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Abstract

Much like relational probabilistic models, the need for relational preference mod-
els arises naturally in real-world applications where the set of object classes is fixed,
but object instances vary from one application to another as well as within the run-
time of a single application. To address this problem, we suggest a rule-based prefer-
ence specification language. This language extends regular rule-based languages and
leads to a much more flexible approach for specifying control rules for autonomous
systems. It also extends standard generalized-additive value functions to handle a dy-
namic universe of objects: given any specific set of objects it induces a generalized-
additive value function. Throughout the paper we use the example of a decision
support system for command and control centers we are currently developing to mo-
tivate the need for such models and to illustrate them.
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1 Introduction

Much of the work in AI on preference handling has focused on tools for modeling prefer-
ences of lay users, often in applications related to electronic commerce, such as support
for online selection of goods [15, 6, 4, 3], tools for preference elicitation in combinatorial
auctions [18], recommender systems [6], etc. Some work also targets the more clas-
sical decision-analysis setting which is usually mediated by an expert decision analyst,
supporting the elicitation process of the detailed classical structures used there, namely
utility functions (e.g., [5, 9]). However, much less work considers the use of preferences
as a key tool in the design of complex systems.
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The idea of using preferences to design autonomous systems is quite intuitive. Au-
tonomous systems make many decisions during their run time, and ideally, their choices
should be the ones maximally preferred among available choices at the current context. A
preference-based design explicitly models the designer’s preferences for different choices
in different contexts, and uses a generic mechanism for selecting a preferred feasible
choice at run-time.

A preference-based design can provide a uniform declarative and modular approach
for the design and specification of certain autonomous systems. It is naturally amenable to
customization, both before and during deployment, either by providing additional infor-
mation about the context, or allowing for additional user-specific preferences. Compared
with electronic-commerce based applications which deal with users who usually spend
little time with the system and require an interface that is immediately intuitive, the de-
sign context allows for more sophisticated and rich methods. A system designer is likely
to be willing to spend more than a few minutes on her system, and she can be expected to
spend time learning how to effectively specify her preference. On the other hand, the de-
signer’s willingness to adapt a new tool is likely to depend greatly on the convenience and
intuitive appeal of this tool, and on the amount of learning required to use it effectively
without expert assistance. This puts the system design context somewhere between the
end-user context and the decision analysis context, and motivates the need for formalisms
that address this setting. These formalism must provide sufficient expressiveness while
remaining intuitive.

The general idea of decision-theoretic design is not a new one (for instance, it per-
vades [17]). Recent work in robotics shows that this idea can be very successful [14].
Taking it to an extreme implies building agents that maintain beliefs about their states
via some probability distribution and goals using a utility function. On the probabilistic
side, relational and object-oriented probabilistic models provide tools that allow design-
ers to describe a generic probabilistic model that can then be used in diverse contexts in
which the number and properties of concrete object instances may be quite different. On
the preference side, we are not there yet, although the need to model preferences may be
more pressing than that of modeling uncertainty. There are many settings in which mod-
eling uncertainty is of lesser concern because designers have a good idea of what they
want done as a function of the system data, rather than the real-world state. Moreover, it
is often harder to introspect about preferences, and/or to automatically learn them from
data. This is especially true when we consider the preferences of a designer. There, unlike
in e-commerce applications, it is difficult to see how we can learn from experience with
other “users.”

These needs for preference representation tools that support the system design and
control context and provide the ability to express relational preferences in an intuitive
manner that system designers can easily grasp motivate this paper. Its main contribution is
the introduction of a simple relational preference formalism whose semantics generalizes
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that of generalized additive value functions. In addition, it explains how optimal choices
can be computed given such a specification and how systems supporting probabilistic
relational models can be used to compute optimal choices. This also provides a first
step towards a unified decision-theoretic modeling framework. In addition, we describe a
concrete application domain, which is of independent interest, in which we employ this
formalism and which serves to motivate it farther.

Preference rules specify preferences for systems that act in dynamic environments
where both the set of objects and their state change constantly. They combine ideas from
rule-based systems and earlier preference formalisms leading to a simple rule-based syn-
tax with weights attached to different choices. They can be viewed as a special case of
soft CLP [2], but with simpler syntax and semantics based on the notion of a generalized-
additive value functions [7, 1].

Like rule-based systems, preference-rule-based systems can be used in process and
decision control applications in which rule-based systems are currently used. They retain
the natural form of rule-based systems, but are much more flexible because their conclu-
sions are not based on rigid deduction, but rather on optimization.

Like CP-nets, they specify the relative value of some property as a function of a (hope-
fully) small number of other properties that influence this property. Unlike CP-nets, they
are quantitative to allow modularity via aggregation of values using summation, and they
use a limited-form of first-order logic to handle a variable number of objects and their
attributes. The resulting formalism generalizes classical preference formalisms, and in
particular, generalized additive value functions, to domains in which the set of objects
vary across time.

In the next section we motivate the use of preference rules using an important appli-
cation problem: decision support for command and control centers. A system currently
under construction which uses preference rules to guide the choice of data displayed to a
decision maker in such a context is described in
www.cs.bgu.ac.il/∼giorasch/documents.htm. In Section 3 we describe
the syntax and semantics of preference rules. We conclude in Section 4.

2 Motivation: Command and Control Display

Preference rules arose out of our desire to solve a concrete problem for which we found
current techniques inadequate. Consider a command and control room for real-time oper-
ations. This can be a control room for the fire-department of a large city; a control room
for handling large-scale emergencies, such as earthquakes, flooding, or terrorist attacks; a
control center for complex missions, such as NASA shuttle missions; an army command
center; or a monitoring center for some firm that receives much real-time data that re-
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quires the attention of a decision maker. To be concrete, let us focus on the first setting,
that of a fire department that needs to deal with fire and rescue operations, and disasters.
Imagine, a not very futuristic scenario in which each fireman has a camera on his helmet,
cameras are located in various places across the city (as is the case today in London), and
heat, smoke, and other hazardous material sensors are located on some firemen and in
various places in buildings.

In a realistic scenario, we are talking about thousands of possible information streams
that the decision maker in the control room might have access to. Moreover, much more
information is accessible by querying databases: from street maps to building plans and
building material specifications, to resource status such as firemen, fire trucks, special
equipment, etc. Analysis tools that analyze the various aspects of the current situation,
running statistical tests, risk analysis, and simulations may also be available.

Clearly, a given decision maker cannot handle this volume of information. An ideal
intelligent application will be able to fuse all the information together, but this is unlikely
to happen in the foreseeable future. While much work is carried out on sensor fusion [13],
current technology is very limited in the type and scope of sensory data that can be fused
together. We seek a more modest solution, that although challenging, appears to be feasi-
ble, and can have enormous impact on the quality of decisions made. We seek a tool that
will automatically control the information sources displayed to a decision maker based on
the current state of the world.1

Consider the characteristics of such a system. The set of object types, i.e., classes, is
known ahead of time. Some of the instances may also be known (e.g., the personnel in the
fire department) but some change dynamically (e.g., a new fire is modeled as a new object
of the fire class). The attribute values of concrete object instances change throughout the
situation. As the state of the system changes (i.e., attribute value change or instances
are added or removed), display choices must be made, and they must be made quickly
(i.e., in a matter of seconds). Finally, information can be displayed in various modes, for
instance, a video can be shown in different sizes and in different places on the user screen.
Analysis results or interesting items of information can be shown directly, or using icons
that require a click.

Attributes that represent display choices, such as whether a video stream is displayed
and how, correspond to controllable attributes. All other attributes are uncontrollable.
We seek a specification that describes the preferred values of controllable variables as a
function of the values of uncontrollable variables and other controllable variables. For
example, whether I want to show a video stream from the camera of a fireman in some
fire scene depends on the fireman’s status and rank, and on which other cameras will

1We do not address the difficult practical question of how the state of the world is maintained. In some
situations, we can assume human operators update the database, such as 911 operators. In others, the
state is automatically updated, as in corporate settings where online transactions contain all the relevant
information.
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be shown. In some situations, one camera from a scene is enough, and in others more
cameras are preferred.

Abstracting away a bit, we see an application where we must assign value to a num-
ber of controllable variables. The desirability of an assignment to a controllable variable
depends on the state of the uncontrollable variables and the value assigned to other con-
trollable variables. This set of variables changes dynamically as the set of objects changes.
In addition, value choices are constrained by resource limitations (e.g., screen size, user
attention). Using a simple rule-based system to determine the value of controllable vari-
ables is not natural and unlikely to be feasible as the resource constraints introduce strong
inter-dependence into the system. A value function, on the other hand, provides context
dependence in two ways. First, explicitly by allowing us to condition value on various
choices and external parameters. Second, implicitly, via the ideas of constrained opti-
mization, where we seek an optimal feasible solution.

3 Preference Rules

We adopt an object oriented world model. Objects are instances of certain object classes.
A set of attributes is associated with every instance of every class. The value of these
attributes may be a simple type, such as integers, reals, strings, or an object class. (Object
valued attributes let us capture binary relations between objects.) In addition, we may
allow for class attributes. Attributes are separated into two classes: controllable and
uncontrollable. It is possible to enrich this structure with n-ary relations. These introduce
complexity, but can also be captured indirectly via set-valued attributes, or multiple binary
relationships.

Example 1 Consider a model of the fire-fighters domain. Some classes could be: fire-
man, fire-engine, fire, etc. Fireman might have attributes such as location, rank, and role,
and a class attributes base-station. Imagine that in addition, fireman are equipped with
sensors, such as a camera, CO2-level, and temperature. Fire can have attributes location
and intensity. Fire-engine might have attributes such as location, driver, ladder. The fire-
men’s sensor attributes, as well as the driver and ladder attributes are themselves objects.
The camera object has two attributes: on, and display which determine whether it is on,
and whether the video stream is being displayed in some command center. Both of these
attributes are examples of controllable attributes. We can imagine an application where
the fire-engine’s driver attribute is controllable, as well.

Our goal is to define a generalized-additive (GA) value function over the set of at-
tribute value-assignments [7, 1]. Technically, we specify a function that, given a set of
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objects returns a GA value function over the attribute values of these objects. This is done
by using preference rules with the following form:

rule-body → rule-head : 〈(v1, w1), . . . , (vk, wk)〉

Where rule-body has the following form:

class1(x1) ∧ . . . ∧ classk(xk) ∧ α1 ∧ . . . ∧ αm

and αi has the form: xi.path REL value or xi.pathi REL xj.pathj . Each xi must
appear earlier within a classj(xi) element. By path we mean a possibly empty attribute
chain such as x.mother.profession and REL denotes a relational operator such as
=, 6=, >, < etc. The rule-head has the form xj.path where xj.path denotes a controllable
attribute. 〈(v1, w1), . . . , (vk, wk)〉 is a list of pairs, the first of which denotes a possible
value of the attribute in rule-head, and the second of which is a real-valued weight. Given
a rule r, we use w(r, v) to denote the weight associated with assigning value v to the head
of rule r. Finally, we do not allow multiple controllable attributes within one attribute
chain. For example, x.girl-friend.salary would not be allowed if one can both
choose one’s girl-friend, and the girl-friend’s salary. 2

Example 2 The following rule expresses the fact that viewing the stream generated by a
fireman in a location of a fire has value 4:

(1) fireman(x) ∧ fire(y) ∧ x.location = y.location
→ x.camera.display : 〈(“on”,4),(“off”,0)〉.

Note that this will have the same effect as

(1′) fireman(x) ∧ fire(y) ∧ x.location = y.location
→ x.camera.display : 〈(“on”,4)〉.

Here is another rule that expresses a preference that the rank of fireman whose camera
is on be high (e.g., so that we know what commanders on-site are seeing):

fireman(x) ∧ x.camera.display = “on”

→ x.rank : 〈(“high”,4)〉

However, despite its naturalness, this rule is not allowed, as the variable at the head
— the rank of the fireman, is not directly controllable.

2We use an object-oriented notation which we find more natural for these types of models than the more
traditional relational one.
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Here is another rule that would increase the value of observing the oxygen level of
firemen in areas with a high level of CO2:

(2) fireman(x) ∧ x.co2-level = high
→ x.oxygen-level-display : 〈 (“on”, 10),(“off”,0)〉.

Our need for a relational approach to preference specification stems from the fact that
the set of objects is not known at design time. In fact, this set can change throughout
the life-time of an application, and we need a fixed preference specification formalism
that can work in diverse settings. For instance, new fires may occur, while others may be
extinguished, and new equipment or fireman may be added.

Preference rules allow this flexibility because they are basically schemas of ground
rules, and the concrete set of ground rules depends on identity of the objects. A set of
objects induces a set ground rule. A ground rule instance is obtained by assigning a
concrete object from the appropriate class to the rule variables. Thus, given a rule

class1(x1) ∧ . . . ∧ classk(xk) ∧ α1 ∧ . . . ∧ αm → α

and an assignment of objects o1, . . . , ok to variables x1, . . . , xk from appropriate classes
(i.e., oi belongs to classi), we obtain a ground rule instance which has the form:

α′1 ∧ . . . ∧ α′m → α′,

where α′i is obtained from αi by replacing each xj by the corresponding oj , and similarly
for α′.

Example 3 Consider Rule (1). Suppose that we have a single fireman, Alice, and a single
fire-engine, Fred. Because there are no fire objects, there are no ground instances of Rule
1. However, Rule 2 has a single ground instance with an empty body:

Alice.co2-level = high → Alice.oxygen-level-display :

〈(“on”,10),(“off”,-10)〉

Now, suppose that we add a fire object: Fire1. Rule (1) would have a single ground
instance:

Alice.location = Fire1.location → Alice.camera.display :

〈“on”,4),(“off”,0)〉.

If we add another fireman, Bob, then Rules (1) and (2) have another ground instance, as
above, but with Alice replaced by Bob.
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A set O = o1, . . . , on of objects also induces a set A = {A1, . . . , Am} of attribute
instances with respective domains Di. These are precisely the attributes associated with
the objects in O. Naturally, if objects are added or removed, then A changes. We use
ā to denote a particular assignment to these attribute instances. Here we introduce an
important closed-world assumption, which basically states that O, the set of objects, is
the entire set of objects. Thus, object-valued attributes (which can act like functions) must
have a value in O. This bounds the size and number of possible interpretations.3

A preference rule base R = {r1, . . . , rk}, where each ri is a preference rule, and a set
of objects O, induces a value function vO over the possible assignments to A. The basic
idea is straightforward: the set of objects induces a set of ground rules, and these induce
the value function as follows: for each assignment, we sum the values associated with the
ground rules it satisfies.

More formally, Let r be a ground rule of the form α1∧. . .∧αm → α : 〈(v1, w1), . . . , (vk, wk)〉.
Let ā be a possible assignment to the current objects’ attributes. We say that r is satisfied
by ā if α1, . . . , αm are satisfied given the standard semantics of the “.” operator and the
relational operators when the objects’ attribute values are given by ā.

The contribution to the value function of r given assignment ā is 0 either if r is not
satisfied by ā or if r is satisfied by ā but the value of the head of r according to ā does
not appear as one of the values in the list 〈(value1, weight1), . . . , (valuek, weightk)〉.
Otherwise, it is the weight wi associated with the value of the head.

We can now define the value function vR,O induced by a rule-base R on a set of
objects O.

vR,O(ā) =
∑

ground instances r′ of r∈R satisfied by ā

w(r, v(ā))

where v(ā) denotes the value ā assigns to the head of rule r. When R and/or O are fixed
by the context, we shall omit these subscripts.

Example 4 Consider the rule-baseR containing Rule (1) and a set of objectsO contain-
ing fireman Alice and Bob, and a fire Fire1. The rules have two ground instances:

(1a) Alice.location = Fire1.location →
Alice.camera.display : 〈(“on”,4),(“off”,0)〉

(1b) Bob.location = Fire1.location →
Bob.camera.display : 〈(“on”,4),(“off”,0)〉

3This assumption can be slightly relaxed.
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Given these ground rules, the value of an assignment to the attributes of Alice, Bob, Fire1
depends only on their locations and the value of their camera.display attribute. If we have
one fireman on the fire location and we display his camera, the value is 4. If we have two
firemen on location then the value is 4 if we display a single camera, and 8 if we display
both. Under all other assignments, the value if 0.

One semantic issue is worth considering at this point. Imagine that we add the rule:

(3) fireman(x) ∧ fireman(y) ∧ fire(z) ∧ x 6= y

∧x.location = y.location ∧ x.location = z.location ∧
x.camera.display = “on” → y.camera.display : 〈(“on”,-4)〉

Intuitively, this rule says that there is a negative value to more than one camera at a
location. We now have two rules, (1) and (3), that have the same head and can be applied
in the same situation (i.e., there are object and attribute value choices in which the bodies
of both rules are satisfied). Should we allow this? Our current formalism remains well
defined in this case — it implies that we will add the contribution of the groundings of
both rules. This implies that the “value” of a certain attribute value can be spread out
among multiple rules, as opposed to a single place. A similar choice arises in relational
probabilistic models. Bayesian Logic [12], for instance, allows multiple rules with the
same head, while Relational Bayesian Networks [11], for instance, requires unique rule-
heads.

We have opted for the first path, i.e., we allow multiple applicable rules. There are two
good reasons for this. First, the aggregation of multiple rules is very simple semantically
— we sum up their values, making the semantics of multiple rules much more transpar-
ent. This is not the case with probabilistic rules because different aggregation operators
makes sense in different settings. Moreover, the second approach is simply a special case
of the first, and whatever algorithms work for the first will work for the second. More
importantly, we found it easier to express certain natural preferences that arose in our
application domain using this choice. Consider the following preference: “displaying a
second camera from the same location does not have an added value, although displaying
a camera does have a value.” Neither Rule (1) nor Rule (3) alone capture this preference.
Rule (3) would discourage us from displaying multiple cameras, but would not encourage
having at least one camera. Together, they achieve the desired result: we do value the
display of a camera, as expressed by Rule (1), and we do want to penalize the display of
redundant cameras, as expressed by Rule (3).
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4 Summary and Future Work

We presented a new flexible approach to preference specification based on preference
rules and algorithms for selecting optimal choices given such rules. Preference rules are
a special case of Soft CLP, and have numerous advantages. First, they are very intuitive.
Second, they are much more flexible than regular rules — they are not rigid: their choices
are sensitive to context and other choices made, and they can be augmented by external
constraints while retaining their semantics. Preference rules can be specified for a generic
system — i.e., given only knowledge of the set of classes, and for any set of objects they
induce a generalized additive value function. Thus, they can be used to control dynamic
systems in which both the state and the number of objects changes, as their specification
does not require complete information about the system, only the classes of its basic
components. A longer version of this article discussing algorithmic issues and related
work under the same title appears in the Proceedings of KR’08.

We are currently implementing a command & control based monitoring system as dis-
cussed in Section 2. Because we do not have the resources to implement it on a real C&C
system, we are emulating one using the “Capture the Flag” mode of the multi-player
shooter game Unreal Tournament. By recording game playing sessions, we obtained
video streams representing different cameras. We use the preference-rules formalism to
describe the value of different input streams under different conditions. We are now im-
plementing the first two optimization algorithms described earlier and we will examine
their performance. Following that we plan to conduct user studies to evaluate the ef-
fectiveness of the selection algorithm. Project progress and documents are available at
www.cs.bgu.ac.il/∼giorasch/documents.htm.

This work provides a rich set of questions for future work. A key issue is the in-
tegration of relational preference and probability models, to which our reduction from
preference rules to Markov Logic provides an initial step. A firmer foundation for a the-
ory of utility is also desirable, as well as a more useful complexity analysis, i.e., one that
can bound the complexity as a function of the original rules rather than the ground rules.
Finally, very interesting is the problem of learning preference rules. The latter we antici-
pate would require algorithms different from those used for learning probabilistic models
because of the different input one expects in each context, i.e., in our case, user choices
are the outcome of an optimization process.
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