CAHIER DU LAMSADE

Laboratoire &’ Analyse et Modélisation de Systémes pour ’Aide 4 la Décision
(Université de Paris-Dauphine)
Unité Associée au CNRS n° 825

VARTANTS OF KARMARKAR’s ALGORITHM

CAHIER N° 90 A.LISSER
mars 1989 : P. TOLLA

CONTENTS

Résumé

Abstract

I - Introduction
I - KARMARKAR’s algorithm in brief

III - Calculation of the projected vector y = D¢
by solving a constrained quadratic program

IV - KARMARKAR’s algorithm with an embedded one
dimensional search scheme

V - On the treatment of the bounds of the variébles

VI - Numerical results -

References

21

ETUDE DE QUELQUES VARIANTES DE L’ALGORITHME DE KARMARKAR
RESUME

L’objet de ce cahier est de montrer & quel point étude et 'expérimentation de quelgues
variantes de lalgorithme de KARMARKAR ont permis d’élaborer un logiciel plus
performant que la version originelle présentée par KARMARKAR,

Plusieurs méthodes ont été testées ; il s’agit en particulier : de la forme primale-duale,
de la méthode des deux phases, de quelques méthodes de calcul de la projection du
vecteur de la fonction économique, des méthodes de recherche monodimensionnelle
ainsi qu'un essai de traitement implicite des bornes supérieures des variables.

Mots-clés : Forme primale-duale, méthode des deux phases, projection, dichotomie,
bornes supérieures des variables.

VARIANTS OF KARMARKAR’s ALGORITHM
ABSTRACT

The purpose of this paper is to show how studying few variants of KARMARKAR’s
algorithm allowed us to perform a software faster than the original version presented
by KARMARKAR.

Several methods have been implemented such as : primal-dual form, two phasis method,
few methods of the calculation of the projected vector, dichotomy method and an
implicit treatment of the upper bounds of the variables.

Keywords : Primal-dual form, two phasis method, projection, dichotomy, upper bounds
of variables. _ -

I - INTRODUCTION

In the full of 1984, Narendra KARMARKAR’s new projective algorithm for
linear programming has caused quite a stir in the press (The New York Times, Time
Magazine, Science, ...) mainly because of an implementation of the algorithm presented
by the author out performed one implementation of the classic simplex method by a
factor of over 50 on medium-scale problems.

N. KARMARKAR (1984) demonstrated that his algorithm has a polynomial
bound on the worst case running time better than the ellipsoid algorithm.

In this paper, we improve the efficiency of KARMARKAR’s algorithm by :

- modifying the calculation of the projection of the vector y = D¢ ;

- showing that it is possible to implement KARMARKAR’s algorithm with large
stepsizes preserving the polynomial complexity behaviour and improving the practical
efficiency ;

- proposing heuristics for implicit treatment of the upper bounds of the variables.

II - KARMARKAR’s ALGORITHM IN BRIEF

KARMARKAR’s algorithm does not solve the standard linear programming
problems but finds an optimal solution to the restricted problem :

minimize ¢ x
st xeflnA

where c€ Z™, x e R®™ and 0@ = {x / Ax = 0} is the solution subspace of a
homogeneous system of linear equations and A is the simplex contained in R**! and

defined by :

A={x/ex=11x20}

A is an integer matrix with m rows and n columns and m < n, rank(A) = m, We
shall make few assumptions :

(i) the problem is feasible and the center of the simplex x. = (1/n, ..., 1/n)' is a
feasible point (i.e. x. € Q) ;

(ii) the minimum value of the objective function is zero, ie. ¢x* = 0 ;

(iii) a stopping criteria q is given such that ¢'x/c'x. ¢ 2%

- The main algorithm

The main algorithm begins with a starting point x. which lies in the interior of the
polytope. Let the iteration k be the current iteration of KARMARKAR's algorithm and
let x* = (x*, ..., x*,,,)" be the current point. |

AD
() Let B = [--]
c

where D = diag(x"), .., x,,,) and e is a vector with all components equal to 1.

(2) Letc, = [I- B'(BB")" B]Dc be the orthogonal projection of Dc onto the null
space of B,

(3) The objective function can be improved by moving from the center of the

simplex x. in the direction of -¢, :
=x-arc,/ ”cPH

where r is the radius of the largest inscribed sphere in the simplex, ¢ is a parameter

between 0 and 1 and || cp|| is the euclidien norm of the vector c,,

(4) The next point x*** is obtained by applying to b’ the projective transformation

(see KARMARKAR (1984)) :

1 =Db /(' D).

As shown in MINOUX (1976), the cost of computing the search direction (step
(2)) can be reduced by replacing the calculation of the pseudo-inverse of matrix by

solving an unconstrained minimization of a convex quadratic function.

An improved implementation suggested by LISSER, MACULAN and MINOUX,

which consists in performing an approximate one dimensional minimization of the
potential function at each iteration, is presented in this paper and extended to medium

scale problems.
We now turn to discuss possible ways of reducing the computational effort for

getting the search direction -c,,

IIl - CALCULATION OF THE PROJECTED VECTOR y = Dc BY SOLVING A
CONSTRAINED QUADRATIC PROGRAM

The step (2) of KARMARKAR’s algorithm consists in finding the direction -cp
of steepest descent within the polytope. MINOUX (1986) showed that the projection of
the vector y = Dc onto the null space defined by Bc, = 0 can be stated as the following

least squares problem :

(I) minimize |Dc - c,|
s.t. Be, = 0.
MINOUX proposed to solve the problem in a reduced dimension subspace. We
propose to solve problem (1) in n-dimensional space of original variables.
Let us assume the matrix A a full rank matrix and apply the optimality conditions

to the problem (I) : |
(IL1)

D¢
(1.2)

I

In IncP + Bly
B S

it
<

where y is the lagrangian multipliers vector and I, the identity matrix.
The normal equations are obtained by the system :
BB'y = BDe¢ (IL3)

which can be solved by CHOLESKY’s method (see SHANNON (1985)) or by iterative
methods. '

We apply the conjugate gradient method (see MINOUX (1986) and LISSER
(1987)) to solve the system (IL.3).

The projection vector cp is obtained by replacing the vector y in (IL1) by the
solution of the normal equations.

Note that the projection problem can be viewed as solving two sub-quadratic
programs (see HOOKER (1986)) : -

(III) minimize |z - Del|
st. ADz = 0

and compute cp by projecting the result of the program (III) on the normalization

constraint :
{aIv) C, = P z*

where z* is the solution vector of the program (IIT) and P is the matrix projection onto
{z / e’z = 0}. P is defined by :

(V) P = [I-e€'/n].

It is easy to see that solving problems (IIT) and (IV) reduces significantly the
effort of the calculation of the vector cp. The third step of KARMARKAR'’s algorithm

consists in moving in the direction -cp across a distance or where « is the stepsize and
r is the radius of the largest inscribed sphere in the simplex, i.e. r = 1/sqrt(n(n - 1)).

However, when the constant ¢ = 0,25 (see KARMARKAR (1984)), the number
of iterations grows linearly with respect to the dimension of the problem. We show in
the next section that a large adaptative stepsize can be allowed to obtain implementa-
tions of KARMARKAR’s algorithm achieving both theoretical and practical efficiency.

IV - KARMARKAR’s ALGORITHM WITH AN EMBEDDED ONE DIMENSIONAL
SEARCH SCHEME

As shown in LISSER, MACULAN and MINOUX (1987), the basic idea of the
proposed scheme consists in carrying out a one dimensional search along the same
displacement direction as defined in KARMARKAR (1984) in order to approximate the
minimum of the potential function in this direction.

Recall that the potential function is defined by :

c'x
log[---].
Ly

| =

) =
1

Note that f is defined at every point x lying in the interior of the simplex and is
linearly unimodal (see TODD and BURREL (1985)). This potential function goes to
infinity as the stepsize & approaches @,,,,, i.e. the maximum value of « for which b’, =
e/n - arc, / [cp” does not reach the boundary of the polytope.

We want o to be as large as possible subject to the condition that every
component of b’, be no less or equal to zero. It is easy to see that e, can be as large
as (n - 1) (see LISSER, MACULAN and MINOUX (1987)). To approximate a* where
the minimum of f along ¢, / ||cp|| is attained, we optimize the following program :

(VI) minimize g(e/n - ar ¢, / |lc,l)

st.(e/n-are, / Hcpﬂ) > €

where g is the potential function in the transformed space and ¢ is a small positive
number (see HOOKER (1986)). It is shown in LISSER, MACULAN and MINOUX
(1987) that all computations of the one-dimensional search procedure can be performed

in polynomial time.

Obviously, many possible search procedures using the unimodality property such
as golden section search, FIBONACCI search, etc. could be used (see MINOUX (1986)
and LISSER (1987)).

It is easy to see that small number of function evaluations is cheaper than the

other computations to be performed per iteration.

Numerical experimentations show that this variant of KARMARKAR’s algorithm
is efficient when compared to the one proposed by KARMARKAR (1984), but as the
problem treated handles bounds of the variables, we proposed a few heuristics to treat
the bounds of the variables separately like in the simplex method.

V - ON THE TREATMENT OF THE BOUNDS OF THE VARIABLES

KARMARKAR (1984) has suggested procedure using flipping technique to
handle the upper bounds of the variables (see LUSTIG (1985)). Note that a proper
proof of convergence has not yet been exhibited and the procedure has not worked well

on problems of medium size.

TOLLA (1987a) has suggested a heuristic to treat the bounds of the variables
implicitly and we proposed a procedure which works well in practice (see LISSER
(1987)). TODD (1988a) has proposed a variant of KARMARKAR's algorithm to permit
to handle the bounds of the variables just after the projection step of the algorithm.

A linear program with upper bounded variables may be defined by :

Maximize ¢'x
st. Ax<b
0<x<§B
Let the sets I' and P be defined by :

I'={x/Ax<b x>0}
P={x/x<8}

Theorem (see TOLLA (1987b))

Let x' € Int(T n P) and x* € Int(P) such that ¢'x® > ¢'x', let I,(x?) be the set of the
indices of the components of x> which do not satisfy the bounds on x, and let s defined
by :

o= (1-pxt + pPwith 0 < p<

If at least one of the bounds is violated by a component of x% the optimal point
(with regard to the objective function) of [x',] nZ n P is ;

x* = (1-px! +
where

p* = Min 8 - /(% - x) if x5 - % > 0

il (x) | X/ - X)) if x5 -x, <0
Modification of KARMARKAR’s algorithm

Step 1

Letk = 0 and x* = (x*, .., ¥)" and D = DIAG(x",, ..., x")) .

ADF

et

B = (without the constraints on the bounded variables).

Step 2
Calculation of ¢, and ¢ = ¢, / [|c,[.
Step 3
b, = e/n - arc’
where e is the stepsize and r the radius of the inscribed sphere in the simplex.

Step 4
X’I-Hl — Dk bk / (et Dk bk).
Step 5

k1 e Ing(). If x**! ¢ Int(P), then x**' = x’**!; else, compute u* as indicated
below. Let #**! = Min(g*, 1). Select £**! such that 0 < p* < p**'; then x*** = [1 -

IMl{-l-l:lxl{ + Mk+1 X’k-I-l eTn P.
Step 6
If %1 - % < ¢, stop ; else, k = k + 1; go tostep 1,
REMARK : If one variable x"j is very close to its bound ﬁj, one can put x"j = B;

and solve the reduced linear program ; this procedure is often used in linear programm-
ing and may reduce the CPU time.

VI - NUMERICAL RESULTS

Tests have been carried out on minimal cost flow problems, The linear program
take the following form :

minimize ¢
s.t. Ax < IAS
Ix < IBP

x>0

with x, ¢' and IBP (bounds) : (N x 1) integer vectors, JAS (RIGHT HAND SIDE) :
(M x 1) integer vector and A (M x N) integer matrix, each of its columns contains two
non zero elements - 1 and + 1.

The row indices were randomly generated between 1 and M (number of rows of
A). The components of the cost vector and of the RHS were generated randomly
between 1 and 10.

Two linear programming codes were used : MPSX/MIP and one implementing
KARMARKAR’s method coded in FORTRAN and tested on IBM 3090 in double
precision arithmetic, plus FRIFLO code used in EDF (Electricité de France) and written
by EA and MAURRAS (1981).

Test problems were randomly generated with respectively 10 rows and 30
columns, 20 rows and 60 columns, 30 rows and 90 columns, 40 rows and 120 columns,
50 rows and 150 columns, 500 rows and 1,000 columns, 1.000 rows and 1.500 columns,
1.500 rows and 2.000 columns, 2.000 rows and 2.500 columns and 2.500 rows and 3.000

columns.

Table I contains the results for the three codes, the number of iterations and the
CPU time for the small size test problems. Recall that the method used in KAR-
MARKAR’s code is the primal-dual, the step size & = 0.95 and the arithmetic precision
is 10E-08. The CHOLESKY method was implemented and used in the calculation of the
projection of the vector D¢ (see LISSER (1987)).
9

Note that the CPU time of KARMARKAR’s code is markedly larger than the
one obtained by the two other codes. Two reasons for this : the first is essentially the
explicit computation of the orthogonal projection .at each iteration and the explicit
treatment of the upper bounds of the variables. The second one is the primal-dual form
which makes larger the dimension of the matrix.

Table II contains the results of the KARMARKAR’s algorithm using the two
phasis method. The CPU time is divided by at least a factor 4 compared to the primal-
dual form (from 3936.24 seconds to 797.76 seconds for the fifth test). The primal-dual
form proposed by KARMARKAR (1984) gives the maximum CPU time and the

maximum number of iterations.

Table III contains the results of KARMARKAR’s algorithm using the conjugate
gradient method used in the calculation of the projected vector ¢p (see MINOUX (1983)
and LISSER (1987)). The second column shows the dimension of the matrix of the
constraints (bounds included), the third colummn shows the number of iterations of
KARMARKAR'’s algorithm, the fourth one shows the interval where the number of
iterations of the conjugate gradient method (CGM) at each iteration of KARMAR-
KAR’s algorithm is enclosed in the first phase. The results of the second phase are
shown in the fifth and sixth columns. The last column contains the CPU time.

The most important fact observed in this table is the CPU time which is
significantly less than the one obtained in table II (only 102.97 seconds instead of 797.76
seconds for the last test problem). The reason for this is the sparsity of the matrix which
is exploited when the CGM is used (see MINOUX (1987)).

Tables III and IV contain the results of KARMARKAR’s algorithm with the
primal form on the first two problems for various fixed values of the stepsize ¢ (from
a = 0.25 to & = 0.99). Note that larger values of & markedly decrease the number of
iterations and the CPU time (see LISSER, MACULAN and MINOUX (1987)).

Tables VI, VII, VIII, IX and X contain the results of the modified algorithm
- using the dichotomy method described in LISSER, MACULAN and MINOUX (1987)

10

in the second phase. The stepsize o is fixed at @ = 0,95 for the first phase. The third
column of this table gives the number of iterations for the first phase and the number
of iterations for the second phase. The fourth column shows the interval of the number
of iterations of CGM for the first phase and the number of iterations of the CGM of

each iteration for the second phase.

Two important facts are observed : the first is the number of iterations which is
less than 10 for all the problems. The CPU time of the last problem is 19.78 seconds
instead of 102.92 seconds when & = 0.95. The second prominent feature is that the value
of a is always significantly greater than 1 (see LISSER, MACULAN and MINOUX
(1987)).

Table XI shows the results of the medium size test problems obtained by
KARMARKAR’s algorithm using the dichotomy method in the second phase. Note that
the number of iterations of the second phase is about eight iterations for all the
problems.

Tables XII and XIII contain the computational results with the dichotomy method
applied to phase I and phase II of KARMARKAR’s algorithm. The number of iterations
is about 5 for phase I and 10 for phase II for the whole of the problems.

Observe that the optimum value is lightly perturbed when the dichotomy method
is used in the first and in the second phases. It is obvious that the CPU time decreases
when the dichotomy method is applied to the two phasis.

The simplex method treats separately the upper bounds of the variables, the
procedure described in the previous section gives the results contained in table XIV. The
dichotomy method is used in the two phasis. Note how the CPU time decreases when
the upper bounds are treated implicitly (from 522.547 seconds to 63.37 seconds for the

last medium size test problem).

The heuristic used to treat implicitly the upper bounds of the variables perturbs
the value of the optimum. To avoid this disadvantage, one can implement the variant
of the algorithm proposed by TODD (1988a)).

11

The most important result is contained in table XV : in fact, our modified
algorithm appears more efficient and is about 5 times faster than MPSX/MIP code.

Finally, the modified algorithm could be further improved if an efficient up-
dating method is applied. Tests of this remain for future implementations.

12

(060€ WHI UP UO SpUODSS Nd) UT SAWT} TTe) WItxobTe S AOMVWIYY PUe P00 JdIN/XSdW
‘(eouexy op 93TOTINOOTH) JQH JO OIIINd SpOR oyl JO sj[nsex Teuoriemdwop : I HIEVL

¥¢ "9c6E (42" 66 "819¢ 005-052 18° (AN 619¢C ‘E.N : G6 619¢ 051-04
£0 5281 VET | 966 "LOTC 00¥-002 8L~ 8 801¢ Qt1e0- 08 801¢ omwlo«.
68 "GLS (XA wmm ‘6181 00e-0S1 LL~ 9 9161 9910 ° 6% 9141 06-0¢t
89 .m_m ¥0T | S66 ‘8101 ooml.oo._“ v v 6101 ¥110° (44 | 6101 | 09-0¢
9°L | 8L 866 "T1¥ 00T-08 gL’ ST (487 £800° 91 AN 0E-0T
pAAR
HATL HHL J0 HA LT AW IL
ndao ganT ‘S'd0 NOISNAWIA ndo | ¥&ELT | SATIOHCDO NdD | 9aLI | JAILOHLEO | NOISNAWIA
207 =8dd 1 G6° =D XSdi O1iTdd

(Teng-TeWTEd) TR

13

Tests | Dimension | Iterations | Iteratioms | CPU Time
FPhase I Phase II
10-30 30-50 10 33 2. 42
20-60 60-100 12 48 27. 41
30-90 90-150 14 61 119, 32
40-120 120-200 17 72 348, 3
50-150 150-250 15 81 797. 76

TABLE II : Computational results with the CHOLESKY method
applied to the projection computation of the vector Dc

DIMENSION PHASE I PHASE II
DIMEN- | OF THE : CPU
SION | MATRIX Iter. | CG Iter Tter. GC Tter. TIME

| (Kmarkarkar) | Interval (Kaxmarkar) interval

10-30 30-50 10 [2 - 33] 33 [21 - 34] 1,77
20-60 60-100 12 [2 - 47] 48 {28 - 66] 8. 301
30-90 90-150 14 {2 - 571 | 61 135 - 131] | 25.67
40-120 | 120-200 17 (2 - 64] 72 [27 - 285] | 59.57
50-150 | 150-250 15 [3 - 61] - 81 [34 - 270] | 102.92

TABLE III : Iterations counts and CPU time obtained by KARMARKAR' s algorithm
using the conjugate gradient method to compute the projected vector Ce

14

TABLE IV

Tesgt 1
PHASE I PHASE II
DIMENSION | OBJECTIVE | Iter. | CG Iter. | Iter. | OG Iter. | Alpha | CPU
Interval Interval TIME
10-30 411. 91 65 [2-32] 108 [20-33] .25 11. 64
10~30 411. 94 30 [2-32] 57 | [20-33] .5 6. 17
10-30 411, 94 17 [2-32] 39 [20-33] .75 4, 26
10-30 412. 01 11 [2-32] 33 [20-33] . 90 3.36
10-30 411, 58 10 [2-32) 33 [20-33] . 99 3.3
TABLE V
Test 2
 PHASE I PHASE II
DIMENSION | OBJECTIVE | Iter. CG Iter. Iter. CG Iter. Alpha CPU
Interval Interval TIME
20-60 1018, 95 71 [2-46] '.156 [27~64] . 25 53. 04
20-60 1018. 99 33 [2-46] ;. 84 [27-64] .5 28. 52
20-60 1019. 07 19 [2-46] 56 [27-64] .75 19. 02
20-60 1018. 97 15 [2-46] 51 [27-64] . 80 17. 02
20-60 1018. 96 12 [2-46] 48 [27-64] .99 15,99

TABLES IV and V : Iteration counts, CPU time and different stepsizes
for the two phasis method of KARMARKAR s algorithm
on two selected test problems

15

TABLE VI

Test 1

Dimension | Phase | Iter | CG Iter | Obj ectiﬁre Alpha max | Alpha opt
10-30 I 11 [2-33] - - .95
10-30 1T 12 21 282. 34 2. 286 2, 254
10-30 13 25 338, 95 2. 337 2. 305
10-30 14 29 390, 22 4, 097 4. 037
10--30 15 33 406. 11 4. 083 4, 022
10-30 16 33 411. 034 5. 417 5. 336
10-30 17 33 412, 13 5,128 5. 053

CPU time = 0. 696761 |
TABLE VII
Test 2 "

Dimension | Phase | Iter | CG Iter | Obj ectiire Alpha max | Alpha opt
20-60 I 13 [2-47] - - . 95
20-60 IT 14 28 734. 262 3112 3. 067
20-60 15 33 882, 064 3. 736 3.731
20-860 16 47 962, 086 4, 348 4, 284
20-60 17 58 1003. 343 5. 943 5. 854
20-60 18 64 1014. 272 5. 865 5. 777
20-60 19 66 1013, 123 7. 406 7. 294
20-60 20 66 1018. 965 7. 82 7. 702
20-60 21 65 - 1019. 035 7. 918 7. 799

CPU time = 2. 619551
TABLE VIII
Test 3

Dimension | Phase | Iter | CG Tter | Objective | Alpha max Alpha opt
30-90 I 15 | [2-57] - - .95
30-90 IT 16 35 1123, 382 5,03 4, 955
30-90 17 56 1297. 079 3. 964 3. 906
30-90 18 70 1431, 856 5. 864 5. 776
30-90 19 89 1489. 094 6. 707 6. 606
30-90 20 105 1509. 993 8. 244 8. 119
30-90 21 114 1514, 902 9, 064 8. 926
30-90 22 124 1515, 735 8. 15 8. 027
30-80 23 140 1516. 004 10, 089 9. 936
30-90 24 243 1516, 033 9. 55 9. 405

CPU time = 7, 18596

16

TABLE IX

Test 4
Dimension | Phasge | Iter | CG Iter Chjective Alpha max | Alpha opt

40-120 I 18 [2-64] - - . 95
40-120 I 19 27 1528. 351 5. 382 5. 032
40-120 20 56 1831. 796 5. 147 5. 07
40-120 21 90 2014, 934 7. 175 7. 067
40-120 22 126 2062, 698 5. 727 5. 641
40-120 23 132 2095, 063 9. 184 9. 045
40-120 24 138 2103. 631 8,191 9. 052
40-120 25 132 2106. 598 11. 098 10. 928
40-120 26 183 2107. 068 11. 714 11. 536

CPU time = 10.088 '

"TABLE X
Test 5
Dimension | Phase | Iter | CG Iter | Objective | Alpha max | Alpha opt

50-150 I 17 | [2-60] - - .95
50-150 II .18 34 - 1806. 912 5. 671 5. 586
50-150 19 63 2232. 312 6. 046 5. 956
50-150 20 100 2458, 383 6,494 6. 397
50-150 21 173 2564, 674 8. 117 7. 994
50-150 22 185 2595, 342 6, 437 6. 341
50-150 23 218 2612, 77 8. 852 8, 717
50-150 24 235 2618, 146 11, 391 11. 216
50-150 25 280 2619. 106 12, 927 12,729
50-150 26 402 2619. 133 10. 779 10. 615

CPU time = 19, 780273

TABLES VI, VII, VIII, IX and X: Computational results
with the dichotomy method applied
to the second phase of KARMARKAR s algoxithm

17

DIMENSION Phase I Phage IT
DIMENSION - QF CRU OPTIMUM
MATRTX Iter | CG Iter | Iter| CG iter - time
500-1000 1000-1500 40 [2, 62] 7 [38, .1002] 268. 49 10815
1000-1500 | 1500-2000 44 [2, 58] 8 | [33, 1002] | 433.33 | 11127.063
1500-2000 2000-2500 50 [2, 55] 7 [28, 1002] 470, 32 10520. 235
2000-2500 | 2500-3000 54 | [2, 52] 8 (31, 1002] | 659.28 | 10582.988
2500-3000 | 3000-3500 56 [3, 52] 7 [27, 1002] | 651,77 | 10447, 249
TABLE XIT : Computational results with dichotomy method
applied to phase II of KARMARKAR' g algorithm
TABLE XII
Phase I FPhase II
Dimension Optdimum CEU
Iter | CG Iter | Iter CG Iter time
10-30 5 [2, 33] 3 [22, 32] 412. 06 . 593
20-60 4 [2, 47] 6 [27, 62] 981. 133 1. 372
30-90 4 {2, 57} 10 [33, 148] | 1514, 213 6. 859
40-120 4 {2, 64] 6 (27, 129] | 2015.83 4, 436
50-150 4 [3, 61] 10 {36, 402] | 2603.3 19. 017
TABLE XIII
Phase I Phase II
Dimension Optimum CPU
Iter | CG Iter | Iter CG Iter time
500-1000 4 [3, 62] 7 [39,1092] 10688. 641| 193.11
1000~1500 4 {2, 58] 8 [33,1002] | 11080.635] 313.17
1500-2000 4 [2, 55] 10 [29,1002] | 10538.911| 577.03
2000-2500 4 [2, 52] 9 [29,1002] | 10664.199| 572. 953
2500-3000 4 [2, 62] 8 [29,1002] | 10417.653| 522. 547

TABLES XIT and X[IT : Computational results with the dichotomy method

applied to phase I and phase II of KARMARKAR' s algorithm

18

Two phasis method : explicit
treatment of the bounds of

Two phasis method : implicit
treatment of the bounds of

variables variables
Dimension :
Iter | Iter CPU- Iter | Iter CPU
Matrix A B PII time Matrix A I PII time
10-30 30-50 5 8 . 598 10-30 4 2 , 082
20-60 60-100 4 6 1.372 20-60 4 3 . 272
30-90 90-150 4 10 6. 859 30-90 4 2 . 409
40-120 120-200 4 6 4. 436 40-120 4 2 . 531
50150 150-250 4 10 19. 017 50-150 4 2 . 082
500-1000 | 1000-1500 4 7 193. 11 500-100 4 4 11, 89
10001500 1500-2000 4 8 313.17 1000-1500 4 5 17. 948
1500-2000 | 2000-2500 4 10 577.03 1500-2000 4 6 33.089
2000-2500 | 2500-3000 4 9 572. 953 | 1500-2000 4 8 54. 78
2500-3000 | 3000-3500 4 8 522, 254 | 2500-3000 4 9 63. 37

TABLE XIV : Computational results of KARMARKAR s algorithm
with explicit/implicit treatment

of the upper bounds of the variables

Dimension | Explicit treatment | Implicit treatment
10-30 412, 06 375. 03
20-60 981, 133 1012, 76
30-90 1514. 218 1082. 57
40-120 2015. 83 1998. 94
50-150 2603. 8 2612. 69

500-1000 10688. 641 9787. 44

1000-1500 11080. 635 10366. 64

1500-2000 10538. 911 10017. 33

2000-2500 10664. 199 10200. 35

2500-3000 10417, 653 10171. 25

TABLE XV : Objective function value cobtained by KARMARKAR' s algorithm
with explicit/implicit treatment of
the upper bounds of the variables

19

KARMARKAR! g code MPSX/MIP code
Dimension Iter Iter - CPU Opti- CPU
Phase I | Phase II Optimm time Iter mum time
10-30 4 2 37503 | .082 | 15 | 412 .72
20-60 4 3 1012. 76 . 272 42 1019 . 74
30-90 4 2 1482.57 |. .409 64 1516 .77
40-120 4 2 1998. 94 . 532 84 2108 .18
50-150 4 2 2612, 69 . 737 112 2619 . 81
500-1000 4 4 9787.44 | 11.89 487 10802 | 160.2
1000-1500 4 5 10366. 64 17.948 | 479 11129 175. 2
1500--2000 4 6 10017. 33 33.089 | 493 10517 211.2
2000-2500 4 8 10200, 35 | 54.78 496 10577 | 248.4
2500-3000 4 9 10171. 25 63. 37 496 10449 284.0

TABLE XVI : Computational results obtained by KARMARKAR' s algorithm
(with implicit treatment of the upper bounds of the variables)
and MPSX/MLP code :

ACKNCOWLEDGEMENTS

Many thanks to Mrs., Frangois, LAMSADE, for her careful +typing of the
manuscript.

20

REFERENCES

B.P. BURRELL, M.J. TODD (1985) : "The ellipsoid method generates dual variables”,
Mathematics of Operations Research 10, 688-700.

K. EA, JF. MAURRAS (1981) : "Une adaptation des méthodes primales et duales du
simplexe au probléme de flots & colt minimal sur un graphe sans multiplicateur”, EDF
(Clamart), HR 31-0556.

C. GONZAGA (1985) : "A conical projection algorithm for linear programming’,
Manuscript, Department of Electrical Engineering and Computer Science, University of
California, Berkeley, to appear in Mathematical Programming,

J.N. HOOKER (1986) : "KARMARKAR’s linear programming”, Interfaces 16, 75-90.

N. KARMARKAR (1984) : "A new polynomial time algorithm for linear programming",
Combinatorica 4, 373-395,

A, LISSER (1987) : Un logiciel dérivé de I'algorithme de KARMARKAR pour la
résolution de programmes linéaires de grande taille, Université de Paris-Dauphine,
These de Doctorat.

A. LISSER, N. MACULAN, M. MINOUX (1987) : "Large steps preserving polynomia-
lity in KARMARKAR’s algorithm", Université de Paris-Danphine, Cahier du
LAMSADE n*® 77.

LJ. LUSTIG (1985) : "A practical approach to KARMARKAR’s algorithm", Technical
Report SOL 85-5, Department of Operatzons Research, Stanford University, Stanford,
CA.

M. MINOUX (1983) : Programmation mathématique : Théorie et algorithme, Volume
I, Dunod, Paris ; English translation : John Wiley and Sons, 1986.

M. MINOUX (1986) : "New suggested implementations of KARMARKAR’s algorithm",
Université de Paris-Dauphine, Cahier du LAMSADE n° 71.

D.F. SHANNO (1988) : "Computing KARMARKAR’s projections quickly", Mathemati-
cal Programming 41, 61-71.

M.J. TODD (1988a) : "Exploiting special structure in KARMARKAR'’s linear
programming algorithm", Mathematical Programming 41, 97-113.

M.J. TODD (1988b) : "Improved bounds and containing ellipsoids in KARMARKAR’s

linear programming algorithm", Mathematics of Operations Research, Vol. 13, n° 4, 650-
659.

21

P. TOLLA (1987a) : "Validation numérique de l'algorithme de KARMARKAR",
Université de Paris-Dauphine, Cahier du LAMSADE n° 76.

P. TOLLA (1987b) : "Amélioration des performances de I'algorithme de KARMARKAR

dans le cas de programmes linéaires i variables bornées supérieurement”, Université de
Paris-Dauphine, Cahier du LAMSADE n° 82.

22

