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Abstract

In many practical contexts where a number agents have sofislta common
decision, the votes do not come all together at the same fonaétance, when vot-
ing about a date for a meeting, it often happens that one opbésticipants express
their preferences later than others). In such situatioresmight want to prepro-
cess the information given by the subelectorate (congistithose voters who have
expressed their votes) so as to “compile” the known votethtime when the late-
comers will have expressed their votes. We study the amdisgiaze necessary to
such a compilation, in function of the voting rule used, thenber of candidates, the
number of voters who have already expressed their voteshambimber of remain-
ing voters. We position our results with respect to existiragk, especially on vote
elicitation and communication complexity.

Key words : Communication Complexity, Computational Social Choice

1 Introduction

In many practical contexts where a number agents have sdfiasl t@ common decision,

the votes do not come all together at the same time. For iostam some political elec-

tions, the votes of the citizens living abroad is known onfgwa days after the rest of the
votes. Or, when voting about a date for a meeting, it ofterpbap that one or two par-
ticipants express their preferences later than the othessich situations, we might want
to preprocess the information given by the subelectoratesfsting of those voters who
have expressed their votes) so as to prepare the groundeftinte when the latecomers
will have expressed their votes. What does “preparing tloaimgpt” exactly mean? We

may think of two different criteria:
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e space synthesize the information contained in the votes of theekctorate, using
as less space as possiplehile keeping enough information so as to be able to
compute the outcome once the newcomers hace expressedotesir

e on-line time compile the information, using as much off-line time anéap as
needed, in such a way that once the newcomers hace exprhsgedbte, the out-
come can be computex$ fast as possible

These two criteria not only differ, but are, to some exteppased.

The research area éhowledge compilatioffsee for instance [3, 6]) lay the focus
on on-line space and typically looks for worst-case exptatylarge rewritings of the
“fixed part” of the input, enabling on-line time complexityfall down. While knowledge
compilation is definitely relevant to voting (the fixed paeiig the known votes, and the
varying part the votes of the latecomers), and would suregedve a paper on its own, in
this paper, however, we focus on minimizing space (and dea@t about on-line time).

While should we care about synthesizing the votes of a sotmelge in as less space
as possible? After all, one may think, the current cost afsfe is so low that one should
not care about storing millions of votes. There are two pamesbjections to this line
of argumentation. The first one has to do with the size of tmelickate set. In one-seat
political elections, the number of candidates is typicallymore than a dozen; however,
in “profane” votes, such as multiple elections [2], the detamdidates has a combinatorial
structure and can be extremely large (possibly much morealiew millions — while it is
difficult to imagine an election with more than a few millioaters). The second objection
has to do with the practical acceptance of the voting rulgapSee the electorate is split
into different districts (generally, corresponding to geaphical entities). Each district
can count its ballots separately and communicate th! egbartitcome to the central
authority (e.g. the Ministry of Innner Affairs), which, aftgathering the outcomes from
all districts, will determine the final outcome. The spacedes to synthesize the votes
of a district (with respect to a given voting rule) is pretysthe amount of information
that the district has to send to the central authority. Nows important that the voters
should be able to check as easily as possible the outcome elebtion. Take a simple
rule, such as plurality or Borda. Obviously, it is enoughd@most necessary, as we
see later) for each district to send only its “local” plutalor Borda scores to the central
authority. If the district is small enough, it is not diffitdbr the voters of this district
to check that the local results are sound (for instance, palitical party may delegate
someone for checking the ballots); provided these locailt®are made public (which is
usually the case — in most countries, th! ey are publishe@wspapers), every voter can
check the fin! al outcome from these local outcomes (in the caplurality or Borda,
simply by summing up the local scores). Clearly, if the imfiation about the votes of
a district being necessary for computing the final outcomarge €.9, if one needs to
know how many voters have expressed every possible linear on the candidate set),

72



Annales du LAMSADE A9

it will be impractical to publish the results locally, ancetkfore, difficult to check the
final outcome, and voters may then be reluctant to acceptdtiegvrule. Although the
compilation of the votes of a subelectorate has not beendemesl before (as far as we
know), several related problems have been investigated:

e thecomplexity of vote elicitatiof#]: given a voting rule-, a set of known votes,
and a set of new voters, is the outcome of the vote already determined 8

e thecomputation of possible and necessary winfigrd 1, 9, 10]: given a voting rule
r, a set of incomplete votes (that is, partial orders on thefseandidates), who are
the candidates who can still possibly win the election, artiére a candidate who
surely wins it?

e thecommunication complexity of voting rulgg: given a voting rule- and a set of
voters, what is the worst-case cost (measured in terms obauai bits transmitted)
of the best protocol allowing to compute the outcome of tleeten?

In the first two cases, the connection is clear. In the exthgfagourable case where
the outcome of the vote is already determined fr6nicorresponding to the existence
of a necessary winner, or to a positive answer to the votéatlmn problem), the space
needed to synthesize the input is just the binary encodinlgeoivinner. The connection
with communication complexity [8] will be discussed morgkeitly in Section 2, after
the notion of compilation is introduced formally. Then incBen 3 we determine the
compilatioon complexity of some of the most common votinigsu

2 Compilation complexity as one-round communication
complexity

Let X be afinite set ofandidatesindN a finite set olvoters Letp = | X|andn = |[N|. A
voteis a linear order ovek . We sometimes denote votes in the following ways b >~ ¢
is denoted byibc, etc. Form < n, a(p, m)-profileis a tupleP = (V,...,V,,) where
eachV; is a vote. Whenn < n (resp. m = n), we call such profilepartial (resp.
completg. Let Py be the set of alin-voters profiles oveX . A voting rule is a function
r fromP% to X. As the usual definition of most common voting rules does rolugle the
possibility of ties, we assume these ties are broken by a fisedty order on candidates.

We now consider situations where only some of the voters“@hleelectorate”) have
expressed their votes. Let < n number of voters who have expressed their vote, and
P ¢ P¢ the partial profile obtained from thesevoters. We say that two partial profiles
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arer-equivalent if no matter the remaining unknown votes, thali@ad to the same out-
come. We distinguish between two cases, depending on witbtheumber of remaining
voters is fixed or not.

Definition 1 Let P, Q € Py be twom-votersX-profiles and- a voting rule. We say that

e givenk > 0, P andQ are (r, k)-equivalentf for everyR € P% we have'(PUR) =
r(QUR).

e P and( arer-equivalentf they are(r, k)-equivalent for every > 0.

Example 1 Letrp be the plurality rule and 5 the Borda rule X = {a, b, c} andm = 4.
Let P, = (abc, abe, abe, abe), Py = (abe, abe, acb, ach), Py = (ach, acb, abe, abc) and
P, = (abc, abe, abe, bea). Then we have the following:

e P, andP; arerp-equivalent and z-equivalent. More generally, they areequivalent
for every anonymous voting ruie

e P, and P, are rp equivalent. They are alsp-g, k)-equivalent for every: < 2.
However they are ndi g, k)-equivalent fork > 2. For k = 3, this can be seen by
consideringR = (bca, bca, bca). We haverg(P, U R) = bbutrg(P, U R) = a;
therefore,P, and P, are notrg-equivalent.

e P, and P, are (rp, k)-equivalent for every < 2, but not fork > 2, therefore they
are notrp-equivalent (nor-g-equivalent).

We denotgr, k)-equivalence and-equivalence by, respectively, , and~,. Obvi-
ously,~, , and~, are transitive, therefore they are indeed equivalencéoai We now
define thecompilation complexityf a voting rule. We have two notions, depending on
whether the number of remaining candidates (i.e. the siZe of fixed or not.

Definition 2 Given a voting ruler, we say that a functiom from Py to {0,1}* is a

compilation functiorfor (r, k) if there exists a functiop : {0,1}* x P% — X such that
for everyP € Py and everyR € Py, p(o(P), R) = r(PUR). The size of is defined by
Size(o) = max{c(P) | P € P¥}. Thecompilation complexityof (r, k) is then defined
by

C(r, k) = min{Size(o) | o is a compilation function fofr, k)}
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Informally, the compilation complexity daf-, k) is the minimum space needed to com-
pile them-voter partial profileP without knowing the remaining-voter profile R. This
notion does not take into account the off-line time needebtoputes, nor the off-line
time needed to compuje The usual knowledge compilation view would focus on mini-
mizing the time needed to compyigegardless of the size of (and the time needed to
compute it). The definitions whéhnis not fixed are similar:

Definition 3 Given a voting ruler, we say that a functiom from Py to {0,1}* is a
compilation functiorfor r if there exists a functiop : {0, 1}* x Py — X, whereP} =
Ur>oP%, such that for every? € P, everyk > 0 and everyR € P%, p(o(P), R) =
r(P U R). Thecompilation complexityof r is defined by

C(r) = min{Size(o) | o is a compilation function for }

An equivalent way of seeing compilation complexity is rethto multiparty commu-
nication complexity. Whem agents have to compute a functipnwhile each of them
only knows a part of the input, the deterministic communaatomplexity (see [8]) of
is the worst-case number of bits that the agents have to egehso as to be able to know
the outcome. The communication complexity of common votirigs is identified in [5].

While standard communication complexity does notimpogegestriction on the pro-
tocol that the agents may use to compgifemposing such restrictions leads to variants
of communication complexity; especiallyome-round protocofor two agentsA and B
is a protocol whered sends only one message B and thenB sends the output td
(see Section 4.2 of [8]). Thene-round communication complexdy f is the worst-case
number of bits of the best one-round protocol forThis is exactly the same as the com-
pilation complexity off, up to a minor difference: we do not care abausending back
the output toA. Here, A represents the set of voters having already expressed/iies,
and B the remaining voters; the space needed to synthesize the ¥bA is the amount
of information that A must send to B so that B can be able to agmfhe final outconte

2Since one-round communication complexity is never smalian standard communication complex-
ity, we expect the lower communication complexity boundsowinication in [5] to be lower bounds of
compilation complexity. However, making this more preds@ot so simple, because in [5] there is no
partition between two subelectorates: their results marninly the total number of candidates, whereas
ours mention the number of candidates who have already ssguie¢heir votes. LeD(r, n, p) the (deter-
ministic) communication complexity of for n voters andp candidates as in [5]. Let us now introduce
this variant of communication complexity: i < n, defineD(r,n, m,p) as the cost of the optimal pro-
tocol for computing-, where only the bits sent by the first voters count for the cost of a protocol (the
remainingn — m can communicate for free). Obviously, we haér, n, m, p) < D(r,n,p). Moreover, if
C(r,m,p) is the compilation complexity of for m voters ancg candidates then for every> m we have
C(r,m,p) > D(r,n,m,p). In order to conclud€(r, m, p) > D(r, m, p), we would have to show that for
all voting rules considered here, we haVér, n, m,p) = D(r, m, p) (which we conjecture).
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We have this following general characterization of contmla complexity. Up to
minor details, this is a reformulation of Exercise 4.18 ih for the sake of the exposition,
we reformulate it in our own terms and include its proof.

Proposition 1 Letr be a voting rule. Letn be the number of initial voters andthe
number of candidates.

e givenk > 0, if the number of equivalence classes fary is f(m,p, k) then the
compilation complexity ofr, k) is exactly[log f(m, p, k)].

e if the number of equivalence classes for thequivalence relation-, is g(m, p)
then the compilation complexity ofs exactly[log g(m, p)].

Proof: We give the proof only for the case ©f, k); the proof with unbounde&lis similar.
We first show that(r, k) > [log f(m,p, k)]. Suppose-, ., hasf(m,p, k) equivalence
classes. Assume there is a number [log f(m,p, k)], a functiono : P — {0,1}°
and a mapping : {0,1}* — X such that for every> € P andR € P%, p(a(P), R) =
r(P U R). We first note that < [log f(m,p, k)] impliesd < log f(m,p, k). Let~,
be the equivalence relation g%} defined byP ~, Q if o(P) = o(Q). Because for
every P, |o(P)| < 0, ~, has at mose’ equivalence classes. Sinege< f(m,p, k), ~,
has strictly less equivalence classes than. Hence there exists a pdiP, Q) such that
o(P) = o(Q) butP #,. Q. P #, Q means that there exists a profitec P% such that
r(PUR) #r(QUR). Now,r(PUR) = p(c(P),R) = p(c(Q),R) = r(Q U R), hence
a contradiction. We now show thét(r, k) < [log f(m,p, k)]. Let us enumerate and
number allf (m, p, k) equivalence classes fer; ,. For everyP, leti(P) be the index of
its equivalence class foy; .. Define the translation(P) = i(P). We note that the size
of o is exactly[log f(m,p, k)].! Now, definep by p(j, R) = r(P U R) for an arbitraryP
such that(P) = j. The result follows. [

Here are now a few simple results about voting rules in génera

Proposition 2 Letr be a voting rule, and’ an anonymous voting rule.
o C(r) <mlog(p!);

e C(r") < min(mlog(p!), p!logm).

The proof is easy. For any the number of equivalence classes cannot be larger than
the number of profiles, and there d¢)™ possible profiles. For any anonymousthe
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boundp! log m comes from the fact that linear orders &ncan be enumerated, together
with the number of voters who choose jil logm can be smaller tham. log(p!) when

m becomes large enough ap@gmall enough. At the other extremity of the spectrum, we
have:

Proposition 3

e the compilation complexity of a dictatorshiplig p;

¢ the compilation complexity ofis 0 if and only ifr is constant.

In these limit cases, whether we know or not the number of nemgwvoters is irrel-
evant.

3 Some case studies

We now consider a few specific families of voting rules. Fasteaf these we adopt the
following methodology: we first seek a characterizationhaf €quivalence classes for the
given rule, then we use this characterization to count thelrar of equivalence classes.
In simple cases, it will be easy to enumerate exactly thessesek and Proposition 1 will
give us the exact compilation complexity of the rule. In mooanplex cases, we will
exhibit a simple upper bound and provide a lower bound of #meesorder.

3.1 Plurality and Borda

Let § = (sy,...,s,) be a vector of integers such that > s, > ... > s, = 0.
The scoring rule induced by is defined by: for every candidate scorez(z, P) =
Yo sin(P,i,x), wheren(P, i, x) is the number of votes i that rankz in position
i; andrz(P) is the candidate maximizingorez(x, P) (in case of a tie, a priority relation
on candidates is applied). The plurality (resp. Borda) rgléresp.r) is the scoring rule
corresponding to the vector, 0, ...,0) (resp.(p — 1,p—2,...,0)).

Plurality. We begin with the compilation complexity of plurality (aplirality is simi-
lar).

Lemmal For P € P¢ andz € X, letntop(P, ) be the number of votes iR ranking
x first. P ~,, P’ holds if and only if for every, ntop(P, z) = ntop(P’, x).
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Proof: The (<) direction is obvious. For the=£) direction, suppose there is ane X
such thatatop(P, x) # ntop(P’,z). Without loss of generality, assumeop(P, x) >
ntop(P',z). Now, we have) _,ntop(P,x) = > _pntop(P',xz) = m, therefore
there must be ap such thatntop(P,y) < ntop(P’,y). Note that we necessarily have
y # . Now, let@ be the following profile witt2m — ntop(P, z) — ntop(P, y) + 1 voters:
m —ntop( P, x)+ 1 voters haver on top (and whatever below), and— ntop( P, y) voters
havey on top (and whatever below). We havep(PUQ, x) = m+1, ntop(PUQ, y) =
m, and for every: # x,y, ntop(P U @, z) < m. Thereforeyp(P U Q) = z. Now, we
haventop(P' U Q,x) = ntop(P',z) — ntop(P,z) + m + 1 < m, ntop(P' U Q,y) =
ntop(P',y) — ntop(P,y) + m > m + 1, and for every: # x,y, ntop(P' U @, z) < m.
Thereforeyp(P U Q) = y. This sh! ows thal’ %, P'. |

This characterization together with Proposition 1 tellghet the compilation com-
plexity of rp is exactly[log L(m, p)|, whereL(m, p) be the number of vectors of posi-
tive integeray, . . ., a,) such thad~?_, o, = m. The number of such vectors is known,
in fact it is equivalent to the number of ways to choaselements from a set of size
when repetition is allowed, that i@’*ﬁ’l) —seee.g. [1]. A more explicit expression
can be obtained at the price of a very tight approximatiorysigg Stirling’s formula for
factorials. The following result is then obtained aftera tdgebraic rewritings.

Corollary 1 The compilation complexity of- is © (p log(1+ %) 4+ mlog(l + %))

It can observed that the previous result yieldsuaper boundn O(m + p), which
can be compared with the “naive” upper bound that may be éeéfiom the fact that it is
sufficient to record the plurality scores of each candidatéch need€)(plogm) bits.

Borda. We get this intuitive characterization ef for the Borda rule, in a similar way
as Proposition 1 for plurality. More generally, a similasu# holds for any scoring rule.

Lemma 2 For P € P¢ andz € X, letscoreg(z, P) be the Borda score af obtained
from the partial profileP. P ~,. P’ holds if and only if for every, scoreg(z, P) =
scoreg(x, P').

Let us denote byB(m,p) the number of vectors of positive integefs;, . . ., o)
corresponding to Borda scores onaevotes have been expressed. Observe that we nec-
essarily have tha}?_, o, = ™21 since each voter distributé&: points among
the candidates. However, this alone does not suffice to ctemize the set of realizable

Borda scores (for instance, if a candidate gets a score béf,rto other candidate can get
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less thanm). An upper bound is easily obtained by observing that isiptes$o simply
record the scores g@f — 1 candidates, and that this score can be at mdgt— 1).

Proposition 4 The compilation complexity of Borda is at m@st— 1) logm(p — 1).

Now we try to exhibit a lower bound that will approach this eppound. The general
idea is to restrict our attention to a subset of vectors oidBacores. For example, for
those vectors where the candidate with the lowest scordbgéisen 0 andh, the second
betweenn and2m, and so on until the penultimate voter, the score of the lasticlate
can be chosen on purpose so as to make a realizable vectorad Boores. (Observe
that by taking these intervals, the scores ofjithe1 first candidates can really be chosen
independently).

In what follows, we show how to construct profiles that resulthe desired vectors
of Borda scores, albeit for the sake of readability we shatifine ourselves to a slightly
more restricted case than the one discussed above. Teltyrica bound obtained is
slightly less tight, but the proof is easier to follow. Let eall basic scorethe vector
of Borda scores obtained when all voters cast their votelaityi(0,1,...,p — 1). The
following Lemma shows that two voters can produce a vectegrerlany candidate can
obtain one more vote than the basic score, while the lasidat@dobtains one vote less.

Lemma 3 For anyi < p, the vector of Borda score§y;, s, ..., a; +1,...,a, — 1)
whereVj < p,«; = 2(j — 1) can result from a two-voter profile.

Proof: We denote bya}, ab, ..., a?) the vector corresponding to the ballot of voter

We initially assign to voter 1 and 2 the basic vect@sl, ...,p — 1). Now we construct

the modified vectors of the two voters as follows: take theeso; anda;,, of voter

1 and swap them; then take the scon€s, andc«?,, of voter 2 and swap them; then
move back to voter 1 and swap the scafgs, anda, ;, and so on until the last score of
voter 1 or voter 2 is reached, in which case no more swap istges©bserve now that

Vj € [i+1,p—1], o +af = of + o because the swaps of voter 1 and 2 compensate
each other, so the scores of these candidates remain uedifféan the other hand, the
Borda scores of candidatendp are modified as required (respl and—1). ]

But the same principle can be applied withvoters: in short, it is possible to distribute
up tom/2 points among the firgi — 2 candidates to improve over their basic score (with
the last candidate compensating by seeing its score dedrdgsthe same amount of
points):
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Proposition 5 Let{d,, ..., d,—1} be any set of non-negative integers such Eﬁf 0;
%. The vector of Borda scorg$;, m + d02,2m + ds,...,2(p — 1) + J,), whered,
— Y715, can result from an-voter profile.

[ INA

Proof: Let m’ = m — Zf;f 260;. In the following, we will consider sums of profiles
and multiplications by constants. In particularx (z;, x5 ...) will refer to the profile
(axy,axsy, . ..). The above profile can be decomposed as follows as a sum efsscor

621 = 251)(<0,1,2...>+<5170,070,...—(51>
622 = 252><<0,1,2...>+<0,52,0,0,...—52>
623 = 253)(<071,2...>+<O,0753,0,0,...—53>
& = m x{0,1,2..)

The last score can be realized by simply summitigscores(0, 1,2, ...). As according
to Lemma 3 the scores; can be obtained by summing; scores, the result follows. m

Corollary 2 The compilation complexity of the Borda ruled$p log mp).

Proof: Let 1¢ be the indicator function valuedif condition C'is true and) otherwise.

In Proposition 5, we showed that the number of profiles in Witiandidate$ ...p — 2
have increasing scores is at leffay . . . o) € N1 | 7", < 21|, More gener-
ally, the question amounts to enumerating the set of vectors of non-negative integers,
whose sumiis lower or equaltoThis value can be written g5~ | 15|, j<idag . . . dag .

Clearly, this can be lower bounded gigi" 1y qo,<idayg . .. do,_;. But this is equal to half
of the volume of the hypercube of dimensienvhose side has length (For example,
with s = 2, this value becomes half the area of a squ?é)e More generally, we then

haveV; > . In our case, this gives us x (%)pfl. Note that this lower bounds
the number of profiles with increasing scores. Thus, thd tateber of profiles is at
least(p — 1)!mP~'27P. Using the fact thatogn! > nlogn, we get the lower bound

(p — 1)(logy(p — 1) + log, m — 2). Together with the upper bound, the result holdss

3.2 Rules based on the weighted majority graph

We now consider tournament-based rules. Pdie a profile.Np(x, y) denotes the num-
ber voters inP preferringx to y. Themajority graphMp is the directed graph whose set
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of vertices isX and containing an edge fromto y if and only if Np(z,y) > Np(y, x).
The weighted majority graph\p is the same ad/p, where each edge fromto y is
weighted byN (z,y) (note that there is no edge i between: andy if and only if
Np(z,y) = Np(y,x).) A voting ruler is based on the majority grapfabridged into
“MG-rule” ) if for any profile P, »(P) can be computed from/p, andbased on the
weighted majority graplfabridged into “WMG-rule” ) if for any profileP, r(P) can be
computed fromM p. Obviously, a MG-rule isa fortiori a WMG-rule. A candidate is

the Condorcet winnefor a profile P if it dominates every other candidate Mip. A vot-

ing ruler is Condorcet-consistert it elects the Condorcet winner whenever there exists
one.

Lemma 4 Letr be a WMG-rule rule. M p = Mp, thenP ~, P’

Proof: For any@, M py is fully determined fromM » andM,, becauseéVp g (x,y) =
Np(z,y)+ Ng(x,y). If risa WMG-rule themr(PU Q) is fully determined fromM p (),
therefore fromM p and M, and a fortiori, fromM p and@. (]

Note that for rules based on the (non-weighted) majorityplyrave still need the
weightedmajority graph ofP and P’ to coincide — having only the majority graph coin-
ciding is not sufficient fortP? ~, P’, sinceMpy is generally not fully determined from
Mp andMj,.

Lemma 4 gives an upper bound on the compilation complexity WfMG-rule. Let
T (m, p) be the set of all weighted tournaments.rthat can be obtained as the weighted
majority graph of somen-voter profile.

Proposition 6 If  is a WMG-rule therC'(r) < log T'(m, p).

Getting a lower bound is not possible without a further agstion onr. After all,
constant rules are based on the majority graph, yet theydaoenpilation complexity of
0. We say that a WMG-rule is properif P ~, P’ impliesMp = Mp.2. Itis easy to
find a natural sufficient condition for a WMG-rule to be praper

Lemma5 If r is a Condorcet-consistent rule théh~, P’ impliesMp = Mp..

3Examples of WMG-rules that are not proper: constant rulégatbrial rules; strange rules such as
r(P) =firstz; (wrt a fixed orderinge; > ... > x, on candidates) such that for al} # z; there is at least
one voter who prefers; to =, andz, if there is no suchx;; “restricted” rules such as(P) being defined
as the candidate maximizing the Copeland score among a fixeg:sof candidates; etc.
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Proof: Let » be a Condorcet-consistent rule. Assuh€r #* Mp, i.e, there exists
(.’L‘,y) € X with Np(lC,y) # Np/<$,y). WIOg,NP<JZ‘,y) = Np/(lC,y) + k (hence
Np(y,z) = Np(y,z) — k), with & > 0. Let @ be a set ofm + 1 voters where:
m + 1 — Np(z,y) voters preferr to y andy to anyone elseNp(z,y) voters prefery
to x andz to anyone else. As we hav€p,g(z,y) = Np(z,y) + No(z,y) = m + 1;
for any z # x,y, Npug(z,2z) = Np(x,z) + m+1 > m + 1, z is Condorcet win-
ner in P U @ (which contain22m + 1 voters) and-(P U Q) = z. But Npg(y,z) =
Np(y,z) + No(y,z) = Np(y,x) + k + Np(z,y) = m + k, and for anyz # z,y,
Npug(y,2) = Npi(y,z) +m+1 > m+ 1, soy is Condorcet winner in”’ U ) and
r(P'UQ) =vy. HenceP «, P'. |

This gives us the following lower bound.
Proposition 7 If r is a Condorcet-consistent rule théi{r) > log T'(m, p).
¢ From Propositions 6 and 7 we get

Proposition 8 If r is a Condorcet-consistent WMG-rule, th€ir) = log T'(m, p).

Corollary 3 The compilation complexity of the following rules is exadtlg 7'(m, p):
CopelandSimpson (maximin)Slater Banks uncovered seSchwartz

We now have to computg(m, p). We easily get the following upper bound.

Proposition 9 log T'(m, p) < p(p;) log(m + 2).

Proof: ¢ From Lemma 4 we know that it is enough to stdfg. Let > be a fixed ordering
on the candidates. Storiny, can be done by storing, for every pait, y) of distinct
candidates such that > y, (a) a single bit indicating whethe¥p(x,y) > Np(y,x) or
Np(z,y) < Np(y,z) and (b)min(Np(z,y), Np(y, x)). Since the latter number can vary

1

between) and 7 if m is even, and betweehand ™= is m is odd, storing this number

requires at moslog (2 + 1) bits. This makes a total of + log (% + 1) bits, that is,
log(m + 2) bits. We have'@ pairs of distinct candidates, hence the result. |

This bound is not necessarily reached: for any, = € X and any profile? we have
Np(x,z) > Np(x,y)+ Np(y,z) —m (e.g if m =3 andNp(z,y) = Np(y, z) = 2, then
Np(z, z) cannot be 0).
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Lemma 6 ConsiderV}’ the set of vectors of non-negative integers whose sum is lower
p(p—1)

or equal tot. ThenT'(m,p) >| Vm > |.

Proof: Assumem is even. Let{c;; | 1 < i < j < p} be any set non-negative integers
such thad _,_; c;; < . We will show how to build a profile such that(i, j) = 2¢; ;,

where N (7, j) indicates how many voters preféto j. Let us divide voters inté’@
groupsy; ; with 1 < i < 57 < p and a final grougy, such that each group ; is assumed
to contain exactlyc; ; voters andy, contains the rest of the voters (ixe.— >, _; 2¢; ;).
In each groupy; ;, set the profile of half of the voters 0~ j > z1 > zo > ... > x,_o,
and the other halfte,_» > x, 1 > ... > z1 > i > j, wherex, ...z, , refer to the
candidates other thanandj in an arbitrary order. In group, set half of the voters to
x1 = x9 > ... > x, and the other halfta, >~ ... > z;. Let N9(z, y) denote the number
of voters in groupy preferringz to y. Clearly, N9 (x,y) = N(z,y) if x = ¢ andy = j;
and 0 otherwise; and/? (z,y) = 0. Thus,N(z,y) = > N%i(z,y) = 2¢; ;. [

¢, From the previous Lemma, and using a technique similaetortle used in Corollary
2 to enumerat®,®, we obtain the compilation complexity of this family of rate

Corollary 4 If r is a Condorcet-consistent WMG-rule th€lir) = O(p? log m).

3.3 Plurality with runoff

Plurality with runoff is the voting rule (denoted by) consisting of two rounds: the
first round keeps only the two candidates with maximum pityracores (with some tie-
breaking mechanism), and the second round is simply therityajole.

Proposition 10 Letr, be the plurality-with-runoff ruleP ~,., @ holds if and only if for
everyz, ntop(P, x) = ntop(Q, x) and for everyr,y, Np(z,y) = Ng(x,y).

Lemma 7 If for every z, ntop(P,z) = ntop(Q,x) and for everyx,y, Np(x,y) =
No(z,y), thenP ~,, Q.

Proof: For everyx € X, sincentop(P,z) = ntop(Q,x), we also haveitop(P U
R,z) = ntop(Q U R, z): the two plurality winners are the same ifhu R andQ U R.
Let x and y be these two plurality winners. Sind€p(z,y) = Ng(z,y), we have
Npur(z,y) = Nour(z,y), therefore Mpygr(x,y) if and only if Mgur(z,y) and hence
ro(PUR) = ry(Q U R). [
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Lemma 8 If for somex ntop(P, x) # ntop(Q, z), thenP ., Q.

Proof: If p = 2, this is a corollary of Lemma 1. Assume> 3, and w.l.0.g., assume
ntop(P,z) > ntop(Q,z). Becausey_ . ntop(P,c) = Y .y ntop(Q,c)(= m), there
exists any # z such thatntop(P,y) < ntop(Q,y). Almost w.l.o.g., assume has
priority overy for tie-breaking. Let z # x, y (which is possible becauge> 3). We now
construct ank such that inP U R, the two finalists are andz, and the winner ig:;, and
in Q U R, the two finalists argy and > (therefore the winner cannot bd. Let R be the
following partial profile containing4m + ntop(P,y) — ntop(P, ) new votes:

ntop(P,y) — ntop(P, x) + 4m votes: x> ...
4m votes: Yy=x =z ...
6m votes: 2=

The plurality scores iP U R are:

e spur(z) = ntop(P, z) + ntop(P,y) — ntop(P, x) + 4m = ntop(P,y) + 4m;
* spur(y) = ntop(P,y) + 4m;

e spur(z) = ntop(P, z) + 6m.

for every other candidaig sp_gr(c) = ntop(P, c).

Sincentop(P,c) < m holds for everyc # x,y, z, we havesp r(z) > spur(z) =
spur(y) > spur(c) for everyc # x,y, z. Becauser has priority overy, the two candi-
dates remaining for the second round ar@ndx. Now, the number of voters i® U R
preferringz to z is N(PU R, z,z) = N(P, z, z) + ntop(P,y) — ntop(P, x) + 8m > 8m
(becauseV (P, z, z) > ntop(P,x)); andN(PUR, z,z) = N(P, z,x)+6m < 7m. Hence
ro(P U R) = x. The plurality scores i§) U R are:

o sour(r) = ntop(Q, x) + ntop(P,y) — ntop(P, x) + 4m > ntop(P,y) + 4m;
* squr(y) = ntop(Q,y) + 4m;

e sour(z) = ntop(Q, z) + 6m.

for every other candidate sgur(c) = ntop(Q, c).

4The proof in the opposite case is very similar and we omit it.
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sQur(Y) — squr(x) = ntop(Q, y) — ntop(P,y) + ntop(P, z) — ntop(Q, x). Now, by
assumption we havetop(Q,y) > ntop(P,y) andntop(P,x) > ntop(Q, x), therefore

sqQur(Y) > sqQur(T).

squr(%) —squr(z) = ntop(Q, z) —ntop(Q, x) —ntop(P,y) +ntop(P, ) +2m. Now,
ntop(P,x) > ntop(Q, x), thereforesqur(z) — squr(x) > ntop(Q, z) — ntop(P,y) +
2m > 0, thatis,squr(y) > squr().

Because the plurality scores of batlandz in QU R are larger than the plurality score
of x, x does not pass the first round, therefeye” U R) # z. |

Lemma 9 If for somez,y € X, N(P,z,y) # N(Q,z,y) thenP «,, Q.

Proof: Assume w.l.0.g. thalV (P, z,y) > N(Q,z,y). We are going to complet®? and
@ such that in bott? U R and@ U R, the finalists are andy, with x winningin PU R
andy in Q U R. Let R be composed of the followingN (P, y, x) + 3m + 1 votes:

2N(P,y,x) +m+ 1votes: ==y > ...
2m votes: Y= = ...

Obviously, the plurality scores iff U R verify spyr(x) > m, spur(y) > m, and for
anyc # z,y, spur(c) < m, therefore, the finalists areandy. Things are the same for
QUR.

Now, N(PUR, z,y) = N(P,z,y)+2N(P,y,x)+m+1=m+N(P,y,x)+m+1 =
N(P,y,z)+2m+1;andN(PUR, z,y) = 2N(P,y,z) +4m+1— N(PUR, z,y) =
N(P,y,x) + 2m. Thereforeyy(P U R) = x.

Lastly, N(QU R, x,y) = N(Q,z,y) + 2N(P,y,x) + m+ 1, andN(Q U R, x,y) =
N(Q,y,x) + 2m. We have nowN (Q U R,y,z) — N(QU R, z,y) = N(Q,y,x) + m —
N(Q,x,y)—QN(P,y,x)—m—l:N(Q,y,x)er—N(Q,x,y)—2N(P,x,y)—1:
2(N(Q,y,z) — N(P,y,z)) — 1. Now, N(Q,y,x) > N(P,y,x), therefore,N(Q U
R,y,x) > N(QU R, x,y), thatis,m»(Q U R) = y. (]

Proposition 10 is now a corollary from Lemmas 7, 8 and 9, afalldws that:

Proposition 11 The compilation complexity of plurality with runoff lsg L(m,p) +
lOgT(mup)
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4 Conclusion

This paper has introduced a notion that we believe to be aigy importance in many
practical situations: the compilation of incomplete pexil In particular, the amount of
information that a given polling station needs to transmttie central authority is a good
indicator of the difficulty of the verification process. Wevkastablished a general tech-
nique which allows us to derive the compilation complexifyaovoting rule, and have
related it to other issues in communication complexity. Vegenderived a number of
results for specific classes of voting rules. A question Wwahave only sketched in this
paper and that we plan to consider more carefully concemsithations where the num-
berk of remaining voters is fixed. In this case, a different apphozan be taken: instead
of compiling the partial profiles as provided by thevoters, it may be more efficient to
compile the possible completion of this partial profile tihge with the associated outc!
ome, or, in other words, to compile the function that takes rdmainingk profiles as
input (there arép!)* such inputs) and return the outcome. As thergang possible pro-
files, the number of such functionsjp¢"". This tells us that a general upper bound for
C(r, k) is < (p!)k.log p. Hence, overall we hav€'(r, k) < min(m. log(p!), (p!)*. logp)
(note that the second term becomes interesting only wihénbig enough, ang andk
small enough).

The general problem of dealing with incomplete profiles gpehost of related ques-
tions, for instance the probability that a voting processl@dde stopped after only:
voters have expressed their opinions, or (a closely relgtedtion), the probability that
the central authority would make a mistake were it forcedammit on a winner in sit-
uations where no candidate is yet guaranteed to prevail.thmanteresting issue for
further research would consist in designing new ways of aging NP-hard voting rules
using an off-line compilation step so that their on-line gutation time becomes poly-
nomial in the size of the initial profile. This, of course, ileg that the size of (P) may
be much larger (possibly exponentially) than the size ofinipait, which means that the
computation ofp may be logarithmic in the size of the compilatiefP).
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