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APPLICATION DU SURCLASSEMENT DANS UNE PROCEDURE INTERACTIVE POUR
LA PROGRAMMATION MULTICRITERE

RESUME

Nous proposons une nouvelle approche pour la résolution des
problémes d’optimisation formulés en termes de programmation
mathématiqgue multicritére. Elle est fondée sur l’utilisation d’une
relation de surclassement modélisant les préférences du décideur
dans les premiéres étapes d’un processus interactif. Ce modéle des
préférences est traduit au cédne des poids d’une fonction
scalari=zante engendrant un sous-ensemble de points non-dominégs du

plus grand intérét a4 l’aide d’une reégression ordinale, La
méthodologie présentée s’applique aussi bien A la programmation
lindaire gue non-lingdaire C(discréte inclused). Elle peut é&tre

classifiée comme une méthode de réduction de 1’espace des vecteurs
de poids avec une interaction constructive visueslle.

MOTS-CLES
Programmation mathématigque multicritére, procédure interactive,
surclassement, regression ordinale, réducticn de 1’'espace des

vecteurs de poids

OUTRANKING-BASED INTERACTIVE PROCEDURE FOR MULTIPLE OBJECTIVE
PROGRAMS

ABSTRACT

We propose a new appreoach to sclving optimization problems
formulated in terms of muliiple objective mathematical programming.
It is based on the use of an outranking relation for modelling
decision maker’s preferences in early stages of an interactive
process., This model of preferences is translated into a cone of
scalarizing function weights generating a subset of npondominated
points of greatest interest, using an ordinal regression method. The
presented methodology applies both to linear and to nonlinear
Cincluding discreted) programming problems. It could be classified as
a welghting vector space reduction method with a visual constructive
interaction. '

KEYWORDS

Multiple Objective Mathematical Programming, Interactive Procedure,
Outranking, COrdinal Regression, Weighting Vector Space Reduction



INTRODUCTION

In practice, interactive procedures have proved to be most effective
in searching tradeoff space of mulitiple objective programs for the
best compromise solution. Existing interactive procedures represent
ei ther descriptive or constructive conception of interaction
{Bouyssou, 1984; Vanderpooten and Vincke, 18982)., The first one
poztulates that decision maker’'s (DM’s) preferences are stable and
that he can control them in a logical and coherent way. The
interactive process consists then in description and exhibition of a
pre-—existing global utility function. Thus, rather than speaking
about. interaction, one should speak here about iterative acquisition
of information. In the latter approach, the DM's preferences are not
supposed Lo pre-exist but they can evolve in the interactive
process. The system of DM’'s preferences is constructed basing on
some regularities of preferential attitudes, accepting however their
instability and incompleteness. The interactive process 1is a

learning process in the trial and error spirit.

In Dﬁr opinion, the constructive conception of interaction is more
realistic. Indeed. wavering, inccherency and hesitancy of the DM in
the interactive process do not follow from the difficulty of
expressing something what is known but from imprecision, uncertainty
and inaccurate determination inherent +to decision models. Roy
198920 claims that the elements of arbitrariness which have an
important impact on the model come essentially from four sources.
The first three are related to the quality of data which are uzed to
formulate objective functions and constraints. The last source is
related Lo the complexity of the model interactions with the

modelling process.

A key element of an interactive procedure is construction of
successive proposals. When elaborating a construction process, two
basic components are usually defined (Vanderpooten, 1989):
—preference parameters which convey preference information,
—a scalarizing funciion whose purpose iz to make use of

preference information in order to evaluate alternatives.



However, the use of a single scalarizing function signifies that the
available preference information is sufficient to compar e
alternatives using indifference and sirict preference relations
only. The elements of arbitrariness inherent to the model bring this

assumption in gquestion.

In MCDA concerning a finite set of alternatives, it is recommended
CRoy, 198B) to distinguish the three following relationz for any
ordered pair Ca,.b) of alternatives:

aPb, i.e. ais significantly preferred to b,

al b, i.e. a and b are eguivalent,

aQb, i.e. ais weakly preferred to b.
Introduction of Q corresponds to the definition of indifference and
preference thresholds qg and Pg' respectively, for criterion g. If g
is to be maximized,

alb &« -nggCa)J < gfa) — glh) = ngng)D,

aQQb % ngngD) < gCal - gib) = ngngDD.

aPb & ngngD) < gCal) — glhd.
The following logical conditionz are impozed on qg and pg, supposing

a minimum of coherence in DM’'s preferences:

Cglhld - CgCaldd CgChdd - Cglall
_qg g qg 9 Pg o Pg g

= -1, z -1,
gChd - gCal gChd - gCad

Criterion g involving indifference and preference thresholds is

called pseudo—criterion.

Roy (19850 proposes moreover to handle =situations where the DM is
not able or doesn’t want to make distinction between a P b, a Q@
and a I b. He uses a grouped relation § called ocutranking relation.
a 8 b means that a is at least as good as= b, non a 8 b and non b & a

means that a and b are incomparable. The outranking relation can be

valued between O and 1 to express the strength of affirmation "a
outranks b*. It is then called fuszsy outranking relation.
Moreover, at the beginning of the interactive process, the DM

usually does not know much, neither about the shape of the feasible
set., nor about discrimination power of particular objective
functions. This fact., together with the above mentioned

arbitrariness of the model, encouraged us to substitute a single



scalarizing function by the fuzzy outranking relation in early

stages of interaction.

We propose an interactive procedure for multiple objective
programming which ﬁses an outranking relation to model preliminary
preferences of the DM. This relation is translated into a cone of
scalarizing function directionz Cweightsl generating a subset of
nondominated points of greatest interest to the DM, using an ordinal
regression method. This subszet iz then scanned by the DM and if he
selects the best compromise point the procedure stops. otherwlse
further contraction of the cone i1s performed which best fits the
DM's preferences. A preliminary idea of +this procedure has been
outlined in (Stowinski, 1988).

A general scheme of the procedure will be presented after a formal
statement of the problem. Then, particular steps of the procedure
will be described in detail. The description will be completed by an
illustrative example. In the final section, some concluding remarks

will be made.

PRCELEM STATEMENT AND BASIC DEFINITIONS

The general multiple objective programming problem is formulated az

max {91Cx)=zi}

e e s n CP13
max {gka)=zk}
s.t. x € D
where x=[x1....,xn], functions gJ need not to be linear and set D

need not to be convex., It is assumed that each objective is bounded
over D and that there does not exist a point in D at which all

objectives are simultanecusly maximized.

Froblem (P1) can also be stated in a more compact form

max {z* P>

s.t. z € 2

where z=£zl,....zk1 and Z is an image of set D in the objective
space, Z <& Ek is the set of potential outcomes, whiech will be

assumed toc bz compact.



Point ='eZ is nondominated iff there is no zeZ such that zj223 vj
and zj. and zi>z£ for at least one i. Point =z’€Z is weakly
nondominated iff there is no zeZ such that zj>23 Vi. The set of all
nondominated points is the nondominated set, dencited by N. Sclution
xD iz efficient iff its corresponding objective vector is
nondominated. The set of 2ll efficient solutions is the efficient
set. For other definitions concerning nondominance and efficiency

sge e.g. Wierzbicki (13986).

Another useful definition is that of the augnented weighted

Chebyshev metric in the objective space:

k
sCZz, A, P20 = max {K,Czj—zj)} + o5 Czj—z.? Cid
i=,k =1 J
where z: = max {ngx) : x = Dy + sj, 5320 iz moderately small, A =
k
LA, ... 1 is a weighting wvector, A, 620, T Aa,=l, and p is a
L k J P
sufficiently small positive number. The diagonal direction of

sCz,A,p) iz defined by —-Cl-A +17x, 2. Direction —C1-A P g W |

17" k 17" k
can be =een as generator of a cone in Rk with the origin in z*.

GENERAL SCHEME OF THE INTERACTIVE PRCCEDURE

The general scheme of the proposed interactive procedure is the

following.

Step 1. Generation of a =mall (finited subset A of nondominated
points (from 6 to 30) as representative as poszible of the
nondomi nated set M.

Step . Construction of fuzzy outranking relation S in subset A,

Step 3. Construction of two complete preorders 5, P in subset A,
using so—czalled descending and ascending distillations of =

Step 4. Assessment of two scalarizing functions (augmented weighted
Chebyshev metrics) as compatible as possible with P and P,
respectively, using an ordinal regression methed.

Step 5. Construction of a convex cone in the objective space on the
basis of diagonal directions of the scalarizing functions
assessed in step 4.

Step 6. Interactive exploration of a nondominated subset NcN

]



delimited by the cone. The procedure terminates in this step
if a best-~compromise point has been found, or generates

a new subset AcN and returns to step 2, otherwise.

The above procedure involves man-computer interaction of two kinds:
-interactive construction of fuzzy outranking relation 5,
modelling preliminary preferences of the DM {step 22,
~interactive exploration of an efficient region delimited by

the cone defined from S C(step 6D.

DESCRIPTION OF STEPS

Step 1

The generation of sample A of nondominated points can be performed
using one of several existing methods, for example the method by
Choo and Atkins (189802 which we applied already in a different
context (cf. Jacquet-Lagréze et al.. 1987; Slowinski, 1986, 19900,
The techniques by Meorse (189800, Térn (19800 and Steuer (1986, ch.142
can also be used in this step. The last one is the most general and
can compute properly nondominated points of integer and nonlinear

multiple objective programming problems.

In order to obtain a sample of the most representative points for a
given region, it is beneficial to generate first a larger finite set
of points and then, te filter them using a forwvard fililering
technique (Steuer, 1986, ch!ii). In result of forward filtering, one
gets a required number of points that are the most different from
one another. It is also recommended to equalize the ranges of the

coordinates of nondominated points prior to the generation.

Step 2

Sample A is then presented to the DM wheo 1is taking part in
construction of a fuzzy outranking relation £ in set A. The

construction of S proceeds as in ELECTRE IIT (Roy, 1978D.

Llet a be a nondominated point belonging to A, The j-th coordinate

of thi= point in the cobjective space is called the j-th performance



of a, denoted by z? Ci=1,....k2. In other words, point a is

represented by the vector of performances z® in the objective space.

The elements of arbitrariness inherent to the definition of the

performances lead the DM to compare points a,b € A using
pseudo-criteria, i.e. z‘j with indifference and preference
thresholds, qJ and pj, respectively, Jj=1,...,k. Fuzzy outranking

relation S is characterized by the definition of an outranking
degree associating with esach ordered pair of points (a,b) a number

0fdfa,b2%1l; d is a measure of credibility of the ocutranking a 5 b.

Calculation of d proceseds in the following way. For each pseudo-

criterion z,, twe indices are calculated first for all pairs Ca,bd

J

of points belonging to A: concordance index cha,bJ and discordance
index DJCa,bD. The former expresses to what extent the evaluation of
a and b on zj is concordant with assertion "a is at least as good as
B”. The latter indicates the strengih of its opposition against this
assertion. DjCa,bD involves a wveto threshold vd. i.e. the bound
beyond which the opposition to the hypothesis a § b is sufficiently

motivated. The definition of both indices is given graphically in

Fig. 1. The partial concordance indices are then aggregated taking
A
D (a,b) ¢j (a,b)
1 p———————— -
\
~
N
N
N
~
N
0 = e Y
Zi 7Y TP 2j~q 2] o

Fig.1l. Concordance and discordance indices for a,b & A
and pseudo-criterion z‘j

into account relative importance of criteria defined by intrinsic
coaefficients kJCEOD,
k k
Cla,bd) = ¥ chjCa,b)/ r kJ
J=1 J=1
The degree of credibility d(a,b) is obtained from the global
concordance index, weakened by discordance indices Cup to the point

of its annulment),



1-D,Ca,bd
. = _‘—"‘j —enr - -
dCa, bd Cla,bd J;] 1-cca.bs * J L = DJCa.bD > Cla,bd>

Interesting remarks about how to give numerical values to thresholds
and importance coefficlients, and how to test the robustness of the

outranking relation, have bzen made by Roy (1888bD.

Step 3

The aim of this step is to derive two complete preorders in A, as
different as possible, from the fuzzy outranking relation. Preorder
P is obtained in a descending way, i.e. selecting first the best
points, then the following, until the worst. Preorder P is cobtained
in an ascending way, i.e. the selection preocess starts with the
worst points and ends with the best ones. In ELECTEE III, this

procedure is called distillation. Let us sketch the procedure.

First, a crisp outranking relation g is derived from the fuzzy

relation represented by d:
as™w irf dCa,bd>y, and dCa,bd>d(b,ad+sldCa,bd]

where ¥y is close to 1 and sldl=a+f3d Citypically, oa=0.3, f=-0.13).
Then, for every point a, the following discriminating indices are

calcul ated:

pft:a:: = |<beA : a S*' bY|, called y, ~power of a,
fi‘(a) = |[<beA : b st ar>|, called ¥, “weakness of a,
and qi"tﬁa) = pz:lCaD - fiit‘:aj, called y1-quo:l ification of a.

U=zing yi—qualificaticn, the sets of best (C,) and worst CC,2 points

1 1

are constructed:

C, = {aeh : q71CaD = g, = max [quCch}
1 A A A

ceaA
C, = <aeh : g Cad =g, = min [gCed 1>
=1 A A T, A

The procedure continues with ('—21. Cdescending distillation) and c_:l

Cascending distillation), and y8<y1 such that for 61:

¥y = max [dCa,bl]

dCa,b)e}i
where }a = {dCa,bd : dCa.b)(yi—sCyi), Ca,bDeEi
somse iteration r of the descending, and t of the ascending

and sCr1)=a+By1}. in



distillation, yr=yt=0. Then EP and gt become the first and the last
equi valence classes in descending and ascending preorders,

respectively. The procedure is repeated for sets A= A\Er’ A = A\Qt,

and continued until A = A = 0O

The resulting complete preorders P and P are different in general -~
this difference reflects the range of DM’s hesitancy in the
comparison of nondominated points at the present stage of problem

sol ving.

Step 4

Given two complete preorders P and P in set A, two scalarizing
functions are assessed, as compatible as possible withrﬁ and P,
respectively. As Lhe scalarizing function we use the augmented
welghted Chebyshev metric. We have chosen this metric because of two
main advantages: it can be used to find properly nondominated points
in a nonconvex set, and its assessment according to ordinal

regression reduces to linear programming.

The idea of ordinal regression was already used to as=zess a
piecewise-linear utility function for multiple objective linear
programming Ccf. Jacquet-Lagréze et al., 1987, Siskos and Despotis,
19890,

Let s’ denote the scalarizing function perfectly compatible with P,
s - the scalarizing function being assessed and o - an approximation

error. For every a e A,
S'CZo A ) = SCZTL AP + oCad

Assuming a small threshold &>0, one can express all relations which

constitute ﬁ:

aPb & SCzP A0 — 5C22 A0 + oCb) ~ o€ad = & <

alb & -6< §Czb,A,pD - §Cza,A.pD + olbd -~ oCay < & caEd
Substituting (1) to right-hand side of (&) and (3, we get

k k
Yy T Y, + o ¥ Czj—z?) -2 % sz—z%) + oChl — olad =2 & C4)

j=1 =t J I

10



k k

-6 <y -y, +PEL Czjuz?) - Czj—z?D + oCb) - oCad < & CBd
J=1 J=
* b
} - -
Y, = XJCZJ ZJD, J=1l,....,k CBD
E3 2
2 A,z -z.), =1,...,k C73
Ya = 250%57% J

Parameters A and p of the scalarizing function s follow from the
linear program:
min < § oCad >
acsA
s.t. €4 if a P b
C8) if a I b

) VC

for all pairs a.b € A such that

a and b are 'consecutive® in P

€&d,C7o
oCal) = O for all a A K
0= p=0.001, A, 20, j=1,...,k, FAa,. =1

LP problem C(F3) has 2lAal+k+1 variables and at most Ck+22 |A]

constraints.

Analogical LP problem can be set up for . The parameters of s and ]

calculated in this step are denoted by A, 5 and A, p, respectively.

Let us notice that solutions of LP problems (P30 may not be unidque.
So, it is recommended to perform post-optimal analysis in order to
capture the stability Cimprecision) of estimated functions s and s.
The sets of weighting vectors A and A corresponding to equivalent

solutions of (P33 are denoted by £ and £, respectively.

Step B

Diagonal directions of Chebyshev metrics s and s,

"C1/11,...,1/lk3 and —Ci/li,...,i/hkj

can be used in different ways to define a convex cone emanating from
z* in direction of the nondominated set N, For example, it can be
obtained from rotation of the diagonal directions round the axis
—[2/CA, +A

1 =1
presented in (Stowinski, 19882, The cone generates a nondominated

3,...,8/Cik+§k)], or using a simple construction procedure

subset N < N corresponding to current preferences of the DM,

modelled by S.
Delimitation of the nondominated subset ﬁ should be considered

11



Jointly with the technique of scanning this subset (step 6. We

propose to organize step 5 in the following way:

Step 8.1. Create union £ of the sets of weighting vectors ocbtained
in step 4: £ = ¥ U £.

Step 8. 8. Calculate 1 = min €A.> and u, = max {A >, J=1,...,k.

Jonere JoxNee
J J
Step 5.3, Define set 8 of weighting vectors:
k
2 = {Aekk : oAl ,u, 1, j=1,...,k, LA, =12
3750 L7
J
Since vector —Cifki....,i/hkb is a generator of the cone originating

in z*, the set of all A € £ createz the convex cohe generating
subset N < N. Precigsely, minimization of sCz. A,00 on set Z, yields

nondominated point z e ﬁ. for every A e 8.

Step B

This step is again an interactive one. In order to explore subsetl N,
we can use the scanning technique of Steuer and Choo (19833, The

whole step is then organized in the following way:

Step 6.1. Randomly generate a lérge number CmSOxn). of weighting
vectors from 8. Filter this set Lo obtain a fixed number C(2xn) of

representative weighting vectors.

Step 6.2, For each representative weighting wvector A, solve the
augmented weighted Chebyshev program: min {sCz,A,pd)>, s.t. =z € Z,
where p is a mean of p’s obtained for s and S in step 4. Filter the

C2xn) resulting nondominated points to obtain w points CazkD.

Step B6.3. Present the 7 points to the DM and ask him to select the
best compromise point. If it has been selected then STOP, otherwise
continue and go either to step 6.4a or to step 6.4b, upon regquest of
the DM.

Step B6.4a. Gather the w points in set A and go back to step =2,
possibly with finer thresholds qJ and pJ.

Step B.4b. Ask the DM to select from among the rm peoints (possibly,
plus some other ncondominated points known from previcus iterationsd,
at most k points with the least bubl satisfactory scores on
particular objectives. Create a new set £ of weighting wvectors

correspaonding to these points and go back to step B.2.

la



Both wversions of step 6.4 result in reduction of the weighting
vector space Ccone contraction) for the next round of exploration.
In the case of MOLP, a useful option in step 6.3 consists in display
of objective wvalue itrajectories betwsen any itwo nondominated points
€cf. Korhonen and Lazkso, 18863, Other scanning methods can also be

used in step 8§ (cf. Lewandowski and Wierzbicki, 1988D.

TLLUSTRATIVE EXAMPLE

Let us consider the following MOLP problem Ccf. Steuer, 1986D:
max {x, =z 3}

> CP4D

3 L

o

max {xX.==z

max {x_ =%

W
W n =

s.t. Exi + Bxa + 3x3 = 30
%, + 3x2 + Bxs =6

5x1 + 3xa + Bxs < 30

Ry 2Ry Xy 2 0

The nondominated set N is shown in Fig., 2. It is composed of three

triangular pieces.

Step 1. Sample A of nondominated points Cef. Table 1 and Fig. 22 has
been obtained using the method by Choo and Atkins (19800,

Step 2. The DM specifies the Lthresholds and the relative importance
of criteria required for construction of fuzzy outranking relation =

in set A (Table 2).

Table 1. Set A Table 2. Data required for
construction of S in A
Point z z z
1 = 3
Thresholds Z, za Zy
2 .24 1.87 1.87 indifference 0.2 0.2 0.2
b 3221 1.40 1.40
preference 0.4 0.4 0.4
o] 1.68 £.93 1.40 veto 0.6 6.6 0.8
d 1.68 1.4 2.91 N ) )
= 4.15 0.93 0.93 i mpor tance
f 1.11 3. 96 0. 93
g 111 0. o3 3. B1 coefficient 1 1 1
h 5,08 0. 46 Q. 48
i 0. 59 4.54 0. 46
J 0. 898 0. 46 4,31

13



Step 3. The result of the distillation procedure applied o©on the

fuzzy outranking relation € is shown in Fig.2

23 z*=(5,5,5)

54 zg= (2.83, 0.56, 2.36) DISTILLATIONS:

/ 2 = 52-54,2-12, 1.34)  DESCENDING ASCENDING
1 2

1.07,2.13, 2.8) _
P P

e

(@)
0 L ' s & '
. i 21 © (£)

3/ (ab,n,i,j) e.g
= (0.34,025, 0.41)

= (0.32,0.38, 0.30) —1
¢=0 _ hi,j

Fig. 2. Feazible set of problem (P42

(41
MOl )
Il

I

Step 4. Using the ordinal regression method, two scalarizing
functions s and £ have been obtained, perfectly compatible with the
descending and ascending precrders, respectively. Diagonal

directions of these functions are shown in Fig. 2.
| 2

3.0
2.5 A
2.0 4
15 -
1.0 1

0.5 4

ZA z¢ ZB

Fig. 3. Objective value trajectories

Step §. Diagonal directions define set & of weighting vectors:
k

£ = {Aeka : A, e€l0.32,0.341, A _l0.25,0.38], A\ _e[0.8,0.411, T A, = 1>
1 2 3 3=t J

14



2 defines implicitly the cone originating in z* which generates

L
subset N < N.

Step 6. Objective value trajectories shown in Fig. 3 scan subset N
A B
between points z and =z .

The next iteration can start either from step B.4a or from step 6. 4b.

CONCLUDING REMARKS

The interactive method presented in this paper can be classified as
a weighling vector spoce reduction method with a Cvisuall
consiructive interaction. Let wus conclude with the following
comments.

Ca) The method can be applied to linear and nonlinear Cincluding
discretel problems.

) No assumption is made about any implicit utility function.

{c? The method involves interaction of two kinds:

~interactive construction of fuzzy outranking relation S,
modelling preliminary preferences of the DM (step &),
—interactive exploration of an efficient region delimited by
the cone of scalarizing function directions Cweights) defined
from S Cstep 6.

Cdd) In spite of monotonic reduction of the weighting vector space
Ccone contractiond, the DM can retract to points abandoned in
previous iterations (cf. step 6.4bD.

Ced The method is based on a learning-oriented perspective. The
difference belween preorders resulting from distillation of S
reflects the rangs of DM’s hesitancy in the comparison of
nondominated points at the present stage of problem solving.

Cf> In the MOLP case; a graphical display of objective value
trajectories enables a visual interaction.

Cgd) The calculation steps widely depend on the problem. Several
optimization steps are to be performed in order to produce

samples of nondominated points Csteps 1 and 62,
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