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Abstract

An important aspect of mechanism design in social choicéopats and mul-
tiagent systems is to discourage insincere behaviour. pddative behaviour has
received increased attention since the famous Gibbatd+8ataite theorem. We
examine the computational complexity of manipulation irighéed voting games
which are ubiguitous mathematical models used in econgmddgical science, neu-
roscience, threshold logic, reliability theory and distited systems. It is a natural
guestion to check how changes in weighted voting game magtafie overall game.
Tolerance and amplitude of a weighted voting game signiéypbssible variations
in a weighted voting game which still keep the game unchand®e characterize
the complexity of computing the tolerance and amplitude eighted voting games.
Tighter bounds and results for the tolerance and amplitddey weighted voting
games are also provided. Moreover, we examine the comyplefhanipulation and
show limits to how much the Banzhaf index of a player increasedecreases if it
splits up into sub-players. It is shown that the limits amikir to the previously
examined limits for the Shapley-Shubik index. A pseudospoiial algorithm to
find the optimal split is also provided.

Key words : weighted voting games, voting power, cooperative gameryhedgo-
rithms and complexity

1 Introduction

1.1 Motivation

Weighted voting games (WVGs) are mathematical models wénielused to analyze vot-
ing bodies in which the voters have different number of voleswVGs, each voter is
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assigned a non-negative weight and makes a vote in favouragfanst a bill. The bill is

passed if and only if the total weight of those voting in fawotithe bill is greater than or
equal to some fixed quota. Power indices such as the Banaihe measure the ability
of a player in a WVG to determine the outcome of the vote. WV@sgehbeen applied
in various political and economic organizations [21, 20,\4dting power is used in joint
stock companies where each shareholder gets votes in pmpto the ownership of a
stock [13].

WVGs have received increased interest in the artificialliggnce and agents com-
munity due to their ability to model various coalition fortian scenarios [10, 11]. Such
games have also been examined from the point of view of stibd#pto manipulations
[3, 31]. WVGs are also encountered in threshold logic, bélg theory, neuroscience
and logical computing devices [28, 29]. There are many f@sdbetween reliability the-
ory and voting theory [27]. Parhami [26] points out that wgtihas a long history in
reliability systems dating back to von Neumann [30]. Nordmat al. [24] deal with re-
liability and cost evaluation of weighted dynamic-threlsheoting-systems. Systems of
this type are used in various areas such as target and pategnition, safety monitoring
and human organization systems.

Elkind et al. [9] note that since WVGs have only two possilliécomes, they do not
fall prey to manipulation of the type characterized by Giob&atterthwaite [15]. How-
ever, there are various ways WVGs can be manipulated andotledt \We examine
some of the aspects. Tolerance and amplitude of WVGs siginéypossible variances
in a WVG which still keep the game unchanged. They are sigmificn mathematical
models of reliability systems and shareholdings. For bditg systems, the weights of a
WVG can represent the significance of the components, whéheaquota can represent
the threshold for the overall system to fail. It is then a natvequirement to provide a
framework which can help identify similar reliability sgshs. In shareholding scenar-
ios [2], there is a need to check the maximum changes in shdmes still maintain the
status quo. In political settings, the amplitude of a WV(higs the maximum percent-
age change in various votes without changing the voting ppwethe voters. In this
paper, the computational aspects of amplitude and tolerah&/VGs are examined.

Moreover, splitting of a player into sub-players can be seea false-name manipu-
lation by an agent where it splits itself into more agentshed the sum of the utilities of
the split-up players is more than the utility of the origipéyer. Elkind et al. [4] exam-
ined this manipulation from the point of view of Shapley-8huindices and asked the
guestion of how the analysis of false-name manipulatiohlaak in the case of Banzhaf
indices. We examine situations when a player splitting i $maller players may be ad-
vantageous or disadvantageous in the context of WVGs andBéaimdices. This gives
a better idea of how to devise WVGs in which manipulation canléterred.
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1.2 Outline

In Section 2, some basic definitions of simple games, wethinéing games and compu-
tational complexity are provided.

Section 3 provides a background of tolerance and amplitlid&ection 4, compu-
tational aspects of tolerance and amplitude are examintad.séen that computing the
amplitude and tolerance of a WVG is NP-hard. We give tightemuls and results for the
tolerance and amplitude of key WVGs such as uniform (symio)etf\VGs and unanimity
WVGs.

In Section 5, the case of players splitting up into sub-piswye a WVG to increase
their Banzhaf index is analysed. We check the limits to howeimthe Banzhaf index of a
player can increase or decrease if it splits up into subgriay

From a computational perspective, it is #P-hard for a mdatputo find the ideal
splitting to maximize his payoff. A prospective manipulatould still be interested in
enabling a beneficial split even if the improvement in paysffiot high. In Section 6,
we prove that it is NP-hard even to decide whether a split iebeial or not. In the
end a pseudo-polynomial algorithm is proposed which retimn’ if no beneficial split
is available and returns the optimal split otherwise.

The final section presents conclusions and ideas for futor&.w

2 Preliminaries

In this section we give definitions and notations of key terffise set of voters isv =

{1,...,n}.

Definitions 1. A simple voting gamés a pair (N, v) where the valuation function :
2NV — {0,1} has the properties that() = 0, v(N) = 1 andv(S) < v(T) whenever
S C T. AcoalitionS C N iswinningif v(S) = 1 andlosingif v(S) = 0. A simple voting
game can alternatively be defined @, 1V') wherelV is the set of winning coalitions.

Definitions 2. The simple voting gamgV, W) where

W ={X C N,> . .xw, > q} is called aweighted voting gam¢wVG). A WVG is
denoted byg; w1, wo, ..., w,| wherew; > 0 is the voting weight of player By convention,
we takew, > w; if i < j.

Usually,q > %Z&Sn w; SO that there are no two mutually exclusive winning coali-
tions at the same time. WVGs with this property are terpexgper. Proper WVGs are

also desirable because they satisfy the criterion of themtajgetting preference. If the
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valuation function of a WVG is same as another WV, thenv’ is called arepresenta-
tion of v. If the quotag’ of v’ is such that for alS C N, } .. w/’ # ¢/, thenv' is called
astrict representatiornf v.

Definitions 3. A player: is critical in a winning coalitionS whenS € W and S \ {i} ¢
W. For eachi € N, we denote the number of coalitions in whicis critical in gameuv

by n;(v). TheBanzhaf indexof playeri in WVGuv is 3; = % Theprobabilistic

Banzhaf indexg; of playeri in gamev is equal ton;(v) /2" .

The following are non-technical definitions of some basimptexity classes.

Definition 4. A problem is in complexity clasB if it can be solved in time which is
polynomial in the size of the input. A problem is in the coxipleclassNP if its solution
can be verified in time which is polynomial in the size of theutnof the problem. A
problem is in complexity classo-NPif and only if its complement is in NP. A problem
is in the complexity classP-hardif any problem inNP is polynomial time reducible to
that problem.NP-hardproblems are as hard as the hardest problemBlix A # P-hard
problem is a counting problem which is as hard as the countgrgion of any NP-hard
problem.

3 Tolerance & Amplitude: background

3.1 Background

The question we are interested in is to find the maximum plesegdviations in the weights
and quotas of a WVG which still do not change the game. The eya&ferences which
address this question are [16] and [12]. Hu [16] worked witthie theory of switch-
ing functions. He set forth the idea bifiearly separable switching functionghich are
equivalent to each other. Freixas and Puente [12] exterfdetheory by framing it in
the context of strict representations of WVGs, which areiedent to linearly separable
switching functions.

3.2 Tolerance

The setting of the problem is that we look at a transformatfaq ... »,),» Which maps a
WVG, v = [q;wy, ..., w,] tov = [¢;w, ..., w,'] such thatw, = (1 + \)w; andq’ =
(1+A)q. Let A be the maximum ofv(S) for all {S|v(S) = 0}. and letB be the minimum
of w(S) forall {S|v(S) =1}. ThenA < ¢ < B (andq < B ifthe representation is strict).
Moreover, letn = Min(q — A, B —¢q) andM = ¢+ w(N). Hu [16] and then Freixas and
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Puente [12] showed that if for all < i < n, |\;| < m/M and|A| < m/M, thenv’ is just
another representation of They definedr|q; wy,...,w,] = m/M as thetoleranceof
the system. Freixas and Puente [12] also showed that thranckeis less than or equal to
1/3 for strict representations of a WVG and less than or equalidor a not necessarily
monotoni€ WVG.

3.3 Amplitude

Freixas and Puente defined tamplitudeas the maximum: such thatf(,, .4 is a
representation of wheneveMax(| 1], ..., |\, |A]) < p(v). For a strict representation
of a WVG [¢; wy, ..., w,)], for each coalitions C N, leta(S) = |w(S) — ¢q| andb(S) =
q+w(9).

Freixas and Puente [12] showed that the amplitude of a WV(Hi$ = S'gﬂv%.
Although both tolerance and amplitude have been used in & Witerature to signify
the maximum possible variation in the weights and the quattaowt changing the game,
the amplitude is a more precise and accurate indicator oh#eemum possible variation
than tolerance.

4 Tolerance & Amplitude: some results

4.1 Complexity

In all the complexity proofs in this section, we assume thatweights in a WVG are
positive integers. We let WVG-STRICT be the problem of chiegkwvhether a WVG
v = [q;wn,...,w,| is strict or not, i.e., WVG-STRICT Fv: v is strictt. Then we have
the following proposition:

Proposition 5. WVG-STRICT is co-NP-complete.

Proof. Let WVG-NOT-STRICT ={v: v is not stric}. WVG-NOT-STRICT is in NP
since a certificate of weights can be added in linear time tdico that they sum up
to ¢. Moreoverw is not strict if and only if there is a subset of weights whichmsup
to q. Therefore the NP-complete problem SUBSET-SUM (see GandyJahnson [14])
reduces to WVG-NOT-STRICT. Hence WVG-NOT-STRICT is NP-qdete and WVG-
STRICT is co-NP-complete. O

Corollary 6. The problem of checking whether the amplitude of a strict Vi8/£&ro is
NP-hard.

OFreixas and Puente also consider WVGs where players’ weigint be negative.
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Proposition 7. The problem of computing the amplitude of a WW&(S NP-hard.

Proof. Let us assume that weights inare even integers whereas the qupta an odd
integer2k — 1. Then the minimum possible difference betweeand A, the weight of
the maximal losing coalition, ay and B, the weight of minimal winning coalition i$.
S0A <2k —2andB > 2k. We see that(v) < 1/(4k — 1) if and only if there exists
a coalitionC such thatw(C') = 2k. Thus the problem of computing(v) for a WVG is
NP-hard by a reduction from the SUBSET-SUM problem. O

A similar proof can be used to prove the following propositio

Proposition 8. The problem of computing the tolerance of a strict WVG is [dRth

4.2 Uniform and unanimity WVGs

We show that the bound for the maximum possible tolerancebeamproved when we
restrict to strict representations of special cases of WV®¢ first look at uniform
WVGs which are an important subclass of WVGs which model nramjti-agent sce-
narios where each agent has the same voting power.

Proposition 9. For a strict representation of a proper uniform WMG= [¢; w, ..., w],

n

1
T('U) S 30"

Proof. Since 77 = wl isan increasing function afand 74 is a decreas-
ing function ofq, the tolerance reaches its maximumwhen A = B — ¢, i.e. wheng is
the arithmetic meaﬁg—B. We let the size of the maximal losing coalitionband the size
of the minimal winning coalition be + 1. Then the weight of a maximal losing coalition
is rw and the weight of the minimal winning coalition (8 + 1)w andm = w/2. Since

v is properg > 1(nw), andM = ¢+ w(N) > 222, Then,

1
= M < —.
T(v) =m/M < v
[l

Proposition 10. For a uniform WVGv = [¢; w, ..., w]|, we haveB = w[Z] and A =

n

B — w. Then,
=4 ifq< VAB
p(v) =

] 2=¢  otherwise.
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Proof. Itis clear thatB, the weight of the minimal winning coalition is[ 2] and A, the

weight of the maximal losing coalition i8 — w. Note that,g;—g‘ < ﬁ;g if and only if
g < VvV AB. For losing coalitions with weight, Z;—g is a decreasing function far. For
winning coalitions with weighto, ﬁ =1- ﬁ—qw Is an increasing function fap. Thus

if ¢ < VAB, u(v) = =2, Otherwiseu(v) = 24, O

A+q” B+q

Corollary 11. The amplitude:(v) of a uniform WVGv can be found irO(1), i.e., con-
stant, time.

Proof. The corollary immediately follows from the previous theore O

We now look at unanimity WVGs, which are another importamicass of WVGs in
which a coalition is winning if and only if it is the grand cdan N.

Proposition 12. For a unanimity WG = [q; wy, . .., w,], 7(v) < e < —

Proof. We know thatB = w(N) andA = w(N) — w,, which means that/(N) — w,, <
g < w(N). For maximum tolerance, = 42 = w(N) — “=. Thereforem = w,/2 and
M = w(N) — % +w(N). Then the tolerance of satisfies:

W, 1

<
m(v) < 4w(N) —w, — 4n—1’

SE

sincew,, < w(N)/n. O

A multiple weighted voting game is composed of more than oaighted voting game
and a coalition wins if and only if it is winning in each of theeighted voting games:

Definition 13. An m-multiple weighted voting gamg N, v; A ... A v,) is the simple
game(N,v), where the gamegV, v,) are the weighted voting gamég; w!, ...w!] for
1 <t < m. Thenv = v; A ... A v, is defined asw(S) = 1 <= v(S) = 1 for
1 <t <m. The game is called themeetof theu;s.

Note that we do not insist that! > w)j* foralli < jand1l < ¢t < m. Let
(N,v) = (N,v; A ... A vy,) be a multiple weighted voting game. Then we can see that
w(v) > Inf(u(vq), ..., u(vy)). The reason is that far to change, at least one constituent
game has to change. However it is not necessary that a chaagg one game; changes
v. As a simple example, suppose = [2;2,1] andvy, = [2;1,2]. Thenu(v; A v)2) =
v/3/2 -1, as witnessed by the coalitidii, 2}. However,(v;) = 0, as witnessed by},
fori =1,2.
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5 Manipulation via splitting

5.1 Background

In the real world, WVGs may be dynamic. Players might havemtige to split up into
smaller players or merge into voting blockenputationsof the players are acceptable
distributions of the payoff of the grand coalition. Impuais of players in a coalitional
games setting can be based on fairness, i.e., power indicésgy can be based on the
notion of stability which includes many cooperative gameoitetic solutions such as core,
nucleolus etc. We examine the situation when the Banzhafesaf agents can be used as
imputations in a cooperative game theoretic situatiorsérghal and Machover [22] refer
to this notion of voting power as P-power since the motivabbagents is prize-seeking
as opposed to influence-seeking. Banzhaf indices have loesidered as possible pay-
ments in cooperative settings [7, 4] since they satisfyulssefioms [8]. Splitting of a
player can be seen as a false-name manipulation by an agehtdh it splits itself into
more agents so that the sum of the utilities of the split-@y@ts is more than the utility
of the original player.

Splitting is not always beneficial. We give examples whdnegi use Banzhaf indices
as payoffs of players in a WVG, splitting can be advantageoastral or disadvanta-
geous.

Example 14. Splitting can be advantageous, neutral or disadvantageous

¢ Disadvantageous splittingVe take the WV@; 2, 2, 2] in which each player has a
Banzhaf index of /3. If the last player splits up into two players, the new game is
[5;2,2,1,1]. In that case, the split-up players have a Banzhaf index ®keach.

e Neutral splitting We take the WV@L; 2, 2, 2] in which each player has a Banzhaf
index ofl /3. If the last player splits up into two players, the new gani¢;ig, 2, 1, 1].
In that case, the split-up players have a Banzhaf index 6feach.

e Advantageous splittingWe take the WV@®; 2, 2, 2] in which each player has a
Banzhaf index of /3. If the last player splits up into two players, the new game is
6;2,2,1,1]. In that case, the split-up players have a Banzhaf index ¢fach.

We analyse the splitting of players in the unaninimity WVG.

Proposition 15. In a unanimity WVG witly = w(N), if Banzhaf or Shapley-Shubik
indices are used as imputations of agents in a WVG, then gmneficial for an agent to
split up into several agents.

8
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Proof. In a WVG withg = w(N), the Banzhaf index of each playerlign. Let playeri
split up intom + 1 players. In that case there is a totatof m players and the Banzhaf
index of each player i$/(n + m). In that case the total Banzhaf index of the split up
players is™t., and forn > 1, L > 1. An exactly similar analysis holds for the

Shapley-Shubik index. O

However there is the same motivation for all agents to splitnio smaller players,
which returns us to the status quo.

5.2 General case

We recall that a player is critical in a winning coalitionlifet player’s exclusion makes the
coalition losing. We will also say that a playerastical for a losing coalitionC' if the
player’s inclusion results in the coalition winning.

Proposition 16. Let WVGuv be [¢; w1, ..., w,]. If v transforms tov’ by the splitting of
playeri into ¢ and:”, theng; (v') + B (v') < 26;(v).

Proof. We assume that a playesplits up into;’ andi” and thatw; < w; . We consider
a losing coalitionC' for which i is critical inv. Thenw(C) < ¢ < w(C) + w; =
w(C) + wy + win.

o If ¢ — w(C) < wy, theni’ andi” are critical forC' in v'.

o If wy < q—w(C) < wy, thend is critical for C' U {:"} andi” is critical for C' in

v’

o If g—w(C) > wy, theni is critical for C'U {i"} andi” is critical forC U {i'} inv'.

Therefore we have; (v') + n;#(v') = 2n;(v) in each case.

Now we consider a player in v which is other than player. If x is critical for a
coalitionC' in v thenx is also critical for the corresponding coalitiéf in v where we
replace{i} by {¢',i"}. Hencen,(v) < n,(v"). Of courser may also be critical for some
coalitions inv’ which contain just one of andi:”, so the above inequality will not in
general be an equality.
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Moreover,

2n;(v)
20i(v) + D pen iy e (V)
2n;(v)
20i(v) + X sen@n iy M (V)
2n;(v)
mi(v) + 2 e n(o iy M ()

By (V') + Bin (V') =

IA

= 20;(v)

We can give an example which shows that the upper bound ohtpeovement in
payoff by splitting into two players is tight:

Example 17. Advantageous splitting/NVe take a WVGn; 2, 1, . .., 1] withn + 1 players.
We find thaty, = n + (}) and for all otherz, 5, = 1 + (", ). Therefore

3 n+ (3) _ontl
ﬁl_n+(;)+n(1+(n;1)) - (n_2)2 1/ .

In case playerl splits up intol’ and 1” with weights1 each, then for all playerg,
B; = 5. Thus for largen, B/ + B = 25 ~ 20,.

Moreover, we show that splitting into two players can deseethe Banzhaf index
payoff by as much as a factor of almggt-:

Example 18. Disadvantageous splittingWe take a WVG on n players wherev =
[3n/2;2n,1, ..., 1]. For the sake of simplicity, we assume thas even. It is easy to see
that playerl is a dictator. Now we consider the case wherhanges inta’ with player
1, splitting up intol” and 1” with weightn each. For playerl’ to be critical for a losing
coalition in v/, the coalition much exclud&” and have fronm/2 to n — 1 players with
weight1 or it must includel” and have fron® to (n/2) — 1 players with weight 1. So
ne (V) = me(v) = Y0, ("7') = 2771, Moreover, for a smaller player with weight
1 to be critical for a coalition inv’, the coalition must include only one ofor 1” and

(n — 2)/2 of then — 2 other smaller players. S@,(v') = 2((7;1:2?/2)- By using Stirling’s

formula, we can approximateg.(v) by ﬂ(nQ_Q) 2n~1 We see that:

10



Annales du LAMSADE A9

Pu(v) = BV

2n—1
~ n— n— 2 n—
20t 2 (= 1)y o 2t
B 1
N (n—1) 2
2 + vVn—2 T

T
on

Remark 19. We notice that the bounds on the effect of splitting on thezBaiindex are
quite similar to those in the Shapley-Shubik case.

6 Complexity of finding a beneficial split

From a computational perspective, it is #P-hard for a mdatputo find the ideal split-
ting to maximize his payoff. An easier question is to checlethier a beneficial splitting
exists or not. We define a Banzhaf version of the BENEFICIALLISRproblem defined

in [4].

Name BENEFICIAL-BANZHAF-SPLIT

Instance (v,:) wherev is the WVGov = [q; wy, . .., w,| and player € {1,...,n}.
Question Is there a way for playerto split his weightw; between sub-playe¥s, . . ., i,,
so that, in the new gams, Zle Bi, (V') > Bi(v)?

Proposition 20. BENEFICIAL-BANZHAF-SPLIT is NP-hard, and remains NP-haven
if the player can only split into two players with equal weigh

Proof. We prove this by a reduction from an instance of the clas$iédhard PARTI-
TION problem to BENEFICIAL-BANZHAF-SPLIT.

Name PARTITION

Instance A set ofk integer weightsd = {a;, ..., ax}.

Question Is it possible to partitiond, into two subsets;, C A, P, C A so that
PNP=0andP,UP,=A and) 4 i =D, ca, 07

Given an instance of PARTITIONay, ..., a;}, we can transform it to a WVG =
[q; w1, ..., w,] Withn = k + 2 wherew; = 8a; fori =1ton — 2, w,_; =2, w, = 1 and

11
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qg=14 Zle a;+3. After that we want to see whether it can be beneficial forgiéay —1)
with weight2 to split into two sub-playerén — 1), and(n — 1), each with weightl to
form anew WVGV' = [q;wy, ..., Wp_2, Wn-1),, Wn-1),, 1]. Note that, since the weights

are integral, it is certainly not beneficial to split up a weigf 2 other than inta and1.

If Ais a ‘no’ instance of PARTITION, then we see that a subset efleights
{wy,...,w,—o} cannot sum tal ) . a,. This implies that playe(n — 1) is a dummy.
We see that even if playén — 1) splits into sub-players, the sub-players are also dum-
mies. Thereforév, n — 1) is a ‘no’ instance of BENEFICIAL-BANZHAF-SPLIT.

Now let us assume that is a ‘yes’ instance of PARTITION. In that case, let the
number of subsets of weighfsuy, . .. w,_2} summing tot > ", a; bez. Thenn,_;(v) =
n.(v) = z. If player (n — 1) splits into two playergn — 1),, (n — 1), with weights
1 and1, thenng,_1), (v) = Nm-1),(v) = mm(v) = . We see that;(v) = n;(v') for
1 = 1ton — 2. Suppose thaE?;f n;(v) = S. Then for the split to be beneficial
Ba-1, (V") + Bu-1,(v) > Bu-i(v), i€, 55 + 555 > 545 Sincex > 0, this is
equivalent taS + x > 0. SinceS + x > x > 0, a ‘yes’ instance of PARTITION implies
a ‘yes’ instance of BENEFICIAL-BANZHAF-SPLIT. U

In terms of minimizing chances of manipulation, we see tbatgutational complex-
ity comes to our rescue. This idea of using computationalptexity to model bounded
rationality is well explained by Papadimitriou and Yannkkd25]. In the context of com-
plexity of voting, it was a series of groundbreaking papsgr8artholdi, Orlin, Tovey, and
Trick [5, 17, 18, 19] that showed how important computatia@amplexity consideration
is in terms of ease of computing winners and difficulty of npartéting elections.

6.1 Pseudopolynomial algorithm

It is well known that although, computing Banzhaf indicegtayers in a WVG is NP-
hard, there are polynomial time algorithm using dynamigpamming [23] or generating
functions [6] to compute Banzhaf indices if the weights aly@rs are polynomial in.
Let this pseudo-polynomial algorithm tBanzhaflndex(v, i) which takes a WVG and
an index: as input and returns;(v), the Banzhaf index of playérin v. We use a similar
argument to that in [4] to show that a polynomial algorithniséxto find a beneficial split
if the weights of players are polynomial inand the player in question can split into
up to a constant number of sub-players. Whenever game playerWVG v splits up
according to a split, we denote the new game bys.

12
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Algorithm 1 BeneficialSplitinWVvG
Input: (v,i) wherev = [q;w,...,w,] andi is the player which wants to split into a
maximum ofk sub-players.
Output: Returns NO if there is no beneficial split. Otherwise retutires optimal split
(wiy, ..., w;,) wherek’ < k, andzg?/:1 w;, = w.
1: BeneficialSplitExists = false
BestSplit = ()
BestSplitValue = —oco
B; = Banzhaflndex(v, 7)
for j =2tokdo
for Each possible spli¢ wherew; = w;, + ...+ w;, do
SplitValue = Zizl Banzhaflndex(v; s, i4)
if SplitValue > f3; then
BeneficialSplitExists = true

N RWODN

10: if SplitValue > BestSplitValue then
11: BestSplit = s

12: BestSplitValue = SplitValue
13: end if

14: end if

15:  end for

16: end for

17: if BeneficialSplitExists = false then
18: return false

19: else

20: return BestSplit

21: end if

We see that the total number of disjoint splits for playe equal tog(w;, k) where
q(n, k) is the partition function which gives the number of partisofn with & or fewer
addends. Itis clear that for a constanthe number of splits of players less than{wi)’C
which is a polynomial ime. Since the computational complexity for each split is also a
polynomial inn, Algorithm 1 is polynomial inn if weights are polynomial im.

7 Conclusion and future work

We have examined the computational complexity of computiegtolerance and ampli-
tude of WVGs. The tolerance and amplitude of uniform and umdy games is also
analysed. There is a need to devise approximation algasifiomcomputing the ampli-
tude of a WVG. The analysis of amplitude and tolerance mtas/ghe formulation of an
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overall framework to check the ‘sensitivity’ of voting gamender fluctuations and sus-
ceptibility to control. It will be interesting to explore élimit of changes in WVGs in
alternative representations of simple games.

We have also investigated the impact on the Banzhaf indésaifon due to a player
splitting into smaller players in a weighted voting gameisiseen that manipulation by
splitting into sub-players may be discouraged by keepingdmhts which are large or
reals. There is more scope to analyse such situations vafiect to other cooperative
game theoretic solutions.
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