose his answer is YES. That means that he prefers gj to
g"-
After the dialogue has been completed and all the alternatives
have been compared to the basis gp suppose that the decision maker
suggests the following partition:
{eh82) > {803 > {g2.eMe°}

Repeating “the same procedure for the sets (g ,g2},-{g3,g gs}
suppose that the decision maker answers the questions in a way

leading to the following strict order:

(1) g*=( 7.12, 42.63), (2) g'=( 5.50, 50.17), (3) g'=( 3.88, 57.71),

(4) g7=( 8.74, 35.09), (5) gh=(10.36, 27.55), (6) g =

12.00, 20.00)
In order to assess the decision maker's utility function in

a piecewise linear form, the intervals of varying the objectives
are discretized with a1:3 and aEfA :

[ 3.88, 7.94, 121, [20, 32.57, 45.14, 57.711
Step 6 of the algorithm, with &= 0.08 for the discrimination
of two ranks, leads to the following optimal utility variations (only
positive values are given):

w11=0.34, w21=0.13, Wys=0.53
with a total deviation F=0.05.
The marginal utilities for g4 and gy are shown in figure 4, while
the utilities assigned to the alternatives are:
u(g?)=0.826, u(g")=0.796, u(g")=0.660, u(g3)=0.576, u(g¥=0.418,
u(g?)=0.340.
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u, w, 0.66 0.66
0.34 0.3,
0.13
0 ) 0
3.88 7.9 12 20 32‘.5'7 45I.14 57.71
g1 82

Figure 4 : Marginal utilities assigning a "weight" of 0.34 to €1
and 0.66 to g

The above utilities lead to a perfect restitution of the decision
raker's ranking.

According to step (6.7) of the algorithm (stability analysis)
two new linear programs are solved. The weights w__ +tw and

T 12
w21+w22+w23 are maximized on the polyhedron, defined by the
constraints of the previous linear program, bounded by the

following constraint:
7 g
I o (gk)+o (gk) < 0.05
k=0 :

The maximization of w1,|+w12 leads to the same marginal

utilities (fig. 4) while the maximization of w21+w22+w23
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leads to the following, slightly different, marginal utilities:

u1(3-88)=0, u1(7-94)=0-33, u1(12)=0-33, u2(20)=0, u2(32-57)=0-15
Uy (45.14)=0.67, u,(57.71)=0.67.

The mean utility is then approximately identical to the utility

estimated initially.

The piecewise linear program, which seeks the new efficient
compromise solution rationalized by the maximization of the
assessed utility function, takes the form

4
max U = Orﬂ+O.34r12+0.34r13+0r-21+O.13r-22+0.66r23+0.66r24
s.t. xqt x22 3
—2}(,] +3x2$12
6X1+3§%§42
%< 6
—4X1+3X22 3.88
7X1 +5x2220 ‘
_ZI)LI +3X2_3 -88]:'1 -<| —7-941'1 2"'1 2I‘13=O
7}{1 +5X2_20r21 —32- 571’22-45 . 1 41’23‘57-71 I'24=O
Ty g Ry iRig=1
I'2.] +r'22+r23+1"24= 1
Xi» Ko» Ti{y Tigs TygulhiThoy TogaT5y2 0

and at most two adjacent rijbe positive for i=1 and i=2.

The optimal solution of the above program is xi= 2.43, 5= 5.62 vith
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consequences g$= T3y g§= 45.14 (point 2 in fig. 3). This is the
new compromise for the second iteration.

ITERATION 2 (g=2).

The new compromise solution is presented to the decision maker and
he is asked:

"Ts there any objective satisfied by the solution_g2= (7.13, 45.14)M
His answer is: YES.

He is then asked:

"Which is the least satisfied objective?"

His answer is: g

He is then asked:

"Do you intend to relax a little bit the objective & in order to
improve g2 7

His answer is: YES.

The new bounds for the objectives are now as follows:

2z 2= 2: 2:
l1 3.88, h1 7413, l2 45,14, h2 57.71

For s=5 and k=0,...,5 the following six decision profiles are

generated.
g0 = (713, 45.14), g' = ( 6.48, 47.65), g% = ( 5.83, 50.17)
g = ( 5.18, 52.68), g* = ( 4.53, 55.20), g° = ( 3.8, 57.71)

Through step 5 of the algorithm the decision maker provides the

following strict preference order:

(1) g1 =(6.48, 47.65), (2) g =(5.18, 52.68), (3) g° =(7.13, 45.14)

(4) g2 =(5.83, 50.17), (5) g* =(4.53, 55.20), (6) g =(3.88, 57.71)

|

The intervals of varying the objectives are discretized with a1:3
and a2=4 s [ 3.88, 5.5%, 7.131, E45.1%, 49.33, 53.92, S57.91.4
According to the UTA algorithm the marginal utilities assessed for

g, and g, are presented in figure 5 and the utilities for each

1
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decision profile in the ranking are (stability analysis has been
omitted due to abbreviation):

u(g1)=0.740, u(g3)=0.805, u(g?)=0.725, u(g?)=0.800, u(gh)=0.565,
u(gh)=0.275. i - -

1
0.725 075
i 0.6 5
0.4,
0.2 .~
02 0275
0.2
O g —} O ,”,, '(ES
3.88 5,51 7.13 45,1 £9.33 53.52 5171
& &

Figure 5 : Marginal utilities assigning a "weight" of 0.725

to the objective g1 and 0.275 to the objective g5

The dotted curves represent the modified marginal
utilities.

As it is shown in figure 6 some inconsistencies appear between
the decision maker's ranking and the assessed utilities. Actually
the model suggests that the decision maker has underestimated the
alternatives g3 and g2 since it assigns the highest utilities

to these alternatives.
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ranking

Global Utility

Figure 6 : Global utility versus ranking:

Two inconsistencies appeared.

The decision maker believes that the alternative g3 must be kept
after g1 , in the initial order in contradiction with the suggestions
of the—ﬁodel. So he modifies the marginal utilities as it shown in
figure 5 (dotted curves).
These modifications lead to the utilities u(g1)=0.720, u(g3)=0.680
1(g9)=0.600, u(g?)=0.800, u(gh)=0.520, u(g5)=0.400 and to a new
utiiity - rankiﬁé diagran. Ag-this stage Ehe decision maker decides
to alter his initial ranking according to the suggestions of the
model, i.e. to raise the alternative g2 on the top of the ranking.
Based on the new ranking, the UTA_élgorithm estimates new

marginal utilities, shown in figure 7.
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1 1
0.76 B
Y2
O 0.24
3.88 5f51 - 7.13 . 45,14 45.33 53152 57,71
€1 €2 '

Figure 7 : Marginal utilities for the objectives g1 and s

The utilities assigned to the alternatives are:

u(@)=1, u(g')=0.904, u(g?)=0.848, u(g®)=0.760, u(g*)=0.544,
u(g?)=0.240. These utilities lead to a perfect restitution of the
preference ranking.

An optimal solution, comesponding to a maximum utility,is X?:3.21,
xg=6 and its consequences are g1=5.16, ggz52.47 (point 3 in fig. 3).
ITERATION 3 (q=3)

The solution 5?:(5.16, 52.47) is provided to the decision maker
and he is asked:

"Ts there any objective satisfied by the solution g?:(5.16,52.47)?"
His answer is: YES.

He is then asked:

"Which is the least satisfied objective?"
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His answer is : g1

He is then asked:

"Do you intend to relax a little bit the objective g2 in order

to improve g1?"

His answer is NO.

As long as the decision maker is not willing to relax further

any objective the process terminates here with the best compromise
solution achieved being x =3.21, x2:6 with coresponding objective
values g1=5.16 and g2:52.47.

5. CONCLUDING REMARKS

A new interactive method for solving MOLP problems is outlined in
this paper. The method asserts that the final compromise solution lies
within satisfactory levels and is efficient but not necessarily extreme.
Furthermore, the final decision, having been achieved by the
maximization of the decision maker's utility function, is rationalized
by his needs. The decision maker is free to alter his judgment
policy, during each iteration, in order to erase undesirable consequences
which emerged from wrong estimations. However, the method is still based
on the assumption that the decision maker is rational and consistent in
providing the information required, especially in stage I. The
information required in this stage, which establishes new bounds for
the objectives, is needed to reduce the feasible region
of the decision space. Although this restriction helps the convergence
of the method, we believe, subject to further research, that
the method could be modified in order to remove this restriction.

The information required by the decision maker within stage III is
gimple since, it is provided by him through pairwise comparisons
of some decision profiles. However, it must be mentioned that the
comparison of two decision profiles is rather problematic when it is
realized by means of trade-offs involving all the objectives
simultaneously. This happens if the objectives involved in the decision
problem are more than two (n>2). Thus, it would be helpful if the decision

maker was faced with trade-offs involving only two objectives at a time.
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The above should be seriously considered when developing a Decision
Support System.

The number of the pairwise comparisons made by the decision maker is
strictly depended on s. It can easily be shown that the number of
comparisons leading to a preference ranking is bounded by s(s-1)/2
and takes its maximum value when, during each cycle of comparisons,
no indifferences are involved and either the set of the alternatives
preferred to the basis or the set of the alternatives not preferred
to the basis is null.

The method helps the decision maker in understanding the situations
he faces, through pictorial information analyzing the consequences
of his judgment policy. This information could be enriched further
with histograms representing the percentage achievement of the
objectives with respect to the compromise solutions cbtained at each
iteration.

The information provided by the decision maker during previous
iterations should be considered when starting a new iteration. Thus,
previously generated decision profiles whose components lie within
the new bounds can easily be embodied to the new ranking without, of
course, violating the ranking already established on them.

The method requires standard and piecewise linear programming
techniques in order to assess and optimize the decision maker's utility
function. The number of programs solved at each iteration, as well as
their type and their dimensions are presented in table 2.

Recall here that n, m, s+1 and aj are respectively the number of the
objectives, the number of the decision variables in the original problem,
the number of decision profiles generated at each iteration and the
number of discrete points taken in the interval of varying the objective
g;. Additionally, let N be the number of the constraints in the original
MOLP problem. In stage III, a new linear program is solved whenever the
decision maker alters the subjective ranking of the decision profiles.
Thus, the number of programs solved within this stage depends on the
number (say K) of reorderings.

In stage IV, the estimation of a new compromise solution is realized
by the solution of a piecewise linear program. Such a program has the
typical linear form except for the restriction that at most two
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adjacent r;; are positive for each i1 and can be solved using the

J
standard simplex algorithm with a modified basis-entry rule. According

to the modified rule, a nonbasic variable rij enters the basis if it
improves the value of the objective function and if there are no more
than two adjacent rij positive, for each i, in the new basis.
Furthermore, it has been proved [1] that if all marginal utility
functions are concave the modified basis-entry rule can be omited and

the related problem can be solved as a typical linear program.

Table 2 : Programs and their dimensions.

STAGE PURPOSE TYPE OF NUMBER OF NUMBER OF NUMBER OF
PROGRAM PROGRAMS VARTABLES CONSTRAINTS
Initialization Construction Linear n m N

of the pay-off
table.

Estimation Linear 1 m+1 N+ n
of an ini-

tial effi-

cient solu-

tion.

n
 Stage III Utility Linear K . 2(st)+E o)n s+
assessment, i=1

n

Stage IV Estimation Piecewise 1 mt & o N+2n
T |
of a new linear -

compromise.
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