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UNE PROCEDURE INTERACTIVE POUR LA RESOLUTION D’UN
PROBLEME NON-LINEAIRE MULTIOBJECTIF.

RESUME : Ce papier présente une méthode de résolution dun probléme non-
linéaire multiobjectif. On y décrit une procédure interactive basée sur la méthode
GRG (Gradient Réduit Généralisé) de J. Abadie (1978). On développe plusieurs
heuristiques pour prendre en compte le probléme de la recherche d’une solution
globale. La méthode comporte trois grandes parties :

1) génération d’un sous-ensemble de I'ensemble des solutions efficaces ;

2) définition de I'information concernant les préférences du Décideur ;

3) détermination d’une solution de compromis basée sur des techniques de la
programmation non-linéaire et des procédures de recherche de points de
références (point Tdéal, point Nadir). Le programme développé permet de
résoudre des problémes de taille moyenne sur micro-ordinateurs.

Mots-clés : Programmation non-linéaire multiobjectif, méthode interactive.

AN INTERACTIVE MULTIOBJECTIVE NONLINEAR PROGRAMMING
PROCEDURE

ABSTRACT : This paper develops a method for interactive MultiObjective
NonLinear Programming procedure (MONLP). It provides a detailed description
of an efficient algorithm, and reports on promising computational results. It also
discusses several alternatives strategies for implementing GRG code (Generalized
Reduced Gradient), which is known as one of the " best " method for solving
nonlinear optimization problems (Abadie, 1978). The method relies on three
steps : |

1) generation of a subset of feasible efficient solutions ;

2) interactive definition of information concerning the Decision Maker (DM)
preference structure, relative to its outcomes ;

3) determination of a compromise solution using nonlinear optimization, global
analysis and ideal point search procedure in the outcome space.

Following this methodology, it is possible for the DM to find its final solution. A
micro-computer version (for medium problems) of the method is available.

Key-Words : Nonlinear multiobjective programming, interactive method.



1. INTRODUCTION

Multiobjective Mathematical Programming (MMP) is one way of
considering, explicitely and simultaneously, multiple objectives in a mathematical
programming framework. Many of the algorithms for solving multiobjective
mathematical programs (MMPs) are defined as interactive procedures.
Consequently these interactive approaches require quick response times and easy-
to-use software. The purpose of this paper is to describe an interactive -
multiobjective nonlinear programming procedure for determining a " best
compromise " solution.

The basic idea is to provide a mean to aid the DM without an explicit
definition of a utility function in terms of its preference characteristics. Our
decision situation involves a single DM who has three objectives. Without loss of
generality, the objective functions may all be assumed to be maximized.

This article is organized as follows. In section 2 we define the problem and
we discuss some specific questions and possible heuristics to resolve them. In
section 3 we outline the method to be used. A brief report on computational
experiments is given in section 4. We also discuss certain computational aspects
of our method. Section 5 is devoted to conclusions and further developments.

2. STANDARD MULTIOBJECTIVE FORMULATION.

In this study, we consider MMPs in the following equivalent forms :

I Maxf(x)

I Max £)(x) or  Max F(x)=( f,(x), L,(x), x)) (D
[ Maxf(x) st. xeA

| st.xeA

where ;

-x € R x = (X;, X,,..,X,)}, is the vector of decision variables ;

- F(x) is the vector of objectives to be " maximized " ;

- A is the feasible region, defined by equalities and/or inequalities constraints



gj(x) <0; j= Luok
gx) =0; j = k+tl,...m
3, <x5<b; i=1..,0

- n < 200 decision variables ; m < 100 constraints ;
- all the variables must have upper and lower bounds (which may be + » or - «
respectively).

Let us suppose that :

- all nonlinear functions f; (1=1,2,3) and g (j=1,2,...,m) are defined over A and
differentiable everywhere ;

- each objective f; is bounded inside A, and A is not necessarily convex
(cf.Fig.1);

- there is no point in A at which all objectives are simultaneously maximized.
In such a case, this point, called a " superior solution ", is the solution of
problem (1) ;

- the functions f, and g; are not necessarily convex;

- E; denotes the set of efficient solutions.

In MMPs, the objectives describe some aspects which are conflicting, and
usually noncommensurable. Thus, it is difficult to combine them into a single
objective. Consequently, the concept of optimality for single objective
optimization problems cannot be applied for MMPs.

Fundamental to the MMP is the Pareto optimal solution. Conceptually, a

Pareto optimal solution of MMPs is one where any improvement of one objective
function can be achieved only at the expense of another criterion.
Mathematically, different notions of Pareto optimality are defined (see for
instance, Wight, 1982). An example is the concept of a properly efficient solution
(Geoffrion, 1968), or a quasi-efficient solution (Arrow and Hahn, 1971 ; Lowe
and al., 1984). Here we focus on the concept of a strong efficient solution (see
for instance, Steuer, 1986, chap. 14, p.419-453).
Definition 1 : a point X € A is said to be a strong efficient solution, or
equivalently strong Pareto optimal solution to the MMP (1) if and only if it does
not exist another x € A such that fi(x) > f;(x’) for all i=1, 2, 3 and f(x) > f(x)
for some i=1, 2, 3.



Definition 2 : a point X’ € A is said to be a weak efficient solution to the MMP
(1) if and only if it does not exist another x € A such that f(x) > f(x’) for all i.

Definition 3 : the ideal point for MMP (1) is a point in the outcome space,
denoted by F', where F" = (£}, f;, )", F € R® and such that f; is the optimal
objective function value for the problem (Pi)

Max £(x)

(Pi)
| st.xeA

In other words, f; = £(X}), where X; is the optimal solution of (Pi) , i=1,2,3 .

In most cases, there will be many efficient solutions. One of these will be
preferred by the DM, in terms of its outcomes. However, determining what this
solution is, requires further information from the DM concerning his preferences.
One way of expressing this information is through the use of a value function
over the multiple objectives of the problem (see for instance Jacquet-Lagréze and
al. 1987).

2.1 EXAMPLE : to illustrate the above definitions, consider the following
example :

Max f; = x; + x,
Maxf, = x, - x;
s.t.
(%,-6)Y + (x-5) > 16
0

Xy
X

0
0

IA 1A

1
5

IA A



Fig. 1l : feasible set A in the decision
variables space. A is non-convex.

The plot of the feasible set A is shown in Fig.1. The maximum solutions are B
and D for f; and £, respectively. In Fig.2, we have plotted the values of the
objective functions for this problem. Each feasible solution in Fig.1 has a
corresponding point in Fig.2, for instance B’= F(B) = (15,-5).

Clearly, it appears that the strong efficient solutions set in the outcome space
(Fig.2) is B, = [D’,C]u B. E; = F(E,) where E; = [D,C] u B, is the strong
efficient set in the decision variables space. The compromise solution y is one of
these, i.e. y € E; . E’ is weakly dominated by B’ and C..

£,

BI

Fig.2 : 8 = F(A) is the feasible set of value
functions in the outcome space. § is non-convex.
F = (15,5) is the ideal point.
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Let us consider the following table :

X X
X; 10 5
X; 0 5
X' s 5

where :  X] = (%5, X,)' = (10,5) is the optimal solution of (P1) ; f; = 15.
X, = (% X,5)" = (0,5) is the optimal solution of (P2} ; f, = 5.

X! = (%, x,)" is the initial arbitrary compromise solution, i.e. the solution that we
propose to the DM as the initial compromise if he is himself unable to choose
one compromise (if X' is not feasible, a phase-one in GRG code finds a feasible
point from X' by means of a Raphson-Newton procedure).

Several heuristics will be developped in the " best compromise solution "
search procedure, for example :

1) we can suppose here that the " final  solution will be such that x, = 5 because
all the 2nd components are equal to 5, and thus we can rewrite the initial
problemas S<f <7;3<f,<5;f,=10-1,.

Xl=aX, + X, with @+ 8=1;X'=(55) fora= g = 05 is not feasible
and F(X")=(10,0) is out of S (Fig.2). |

2) let us denote by X* the solution obtained at iteration k. If X" is not accepted
by the DM or the computer program, we set :

Xl = xX* 4 o (P-XY;0 < e < 1. In practice, any point can be taken, for
example P = X!. If X**! is not feasible a phase-one in GRG code finds a
feasible point from X**%,

The purpose of this phase is to ask the DM, if possible, to compare
different alternatives, The alternatives are expressed as scenarios in terms of their
objective value functions in the outcome space. However, in order to aid the DM
to choose between alternatives, such alternatives have not to be too similar. For
example, given one solution X* and F(X"), we specify a solution X*** such that
a difference varying from 5 to 10% exists in all or some objective value functions.
If the DM likes one alternative, we terminate the questionning process, we revise
step-bounds if necessary, and we solve a NonLinear Program (see § 2.2 and § 3).
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We attempt to be more precise about the " volume " of the region
containing solution better than X* :

1. The variables which are " approximately " known to be declared as constants
can be excluded from the optimization process until an optimum has been found.
The declaration of the constant can then be deleted and the process can be set
up again with the constant considered now as a variable. An initial point for a
new iteration can be chosen during the optimization process. This is possible
because the DM is not usually interested in all variables.

2. If it is possible, we arrange the variables per classes, and we give different
priorities to these classes (M’silti,1984). This " partition " allows us to solve the
problem step wise, i.e. starting with the group having the highest priority, the
other variables being set to zero or any constant value, we obtain a solution ;
then we introduce another group into the problem, and so on. The two default
" partitions " are : a) the class 1 which contains the nonlinear structural variables, -
the class 2 which contains the linear variables ; b) the class i which contains only
variables concerning objective f, (i=1,2,3). Priority decreases from class 1 to class
i '

Let us consider the following example :
Maxf, =x, + -
Max f, = x, X% -%, + X,
s.t.
X +x, <6
X, +x, +x,¢2
We have :

a)class 1 = (x,,%,%, ) ; class 2 = (x,)
b)class1 =(x;,%,%,) ; class2 = (X, , %X, , X3, X, )



This " partition " procedure (p.6) allows us first, to stop computation
whenever the result is judged satisfactory, and secondly to correct progressively
the DM’s aspiration levels. Moreover, if the problem does not have any feasible
solution, the DM has to adjust his requirements.

Several computational methods have been proposed for characterizing
Pareto optimal solutions. Among them, we consider the augmented weighted
Tchebycheff metric and the e-constraint method.

For finding the points in S ¢ R? closest to F’, we use the augmented
weighted Tchebycheff metric defined by :

| F-Fllle=||F-FI|3 2)

where | | F -F I |.9, is the weighted Tchebycheff norm ; the word "augmented”
is due to the 6.} ;.q 5 | f; - £, | term (for more details, see Steuer 1986).

By definition, we have : || F* - F ”w = max;_,

The weights 6, > 0 are used to define different weighted Tchebycheff metrics
(see § 3 step 2).

The program for finding the closest points to F according to the weighted
Tchebycheff metric is : Min, Max, ( 8, | f; - f(x) | ) or

I Mmﬂ!,x (o)

I . > 0(f £)  ;i=123 3)
| £(x) =1 +i=1,2,3

Il xeA

The augmented weighted Tchebycheff program is :

I Ming, (@ + 8 oy s -5))

| oso@ ) 5i123 (4)
I f(x) =% $i=1.2,3

I xcA



Because (f; - f)) will never be negative, we can drop the absolute value signs in
(2). The reason for the &. };_; , (f; - f;) term is to give to the contour a " slight
slope " (cf. Steuer, 1986). In practice, we set § sufficiently small.

The e-constraint method is defined by :

} Max £)
| st.xeA &)
I f®>€ ;i#andij=123

By solving (4) or (5), all the Pareto optimal solutions to the MMPs involving non-
convexities can be (theoretically) obtained. But since the range of the €, is not
known numerically before, there is a possibility that the e-constraint method
becomes unfeasible for some parameter €. Moreover, in (5), the objective
function f; is specially treated, and thus no all objective functions are equally
treated. Consequently, we propose an hybrid program :

= N{ina,x (o + 8 Yoy s (f: -£))

5.1,

I e>o(f-f) ;i=123 (6)
I () 2¢ , ci=1,23

I f(® <8¢ ; B = (0,1)

[ xecA

so that we search the " closest point " to F within a restricted region in the
outcome space. If g, = 0, we eliminate the corresponding constraint for £,

It should be emphasized here that strong Pareto optimality for an optimal
solution of the problems (4) to (6) is not gnaranteed without the following
assumption for the solution : " X' is a strong efficient solution to the MMP (1)
if and only if X" is a unique global optimal solution to problem (4), (5) or
) "



2.2 ATTEMPTS TO CALCULATE GLOBAL SOLUTION OF PROBLEM (6) :

The mathematical methods available for solving non-convex programming
problems generally yield local solutions. Moreover, there is no local criterion to
decide if a local solution is global. Note that several global criteria for a global
solution have been proposed, but except for very special cases, there is no
numerically feasible method for computing it (cf. Horst, 1988). Due to the
enormous difficulties inherent in global optimization problems and the computa-
tional cost for solving them, the methods devised for solving these problems are
quite diverse. The solution procedure we propose uses mainly the behaviour of
the local solutions in order to compute the " global solution ", It is a deterministic
method based on the two following heuristics H1 and H2 (see, for instance, Térn,
1983 for stochastic algorithm):

H1. we use the fact that MMP’s are specific problems where,for example, the
DM can arrange its outcomes in the specified interval and we suggest a
deterministic method which is well suited for problems that are known to have
an optimal solution on a certain subset of the boundary of A and S or, in other
words, where certain constraints are active at the global optimum. We use the
following property : " each local optimum is associated with a set D, obtained by
reversing the sign of the active constraints " (cf. Horst 1988) :

Max ( F(x) /x€ AnV, ) = Min (F(x) /xe D, ) where the set V, is
a neighbourhood of X, (local solution), and D, = A n U,. U, is obtained by
reversing the sign of " certain " active constraints, more precisely the constraints
concerning the objective value function.

We replace (6) by : Max (o + 6. 5., 5 (f; - £) )
st. xeAnU, (D
@< 9(f -f) ;i=123

H2. We use the general idea of the elimination of local solutions, once they are
obtained, by addition of constraints which eliminate them. We consider here the
following problem which determines a " feasible " solution for (1) :



-
I £(x) 2 £(X) - N ; j=123 (8)
[ 3,<x<h, ; i=1..n

where X; is a local optimum of £.

The added constraint is the following : 1(x) = =15 W - VE() .dj , where :
(i) x is an initial point for (8) ;

(i) the parameters w, and d; determine respectively the step size and the
direction of movement.

d = (d,, d,, d; )" is an improving direction defined by the DM or computer

( Xj=1,3 - V‘fj(x) dj > 0) ; for example, the direction d can be defined as
follows : d = x- X, ord = x- X*, or d = (1,1,1)° (see p.5). In practice, the
scalar w; controls the step-size ; it can be increased or decreased following the
values of the gradient.

This " linearization " is only accurate when d is'" small ", so upper and
lower bounds are imposed : -s < d < s where s is a 3-vector with all positive
components ; s is called " the step-bound " (cf. Palacios-Gomez and al. 1982).

Finally, we consider the following Non-Linear Program (NLP(x,s)) :
xeA

ix) 2 §(X) -5 ;=123 )
X) > A

._"h

;i=1,.,0n

el

P M S M S S — p— —
£ —
IA g
...?4
O"

ax (a-x -s) <d <min (b -x, 5)

where ) is specified by the DM , and A > 0 ensures that d is an improving
direction.
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The NLP (9) is solved, yielding a solution y. If the DM accepts y, the step
bounds may be increased. Otherwise, s is reduced to s’ and NLP(x,s") is solved.
This idea stressed the need for reducing the step-bound near an optimum, to
control oscillations and to force convergence. The solution of problem (9)
becomes an " initial " solution to global analysis. Clearly, if y is feasible for (9),
then x is rejected as " strong efficient solution " and consequently x is not a
compromise solution. However, we do not forget that the problem of finding a
feasible point in (9) is itself an optimization problem, and is subject to the same
difficulties than the original one.

We suggest here to implement a module in the computer program (GRG)
which generalizes the basic idea of the GRG method (cf. Abadie, 1978). This
primal method handles directly the constraints. It generates (starting at x° -
feasible or non-feasible point in the decision variables space) a search improving
direction within the “linear tangent variety" and it determines a new point (Fig.3)
in this direction. Usually, this point is not feasible. A second shift is then
executed for obtaining a new feasible point (by projection).

X

Fig.4 : variant of GRG principle

11



3. OUTLINE OF THE METHOD

The method involves the choice of an " reference point " and uses NLP
procedure to find a suitably defined " closest point " . We use a reference point
solution as a mechanism by which points localized hopefully in the
neighbourhood of the final solution to the problem (1) may be generated, without
requiring the DM to specify weights to find the closest point. The approach
suggested here consists in searching nondominated solutions by moving from one
nondominated solution to another (Fig.5 to 7).

Following the Hwang and Masud classification (1979), our technique
requires a progressive articulation of preferences ; it involves an interactive
process between the DM and the computer. More precisely, it involves a
combination of two approaches : progressive articulation of preferences and a
posteriori articulation of preferences (cf. Evans, 1984). The method is constructed
in such a way that it generates a sequence of solutions, each solution preferred
to its predecessor (Fig.5 to 7) :

Phase 1 : The algorithm is initiated typically through the finding of a " first "
efficient point.

Phase 2 : The DM is then required to provide some information concerning his
preferences structure over the multiple objectives, relative to the
outcomes arising from this solution.

Phase 3 : Using this preference information, the algorithm sets up a new
problem : the global optimality analysis.

If the current solution is accepted by the DM as a " best compromise
solution ", then we stop ; otherwise, we ask the DM to define another
" reference point". Iterations continue until the DM or the computer program
decides that the current solution is " closed enough " to a best compromise. The
idea is that the DM’s selection of bounds on objectives realization can be
interactively incorporated by constraints and step-bounds as new information.
This step of the procedure, where we require the DM to determine the minimum
and maximum values for each objective, at each iteration, is perhaps theoretically
the most difficult, because it requires an ad hoc estimation of minimum
acceptable realization (problems (6), (8), (9)).

12



The " feasible " solutions for the process are obtained by minimizing the
distance from the " ideal point " according to the augmented weighted Tcheby-
cheff norm.

- Note that our algorithm can also be concerned with finding the efficient
solutions to the problem (1).

X
f,
f, .
Fl
F, /
\ / .
\ ) y1 F

> £

Fig.7 Nadir Point is constant
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We now present the algorithm in a step-by-step way. It consists of
sequential solution to a NLP problem. The resulting current solution is strongly
efficient with respect to the set of feasible solutions.

Step 0 : Choose, for all objective functions f, an initial point x° ,feasible or non-
feasible. Solve problem (Pi).
Let us denote by F~ the ideal point, F =(f, f; , f; ), where f; =f(X}) and
X is a optimal solution of f; .

In order to reduce computing time, we avoid to optimize separately the
objective functions £, (i.e. (Pi)). We start from an optimal solution for one
objective f; in order to find an optimal solution to another. Various
heuristics (for the choice of the objective order) enable us to reduce
computing time.

Step 1 : Calculate the pay-off table of the MONLP problem and define the Nadir
Point N=(N,N,,N,), or another reference point. N, is the smallest
element in the k-th column of the pay-off table :

5 2

X |6 BX) £X)
X, | 5X) £ HX)

Xy | 5(X) £5X) f

N | N N, N,

Step 2 : Find the (first) strong efficient solution y° =(y2, y5, ¥9) closest to F" in
the sense of the augmented weighted Tchebycheff norm in the outcome
space : Solve problem (6).

The weights 8, > 0 are chosen a priori to keep y° in the Nadir Point

direction ; 1/6, are direction coefficients of the straight line segment
proceeding from F* to the Nadir point (cf. Steuer, 1986, chap 14).

14



8 =1/(f-N) ;i=123

option : f} = f; + 7, ; where v, = 10% to 30% of f, ; we now define f; as
fi = f| |
The point y° becomes an initial point for generating another strong
efficient point using a search parallel direction to (F - N), see Fig.6, or

another, see Fig.7.

Step 3 : 3.1) If the DM prefers y° as a compromise solution, then go to step 4 ;
if he does not like y° , he may express a preference for another point
(through its corresponding value in S) or his inability to choice a solution.

3.2) If he prefers at least one alternative to y’, we save one such
alternative, we denote it as F', and we go to step 1 ;

3.3) Otherwise, we apply rules (1) or (2) defined in § 2.1 (p.5) ; we denote
the corresponding solution as F~ and we go to step 1.

Step 4 : (global analysis). A search procedure based on the problem (9) or (7)
is used in order to decide whether y° is a global solution ; in this case, y°
is declared as a " favourable " compromise solution.

4.1) Solve problem (9) or problem (7) ;

4.2) If the resulting solution is better than the previous one (in all
objective value functions), it becomes the initial point for the next
iteration ; we denote it as y° (y° is another compromise solution), and we
go to step 3 ; the procedure continues until two successive solutions are
" identical ".

43) If it does not exist another feasible efficient solution in the
neighbourhood of y%, we denote y' as the solution which minimizes the
sum of unfeasibilities in (9). Ask the DM to choose between y° and y'. If
he chooses y' , we denote y' as F and we go to step 1. If he prefers y’,
we then stop ; if he is unable to choose, we affect y° - y* to y°, and we go
to step 1.

15



4. COMPUTER IMPLEMENTATION AND COMPUTATIONAL RESULTS.

This section describes a FORTRAN 77 implementation of our aigorithm. Input
to the system is in six parts :

1. a subroutine that computes the non-linear functions f, for a given x ;

2. a subroutine that computes the non-linear functions g for a given x ;

3. a subroutine that computes the gradients Vf; for a given x ;

4. a subroutine that computes the Jacobian matrix J=(dg; /3x;) for a given x ;
5. a file which contains all program parameters, options, initial values for x and
step-bounds. - _

6. a file in special format, which specifies all other information about the
problem ; this includes constant Jacobian elements, the position of non-constant
elements, bounds on all variables, type of problem (max, min, " dense format",
" sparse format "). For problems where there are few or no linear structural
variables, the Jacobian matrix is said " dense " ; otherwise, the problem is called
" sparse ". Note that Jacobian and gradient elements may be computed
automatically, or by (optional) user supplied subroutines. The system stores the
constraints matrix in a standard packed form (only non-zero elements stored). As
the various input files are read in, the multiple options and values parameters are
computed and printed out in a specified file.

This method is operational on a micro-computer PC XT/AT . It seems
particularly adapted as a part of a Decision Support System (DSS).

The code (GRG + e-constraint + Tchebycheff metric + compromise
search procedure ) is written in a modular form. At this time, we attempt to
redefine the GRG code structure in order to introduce new modules (sparse LU
factorization,...) and to allow the DM to use its proper procedures.

This modular form involves several parts : an optimization module ; a
decision-aid module for problem evaluation ; a graphic-aid module. Moreover,
we define an interactive program for guiding the DM :

. it displays menus describing the current process ;

. it systematically controls all the codes and data ;

. it saves results (data, parameters, options, and any information) on the
sequential files.

16



The software developed is as follows :

determination of
efficient solutions

variables _
clasgification

step-bounds procedure

global analysis

A T
optimization module |
GRG
ll\ A
DM/USER
A4

determination of
compromise solution

All runs were made on PC XT/AT computer, using extended precision
(coprocessor is recommended). Initial values of the step-bounds are determined

by the following rules :

1. the bounds are selected by the user ;
2. the initial bounds are computed by :

(so); = max ( 6;.|(x,);, 6,), where (s;); and (x,); are the i-th components of s,

- and x,, respectively.

3. the initial bounds are computed by :
(Sp); = max ( 6. (b; - a), 83) ; 8y, 6, 6, = 10° to 10°°

All problems tested were highly non-linear, and were input using the
" dense " format. The reasons for termination are given in various " stopping
criterion " : ||dj| |« < 0.001 ; ||s]| < 0.001 ; exceeded iteration limit ;..

without the stopping criteria due to the GRG code :

17




Number of variables Number Average
Problemn of comput. Ref,
Nonlinear Linear Total Constr. | time

1 21 - 21 20 2° 30! 2. 10
15

2 30 - 30 30 5! 8. 17
18.
22.

9. 10

3 40 - 40 11 1/ 18,
4 82 - 82 37 > 10/ 15.
: 18.

5 86 15 101 77 > 12/ 6. 7.

: 9. 18

The average computational time (with a sufficient weak error tolerance) on test

problems 1 to 5 is the CPU time for obtaining about 10 efficient solutions.
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3. CONCLUSION

There are several factors that imply an increase in future NLP applications
(cf. GOICOECHEA and al. 1982). The results of this study are only preliminary
ones and require further developments. There are probably many improvements
which can be made in the MONLP strategy, specially the way of handling the
unfeasible solution problem.

The methodology developed here enables us first, to build a description

of a complex system, and second to provide decision-aid by setting up several
evaluation scenarios, based on the different proposed alternatives. The main
advantage of this approach is that the DM owns some information necessary for ~
finding the solution (so, he can use the information contained in the dual
variables values, which have specific meanings in economics and which are
obtained as a by-product of GRG). Let us note however, that our analysis is only
concerned with quantitative objectives ; moreover, it shows that the MONLP’s
can be solved and a compromise solution can be found.

Some extensions which one really needs are :
- parallelization of several optimization procedures ;
- communication between various components (modules) ;
- use of graphics to represent any solution in A or S (form which is familar to the
DM) .

On the other hand, in the basic version of the method developed in § 3,
a new constraint is added at each iteration to the set of existing constraints. It
is important to develop methods that allow to drop certain constraints in order
to decrease the size of the problem (1).

Results on rate of convergence concerning the acceptation of an efficient
solution as globally optimal would also be useful. This rate is probably linear and
depends on : number of degrees of freedom in the optimal solution, and how the
step-bounds are reduced. It could be also interesting to perform some sensitivity
analysis in step 3 depending on some imprecision of the parameters which define
certain constraints.
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