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FONDEMENTS THEORIQUES POUR LES
SYSTEMES DE L'AIDE A LA DECISION
BASES SUR LES POINTS DE REFERENCE

RESUME

Les points de référence sont souvent utilisés comme une source d'informa-
tion additionnelle dans les problémes de choix d'une décision multicritére.
Cependant, si nous ne pouvons pas faire 1'hypothése qu'un point de référence
domine le point idéal, alors 1'efficacité d'un point admissible le plus pro-
che du point de référence n'est pas garantie. Dans cet article, nous étu-
dions les conditions qui doivent &tre satisfaites par un point de référence
X, Ppour que la solution du probléme de scalarisation “Xo = F(u)] » min,
ueE soit efficace pour un probléme d'optimisation multicritére (F : U

+ E) » min(8) ol E est 1'espace des critéres partiellement ordonné par

le cdne convexe fermé 6. Nous introduisons 1a notion de points strictement
dominants dans E puis nous démontrons que, moyennant quelques conditions
additionnelles, si Xo est un point de référence strictement dominant, alors
1a méthode de scalarisation par distance de Xy donne une solution efficace.

Ce théoréme peut étre appliqué dans les systémes d'aide a l1a décision basés
sur T'utilisation de points de référence. Nous présentons également une
caractérisation constructive de 1'ensemble de tous les points strictement
dominants et étudions leurs propriétés géométriques.
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THEORETICAL FOUNDATIONS FOR
DECISION SUPPORT SYSTEMS
BASED ON REFERENCE POINTS

ABSTRACT

Reference points often serve as a source of additional information in

MCDM problems ; however, if we may not assume that they dominate the uto-
pia point, then Pareto optimality of compromise solutions resulting from

a distance scalarization procedure is an open question. In this paper, we
investigate the conditions which should be satisfied by a reference point
X, to ensure that the solution of the scalarization problem [x; - F(u)|]
+ min, u € E, be Pareto optimal for a multicriteria optimization problem
(F:U=>E)->min(8). E 1is a criteria space partially ordered by a closed
and convex cone 6. We introduce the idea of strictly dominating points in
E and prove that, under some additional conditions, if X6 is a strictly
dominating reference point, then the distance scalarization with respect

to Xo results in a Pareto optimal point.

This theorem can be applied in decision support systems based on reference
points. We will also give a constructive characterization of the set of
strictly dominating points and study its geometric properties.



1« Introduction,

A distance minimization procedure is & welleknown tool %o
generate a compromise solution to a vector optimization problem,
A variety of methods has been proposed by numerous suthors
making this approach one of most classical in vector optimization,
The fundamental question which arises is as follows: under which
assumptions the minimum of the distance scalarizing function

glu) & = fx, = F(w) | , (1)

where xo is an element of the criteria space, exists and is
nondominated in a set of decisions U,
This problem has been studied by several authors = cf.e.ge
Salukvadze (1971), Dinkelbach and Dlrr (1972), Yu (1973),
Zeleny (1973), Wierzbicki (1975), Rolewicz t1975), and others
- who considered the case where x, 1is so-called ideal point X7,
t.e. the vector in the criteria space with the coordinates
equal to the optimai values of gcalar criteria evaluated
individually., So defined xo* dominates all attainable values of F,
In this case, aé well as iﬁ its simple generalization, where X,
dominates the ideal point,one can prove thaf under relatively
weak assumptions coﬁcerning ?hé get of attainable values of
criteria each point minimizing the function (1) is nondominated
' or even properly nondominated (ef, Gearhart (1979) ), Similar
results can be obtained for abstract problems in Hiibert and
Banach spaces ordered by a closed,convex,and pointed cone
satisfying certain additional assumptioﬁs (ef. Rolewicz (1975) ).
Jahn (1984) presented a col%ection of general results on proper-

ties of scalarization methods including norm scalarization as one



of the subcases. Recently, Wierzbicki (1986) proposed a similar
approach based on modified distance functions, ‘

However, in distance scalarization there are still open
questions, An attempt to give an answer to one of them is
presented in this paper, namely we will pay ouvr attention to the
case where X, is a point which dominates some but not all nondomi-
nated points. Elements of criteria space of this property will be
~called partly dominating points. We will impose‘certain additio -
nal condition on partly dominating points which will ensure that
the scalarizing function (1) will admit its minimum at & nondomi-
nated point. The points satisfying this condition will be called
strictly dominating points, We will also study the geometric pro=

perties of the set of strictly dominating points,
2, Basic definitions and properties.

We will refer to vector optimization problems of the form
(FP: U=+E) - nn (6), (2)
where U is the set of admissible decisions, E is the space of
criteria - a Banach space partially ordered by a closed, convex
and pointed cone 6, and F is a vector objective to be minimized
with respect to the partial osder introduced by 6, |
Let us recall that a cone 6 is pointed iff 8 ~ (~6) = {O} .
The partial order £ @ introduced by 6 is defined by the relation
X€ gy & y=-%x € 6
In further considerations F-and U will play no separate
role since we will concentrate our attention on the set
X+ =FU)CE |



function (1).
The key definition in vector optimization can be expressed

as follows.

Definition 2.1, An element.y of X fulfilling the condition

(y=-0)nx= {y}
will be called @ = minimal or nondominated in X,

A (= 6)- minimal point will also be called © = maximal,
The set of all © - minimal points in X will be denoted by
P (X,0). There exists a great deal of conditions ensuring that
P (Xx,6) is nonempty which will not be discussed here (cf.e.g.\
Sawaragi et.al. (1985), Chaﬁter %)%

Throughout the paper we will assume that X is 6- closed
and @-complete, i.e. X + © is closed and

¥xex dyer(x,0): y¥£,x (3)
which is & sufficient condition for the existence of solutions

to the scalarization problem (1),

Remark 2.1. A set X satisfying condition (3) is sometimes called

_externally stable or haying the domination property.

In vector optimization an important role is played by so-
called ideal or utopia points which express the best values of
coordinates of criteria considered separately, Here we will give
a more abstract definition related to the general formulation of

the problem (2) and to the notion of totally dominating points.

Definition 2,2. A point x € E such that

XIcx+ ©
will be called a totally dominating point for X.

-



The set of totally dominating points will be denoted by TD(X,0).

Definition 2,3, By an ideal point for X we will call any (~8) -

minimal element of TD(X,6), If the ideal ‘points is unique, it
will be denoted by x° (X,8).
The uniqueness of - ideal points is implied by the properties of 6,

namely we have the following.

Proposition 2.1, Suppose that the set of ideal points for a sub-

set X of E is non-empty. Then the following conditions are

equivalent:

a) There exists the unique ideal point o (x,ej for X,

b) For every two points_x1 and X there exist y € E such that
Xy Lgy for 1=1, 2(i.e, E is a Banach lattice)

¢) 6 is pointed and 6 -~ 6 = E

d) e is pointed and contains a base of E,
Let us note thet TD(X,0) can be expressed in the form

™D(X,0) = = (X,8) - 6 . |

Besides of totally dominating and ideal points an important

role in distance scalarization is played by partly dominating

points,

Definition 2.4, A point y € E such that (y+6) ~nP(X,0) # ¢

will be called a partly dominating points for X. The set of
partly dominating points will be denoted by PD(X,6).
A dual nature of partly dominating points is expressed by

the following property. )



Proposition 2.2, The set of © - meximal points of PD(X,8) is

the same as the set of 6 =~ minimal points of X, i.e.
P( PD(X,6), (=-8) ) = P(X,0) (4)
Moreover,
PD(X,0) =\UJ {x-6: x ¢ P(X,0)} (5)
Proof: By Def., 2.4, each O6-minimal point of X belongs to
PD(X,8), i.e. |
P(X,8) = PD(X,0) (6)
If y is dominated by an element of P(X,8) then
(y + 6) nP(X,8) # @, consequently P(X,8) = P(PD(X,8), (~8)).
Conversely, if z € P(PD(X,0), (-8)) then 2 é@ x for certain
x € P(X,8), hence and from (4) it follows that z=x,
To prove the relation (5) suppose that y e PD(X,8).
By Def., 2.%. there exists x €P(X,8) such that xecy + 8,
i.e. yex - 6, 7
If x eP(X,6) and yex -~ © then x - y€8, i,e, y dominates x,

consequently, y is a partly dominating point for X,

Corollary 2.1,

If P(X,8) and @ are closed then so is PD(X,0).
Proof: By (5) PD(X,8) is expressed as the range of the closed =
valued multifunction
7: P(X,8)>a —wa =8ckE
defined on the closed set P(X,8).
For the closedness of PD(X,0) it is sufficient to prove that T
is continuvous, -
However, if a and b are such that |[a - b ||<% then the Hausdorff

distance, dy, of T(a) and T(b) can be estimated as follows:



dg ( 2(a), 2(b) ) = dy (& -8, b ~06)=
= dy (a = 8, (b~ a)t(a = 0)) & ab] € S.
Hence T is Hausdorff - continuous and the range of T, PD(X,0),is
closed, which -ends the proof
' . q.€.d,

Remark 2.2, Let us note that in general the converse statement

is not true, i.e. the closedness of PD(X,6) .does not imply that
P(X,6) is closed.

The necessary conditions for € - minimality in distance-
minimization derived previously by Dinkelbach and Dlrr (1972),
Rolewicz (1975), Jann (1984), Wierzbicki (1986), and others,
touched upon the reference points being ideal, or totally dominae
ting points for X, with some corollaries regarding partly domina-
ting reference points with additional constraints in the criteria
space,

In this paper we will introduce a new class of dominating

points, called strictly dominating.

Definition 2.5. A point x €E is called a strictly ddminating
point for X iff |
P((x+0) ~nX, ©) = P(X,0)~(x+0), (7)

The set of strictly dominating points for X will be denoted by
SD(X,0). |

Observe that the inclusion , © " is always satisfied and
the condition (7) means that no point of P(X,8)~ (x+6) is domina~
ted by another attainable point, i.e. the set (x+6)~X does not
contain new nondominated points created by the constraints

zéex, 'Zex.



The properties of strictly dominating points will be
discussed in a more detailed way in Sec.4, Now let us make the

following simple observation,

Proposition 2.%, If X is © - complete then
™D(X,0) = SD(X,0) = PD(X,8) . (8)

An example of sets of totally, strictly, and partly dominating
points for a bicriteria optimization problem with the natural

partial order is shown in Fig. 2.1,

%, Distance minimization with respect to dominating
points
Now we will nDprove several theorems on 6-optimality

in scalarization via distance functions. Let us note that there
exist scalarization methods based on transformed norms(cf. Wierzbic=
ki (1986))which let avoid much of difficulties with claésical
distance functions. However, one can éhow that in some cases the
latters model the decision-meker preferences in a most appropriate
way that justifies their use. This is also the reason why we

will not be concerned here on other features of scalarization
methods such as completness of characterization of properly
efficient points or comphtational difficulties = a distance

function will be treated here as a value function for VOP,
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Fig., 2.1. An example of sets TD(X,6), SD(X,0), and PD(X,0).

Following earlier results concerning the finite-dimensional
criteria space with the natural partial order, Rolewicz (1975)
formulated the following geometric condition ensuring 6-optimality

of least=distance points:



Theorem 3.1, If the cone 6 is closed, convex, and pointed,

X is a O-closed subset of Ejand the norm in E is such that

¥ x €k 6 N (x- 6)c= k“x“ (0) v {KJ’ ’ (9)

where k "x|[(0) denotes the open ball with center O and radius
X then for each x_ & TD(X, © ) the scalarizing function
' 0
z - |x, = 2| admits its infimum on X at a © - minimal point

of X,

The geometric interpretation of condition (9) for a

translated cone y + © is shown in Fig. 3.1.
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Fig., 3.1, A geometric interpretation of condition (9).
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Notice that if E is a Hilbert space, then Thm. 3.1, generalizes
earlier result of Wierzbicki (1975) who proved under same
assumptions concerning 6, X, and Xq that the condition
0 = 6% | (10)

where 6% := {yeE: Vzece (yy2 ) = O} is the dual cone, is
sufficient for ©-minimality of least distance elements of X,
Namely, it turns out that (9) and ({O) are equivalent in the
case of a Hilbert criteria space (cf. Rolewicz (1975)),
On the other hand, Jahn (1984) proved some general theorems on
scalarization methods, including distance scalarization, using
the notion of strongly monotonically increasing functionals, by
definition, £ ¢+ E—+R is strongly monotonically increasing
( s.mi.) on E iff

xbgy, x#y= £f(x) < £(y), (11)
Assuming that the norm in E is s.m.i. and x € TD(X,0), one can
easily prove that the least-distance solution is 6-minimal,
however, it is not hard to see that (9) holds iff the norm is
S.meie, therefore those theorems coincide.

Condition (9) is evidently not necessary, but when not
satisfied, 6-minimality of points minimizing (1) depends on the
shape of X, and situation of x, with respect to X, which are
usually not a priori known. Several examples of situations,
where the least-distance element fails to be @~minimal are

presented in Fig, %.2. and Fig. 3.3,
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Fig. 3.2. Exemples of situations, where the least-distance element
in X to a reference point Xo is not @-minimal:
a) X, € TD(X,8) but the condition (9) is not satisfied
b) x, € PD(X,0), X is convex but (9) does not holde
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Remark 3.1.'Let us note that the statement

w Ifd(p,X) = p~x| , x€X, pé gx,and (9) holds then
x ¢ P(x,8)" (cf. Rolewicz (1975), Thm. 1') may not be true when
X is not convex, which is exemplified in Fig. 3%.3.
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Fig. 3.3. An example of situation where (9) is fulfilled and

a least~distance point Xq lies within p+6, but X is

not €6-minimal,
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Tet us note that in the case E = R the condition (9) is not

necessary, namely one can prove

2

Proposition 3.1, Suppose that E = R™, and 6 is an arbitrary

closed and convex cone such that x~ (X,0) and P(X,8) are non-empty,
and X is @-convex,

If £ is a non—constént convex funetion definéd on E, having
its global minimum attained at a point q belonging to
7 (X,8) := (x™(X,0) + 8) ~ PD(X,6) _ - (12)
then the minimum of f on X is.attained at a 6-minimal point.
Proof: Let x be & point of X such that the minimum of f on X is
attained at x, The function f is convex then for each point y from
the interval [q,x]

£(y) € £(x), eand F(t) t= £(tq + (1 = t) x)
in convex and non-decreasing on [0,1] .

Let T be the infimum of t€[0,1] such that F(t) = £(x)
and let us denote X := T(%T).
From the introductory assumptions it follows that the boundary of
® consists of two half-lines and P(X,0) is a curve which separates
dominated and dominating points in x° (X,0) + 6 -
If x is a dominated element of X then there exists
¥ € [a,%X) nP(X,8) = X, consequently,f(y) <f(x) which leads to a
contradiction with the minimality of f(x). Therefore x € P(X,0).

Qs©els

Corollary 3.1, Under the assumptions of Prop. 3%.l1. concerning X

and @, in case E = RZ every solution to the scalarization problem

min{[x~y[| ¢ xeX | with the reference point y €2(¥,0) is 6-minimal,
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Remark 3.2, In the above proof we used only the property that in

convex bicriteria problems the set P(X,0) is a curve sufficiently
smooth to topologically divide = (X,6) + 6 in two disjoint
subsets, Hence Prop: 3.2, and Corollary 3.1. remain true if P(X,0)
is an arbitrary surface dividing x* (X,8) + €, irrespectively of
the dimension of E and the convexity of X + 6,

Corollary 3,2. Suppose that X = F(U) is a closed subset of ng

If F = (Fy, F,) and inf {F,(u) + ueU} = inf {Fy(u): uel} = ~ oo,

then for each convex function f having its global minimum attained
at a partly dominating point of X the solution to the scalarization
problem (f ¢ X =» R ) =2 min is ©-optimal, |

x* (X.©) q=arg min {fly) :yeE}

-
o

Nl

Fig.3.4. An illustration of the proof of Prop., 3.1.
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If turns out, however, that in m2 the condition (9) warrents that
a solution to a scalarization problem (1) is ©-optimal for all

X, € PD(X,0).

Theorem 3.2, If X=R® is convex and 6-closed, © is closed, pointed,

and satisfies condition (9), then & solution to the scalarization
problem

|y = x l== min (8), x€X
ig ©-minimal for each partly dominating reference point Yo
Proof: Let y be en arbitrary partly dominating point, and let x
be an element of X such that |x = y ||.=\ d(y,X), Suppose Ffirst
that the cone © does not degenerate to a half-line. The set
PD(X,0) be decomposed into the disjoint union of sets Z(X%,8) =
= x*(X,0) + 8)PD(X,8), TD(X,8)\ x"(X,8),
A, :={(z1,22)ePD(X,G) : z1>x1’!, 22<x2*},

A :::-[(z,l,zz)EPD(X,B): By <Xq Ty z2>x2*},

2
( some of them may be empty ),

where x1“ and ng are coordinates of x“(X,@) snd all coordinates
are related to a basis-spanning 8, Let us note that this theorem
is already proved for y belonging to'Z(X,e) or TD(X,8) (cf.Prop.
%,1, and Thm, 3.1, respectively).

If yeA, or y€A, and y £gx then x & P(X,8) by Corollary 3.1.
Suppose that yed, and x is non-comparable with y. The set of
dominated points in X, non-—comparable with ahy point of A1 is
separated from A, by sets Z(X,8) and Aye

Therefore the interval [y,x | must have a common point v either

with AO or AQ. TLet w be a least-distance point to v in X,

Of course, ||w = v| € |x - v| , therefore by the triangle



inequality |y - w| é |y = x ||, consequently w is also least
distant for y (w = x when the balls in R? are strictly convex).
If ve7(X,6) then w is 6-minimal, if veA, then v £gw - otherwize
w would be dominated by y which was execluded, hence weP(X,0),
Similarly we conclude that WEP(X,G),i‘or yeAz, and x € P(X,0),
If © degenerates to a half-line then the above reasoning is true
for any non-degenerated cone 91 containing 6 and fulfilling the
assumptions of this Thm, Since-P(X,Gi)c:P(x,e) then w€P(X,0) in
this case as well, Therefore x € P(X,6),

Q.€ed,
Now we will give a sufficient condition for @-optimality for
non-convex attainable set X involving the use of strictly domina-~

ting points.

We will finish this section with a general theorem giving a sufficient

condition for 8-minimality for strictly dominating reference points.

Theorem 3.3, Suppose that X is 6-closed, the cone 6 is closed,

convex, pointed, and satisfies con&ition (9). Then for each
strictly dominating point X, the solution to the scalarization
problem

“XO"XII"" min (8), x €X, X, £ g X

is 6-optimel in X,



o AL

Proof: Let us take an arbitrary x € SD(X,0) « By the definition
of strictly dominating points all ©-minimal points in the set
P(Xn (x, + 0),0) are @-minimal in P(X,8). Since x, is the.

ideal point forXr\(xo + ©), then by Thm. 3.1. @& leasi-distance
element of this set is @-minimal in Xr'\(x0 + 0), consequently

it is &=minimal in X.
q.eodo

One can see that the above Thm. may not be strenghtened
by removing the constraints X, ég X, an example when a least-
~distance point x, to y € SD(X,9) fails to be @=minimal can be
found even in Bé as it is exemplified in Fig. 3.2.

Fig. 3.5. The condition (9) is not sufficient for &-minimality

when y &€ SD(X,0) and X is nom-convex.
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4. rurther properties of the set of strictly dominating points.

A general relation of the set SD(X,0) to totally ana
pertly dominating points has been formulated as the inclusion (8)
in Prop. 2.%. Now, we will study the properties of strictly domi-
nating points in some special cases.

First we will answer the question whether the sets
PD(X,@) and SD(X,0) coincide for convex X. It comes eut that it
is net true in a general case, however such a propérty may be

proved for bicriteria problems.

Theorem 4.1y If X R? is @-closed and @-convex then
SD(X,0) = PD(X,0). (13)
Proof: Let x be an arbitrary element of PD(X,0). By Prep. 2.3.
it is sufficient te prove that x € SD(X,8).

Suppose that it exists a point y € P(XA(x + Q),0) which
is not 6-minimal in X. Then there exiéts ¥4 € X guch that
Y € ¥q + @ Let us consider the quadrangle with the vertices
Xy ¥y ¥4 ond xq, where x, is an arbitrary element of P(X,0) ~(x + @
which exists since we assumed that x is partly deminating.
The pointe x, and y are non-comparable since both are elementis
of P(Xn(x + @),0). Taking into account that y, £p y, it follows
that Xq2 ¥ and y, are not collinear - otherwize x, would belong
ta y + @. Since X is @-convex, the triangle [xm, ym,y] is contained
in X + . On the other hand, x dominates x, and is non-comparable
with.y1} hence we.can similarly conclude that X2 X ,and 2 ferm

a non-degenerated triangle
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Since x may not be an element of [x1, Y ymj] which would imply
that it belengse to X + @, therefore the quadrangle [x,xt, ¥a y1]
is convex and non-degenerated. Consequently, the diagonal [xi, ym]
intersects the other one, [x, y |, at a point y, belonging to

X + 0. However, [ x, y] is contained in (x + AN(y = @),
therefore y,€ y — @ and y € X + @ since [x4, ¥» ¥y ] = X+ 8]

which contradicts the assumption that y were ©-minimal in

XA (x + ©) but dominated in X. Thus we conclude that each @-minimal

point in XN (x + ©) is 6-minimal in X, i.e.
P(XA(x + 0),0) = P(X,0).

By definition, it means that x € SD(X,8).
Ge€sle

Let us note that the above proof remains valid for such
convex sets in E, dim E>2, that there exist a subspace
E1, dim E1i = 2, containing simultaneously x,y and the above
defined points x, and yq. Theorem 4.1. may not be true when
X is convex but the dimension of the criteria space £ is greater
than 2.

An example of such situation for E = BB and @ = Rz is
given belew.
Example i.mt Let us consider the attainable set X = [a, b, ¢ ],
a= (1, 0,0, b=(1,-1, 0, ¢ = (12, V2, 1/2) and a reference

n

point x = (0, O, 0)(ef. Fige 4.1.). It is easy to see that

P(X, @) =[e, b] and for x = (0, O, 0),P(X, )~ (x + ©) = [c, 5],
where z = (2/3%3, 0, 1/%). However,

Ri= P(Xn(x + 0),0) =[e, z2]v[z, a], a¢ P(X, Q).

Therefore x ¢ SD(X,0), although it is an element of

PD(X,0) = [e,b]- R2 . One can show that



SD(X,0) = PD(X,0) ~{(¥, ¥y ys) eR? iy, £x,°}F v

u{(zm. Bos 2'-3) e[R3 2oy £ W2, 2, £ 1/2, Zy = 1./2} =

= {(E-lln Yor ¥3) ER’ : ¥y € 1y ¥p € =1 ¥4 £ ¥y OF
Yo = W2 ¥p= V2, ¥3= W25

where x2* is the second coordinate of ithe ideal point

x*(X,0) = (=1/2,=1, 0).

r, |

3

e —— ———— —

) s
i

7ig. 4.1. An example when P(X~(x + 8),0) £ P(X,O)m(x + )
for convex Xe
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Let us note that in general topological propertiea of
the set SD(X,0) are determined by the properties of the whole
set X, irrespectively of the properties of P(X,0) itself.

For instance, if in the above presented example 4.1 we modify
the set X by setting | ,
Xy 1= (XN (5 20 25) €87 2 3y <3y <mPuag 9],
where
L]
2, = r; and the interval [b, ¢], for i = 1,2,then the set

€r, <r, €e, and g are the intersections of planes

SD(Xt,O) f£ails to be closed, although so are X, and P(XI,OQ.
However, one can prove that in R2 SD(X,9) is closed
for closed P(X,0), and connected, for connected P(X,0).

Below we give a sketch of the procedure of evaluating

SD(X,0) for XeRZ,
4.1 Comnstruction of SD(X,8) for Xc:Bz.

Although the set SD(X,0) possesses interesting properties, its
definition (cf. Def. 2.4.) does not suggest a constructive algo-
rithm of finding SD(X,0), or even of verifying whether a given
point Xy € B is strictly dominating. Here we give a further
characterisation of SD(X,0) which in some cases should be
helpful in answering the above questions, especially when E = B?.

Lemma 4.1. If X is a closed and connected subset of R2 then

SD(X,0) = {y € PD(X,0) ¢ P( ?(y + @)~ X, 0):?(1,0)} . (14)

Proof:

Observe first that if @ degenerates to a half-line then for

4

each y € R (y + ) =2(y + ©), consequently
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P((y + 8)nX,0) = B( (¥ + @) NX,;0)

and P((y + 8) ~X,0) contains at most one point, namely
P((y + ©)NX,0) = {x}, iff y € PD(X,08) and is empty elsewhere.

Therefore in this case
SD(X,0) = PD(X,0)

and (14) is trivially satisfied. Thus without a loss of genera-
lity we can suppose that & contains a base of R and the coordi-
nates of points in Ra are related to this base.

Notice that from the connectedness of X it follows that
if 3y + )X =0 thenX ¥ y+ O and y € ID(X,0).Thus we
may assume that d(y+0)N(X + Q) # f.

Each point v € d(y + 9)X) meximizes one of coordinates
of points from X~ (y + @) therefore if w € P(3(y + 0) NX,0)
then w belongs also to P((y + @)~X,9) .

~ If y is strictly dominating then w € P(X,0) which proves
that SD(X,8) is contained in the set aefined as the right-hand
side of (14).
Suppose now that y is such that the inclusion

P(d(y +0) M X,0) = B(X,0) (15

holds. Let us notice that d(y + ©) consists of itwo half-lines
beginning at y which allowsus to distinguish the following
subcases !

a) P((y + ©) nX,0) consists of two points x, and X,

b) PQ(y + ©)nX,0) consists of one point ,

Observe that in the case (a)_it is sufficient to prove that if
Xq» X5 € ¥(X,0) then an element z of (y + ©) X is ©=optimal
in X iff it is se in (y + @)X,



P((y:®)n X,8) ={x, %,}

Fig. 4.2, An illustration of the proof of Lemme 4.1. - case (a)

Fige 4.3 An illustration of the proof of Lemma 4.1. - case (b)
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Suppose that z € P((y + ©) nX,@) . ¥rom basic geometric
properties af convex, nondegenerated cones in(R2 (cf.
Yig. 4.2.) it follaws that if x, and x, belong to P(X,0) then
any point z of (y + ©)~X is either dominated by X, OL X,
or the intersection of X and 2z = @ does not contain exterior

points of y + @. The latter property is implied by the inclusion
Z -»--@c::(x.1 - Q) v (12 - @)\ (y + 9) " (max(xm& x2) - 9)

for z € (y + 0) N (max(xm, xz) - 8),
where

max(xqs xp) = (mex(xygs Xpq)s max(xyys xp5)) e (15

Consequently, if 2z is @-optimal in (y + @)X, it is
alsa @-minimal for X, which ends the proof of the case (g),
In case (b) let us take an arbitrary z € P((y + 0)X,0), and
let x; be the @-minimal point of the intersection of ¥(y + ©)
and X. If we take as xé_a point of 3(y + @) such ihat
(1) x; belongs to the half-line h, different than that
containing x (recall that we assumed that @ is non-dege-
nerated and B(y + ©) consists of two half-lines,h, end h,)
(i1) =z €4 max(x;, xé), (cfe Fige 4.3.),
then same arguments as applied for x, and x, in case (a) imply
that z € P(X,0). ve only have to observe that if X is connected,
x; € P(X,e) and xé is aefined as above, then the set
(B(xi - 9) \(y -8))\Jh2 divides R® into two parts in such a way
that X is contained in this one which does not contain y.
Therefore x ‘may not be dominated by an element of X and
xé e P(X LI{Xz},Q) which allows to consider x2 in the same way
as in the proof of the case (a), with X, 1= x » Xpl= x2 and

L i X\J{XQL Qee.ed,



Notice that to prove Lemma 4.1. in case (a) we did not
apply the assumption that X is connected. This mesns that if
¥(3(y + 0) NX,0) consists of two different peints then strict
@-optimality of y can be tested irrespectively from the connec~
tedness of X. However, in general,lemma 4.1. is not true for
_ disconnected X, as may be seen in Fige. 4.4. Nevertheless, it
is possible to werify the strict 8-optimality of a reference
point in Bz_basing on Lemma 4.2., namely in that case one
ghall determine the edge points of all connected components
of P(X,0) which can be realized by studying the mutual locations
of the local Pareto sets of the components of X. Remark that
far disconnected X we cannot substitute the set X + ©,which
is always connected,in place of X in the condition (14) since

it may happen that y € SD(X,0) but y ¢ SD(X + @, @) (cf. Fige4s5)e

P(X@)

X= X1u XZ
y ¢ SD(X,8)

Fig. 4.4 For disconnected X the fulfillment of (14) is not
sufficient for y & SD(X,9)
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Fige 4.5 The conditien (14) may not be applied for X + &
instead of X when X is disconnected.

From Lemma 4.1 and the above considerations it follows a
characterization of strictly dominating points in R :

Theorem 4.2, If X is a closed and connected subset of R

then SD(X,0) can be represented as
\ {pry(5)) xpry(sy) ¢ 1, § € T U{0}}NBD(X0),  (17)

where '{Si} iei is the set of connected components of P(X,8),

by definition S_ := TD(X,O), rip i = 1,2,i5 a base of E,spanning

the cone @, pr; is the projection on the i -~th axis in the

system of coordinates (rh, rz).

This theorem implies the following procedure of verifying

whether a reference point g in RZ is strictly dominating.

Step O. Convert the coordinates of X and q to those of a base
(r.h,; rz) gpanning O,

Step 1. Calculate all local minima of F, and F. .

1 2
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Step_ 2. Find all local ideal points x; = (x{i, x;i) and edge
pointe e;; = '(x1.j." e1|21) and eoy = (3211:;." x2i) assacia-
ted to the connected components {Si}i e 1 OFf P(X,0),
where €,,; = inf {12: (11.i’x2) € X} and
e@yq4 = inf {xiz (x.’.l._xzj’) € X} .
If the minimum of the j-th coordinate, j € {1,25 , is

not achieved then put ey yy:= inf, k e{1,2} , where

for each x € B x £ inf,

Step 3. Find the global ideal point x = (xj,x,) and corresponding
| edge points ey:= (xt.,etz) and e,:= (e21:,x2).
If q € x print "q € SD(X,8)" STOP,
If qq = eyy OF Qy = e,, print "g £ SD(X,e)" STOP.

Step 4. If Q4 < x;then go to Step 5.
Find i such that
* : . * ¥ *
xq5 € a4 end for each j # i : Xy <Xy OF x1.j> qqe
If epq4<Uyq OF Qg = &4p4 then print "q € SD(X,0)" STOP.
- ¥
If (epqq > Gy OF €pq;= qq and ey; € S;) and gp<xy
then print "g € SD(X,o)" STOP.
Step 5+ Find n such that
xF e and for eachm;én-x*<x*arx*>
on © %2 ¢ Xom=*on on~ 92°
If €45 <Gy OF Q4 = €54y then print "gq £ SD(X,0)" STOP.
If i = n then werify whether g € X, if it is so then
print "x € SD(X,8)" STOPR.
If e1i2n> Gy OX €4, = Gy and €4n & Sn then prin_t
g, € SD(X,8)" STOP.
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Remark that to find all local ideal points in Step 2 for
a non-convex vector optimization problem one has to determine
all local minima of the objectives considered separatelye.
Thus, in general, in this step one has to execute two global
minimization procedures. Since they are usually based on ran-
domized techniques, the evaluation of SD(X,0) may have an
approximative character.

Applying the above algorithm for disconnected X, we may
get an erroneus result of y is situated as in Fig.4.4 or 4.3.
Namely, in this case the strict dominance of y will not be
detected as Thme 4;2 does not give a complete characterisation
of 5D(X,0) for disconnected X. However, as we will see in the
following subsection only those elements'uf SD(X,Q) which are
of the form given in Thm.4.2 have the desired properties as
reference points for distance scalarization procedures.

Let us note that an appropriate algorithm for verifying
whether an element of Bxﬂ n = 3%, ig stricty dominating seems
t0 be essentially more difficult as so far there are no construc-

tive characterizations of SD(X,@) for XCR®, n 2 3.

4.2, A sufficient condition for @-optimality without auxiliary

constraints.

In Section 3 we have shown that a distance scalarization

procedure with respect %o a strictly dominating reference

point may lead to a dominated least~-distance point even in E = Bz
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However, imposing additionally a regularity condition on
the distance in E we can prove the following theorem 4.3,
In its proof we will need some information about the structure
of the set of strictly dominating points which is studied in

a more detailed way later oane.

Theorem 4,3 If [E = R? , X E is connected, Q@ satisfies (9),

the distance in E is balanced and satisfies the conaition

arg max {zi: z € k(x,r)} c (x + Qu(x - @) (18)

for ¥ > 0, £ = 1,2, where the coordinates of z = (z,, %)
are related to a positively oriented basis (rT’ r2) spanning

a cone 01 such that 91:30, then a least-distance element X,

in X to a strictly dominating point y is @-optimal in X,
irrespective whether the additional constraints y ég X, are

fulfilled or not.

Proof: Let S be the set of connected components of P(X,0),
S = {:Si} 1e1? where I is an ordered set and let us associate
. ¥ _ ¥ ¥ .
to each 54 the local ideal point x; = (xil’ x;,) ana the edge
points e ; = (xi1, 3121) and e,; = (ezti’ xiz) where
€4 4¢= inf{:xz € R: (x4, x2) € X}
and i
€44 ini-{xm €R: (xt, xiz) € X} ¥
We assume that the components Si are ordered in such a way
that if i< J then Xj1< X4q°
We will admit the convention inf 9 := +% , but it may be
shown that such situation may happen only if i = inf I for €454

or i = sup I for e21i;



- 30 =

wWithout & loss generality we can assume that © is non-degene-
rated and let Ty and r, be a base spanning ©.

In the following section we prove that SD(X,0) can be repre-
sented as a union of sets Z(SI,G) (cfe(12)),

pr(ID(X,0)) x pry(Sy), pr, (85 x pry(TD(X,0)

for 1 € I, pr, (5 )x pr2(Sj) for 1,3 € i, i< j, and TD(X,0),
where.prk denotes the projection parallel to the k-th axise.

Therefore it is sufficient to prove this Thm. for each
passible situation of a reference point y = (y1.y2) within
SD(X,0) .

By Prop. 3.1 if y € z(si,o) then a least-distance element
x te y in X situated within the set.(xi + Q) is @-optimal.
However, the cﬁrve consisting of Si and half=lines
b= {(t, e;121) st <x1*i]- end h,:= {(ezu,t) : t<x;i}
separates the area of local partly dominating points of S, Bq»
which interior does not cantain any other point of X, since €44
and e,y are elther @-optimal or are limits of ©-optimal
sequences, and the remaining part of Bz', Piz.The latter contains
points of X and we will show thai they are more distant from y
than e, or e,q. Suppose that x = (x1ﬁx2) € S and consider
the interval [y,x] which in this case must intersect h, or h,
in a point 2= (z1,52). Without a loss of generality suppose
thaet z € hy and 2, = €4,4, consequently x, > e, ;.
According ta (18, the maximum of the second coordinate over
Kz v (y) must be achieved within y + ©. Simultaneously,

folleowing (18) and Prop.3.1, (y) has a common point

K x - 3]
with an element v of P(X,0) N (y + Q).
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Observe now that for each 6~optimal point v = (v1,v2) it holds

5%
X506 Vo € 004 o

therefore

max {22: zek ), y"(y)} = @404
while no element of X\ ((y + 8) ~ (y = @)) may have secand
coordinate greater or egual to this value. Hence we obtain a
contradiction with the assumption that there exist a least
distance element x = ( xm,xz) € X\ (y + 0) such that Xp ® €qo50

Similarly we will prove this theorem in the case when
¥ €Ryy = pr,(8;) x prz(Sj), i, Je L, i <],

where S, and Sj are connected components of P(X,0) and pT)
denotes the projection parallel to the k - th axise

Analogously as above we shall define

Tt < x;; }

{ (egyyr 8 ¢ 8 <x;j F,

and let us suppose that a least-distance element x = (x1,x2)

h

90

poi= L (B egpy)
and
n

2- :

does not belong te (y + €)X, so that the interval [y,x]
intersects h, at a point z = (21, 52)’ Now, it is sufficient

to show that no element v = (vm, va) of k lix ‘ (A (y + 0)

- 7|
has its second coordinate greater than €404

If v € P(X,8)~(y + 0) then
*
T2 = Vg =%ps o
hence we need only to investigate the case when v ¢ P(X,0).

If v € y + @ then by the condition (9)

(V“O)ﬁ(yfg’)ck”y”v"(_Y)Ck”y__x” (¥)s
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By definition of Ry 4,

Jq S W1(S'i ’
and
therefore if v, > e;,; then (v = 8)N (y + &) would have a
non~empty intersection with S,, consequently an element of Sy

would belong to the interior ef k i x"(y) which is impossible

since we assumed that x is leaat~dlztance to y in X. Thus we
get a contradiction with ‘the assumption that x £ y + @.
Observing that " in the situation when [y,x] Nh, # 4
the proof is a repetition of that above let us end the
proof of the case y € Rij’

Seme arguments(only one separating half-line is needed)
prove 9-optimality of a least distame point x to a reference
point y contained in the cartesién product of TD(X,0) and a
projection of a connected component of P(X,@).Since 6-optima-
1ity of x in the case y € TD(X,9) we quoted as a classical
result then all possible situation of y have been investigated
and the proofi of this Thm. is completed.

Qe€elo
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Basing on the above Thm. 4.3 and considerations made in subsection 4.1
we can also formulate a criterion of 8-optimality for the disconnected case.

Observing that :

(i) 4if the cone 8 1is non-degenerated then the set X + 6 is connec-
ted,

(ii) A c B => SD(B, 6) < SD(A, 8),

(iii) P(X, &) = P(X + 8, 8), i.e. X and X + 8 have the same con-
nected components of the set of 6-optimal points

let us conclude that the set defined by (17) is equal to SD(X + @, 8),
and at the same time it is contained in SD(X, 8) and the following state-
ment is true.

Corollary 4.1. If X 1is a closed subset of R2, y an element of
SD(X + 8, 6), and the distance and the ordering cone in I? satisfy (9)
and (18) then a least-distance solution to y in X is @-optimal.

It is easy to see that if X 1is not connected and
y e SD(X, 8) \ SD(X + 8, 8)

then a least-distance element to y in X may not be 6-optimal even if
(8) and (19) are satisfied, as an example may serve the situation presented
in Fig. 4.4.

It is interesting to know which nc--z in R" satisfy the condition
(18). It turns out that a simultaneous satisfaction of (9) and (18) is
equivalent to another, more intuitive property which may be called "sym-
metric monotonicity".

Proposition 4.2. Suppose that |[.[| is a norm in R". Then the follo-

wing conditions are equivalent :

(i) ||| satisfies (9) and (18) ;

(1) [V 3 & €1; ..a5 N} {9F & Vg = Zys |yj| < |zj|, and (19)
¥y 23201 = [lyll < ”i“ forall y = (¥, -oos ¥y)s
Z = (zl, el zn) eR anzg je {1, ..., n}
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Proof : Assume first that |[.|] satisfies both (9) and (18). If Y;
and zj are non-negative then the inequality |y| < |z| is implied by
the fact that H.H is strictly monotonically increasing which is equi-
valent to the assumed condition (9). If yj and zj are both negative
then (19) can be expressed as

X < ¥5 = byl < gz,

x. for

Suppose the contrary, i.e. let x ¢ Rn be such that z; i
i=1, ..., j=1,3+1, ..., n and X < Y <0 but §z| < (x| and
let us consider the closed ball K _(0), where r := jz|. From the theory
of normed spaces it follows that KF(O) intersected with any affine sub-
space H of Rn such that H n 6 is a convex cone in H, is a ball in H.
Moreover, if the maximum of the j-th coordinate over KP(O) has been achie-
ved at a point v e 8, then the maximum of j-th coordinate over’ KF(O) n H
is achieved at w e H n 8.

Consider now the two dimensional affine subspace H,.  of R" spanned

N
by the i-th and j-th elements of the basis of Rn and passing through x
and z. By (18) the maximum of i-th coordinate over the ball Kr(O) n Hi

ie{l, ..., n}y, i#]j, is achieved at a point v such that vj >0. oOf

j!

course, \I_-|

tained in the triangle T = [z, v, Cij ] where Cij 1= (Xl’ x1_1,~0, Xi410

> z,. since z £ 6, hence also v, > x,. Therefore x 1is con-

453 Xj-l’ 0, xj+l’ Y xn) which by the convexity of the norm is contained
in KP(O) n Hij'
Consequently, x would belong =: KF(O) n Hij’ but we assumed that

x| > r, i.e. x must belong to tne boundary of Kr(O). However, in this
case x must also belong to the boundary of T)

namely to the interval [z, v], whicr ‘s impossible since we assumad
that z, = X, < Vi This contradictior mpiies that the assumptions made
were sufficient for the 1nequality [|x| < |izll, which ends the first part
of the proof.
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To prove that (19) implies (9) and (18) it is sufficient to show that
the maxima of coordinates over KP(OJ are not achieved on R"\ 8. The
equivalence of (9) with a subcase of (19) has already been noted in the
first part of the proof. Let us take k € {1, ..., n}, two elements of
[R? x and y such that Xy BY For 48 41, coug J = Ly § * Ly woveq 0),
j # k and X < ¥ < 0. By (19) [x[l > |lyll, consequently vy e k”x|(0)‘
and in certain neighborhood of y there are points of k"X”(O) with the
k-th coordinate greater than Yi = Xy Since this schema is true for all
x ¢ R" \© then it follows that the maximum of k-th coordinate cannot be
achieved at such point.

g.e.d.

Let us remark that neither (9) implies (18) nor vice versa, an example
of the distance satisfying (9) but not (18) is shown in Fig. 4.4, while the
balls 1in a norm which satisfies (18) but fails to fulfill (9) are shown
in Fig. 3.2.a and 3.2.b. Such norm can be defined e.g. by the formula :

2,1/2

n(x) := (0,5(x, + X 1 XZ) )

1t %)

Now it is easy to see that (19) is satisfied by distances generated by
L. norms, 1 < p <=, i.e. functions of the form

n
LOx, py W) 2= (2 wilxilp)l/p, (20)

i=1

where w. > 0 for 1 <i<n, x; are the coordinates in R" related to
the basis spanning 8, and p 1is defined as above.

Therefore, we may formulate the following
Corollary 4.2. If the distance in Rz is generated by the norm which

can be expressed by the formula (20) in the coordinates related to the cone
8, then a least-distance element in X to a reference point y e SD(X + 8, 6

is 8-optimal.



5 « Final remarks.

Throughout this paper we have been emphasizing thet the
presented conditions for @-minimality are sufficient but not
necessary. However, as it might be observed in conditions
involving the use of strictly dominating points, the set of
elements of the criteria space which may serve as the reference
points in distance scalarization is strongly influenced by the
shape of X which may net be assumed a priori known.

Therefore the results here presented may be classified
as an attempt to approximate from helow the set of potential
reference points, assuming that the norm or a class of norms,
and the partial order are fixed. Of course, the assumed condi-
tion (9) may also be,in some cases, relaxed.-

There are still some open questions, such as a more
constructive description of the set of potential reference
points.in[Rk s, k> 2, or the problem of removing the additional
constraints occuring in Thm. 3.2 in the case where the dimen-
sion of criteria space is greatexr than 2.

Seme questions such as proper or weak efficlency of the
solutions obtained or the completness of characterization of
P(X,9) by distance functions associated to different reference
points were not studied for the,bre?ity's sake.

A special class of scalarizing furctions based on referen-
ce points which have been considered by Wierzbicki (1986)
requires a separate treatment since they constitute an entirely
different approach to scalarization problems. Thoese functions
are defined in such a way that @-optimality of m;nima is implied



by the form of the functions. In our case a distance function

or a family of them is imposed as a value function by the decision
gsituation concerned, and the only thing which remains is To

verify whether the scalar minimization problem arisen has a
8-optimal solution, and to execute a distance-minimization proce-
dure then.

However, such situation occur freguently while solving
real-life problems, since the values of the distance functions
often have an easy and intuitive interpretation to the decision-
-maker. Therefore, it is hoped that the results here obtained
may be helpful in design of decision support systems based on

reference points.
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