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Abstract

In many practical contexts where a number agents have so as tofind a common
decision, the votes do not come all together at the same time (for instance, when vot-
ing about a date for a meeting, it often happens that one or twoparticipants express
their preferences later than others). In such situations, we might want to prepro-
cess the information given by the subelectorate (consisting of those voters who have
expressed their votes) so as to “compile” the known votes forthe time when the late-
comers will have expressed their votes. We study the amount of space necessary to
such a compilation, in function of the voting rule used, the number of candidates, the
number of voters who have already expressed their votes and the number of remain-
ing voters. We position our results with respect to existingwork, especially on vote
elicitation and communication complexity.
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1 Introduction

In many practical contexts where a number agents have so as tofind a common decision,
the votes do not come all together at the same time. For instance, in some political elec-
tions, the votes of the citizens living abroad is known only afew days after the rest of the
votes. Or, when voting about a date for a meeting, it often happens that one or two par-
ticipants express their preferences later than the others.In such situations, we might want
to preprocess the information given by the subelectorate (consisting of those voters who
have expressed their votes) so as to prepare the ground for the time when the latecomers
will have expressed their votes. What does “preparing the ground” exactly mean? We
may think of two different criteria:
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• space: synthesize the information contained in the votes of the subelectorate, using
as less space as possible, while keeping enough information so as to be able to
compute the outcome once the newcomers hace expressed theirvotes;

• on-line time: compile the information, using as much off-line time and space as
needed, in such a way that once the newcomers hace expressed their vote, the out-
come can be computedas fast as possible.

These two criteria not only differ, but are, to some extent, opposed.

The research area ofknowledge compilation(see for instance [3, 6]) lay the focus
on on-line space and typically looks for worst-case exponentially large rewritings of the
“fixed part” of the input, enabling on-line time complexity to fall down. While knowledge
compilation is definitely relevant to voting (the fixed part being the known votes, and the
varying part the votes of the latecomers), and would surely deserve a paper on its own, in
this paper, however, we focus on minimizing space (and do notcare about on-line time).

While should we care about synthesizing the votes of a subelectorate in as less space
as possible? After all, one may think, the current cost of storage is so low that one should
not care about storing millions of votes. There are two possible objections to this line
of argumentation. The first one has to do with the size of the candidate set. In one-seat
political elections, the number of candidates is typicallyno more than a dozen; however,
in “profane” votes, such as multiple elections [2], the set of candidates has a combinatorial
structure and can be extremely large (possibly much more than a few millions – while it is
difficult to imagine an election with more than a few million voters). The second objection
has to do with the practical acceptance of the voting rule. Suppose the electorate is split
into different districts (generally, corresponding to geographical entities). Each district
can count its ballots separately and communicate th! e partial outcome to the central
authority (e.g. the Ministry of Innner Affairs), which, after gathering the outcomes from
all districts, will determine the final outcome. The space needed to synthesize the votes
of a district (with respect to a given voting rule) is precisely the amount of information
that the district has to send to the central authority. Now, it is important that the voters
should be able to check as easily as possible the outcome of the election. Take a simple
rule, such as plurality or Borda. Obviously, it is enough (and almost necessary, as we
see later) for each district to send only its “local” plurality or Borda scores to the central
authority. If the district is small enough, it is not difficult for the voters of this district
to check that the local results are sound (for instance, eachpolitical party may delegate
someone for checking the ballots); provided these local results are made public (which is
usually the case – in most countries, th! ey are published in newspapers), every voter can
check the fin! al outcome from these local outcomes (in the case of plurality or Borda,
simply by summing up the local scores). Clearly, if the information about the votes of
a district being necessary for computing the final outcome islarge (e.g., if one needs to
know how many voters have expressed every possible linear order on the candidate set),
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it will be impractical to publish the results locally, and therefore, difficult to check the
final outcome, and voters may then be reluctant to accept the voting rule. Although the
compilation of the votes of a subelectorate has not been considered before (as far as we
know), several related problems have been investigated:

• thecomplexity of vote elicitation[4]: given a voting ruler, a set of known votesS,
and a set oft new voters, is the outcome of the vote already determined from S?

• thecomputation of possible and necessary winners[7, 11, 9, 10]: given a voting rule
r, a set of incomplete votes (that is, partial orders on the setof candidates), who are
the candidates who can still possibly win the election, and is there a candidate who
surely wins it?

• thecommunication complexity of voting rules[5]: given a voting ruler and a set of
voters, what is the worst-case cost (measured in terms of number of bits transmitted)
of the best protocol allowing to compute the outcome of the election?

In the first two cases, the connection is clear. In the extremely favourable case where
the outcome of the vote is already determined fromS (corresponding to the existence
of a necessary winner, or to a positive answer to the vote elicitation problem), the space
needed to synthesize the input is just the binary encoding ofthe winner. The connection
with communication complexity [8] will be discussed more explicitly in Section 2, after
the notion of compilation is introduced formally. Then in Section 3 we determine the
compilatioon complexity of some of the most common voting rules.

2 Compilation complexity as one-round communication
complexity

LetX be a finite set ofcandidatesandN a finite set ofvoters. Letp = |X| andn = |N |. A
voteis a linear order overX. We sometimes denote votes in the following way:a ≻ b ≻ c
is denoted byabc, etc. Form ≤ n, a (p, m)-profile is a tupleP = 〈V1, . . . , Vm〉 where
eachVi is a vote. Whenm < n (resp. m = n), we call such profilespartial (resp.
complete). LetPm

X be the set of allm-voters profiles overX. A voting rule is a function
r fromPn

X toX. As the usual definition of most common voting rules does not exclude the
possibility of ties, we assume these ties are broken by a fixedpriority order on candidates.

We now consider situations where only some of the voters (the“subelectorate”) have
expressed their votes. Letm ≤ n number of voters who have expressed their vote, and
P ∈ Pm

X the partial profile obtained from thesem voters. We say that two partial profiles
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arer-equivalent if no matter the remaining unknown votes, they will lead to the same out-
come. We distinguish between two cases, depending on whether the number of remaining
voters is fixed or not.

Definition 1 LetP, Q ∈ Pm
X be twom-votersX-profiles andr a voting rule. We say that

• givenk ≥ 0, P andQ are(r, k)-equivalentif for everyR ∈ Pk
X we haver(P∪R) =

r(Q ∪ R).

• P andQ are r-equivalentif they are(r, k)-equivalent for everyk ≥ 0.

Example 1 LetrP be the plurality rule andrB the Borda rule,X = {a, b, c} andm = 4.
Let P1 = 〈abc, abc, abc, abc〉, P2 = 〈abc, abc, acb, acb〉, P3 = 〈acb, acb, abc, abc〉 and
P4 = 〈abc, abc, abc, bca〉. Then we have the following:

• P2 andP3 arerP -equivalent andrB-equivalent. More generally, they arer-equivalent
for every anonymous voting ruler.

• P1 and P2 are rP equivalent. They are also(rB, k)-equivalent for everyk ≤ 2.
However they are not(rB, k)-equivalent fork ≥ 2. For k = 3, this can be seen by
consideringR = 〈bca, bca, bca〉. We haverB(P1 ∪ R) = b but rB(P2 ∪ R) = a;
therefore,P1 andP2 are notrB-equivalent.

• P1 andP4 are (rP , k)-equivalent for everyk ≤ 2, but not fork ≥ 2, therefore they
are notrP -equivalent (norrB-equivalent).

We denote(r, k)-equivalence andr-equivalence by, respectively,∼r,k and∼r. Obvi-
ously,∼r,k and∼r are transitive, therefore they are indeed equivalence relations. We now
define thecompilation complexityof a voting rule. We have two notions, depending on
whether the number of remaining candidates (i.e. the size ofR) is fixed or not.

Definition 2 Given a voting ruler, we say that a functionσ from Pm
X to {0, 1}∗ is a

compilation functionfor (r, k) if there exists a functionρ : {0, 1}∗ × Pk
X → X such that

for everyP ∈ Pm
X and everyR ∈ Pk

X , ρ(σ(P ), R) = r(P ∪R). The size ofσ is defined by
Size(σ) = max{σ(P ) | P ∈ Pm

X }. Thecompilation complexityof (r, k) is then defined
by

C(r, k) = min{Size(σ) | σ is a compilation function for(r, k)}

74



Annales du LAMSADE n◦9

Informally, the compilation complexity of(r, k) is the minimum space needed to com-
pile them-voter partial profileP without knowing the remainingk-voter profileR. This
notion does not take into account the off-line time needed tocomputeσ, nor the off-line
time needed to computeρ. The usual knowledge compilation view would focus on mini-
mizing the time needed to computeρ,regardless of the size ofσ (and the time needed to
compute it). The definitions whenk is not fixed are similar:

Definition 3 Given a voting ruler, we say that a functionσ from Pm
X to {0, 1}∗ is a

compilation functionfor r if there exists a functionρ : {0, 1}∗ × P∗
X → X, whereP∗

X =
∪k≥0Pk

X , such that for everyP ∈ Pm
X , everyk ≥ 0 and everyR ∈ Pk

X , ρ(σ(P ), R) =
r(P ∪ R). Thecompilation complexityof r is defined by

C(r) = min{Size(σ) | σ is a compilation function forr}

An equivalent way of seeing compilation complexity is related to multiparty commu-
nication complexity. Whenn agents have to compute a functionf , while each of them
only knows a part of the input, the deterministic communication complexity (see [8]) off
is the worst-case number of bits that the agents have to exchange so as to be able to know
the outcome. The communication complexity of common votingrules is identified in [5].

While standard communication complexity does not impose any restriction on the pro-
tocol that the agents may use to computef , imposing such restrictions leads to variants
of communication complexity; especially, aone-round protocolfor two agentsA andB
is a protocol whereA sends only one message toB, and thenB sends the output toA
(see Section 4.2 of [8]). Theone-round communication complexityof f is the worst-case
number of bits of the best one-round protocol forf . This is exactly the same as the com-
pilation complexity off , up to a minor difference: we do not care aboutB sending back
the output toA. Here,A represents the set of voters having already expressed theirvotes,
andB the remaining voters; the space needed to synthesize the votes of A is the amount
of information that A must send to B so that B can be able to compute the final outcome2.

2Since one-round communication complexity is never smallerthan standard communication complex-
ity, we expect the lower communication complexity bounds communication in [5] to be lower bounds of
compilation complexity. However, making this more preciseis not so simple, because in [5] there is no
partition between two subelectorates: their results mention only the total number of candidates, whereas
ours mention the number of candidates who have already expressed their votes. LetD(r, n, p) the (deter-
ministic) communication complexity ofr for n voters andp candidates as in [5]. Let us now introduce
this variant of communication complexity: ifm ≤ n, defineD(r, n, m, p) as the cost of the optimal pro-
tocol for computingr, where only the bits sent by them first voters count for the cost of a protocol (the
remainingn−m can communicate for free). Obviously, we haveD(r, n, m, p) ≤ D(r, n, p). Moreover, if
C(r, m, p) is the compilation complexity ofr for m voters andp candidates then for everyn ≥ m we have
C(r, m, p) ≥ D(r, n, m, p). In order to concludeC(r, m, p) ≥ D(r, m, p), we would have to show that for
all voting rules considered here, we haveD(r, n, m, p) = D(r, m, p) (which we conjecture).
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We have this following general characterization of compilation complexity. Up to
minor details, this is a reformulation of Exercise 4.18 in [8]. For the sake of the exposition,
we reformulate it in our own terms and include its proof.

Proposition 1 Let r be a voting rule. Letm be the number of initial voters andp the
number of candidates.

• givenk ≥ 0, if the number of equivalence classes for∼r,k is f(m, p, k) then the
compilation complexity of(r, k) is exactly⌈log f(m, p, k)⌉.

• if the number of equivalence classes for ther-equivalence relation∼r is g(m, p)
then the compilation complexity ofr is exactly⌈log g(m, p)⌉.

Proof: We give the proof only for the case of(r, k); the proof with unboundedk is similar.
We first show thatC(r, k) ≥ ⌈log f(m, p, k)⌉. Suppose∼k,r hasf(m, p, k) equivalence
classes. Assume there is a numberθ < ⌈log f(m, p, k)⌉, a functionσ : Pm

X → {0, 1}θ

and a mappingρ : {0, 1}∗ → X such that for everyP ∈ Pm
X andR ∈ Pk

X , ρ(σ(P ), R) =
r(P ∪ R). We first note thatθ < ⌈log f(m, p, k)⌉ implies θ < log f(m, p, k). Let ≈σ

be the equivalence relation onPm
X defined byP ≈σ Q if σ(P ) = σ(Q). Because for

everyP , |σ(P )| ≤ θ, ≈σ has at most2θ equivalence classes. Since2θ < f(m, p, k), ≈σ

has strictly less equivalence classes than∼k,r. Hence there exists a pair(P, Q) such that
σ(P ) = σ(Q) butP 6∼k,r Q. P 6∼k,r Q means that there exists a profileR ∈ Pk

X such that
r(P ∪ R) 6= r(Q ∪ R). Now,r(P ∪ R) = ρ(σ(P ), R) = ρ(σ(Q), R) = r(Q ∪ R), hence
a contradiction. We now show thatC(r, k) ≤ ⌈log f(m, p, k)⌉. Let us enumerate and
number allf(m, p, k) equivalence classes for∼k,r. For everyP , let i(P ) be the index of
its equivalence class for∼k,r. Define the translationσ(P ) = i(P ). We note that the size
of σ is exactly⌈log f(m, p, k)⌉.! Now, defineρ by ρ(j, R) = r(P ∪R) for an arbitraryP
such thati(P ) = j. The result follows. �

Here are now a few simple results about voting rules in general.

Proposition 2 Let r be a voting rule, andr′ an anonymous voting rule.

• C(r) ≤ m log(p!);

• C(r′) ≤ min(m log(p!), p! log m).

The proof is easy. For anyr, the number of equivalence classes cannot be larger than
the number of profiles, and there are(p!)m possible profiles. For any anonymousr, the
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boundp! log m comes from the fact that linear orders onX can be enumerated, together
with the number of voters who choose it.p! log m can be smaller thanm. log(p!) when
m becomes large enough andp small enough. At the other extremity of the spectrum, we
have:

Proposition 3

• the compilation complexity of a dictatorship islog p;

• the compilation complexity ofr is 0 if and only ifr is constant.

In these limit cases, whether we know or not the number of remaining voters is irrel-
evant.

3 Some case studies

We now consider a few specific families of voting rules. For each of these we adopt the
following methodology: we first seek a characterization of the equivalence classes for the
given rule, then we use this characterization to count the number of equivalence classes.
In simple cases, it will be easy to enumerate exactly these classes and Proposition 1 will
give us the exact compilation complexity of the rule. In morecomplex cases, we will
exhibit a simple upper bound and provide a lower bound of the same order.

3.1 Plurality and Borda

Let ~s = 〈s1, . . . , sn〉 be a vector of integers such thats1 ≥ s2 ≥ . . . ≥ sn = 0.
The scoring rule induced by~s is defined by: for every candidatex, score~s(x, P ) =
∑n

i=1 si.n(P, i, x), wheren(P, i, x) is the number of votes inP that rankx in position
i; andr~s(P ) is the candidate maximizingscore~s(x, P ) (in case of a tie, a priority relation
on candidates is applied). The plurality (resp. Borda) rulerP (resp.rB) is the scoring rule
corresponding to the vector〈1, 0, . . . , 0〉 (resp.〈p − 1, p − 2, . . . , 0〉).

Plurality. We begin with the compilation complexity of plurality (antiplurality is simi-
lar).

Lemma 1 For P ∈ Pm
X andx ∈ X, let ntop(P, x) be the number of votes inP ranking

x first. P ∼rP
P ′ holds if and only if for everyx, ntop(P, x) = ntop(P ′, x).
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Proof: The (⇐) direction is obvious. For the (⇒) direction, suppose there is anx ∈ X
such thatntop(P, x) 6= ntop(P ′, x). Without loss of generality, assumentop(P, x) >
ntop(P ′, x). Now, we have

∑

x∈P ntop(P, x) =
∑

x∈P ′ ntop(P ′, x) = m, therefore
there must be any such thatntop(P, y) < ntop(P ′, y). Note that we necessarily have
y 6= x. Now, letQ be the following profile with2m−ntop(P, x)−ntop(P, y)+1 voters:
m−ntop(P, x)+1 voters havex on top (and whatever below), andm−ntop(P, y) voters
havey on top (and whatever below). We haventop(P ∪Q, x) = m+1, ntop(P ∪Q, y) =
m, and for everyz 6= x, y, ntop(P ∪ Q, z) ≤ m. Therefore,rP (P ∪ Q) = x. Now, we
haventop(P ′ ∪ Q, x) = ntop(P ′, x) − ntop(P, x) + m + 1 ≤ m, ntop(P ′ ∪ Q, y) =
ntop(P ′, y) − ntop(P, y) + m ≥ m + 1, and for everyz 6= x, y, ntop(P ′ ∪ Q, z) ≤ m.
Therefore,rP (P ∪ Q) = y. This sh! ows thatP 6∼rP

P ′. �

This characterization together with Proposition 1 tells usthat the compilation com-
plexity of rP is exactly⌈log L(m, p)⌉, whereL(m, p) be the number of vectors of posi-
tive integers〈α1, . . . , αp〉 such that

∑p
i=1 αp = m. The number of such vectors is known,

in fact it is equivalent to the number of ways to choosem elements from a set of sizep
when repetition is allowed, that is

(
p+m−1

m

)
—seee.g. [1]. A more explicit expression

can be obtained at the price of a very tight approximation, byusing Stirling’s formula for
factorials. The following result is then obtained after a few algebraic rewritings.

Corollary 1 The compilation complexity ofrP is Θ
(

p log(1 + m
p
) + m log(1 + p

m
)
)

It can observed that the previous result yields anupper boundin O(m + p), which
can be compared with the “naive” upper bound that may be derived from the fact that it is
sufficient to record the plurality scores of each candidate,which needsO(p log m) bits.

Borda. We get this intuitive characterization of∼ for the Borda rule, in a similar way
as Proposition 1 for plurality. More generally, a similar result holds for any scoring rule.

Lemma 2 For P ∈ Pm
X andx ∈ X, let scoreB(x, P ) be the Borda score ofx obtained

from the partial profileP . P ∼rB
P ′ holds if and only if for everyx, scoreB(x, P ) =

scoreB(x, P ′).

Let us denote byB(m, p) the number of vectors of positive integers〈α1, . . . , αp〉
corresponding to Borda scores oncem votes have been expressed. Observe that we nec-
essarily have that

∑p
i=1 αp = mp(p−1)

2
, since each voter distributesp(p−1)

2
points among

the candidates. However, this alone does not suffice to characterize the set of realizable
Borda scores (for instance, if a candidate gets a score of 0, then no other candidate can get
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less thanm). An upper bound is easily obtained by observing that is possible to simply
record the scores ofp − 1 candidates, and that this score can be at mostm(p − 1).

Proposition 4 The compilation complexity of Borda is at most(p − 1) logm(p − 1).

Now we try to exhibit a lower bound that will approach this upper bound. The general
idea is to restrict our attention to a subset of vectors of Borda scores. For example, for
those vectors where the candidate with the lowest score getsbetween 0 andm, the second
betweenm and2m, and so on until the penultimate voter, the score of the last candidate
can be chosen on purpose so as to make a realizable vector of Borda scores. (Observe
that by taking these intervals, the scores of thep − 1 first candidates can really be chosen
independently).

In what follows, we show how to construct profiles that resultin the desired vectors
of Borda scores, albeit for the sake of readability we shall confine ourselves to a slightly
more restricted case than the one discussed above. Technically, the bound obtained is
slightly less tight, but the proof is easier to follow. Let uscall basic scorethe vector
of Borda scores obtained when all voters cast their vote similarly 〈0, 1, . . . , p − 1〉. The
following Lemma shows that two voters can produce a vector where any candidate can
obtain one more vote than the basic score, while the last candidate obtains one vote less.

Lemma 3 For any i < p, the vector of Borda scores〈α1, α2, . . . , αi + 1, . . . , αp − 1〉
where∀j ≤ p, αj = 2(j − 1) can result from a two-voter profile.

Proof: We denote by〈αv
1, α

v
2, . . . , α

v
n〉 the vector corresponding to the ballot of voterv.

We initially assign to voter 1 and 2 the basic vectors〈0, 1, . . . , p − 1〉. Now we construct
the modified vectors of the two voters as follows: take the scoresα1

i andα1
i+1 of voter

1 and swap them; then take the scoresα2
i+1 andα2

i+2 of voter 2 and swap them; then
move back to voter 1 and swap the scoresα1

i+2 andα1
i+3, and so on until the last score of

voter 1 or voter 2 is reached, in which case no more swap is possible. Observe now that
∀j ∈ [i + 1, p − 1], α1

j + α2
j = α′1

j + α′2
j because the swaps of voter 1 and 2 compensate

each other, so the scores of these candidates remain unaffected. On the other hand, the
Borda scores of candidatei andp are modified as required (resp.+1 and−1). �

But the same principle can be applied withm voters: in short, it is possible to distribute
up tom/2 points among the firstp− 2 candidates to improve over their basic score (with
the last candidate compensating by seeing its score decreased by the same amount of
points):
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Proposition 5 Let{δ1, . . . , δp−1} be any set of non-negative integers such that
∑p−1

i=1 δi ≤
m
2

. The vector of Borda scores〈δ1, m + δ2, 2m + δ3, . . . , 2(p − 1) + δp〉, whereδp =

−∑p−1
i=1 δi, can result from am-voter profile.

Proof: Let m′ = m − ∑p−1
i=1 2δi. In the following, we will consider sums of profiles

and multiplications by constants. In particular,a × 〈x1, x2 . . .〉 will refer to the profile
〈ax1, ax2, . . .〉. The above profile can be decomposed as follows as a sum of scores

~α1 = 2δ1 × 〈0, 1, 2 . . .〉 + 〈δ1, 0, 0, 0, . . .− δ1〉
~α2 = 2δ2 × 〈0, 1, 2 . . .〉 + 〈0, δ2, 0, 0, . . . − δ2〉
~α3 = 2δ3 × 〈0, 1, 2 . . .〉 + 〈0, 0, δ3, 0, 0, . . .− δ3〉

. . .

~αp = m′ × 〈0, 1, 2 . . .〉

The last score can be realized by simply summingm′ scores〈0, 1, 2, . . .〉. As according
to Lemma 3 the scoresαi can be obtained by summing2δi scores, the result follows. �

Corollary 2 The compilation complexity of the Borda rule isΘ(p log mp).

Proof: Let 1C be the indicator function valued1 if condition C is true and0 otherwise.
In Proposition 5, we showed that the number of profiles in which candidates0 . . . p − 2
have increasing scores is at least

∣
∣
{
〈α0 . . . αp−2〉 ∈ N

p−1 | ∑p−2
i=0 αi ≤ m

2

}∣
∣. More gener-

ally, the question amounts to enumeratingV s
t , the set of vectors ofs non-negative integers,

whose sum is lower or equal tot. This value can be written as
∫ ∞

α0..αs−1=0
1

P

⌊αi⌋≤tdα0 . . . dαs−1.

Clearly, this can be lower bounded by
∫ ∞
0

1
P

αi≤tdα0 . . . dαs−1. But this is equal to half
of the volume of the hypercube of dimensions whose side has lengtht. (For example,
with s = 2, this value becomes half the area of a squaret2

2
). More generally, we then

haveV s
t ≥ ts

2
. In our case, this gives us1

2
×

(
m
2

)p−1
. Note that this lower bounds

the number of profiles with increasing scores. Thus, the total number of profiles is at
least(p − 1)!mp−12−p. Using the fact thatlog n! ≥ n log n, we get the lower bound
(p − 1)(log2(p − 1) + log2 m − 2). Together with the upper bound, the result holds.�

3.2 Rules based on the weighted majority graph

We now consider tournament-based rules. LetP be a profile.NP (x, y) denotes the num-
ber voters inP preferringx to y. Themajority graphMP is the directed graph whose set
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of vertices isX and containing an edge fromx to y if and only if NP (x, y) > NP (y, x).
The weighted majority graphMP is the same asMP , where each edge fromx to y is
weighted byN(x, y) (note that there is no edge inMP betweenx andy if and only if
NP (x, y) = NP (y, x).) A voting rule r is based on the majority graph(abridged into
“MG-rule” ) if for any profile P , r(P ) can be computed fromMP , andbased on the
weighted majority graph(abridged into “WMG-rule” ) if for any profileP , r(P ) can be
computed fromMP . Obviously, a MG-rule isa fortiori a WMG-rule. A candidatex is
theCondorcet winnerfor a profileP if it dominates every other candidate inMP . A vot-
ing ruler is Condorcet-consistentif it elects the Condorcet winner whenever there exists
one.

Lemma 4 Let r be a WMG-rule rule. IfMP = MP ′ thenP ∼r P ′.

Proof: For anyQ, MP∪Q is fully determined fromMP andMQ, becauseNP∪Q(x, y) =
NP (x, y)+NQ(x, y). If r is a WMG-rule thenr(P ∪Q) is fully determined fromMP∪Q,
therefore fromMP andMQ, and a fortiori, fromMP andQ. �

Note that for rules based on the (non-weighted) majority graph, we still need the
weightedmajority graph ofP andP ′ to coincide – having only the majority graph coin-
ciding is not sufficient forP ∼r P ′, sinceMP∪Q is generally not fully determined from
MP andMQ.

Lemma 4 gives an upper bound on the compilation complexity ofa WMG-rule. Let
T (m, p) be the set of all weighted tournaments onX that can be obtained as the weighted
majority graph of somem-voter profile.

Proposition 6 If r is a WMG-rule thenC(r) ≤ log T (m, p).

Getting a lower bound is not possible without a further assumption onr. After all,
constant rules are based on the majority graph, yet they havea compilation complexity of
0. We say that a WMG-ruler is proper if P ∼r P ′ impliesMP = MP ′

3. It is easy to
find a natural sufficient condition for a WMG-rule to be proper:

Lemma 5 If r is a Condorcet-consistent rule thenP ∼r P ′ impliesMP = MP ′.

3Examples of WMG-rules that are not proper: constant rules; dictatorial rules; strange rules such as
r(P ) = first xi (wrt a fixed orderingx1 > ... > xp on candidates) such that for allxj 6= xi there is at least
one voter who prefersxi to xj , andxp if there is no suchxi; “restricted” rules such asr(P ) being defined
as the candidate maximizing the Copeland score among a fixed subset of candidates; etc.
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Proof: Let r be a Condorcet-consistent rule. AssumeMP 6= MP ′, i.e., there exists
(x, y) ∈ X with NP (x, y) 6= NP ′(x, y). W.l.o.g., NP (x, y) = NP ′(x, y) + k (hence
NP (y, x) = NP ′(y, x) − k), with k > 0. Let Q be a set ofm + 1 voters where:
m + 1 − NP (x, y) voters preferx to y andy to anyone else;NP (x, y) voters prefery
to x andx to anyone else. As we haveNP∪Q(x, y) = NP (x, y) + NQ(x, y) = m + 1;
for any z 6= x, y, NP∪Q(x, z) = NP (x, z) + m + 1 ≥ m + 1, x is Condorcet win-
ner in P ∪ Q (which contains2m + 1 voters) andr(P ∪ Q) = x. But NP ′∪Q(y, x) =
NP ′(y, x) + NQ(y, x) = NP (y, x) + k + NP (x, y) = m + k, and for anyz 6= x, y,
NP ′∪Q(y, z) = NP ′(y, z) + m + 1 ≥ m + 1, soy is Condorcet winner inP ′ ∪ Q and
r(P ′ ∪ Q) = y. HenceP 6∼r P ′. �

This gives us the following lower bound.

Proposition 7 If r is a Condorcet-consistent rule thenC(r) ≥ log T (m, p).

¿From Propositions 6 and 7 we get

Proposition 8 If r is a Condorcet-consistent WMG-rule, thenC(r) = log T (m, p).

Corollary 3 The compilation complexity of the following rules is exactly log T (m, p):
Copeland, Simpson (maximin), Slater, Banks, uncovered set, Schwartz.

We now have to computeT (m, p). We easily get the following upper bound.

Proposition 9 log T (m, p) ≤ p(p−1)
2

log(m + 2).

Proof: ¿From Lemma 4 we know that it is enough to storeMP . Let > be a fixed ordering
on the candidates. StoringMP can be done by storing, for every pair(x, y) of distinct
candidates such thatx > y, (a) a single bit indicating whetherNP (x, y) > NP (y, x) or
NP (x, y) ≤ NP (y, x) and (b)min(NP (x, y), NP (y, x)). Since the latter number can vary
between0 and m

2
if m is even, and between0 and m−1

2
is m is odd, storing this number

requires at mostlog
(

m
2

+ 1
)

bits. This makes a total of1 + log
(

m
2

+ 1
)

bits, that is,

log(m + 2) bits. We havep(p−1)
2

pairs of distinct candidates, hence the result. �

This bound is not necessarily reached: for anyx, y, z ∈ X and any profileP we have
NP (x, z) ≥ NP (x, y) + NP (y, z)−m (e.g, if m = 3 andNP (x, y) = NP (y, z) = 2, then
NP (x, z) cannot be 0).
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Lemma 6 ConsiderV s
t the set of vectors ofs non-negative integers whose sum is lower

or equal tot. ThenT (m, p) ≥| V
p(p−1)

2
m
2

|.

Proof: Assumem is even. Let{ci,j | 1 ≤ i < j ≤ p} be any set non-negative integers
such that

∑

i<j ci,j ≤ m
2

. We will show how to build a profile such thatN(i, j) = 2ci,j,

whereN(i, j) indicates how many voters preferi to j. Let us divide voters intop(p−1)
2

groupsgi,j with 1 ≤ i < j ≤ p and a final groupg0, such that each groupgi,j is assumed
to contain exactly2ci,j voters andg0 contains the rest of the voters (i.e.m − ∑

i<j 2ci,j).
In each groupgi,j, set the profile of half of the voters toi ≻ j ≻ x1 ≻ x2 ≻ . . . ≻ xp−2,
and the other half toxp−2 ≻ xp−1 ≻ . . . ≻ x1 ≻ i ≻ j, wherex1 . . . xp−2 refer to the
candidates other thani andj in an arbitrary order. In groupg0 set half of the voters to
x1 ≻ x2 ≻ . . . ≻ xp and the other half toxp ≻ . . . ≻ x1. Let Ng(x, y) denote the number
of voters in groupg preferringx to y. Clearly,Ngij (x, y) = N(x, y) if x = i andy = j;
and 0 otherwise; andNg0(x, y) = 0. Thus,N(x, y) =

∑
Ngi,j (x, y) = 2ci,j. �

¿From the previous Lemma, and using a technique similar to the one used in Corollary
2 to enumerateV s

t , we obtain the compilation complexity of this family of rules:

Corollary 4 If r is a Condorcet-consistent WMG-rule thenC(r) = Θ(p2 log m).

3.3 Plurality with runoff

Plurality with runoff is the voting rule (denoted byr2) consisting of two rounds: the
first round keeps only the two candidates with maximum plurality scores (with some tie-
breaking mechanism), and the second round is simply the majority rule.

Proposition 10 Let r2 be the plurality-with-runoff rule.P ∼r2
Q holds if and only if for

everyx, ntop(P, x) = ntop(Q, x) and for everyx, y, NP (x, y) = NQ(x, y).

Lemma 7 If for every x, ntop(P, x) = ntop(Q, x) and for everyx, y, NP (x, y) =
NQ(x, y), thenP ∼r2

Q.

Proof: For everyx ∈ X, sincentop(P, x) = ntop(Q, x), we also haventop(P ∪
R, x) = ntop(Q ∪ R, x): the two plurality winners are the same inP ∪ R andQ ∪ R.
Let x and y be these two plurality winners. SinceNP (x, y) = NQ(x, y), we have
NP∪R(x, y) = NQ∪R(x, y), therefore,MP∪R(x, y) if and only if MQ∪R(x, y) and hence
r2(P ∪ R) = r2(Q ∪ R). �

83



Compiling the votes of a subelectorate

Lemma 8 If for somex ntop(P, x) 6= ntop(Q, x), thenP 6∼r2
Q.

Proof: If p = 2, this is a corollary of Lemma 1. Assumep ≥ 3, and w.l.o.g., assume
ntop(P, x) > ntop(Q, x). Because

∑

c∈X ntop(P, c) =
∑

c∈X ntop(Q, c)(= m), there
exists any 6= x such thatntop(P, y) < ntop(Q, y). Almost w.l.o.g., assumex has
priority overy for tie-breaking4. Let z 6= x, y (which is possible becausep ≥ 3). We now
construct anR such that inP ∪ R, the two finalists arex andz, and the winner isx, and
in Q ∪ R, the two finalists arey andz (therefore the winner cannot bex). Let R be the
following partial profile containing14m + ntop(P, y) − ntop(P, x) new votes:

ntop(P, y) − ntop(P, x) + 4m votes: x ≻ . . .
4m votes: y ≻ x ≻ z ≻ . . .
6m votes: z ≻ . . .

The plurality scores inP ∪ R are:

• sP∪R(x) = ntop(P, x) + ntop(P, y) − ntop(P, x) + 4m = ntop(P, y) + 4m;

• sP∪R(y) = ntop(P, y) + 4m;

• sP∪R(z) = ntop(P, z) + 6m.

• for every other candidatec, sP∪R(c) = ntop(P, c).

Sincentop(P, c) ≤ m holds for everyc 6= x, y, z, we havesP∪R(z) > sP∪R(x) =
sP∪R(y) > sP∪R(c) for everyc 6= x, y, z. Becausex has priority overy, the two candi-
dates remaining for the second round arez andx. Now, the number of voters inP ∪ R
preferringx to z is N(P ∪R, x, z) = N(P, x, z) + ntop(P, y)− ntop(P, x) + 8m ≥ 8m
(becauseN(P, x, z) ≥ ntop(P, x)); andN(P ∪R, z, x) = N(P, z, x)+6m ≤ 7m. Hence
r2(P ∪ R) = x. The plurality scores inQ ∪ R are:

• sQ∪R(x) = ntop(Q, x) + ntop(P, y)− ntop(P, x) + 4m > ntop(P, y) + 4m;

• sQ∪R(y) = ntop(Q, y) + 4m;

• sQ∪R(z) = ntop(Q, z) + 6m.

• for every other candidatec, sQ∪R(c) = ntop(Q, c).

4The proof in the opposite case is very similar and we omit it.
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sQ∪R(y)− sQ∪R(x) = ntop(Q, y)− ntop(P, y) + ntop(P, x) − ntop(Q, x). Now, by
assumption we haventop(Q, y) > ntop(P, y) andntop(P, x) > ntop(Q, x), therefore
sQ∪R(y) > sQ∪R(x).

sQ∪R(z)−sQ∪R(x) = ntop(Q, z)−ntop(Q, x)−ntop(P, y)+ntop(P, x)+2m. Now,
ntop(P, x) > ntop(Q, x), thereforesQ∪R(z) − sQ∪R(x) > ntop(Q, z) − ntop(P, y) +
2m > 0, that is,sQ∪R(y) > sQ∪R(x).

Because the plurality scores of bothy andz in Q∪R are larger than the plurality score
of x, x does not pass the first round, thereforer2(P ∪ R) 6= x. �

Lemma 9 If for somex, y ∈ X, N(P, x, y) 6= N(Q, x, y) thenP 6∼r2
Q.

Proof: Assume w.l.o.g. thatN(P, x, y) > N(Q, x, y). We are going to completeP and
Q such that in bothP ∪ R andQ ∪ R, the finalists arex andy, with x winning inP ∪ R
andy in Q ∪ R. Let R be composed of the following2N(P, y, x) + 3m + 1 votes:

2N(P, y, x) + m + 1 votes: x ≻ y ≻ . . .
2m votes: y ≻ x ≻ . . .

Obviously, the plurality scores inP ∪ R verify sP∪R(x) > m, sP∪R(y) > m, and for
anyc 6= x, y, sP∪R(c) ≤ m, therefore, the finalists arex andy. Things are the same for
Q ∪ R.

Now,N(P ∪R, x, y) = N(P, x, y)+2N(P, y, x)+m+1 = m+N(P, y, x)+m+1 =
N(P, y, x) + 2m + 1; andN(P ∪R, x, y) = 2N(P, y, x) + 4m + 1 −N(P ∪R, x, y) =
N(P, y, x) + 2m. Therefore,r2(P ∪ R) = x.

Lastly,N(Q ∪ R, x, y) = N(Q, x, y) + 2N(P, y, x) + m + 1, andN(Q ∪ R, x, y) =
N(Q, y, x) + 2m. We have nowN(Q ∪ R, y, x) − N(Q ∪ R, x, y) = N(Q, y, x) + m −
N(Q, x, y)− 2N(P, y, x)−m− 1 = N(Q, y, x) + m−N(Q, x, y)− 2N(P, x, y)− 1 =
2(N(Q, y, x) − N(P, y, x)) − 1. Now, N(Q, y, x) > N(P, y, x), therefore,N(Q ∪
R, y, x) > N(Q ∪ R, x, y), that is,r2(Q ∪ R) = y. �

Proposition 10 is now a corollary from Lemmas 7, 8 and 9, and itfollows that:

Proposition 11 The compilation complexity of plurality with runoff islog L(m, p) +
log T (m, p).
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4 Conclusion

This paper has introduced a notion that we believe to be of primary importance in many
practical situations: the compilation of incomplete profiles. In particular, the amount of
information that a given polling station needs to transmit to the central authority is a good
indicator of the difficulty of the verification process. We have established a general tech-
nique which allows us to derive the compilation complexity of a voting rule, and have
related it to other issues in communication complexity. We have derived a number of
results for specific classes of voting rules. A question thatwe have only sketched in this
paper and that we plan to consider more carefully concerns the situations where the num-
berk of remaining voters is fixed. In this case, a different approach can be taken: instead
of compiling the partial profiles as provided by them voters, it may be more efficient to
compile the possible completion of this partial profile together with the associated outc!
ome, or, in other words, to compile the function that takes the remainingk profiles as
input (there are(p!)k such inputs) and return the outcome. As there are(p!)k possible pro-
files, the number of such functions isp(p!)k

. This tells us that a general upper bound for
C(r, k) is ≤ (p!)k. log p. Hence, overall we haveC(r, k) ≤ min(m. log(p!), (p!)k. log p)
(note that the second term becomes interesting only whenm is big enough, andp andk
small enough).

The general problem of dealing with incomplete profiles opens a host of related ques-
tions, for instance the probability that a voting process could be stopped after onlym
voters have expressed their opinions, or (a closely relatedquestion), the probability that
the central authority would make a mistake were it forced to commit on a winner in sit-
uations where no candidate is yet guaranteed to prevail. Another interesting issue for
further research would consist in designing new ways of computingNP-hard voting rules
using an off-line compilation step so that their on-line computation time becomes poly-
nomial in the size of the initial profile. This, of course, implies that the size ofσ(P ) may
be much larger (possibly exponentially) than the size of theinput, which means that the
computation ofρ may be logarithmic in the size of the compilationσ(P ).
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