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Abstract

Applications in counterterrorism and corporate competition have led to the de-
velopment of new methods for the analysis of decision-making when there are intel-
ligent opponents and uncertain outcomes. This field is sometimes called adversarial
risk analysis. In this paper, we illustrate a general framework developed for sup-
porting a decision maker in a problem with intelligent opponents through a simple
price-sealed bid auction case.
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1 Introduction

Applications in counterterrorism and corporate competition have led to the development
of new methods for the analysis of decisions when there are intelligent opponents and un-
certain outcomes. This field represents a combination of statistical risk analysis and game
theory, and is sometimes called adversarial risk analysis (ARA). Prevalent methodologies
are based on game theory, decision analysis, or conventional risk analysis, emphasizing
separate aspects of the analysis. Rios Insua et al (2008) describe a unified framework for
the analysis of decisions under uncertainty in presence of intelligent adversaries. This is
an asymmetric prescriptive/descriptive approach in the spirit of Raiffa’s (2002) approach
to games. The key issue in this framework is the assessment of the probabilities of our
adversaries’ possible actions. It assumes that adversaries are expected utility maximiz-
ers, and, therefore, the probabilities on the adversary’s actions stem from our uncertainty
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about the adversary’s decision problem. In the simplest case, when the structure of our
adversary’s decision problem is trivially known, we just need to express our uncertainty
about our adversary’s probabilities and utilities.

2 One-Sided Decision Support for Price Sealed-Bid Auc-
tions

In this paper, we apply the ARA framework to analyze a simple, and concrete auction
situation. We first provides the non adversarial case which allows us to introduce the
basic problem for one decision maker. Later, we move to the adversarial case. It will
illustrate the application of the adversarial risk analysis framework to simultaneous de-
cision problems. This is the case in which the analysis of the decision problem of our
adversary depends on our own decision problem, and the assessment of probabilities on
the adversary’s actions requires a way of getting around of this infinity regress.

2.1 Single Bidder, One Bid, and Unknown Reservation Price

Suppose Daphne is bidding for a certain object. She is the only bidder, but the owner has
set a secret reservation price v below which the object will not be sold. Daphne does not
know v, and expresses her uncertainty as a distribution F (v). Daphne’s utility function in
money is uD and her personal valuation of the auctioned object is vD. Her choice set is
D = IR+ and her expected utility for a bid of d ∈ D is uD(vD − d) IP[d > V ]. Thus, in a
standard decision analytic computation, see Raiffa (2002), Dahpne should maximize her
expected utility by bidding d∗ = argmaxd∈D uD(vD − d)F (d).

2.2 Two Sealed Bids, the Highest Bid Wins

Suppose now that Daphne and Apollo are bidding against each other. Each one knows his
own valuation of the auctioned object (reservation price) but does not know the reservation
price of the other. Each bidder submits one bid in a sealed envelop without knowing the
other’s bid, the winner being that with the highest bid. This is a simultaneous decision
making situation in which bidders are uncertain about the other bidder’s reservation values
and hence each other’s utilities. The influence diagram in Figure 1 represents this case.

Harsanyi’s (1967) approach here would lead to the solution concept of Bayes-Nash
equilibrium in games with incomplete information, which is based on the common prior
assumption, entailing in this case that players need to disclose, inter alia, their true be-
liefs about the other player’s reservation price. Thus, Daphne probabilistic assessment of
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Figure 1: ID of the sealed bid auction problem

Apollo’s reservation price and Apollo’s probabilistic assessment of Daphne ’s reservation
price would be common knowledge. Only under this assumption, it is possible to compute
a prediction for that game.

We are, however, interested in supporting Daphne who knows her value vD of the
object and has a (private) probabilistic assessment of Apollo’s valuation vA ∼ VA. Daphne
has to decide which is her bid d. If this is bigger than Apollo’s bid a, she wins obtaining
a utility uD(vD − d); if it is smaller (d < a), she gets 0, as reflected in Figure 2(a).
Therefore, similarly to the previous section, the problem she has to solve is

max
d

uD(vD − d) IPD(d > A|d).

The key issue is assessing Daphne’s probability IPD(d > A|d) of winning for each of her
possible bids. This assessment would be based on her prediction about Apollo’s bid, rep-
resented by the probability distribution πD(a), as IPD(d > A|d) =

∫ d

−∞ πD(a)da. Some-
times, it may be possible to assess πD(a) based on past statistical data describing previous
behavior of bidders, as in Keefer et al (1991), or use a noninformative distribution.

Another possibility would be to assess that probability judgementally through an anal-
ysis of Apollo’s bidding decision problem from Daphne’s perspective, as shown in Fig-
ure 2(b). To simplify the discussion assume that both Apollo and Daphne are risk neutral
in the range of interest, so that their utility functions uD and uA are linear. Then, Apollo
would aim at solving

max
a

(vA − a) IPA(a > D|a).

Daphne would need to know the solution of such problem, but she may not solve it as she
is uncertain about vA and IPA(a > D|a). Her beliefs about vA were modelled through VA.
The assessment of IPA(a > D|a) requires Daphne’s elicitation of Apollo’s distribution πA

on her bid d, as IPA(a > D|a) =
∫ a

−∞ πA(d) dd. At this step of the analysis, again, we
could base the assessment of πA(d) directly on the data that, she thinks, are available to
him, expert opinions or, possibly, a combination of both. Should this kind of information
not be available we could use a non informative prior to describe πA(d).
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(a) Daphne’s bidding decision problem (b) Apollo’s bidding decision problem

Figure 2: Auction analysis from Daphne’s perspective. ID and decision tree representa-
tions

Going in deeper detail in the ARA analysis can help Daphne, as well, to elicit πA(d)
through the identification of the relevant variables that affect Apollo’s guess about her
bid. To wit, Daphne will think that Apollo will analyze her problem as in Figure 2(a) and
solve

max
d

(v̂D − d) IPD(d > Â|d),

where v̂D represents Apollo’s estimation of Daphne’s valuation vD. Since it is unknown
to Daphne in her analysis of Apollo’s analysis of her problem, she will assign to v̂D a
distribution V̂D. Daphne’s distribution about Apollo’s bid, but now elicited from Apollo’s
perspective, will be Â ∼ π̂D(â). Thus, implicitly, the elicitation of D ∼ πA(d) depends
on V̂D and Â, both assessed by Daphne. Should we go ahead one more step in this sort
of analysis, we would see that, in turn, the assessment of Â would depend on (i) V̂A

representing the random variable that Daphne thinks Apollo uses to represent Daphne’s
estimation of his valuation vA; and (ii) a distribution over D̂ representing what Daphne
thinks Apollo thinks... of her bid.

To avoid an infinite regress, we shall stop here and use a heuristic approach in help-
ing Daphne to assess the distribution D ∼ πA(d) based on the relevant V̂D and V̂A

distributions, that we have identified, disregarding the rest of variables associated with
the thinking-about-what-the-other-is-thinking-about kind of analysis, whose meaning in
practice renders of very difficult interpretation by most people.

One possibility for this heuristic approach is to assume that Apollo expects Daphne
to make a bid d which is a function f(v̂D, v̂A), with some uncertainty around it. We shall
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explore the case in which Apollo expects Daphne to bid

min(α v̂D, β v̂A), (1)

where α, β ∈ (0, 1), v̂D is Apollo’s estimation of her valuation vD and v̂A is Daphne’s es-
timation of his valuation vA as thought by Apollo. The intuitive interpretation of Equation
(1), which simplifies Daphne’s analysis of how Apollo would think about her problem, is
that Daphne’s bidding behaviour consists of submitting a bid which guarantees (i) a profit
in terms of a proportion (1−α) of her valuation of the object v̂D, and (ii) that she will not
overbid Apollo’s bid, which is also assessed as a percentage (β) of his object valuation
v̂A.

Daphne’s confidence about her assessment of the distributions over (α, v̂D, β, v̂A) as
well as her uncertainty about the accuracy of the proposed heuristic for her analysis of
Apollo’s problem, could be incorporated through a hierarchical model with a new param-
eter σ modelling this confidence, e.g. arguing that πA(d | α, v̂D, β, v̂A, σ) is a normal
distribution with mean min(α v̂D, β v̂A) and standard deviation σ, truncated on [0, v̂D],
with (α, v̂D, β, v̂A, σ) ∼ ΠA. As usual, as σ gets larger we will be closer to the case in
which we use a non informative distribution to model πA(d).

We have thus reduced Daphne’s ARA about D with probability density function πA(d)
to the elicitation of the distribution ΠA representing her uncertainty over the above param-
eters. All these quantities can be obtained directly from Daphne through her analysis of
Apollo’s problem in the form of probability distributions acknowledging her uncertainty
about them, yielding a specific distribution D. Note that Daphne’s distribution ΠA might
reflect her opinions about e.g. how Apollo uses his valuation vA of the object to assess his
v̂D, and, therefore, ΠA might be correlated with VA.

In general, we can use a Monte Carlo approach to estimate IPD(d > A|d), which
would then consist of running for i = 1, . . . , n iterations

1. Draw vi
A ∼ VA

2. Draw ωi = (αi, v̂i
D, βi, v̂i

A, σi) ∼ ΠA | vi
A

3. Set Di | ωi ∼ N (min (αi v̂i
D, βi v̂i

A) , σi) truncated on [0, v̂i
D], with πi

A(di|ωi) its
probability density function

4. Solve
a∗i = argmaxa(v

i
A − a) IPπi

A
(Di < a|a, ωi),

where

IPπi
A
(Di < a|a, ωi) =

∫ a

−∞
πi

A(di|ωi) ddi.
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and then use {a∗i , i = 1, . . . , n} to approximate Daphne’s probability of winning condi-
tional on her bid d through

ÎPD(d > A∗|d) = #{d > a∗i }/n.

The whole approach to support Daphne in choosing her sealed bid would then be as
follows (recall we assume risk neutrality and, thus, we do not assess uD from Daphne,
neither uA describing her beliefs about Apollo’s utility function).

1. Assess vD from Daphne, her object valuation

2. Assess F = (VA, ΠA) describing Daphne’s uncertainties in her analysis of Apollo’s
problem

3. Estimate IPD(d > A|d) through ÎPD(d > A∗|d) using Monte Carlo simulation as
above

4. Solve
d∗ = arg max

d
(vD − d) ÎPD(d > A∗|d).

Note that the elicitation of the proposed model for Daphne’s bid D whose probability
density function is πA(d), could be simplified by just asking Daphne for point estimates
for the quantities (α, v̂D, β, v̂A, σ), in which case we would not be acknowledging her con-
fidence in her numerical assessments or in the accuracy of (1) as heuristic representation
of bidding behaviour.

3 A Numerical Example

We illustrate this heuristic approach with a numerical example. Recall we are supporting
Daphne to find her maximum expected utility bid d∗ = argmaxd∈D (vD−d) IPD(d > a|d).
To do so, we obtain from her (who may possibly be assisted by a group of subject matter
experts) the following judgmental assessments.

• vD = 100: Value of the object for her.

• vA ∼ VA: Daphne believes that Apollo’s object valuation must be in a range be-
tween 60 (min) and 90 (max), and most likely is 80 (mode). Base on this informa-
tion we decide to fit a triangular distribution whose mode, minimum and maximum
correspond with the values indicated by Daphne, see Figure 3.
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Figure 3: Daphne’s assessment of VA

• v̂D ∼ V̂D: Apollo’s estimation of Daphne’s valuation vD. Daphne believes that
Apollo thinks her valuation of the auctioned object is around 100 units higher than
his (vA), with an error range between −5 and 5 units. She also consider that all
possible errors in this range are equally likely. That is,

V̂D | vA = vA + 100 + U(−5, 5).

• v̂A ∼ V̂A: Daphne’s estimation of vA as thought by Apollo. Daphne believes that
Apollo thinks that she believes that his valuation of the object is 50 units lower than
his (vA), with an error range between −5 and 5 units. She also consider all this
possible errors equally likely. That is,

V̂A | vA = vA − 50 + U(−5, 5).

• 1 − α and 1 − β: Profit value proportions used by Apollo in his analysis of her
bidding problem when he thinks about how she analyzes bidding behavior. She
believes these parameters are

1− α = 1− β = 0.3 + U(−0.05, 0.05).

• σ = 1: Our assessment of Daphne’s confidence on our heuristic model and second
order parameter assessment.

From these assessments provided by Daphne, we can determinate the heuristic distri-
bution representing the bidding behavior of Daphne as thought by Apollo, elicited from
the perspective of Daphne:

D | vA ∼ N
(
min

(
α V̂D, β V̂A

)
, σ

)
.

We note that this distribution is a truncated normal distribution on [0, v̂D], given (α, v̂D, β, v̂A, σ).

Now, for each i = 1, . . . , n, we simulate vi
A ∼ VA and ωi ∼ ΠA | vi

A, set Di |
ωi = N (min (αi v̂i

D, βi v̂i
A) , σi), truncated on [0, v̂i

D], and solve Apollo’s optimization
problem

a∗i = argmaxa∈A(vi
A − a) IPA(a > Di|a, ωi).
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Figure 4(a) illustrates the optimization problem solved at one of the iterations, including
Apollo’s expected utility for each of his possible bids along with his optimal bid a∗i = 23.4
at that iteration. After n = 1000 iterations we obtain a sample {a∗i , i = 1, . . . , 1000}
from A∗ = argmaxa∈A(VA − a)IPA(a > D|a), which represents Daphne’s predictive
distribution on Apollo’s bid. Its probability density function πD(a) has been estimated
from the obtained sample through a kernel density estimator shown in Figure 4(b).

Finally, we solve Daphne’s decision problem

d∗ = argmaxd∈D(vD − d) ÎPD(d > A∗|d),

where ÎPD(d > A∗|d) is the proportion of simulated a∗i below a given d: #{d > a∗i }/1000.

Figure 4(c) plots our Monte Carlo estimation of Daphne’s expected utility for each of
her possible bids. We can see that her maximum expected utility bid is d∗ = 30.6 with
(estimated) expected utility of 68.5.

4 The noninformative case

Should Daphne not be able to provide us with the necessary information to assess a prob-
ability density function πA(d) for D, or she does not feel confident with our heuristic
model, we would use a noninformative prior to describe D distribution. We run now the
same numerical example than before but with σ = 100, as a numerical approximation
of the noninformative case. Figure 5 summarizes the results, in parallel to the previous
description of our numerical example. We note that when σ = 100, πi

A(di|ωi) ≈ U(0, vi
D)

at each iteration i. Therefore, Apollo’s expected utility for each of his possible bids a will
be (vi

A − a) a/vi
D, in correspondence with the parabola shown in Figure 5(a). This result

is independent of V̂A, α and β, and consequently Daphne’s maximum expected utility bid
as well, as expected when a noninformative distribution is used to describe D.

5 Conclusions

We have applied ARA to support one bidder in a two-person price sealed-bid auction, a
simultaneous decision making problem in each each bidder makes a bid without know-
ing the other’s bid. We use a Bayesian decision analysis approach to support one bidder
against another, which is different to the standard approach used in the game theory liter-
ature for auction modeling. To do so, we have propose an heuristic to avoid the infinity
regress kind of thinking required to analyzed this kind of problems from a Bayesian per-
spective.
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Real problems are extremely complex. For this reason, we have focused on a simple
example that illustrate our general formulation to deal with the ARA problem. This paper
focused on a two-person game, but the discussion directly extends to n-person games.
However, when there are n players, the number of possible analysis increases combinato-
rially, quickly posing computational challenges. Also, implementation issues include the
study of how to facilitate the elicitation of a valuable judgmental input from supported
bidder. Other issues within ARA that require more research include other types of auc-
tions, the case in which the number of agents is uncertain as well as the incorporation of
cooperative issues within the analysis.
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(a) Solving Apollo’s optimization problem
at the i-th iteration

(b) Kernel density estimation of πD(a)

(c) Daphne’s expected utility function

Figure 4: Numerical Example
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(a) Solving Apollo’s optimization problem
at the i-th iteration

(b) Kernel density estimation of πD(a)

(c) Daphne’s expected utility function

Figure 5: Noninformative case (σ = 100) 11


