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The setting

Take a set of alternatives, a set of state§ and a set
of consequenceas. We consider an order between
the alternatives, so:

a >~ b means ‘alternative is preferred to
alternativeb’.

a > b means ‘alternative Is strictly preferred to
alternativeb'.

a ~ b means ‘alternative Is indifferent to
alternativeb’.

The idea of an axiomatisation Is to provide necessary
and sufficient conditions or to be able to represent
It by means of amxpected utility model
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Some axiomatisations

L. Savage I he foundations of statisticyViley,
1954,

F. Anscombe and R. AumanA,definition of
subjective probabilityAnnals of Mathematical
Statistics, 34, 199-205, 1963.

M. de Groot,Optimal Statistical Decisions
McGraw Hill, 1970.
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The completeness axiom

The axiomatisations above all require thais weak
order, I.e., complete and transitive: this means in
particular that we can express our preferences
between any pair of alternatives.

Then we obtain ainiqueutility function v overC' and
a unique probability overs such that

a>b<:>// c(a, s))p(s)dcds
// c(b, s))p(s)dcds.
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Dealing with incomplete information

If we do not have enough information, it is more
reasonable that the order between the alternatives is
only a quasi-order (reflexive and transitive): there will
be alternatives for which we cannot express a
preference with guarantees.

— But then there will not be a unique probabillity
and/or utility representing our information!
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Generalisations to imprecise utilities

We consider a unique probability distribution over S
and a set U of utility functions over C.

R. AumannUtility theory without the
completeness axiarkconometrica 30, 445-462,

1962.

J. Dubra, F. Maccheroni, E. Okxpected utility
theory without the completeness axiajournal
of Economic Theory, 115, 118-133, 2004.
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Generalisations to imprecise beliefs

We consider a convex sét of probability
distributions ovelS and a unigque utility function.

D. Rios Insua, F. RuggeRobust Bayesian
Analysis Lecture Notes In Statistics 152.
Springer, 2000.

P. Walley,Statistical Reasoning with Imprecise
Probabilities Chapman and Hall, 1991.

R. Rigotti, C. Shannori)ncertainty and risk in
financial marketsEconometrica, 73, 203-243,
2005.
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Imprecise utilities and beliefs

Our goal Is to give an axiomatisation for the case
where both probabilities and utilities are imprecise, so
we have a sef of probabillities and a séf of utilities
which are paired up arbitrarily. Some early work in
this direction can be found In

D. Rios InsuaSensitivity analysis in
multiobjective decision makingpringer, 1990.

D. Rios InsuaO©n the foundations of decision
making under partial informationTheory and
Decision, 33, 83-100, 1992.
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State dependence and independence

In general the axiomatisations for imprecise beliefs
and utilities are made for so-callsthte-dependent
utilities, I.e., functions : S x ' — R, such that

aib(:)/S/Cv(s,c(a, s))deds
> /S /C v(s, (b, 5))deds Vv € V.

v IS calledstate-independermr aprobability-utility
pair when it can be expressed as a product of a
probabllity p over S and a utility U over C:

v(s,c) = p(s)u(c) Vs, c.
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Some state Independent representa-
tions

R. Nau,The shape of incomplete preferences
Annals of Statistics, 34(5), 2430-2448, 2006.

T. Seidenfeld, M. Schervisch, J. Kada®e,
representation of partially ordered preferences
Annals of Statistics, 23(6), 2168-2217, 1995.

A. Garcia del Amo and D. Rios Insu&,note on
an open problem in the foundations of statstics
RACSAM, 96(1), 55-61, 2002.
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Nau’s framework

A finite set of states S andfmite set of
consequences C.

The setB of horse lotterieg : S — P(C).

H. denotes the lottery such that
H.(s)(c) =1Vs e S.

1 denotes the best consequencé’irand0 the
WOrSt.

For anyE C S and any horse lotteries g,
Ef + E°gis the horse lottery equal tf)s) if
s € Fandtog(s)iss ¢ E.
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The axioms

(Al) > Is transitive and reflexive.

(A2) frgeaf+(1—a)h>=ag+ (1 —a)hVa e
(0,1), h.

A3) fn=ag.Vn, fn — fogn—9=[f =g
(A4) H, = H. > HyVe.
(A5) H; = H,.
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A state-dependent representation

~ satisfles A1-A5= It Is represented by a closed
convex set of state-dependent utility functighgn

the sense that
f=g9e Ul(f) > Ulg) Vv eV,

where

U(f) = D f(s,c)u(s,c).

seS,ceC
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A state-independent representation

(A6) If.f,g are constantf’ >~ ¢, Hp = H,, Hr < H,
with p > 0, then

aFBf+(1—a)f' =aFEg+ (a—a)g
= BFf+ (1 —=08)f = BFg+(1—p)g

for3=1if « =1 and forﬁs.t.% < L

~ satisfies (A1l)—(A6) if and only If it Is represented
by a set)’ of state-independent utilities,

fzge Ul(f) = Uslg)Vv eV,
wherelU,(f) = 2_.es.cec [ (s, ¢)p(s)u(c).
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Seidenfeld, Schervisch, Kadane

A countableset of consequencés.

A finite set of states.

Horse lotteriesf : S — P(C), and in particular
simplehorse lotteries, I.e., horse lotteries for
which f(s) is a simple probability distribution for
all s.

A strict preference relationship over horse
lotteries.
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The axioms

(Al) = is transitive and irreflexive.
(A2) Foranyf,g, h,and anyx € (0, 1),
af +(1—a)h>ag+ (1 —a)h& f>g.

(A3) Let(fn)n — f,(gn)n — g- Then:
fn =g, Vnandg = h = f > h.
fo =g, Vnandh = f = h = g.

If — satisfies axioms (Al)—(A3), then:

It can be extended to a weak ordersatisfying
(A2), (A3).

> 1S uniquely represented by a (bounded) utitity
that agrees witlx on simplehorse lotteries.
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The representation theorem above is made in terms of
state-dependent utilities: amyhas associated a
probabllity p and utility functionsu, ..., u,, S0 that

for every horse lottery,

v(f) = ZP(Sj)Uj(f(S))-

The goal would be to have, = .. ., u,, I.e.,
state-independent utilities.
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Almost state-independent utilities

> admits almost state-independent utilities when for
any finite set of rewardéry,...,r,}, € > 0, there is a
pair (p,u;) s.t. forany{si, ..., s;} S.t.

Zle p(si) > 1 —¢

1§i§£2§7§j/§k ’u] (TZ) — UJ/(TZ)’ < €.
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Some definitions

A states Is —-potentially nullwhen for any horse
lotteriesf, g with f(s') = g(s') Vs # s, f ~ g.

We denotef;, the horse lottery which Is constant on
the probability distribution. overC.

Given a constant horse lottefy ,

. {(1 — 2™ fo+ 27" fr if s #£ s,

j,m o fLalf S — S]
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An (almost) state-independent repre-
sentation

(A4) It s, 1s not- potentially null, then for each

actsfr,, fr., f1, fo. fr, = fr, © f1 > f2, where
fz(s) — fz If s = Sj, fl(S) — fQ(S) otherwise.

(A5) For any two constant horse lotteries
fr., [, itholds that

fr. = f, & &, = [, ¥m € N,Vj.

If — satisfies (A1l)—(A5), then it admits almost
state-independent utilites.
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Rios Insua and Garcia del Amo

A compactsetS C R” of states.

A compactsetC C R™ of consequences.

The set of Young measurégs: S — ca(C'),

whereca(C') are the signed measures of bounded
variation onBy.
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The axioms

(Al) > Is transitive and reflexive.

(A2) Foranyf, g, h horse lotteriesq € (0, 1),
frg=af+(1—-—a)h=ag+ (1—a)h.

(A3) If f,, =g, Vnandf, — f,g, — g,thenf > g.
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A state-dependent representation

~ satisfies (A1)—(A3) if and only If there Is a set of
state-dependent utilitigs of the form

(s,¢) = D uil)piCe).

with u; a utility function overS andp; a density
functiononC for:=1,...,9,7 € N, such that

frgo /S /C o(s, ¢)df,(c)ds > /S /C o(s, ¢)dgs(c)devy
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The problem

The goal would be to give an axiomatisation of
state-independent representations in the context of
Rios Insua and Garcia del Amo, i.e.:

For a compact set of staté€s
For a compact set of consequenceés

An idea would be to use functional analysis results so
that in the above representation we have 1.

Another idea would be to extend Nau’s or Seidenfeld
et al.’s results using limit arguments.
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Discretising the spaces

For any natural number, we can consides”, C"
discretisations of, C with diameters smaller thaﬁ.

We may also assume without loss of generality that
givenn > n’, S™ is a refinement of the partitiof”™
andC” is a refinement of™ .

We shall denoté;,, the number of different elements
In the partitionS™ andj,, the total number of elements
In the partitionC".
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Relating the horse lotteries (1)

For each natural numberand each set! in the
partitionS”, we select an element in S°.

This means just taking a selectioh of

I,:S — P(S)
s — Sl aselS.

We assume that givem > »n’, the selection$/,,, U,,
areconsistent

Uny(s) € Ty(s) = Uy(s) = Upy(s).
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Relating the horse lotteries (Il)

Let 7, := Fsncn denote the set of horse lotteries
betweenS™ and(C".

Consider the mapping, : 7 — F,, given by
Ta(S)(S)(C) = [(5,)(Cy) VYO, € Cy, S, € Sy

T, IS onto.
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Discretising the relationship

Let < be a preference relation dh. Then for each
natural number we define a preference relattgon
F, by

f=ngevfen(f),den'(9),f=<g

1. If <Is transitive, SO IS<,,.
2. If <Is antisymmetric, SO I,,.
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But...

1. <,, may not be reflexive, even H Is!
2. <, may not be a total order, even+fis!

As a consequence,
dng € Ns.t.m,(f) S m(g)Vn>ng= f g

but the converse Is not necessarily true.
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Projecting probabilities and utilities

For any natural number, let

H,: U— U,
u— Hy(u):C—-R

c—u(cd) & ce .

We consider also the functiond), : Ps — Ps_, given
by T,,(P)(S%) = P(St) forall S' € S,,.
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Properties of H,,, T,

For any natural number, H,,, 7T, are onto.

If we consider ori{ the topology of uniform
convergence and du, the topology of
point-wise convergence, thdr Is a continuous
mapping for alln.

If we consider orPs the weak-* topology and on
Ps_the topology of weak convergence, thep
IS a continuous mapping for ail.
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If for <,, satisfies the axioms (Al)-(A6) of Nau, there
IS some seB,, x C,, of probabllity/utility pairs
(P,,U,), whereP,, € Psn, U, € Ue» such that

f jn g < EPn,Un(f> S EPn,Un(g) \V/(Pna Un) S BnXCn

The idea Is to use these to obtain a representation of
<.
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Step by step projection

Let us define the mapping, ,,.1 : Fr, — P(Fni1),
that assigns to any € F,, the set of horse lotteries In

Fni1 satisfying that for any € =, (f/), m.(g) = f-

Let f, g be horse lotteries itF,,, and consider
arbitrary f' € m,n4+1(f), 9 € Thn+1(9)-

1. fjng:>f/ jn—l—l g,-
2. frong= [l g
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We can relate in this way the expected utilities.
Let P be a probabllity measure aghandu a utility

function onC. For anyf € F, thereisf’ € F, .1
such that

E,py.m,0)(f) = B,y p).i, 0 w) ()

Moreover, " € m, ,+1(f).
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Making the limit

We can prove thdt '(B,) € PsandH}(C,) C U
are compact for alh.

As a consequencey,, T, 1(B,), N, H 1(C,) NnU* are
non-empty.

Let A := {(P,U) e N, T (B, x N, H 1(C,)} be
the corresponding set of probability/utility pairs.
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Continuous horse lotteries

Let ' be

the set o€ontinuoushorse lotteries, where

we consider the Euclidean distance®mand the

weak-* to
feF, al
such that

Is —

whereE 4 (

nology orP.. This means that for all

e > 0 and allu € U, there Is someé > 0

5/H<5:>|Ef( (1) = B (u)] <e

fc c)dc.
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Representing (a bit) <

For any(P,U) € A and any horse lottery € F/,
Erpu)(f) = lim, B, p)m,0)(ma(f))-

Foranyf,g € F,
Epn(f) < Epu)(g)V(P,U)€e A= f=g.
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But still there are many problems:

This approach will only work with horse lotteries
satisfying some kind of continuity.

The definition of<,, Is not satisfactory, and as a
conseguence we do not obtain the converse In the
previous theorem.

There may be problems with finitely versus
o-additive probabilities.
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Other approaches

Trying to work with thestrict preferences, like
Seidenfeld.

Look for functional analysis results that help
generalising the work by Rios and del Amo.

...and any other ideas you may have!
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