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Abstract

Algorithmic decision theory becomes more and more important. We will present
a theoretical and practical point of view to the role of networks and dynamic flow
problems in complex environments. To support a decision support management
a comfortable software implementation for solving multiobjective discrete control
and dynamic flow problems on networks will be presented. As many processes
from various economic areas such as information technology, transportation sys-
tems, multi-agent resource management, power distribution etc. can be modeled
as such multiobjective discrete control and optimal flow problems on dynamic net-
works. For such kind of problems specific discrete algorithms as well as their
robust implementations will be derived and analyzed. The talk will exploit a novel
combination of discrete optimization methods and basic game-theoretic concepts
to support an optimal decision support management process.
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1 Introduction
Many decision processes from various economic areas such as information technology,
transportation systems, multi-agent resource management, power distribution etc. can
be modeled as multiobjective discrete control and optimal flow problems on dynamic
networks. For such kind of problems efficient discrete algorithms as well as their robust
implementations will be derived and analyzed. The talk will exploit a novel combina-
tion of discrete optimization methods and basic game-theoretic concepts. Furthermore
dynamic programming techniques will be developed for such problems and two new
algorithms for their solving will be derived and argued: Classification of necessary and
sufficient conditions for the existence of solutions for the mentioned class of problem
will be given. Polynomial and strongly polynomial algorithms for determining solu-
tions will be elaborated. At the end we embed the algorithmic solutions to a decision
support system.



2 Decision Support System
The aim of our paper is the analysis and the development of these advanced algorithms
together with a comfortable software implementation for solving multiobjective dis-
crete control and dynamic flow problems on certain networks. For that reason let us
consider a simple time-discrete systems with a finite set of states and varying time of
states transactions by a trajectory. We formulate a discrete optimal control problems
with infinite time horizon for such systems. In a first step algorithms for finding the
optimal stationary control and determining the optimal mean cost cycles in the graph
of states transactions of dynamical systems are proposed. For that reason we study the
following discrete optimal control problem with infinite time horizon and varying time
of states transactions of a dynamical system:

Let the dynamical system L with the finite set of states X ⊆ Rn be given, where
at every discrete moment of time t = 0, 1, 2, . . . the state of L is x(t) ∈ X . Assume,
that the control of system L at each time-moment t = 0, 1, 2, . . . for an arbitrary state
x(t) is made by using the vector of control parameters u(t) ∈ Rm for which a feasible
set Ut (x(t)) is given, i.e. u(t) ∈ Ut (x(t)). For arbitrary t and x(t) on Ut (x(t)) it is
defined an integer function

τ : Ut (x(t)) → N

which gives to each control u(t) ∈ Ut (x(t)) an integer value τ (u(t)). This value
expresses the time of system’s passage from the state x(t) to the state x

(
t+τ (u(t))

)
if

the control u(t) ∈ Ut (x(t)) has been applied at the moment t for given state x(t). The
dynamics of the system L is described by the following system of difference equations





tj+1 = tj + τ (u(tj)) ;

x(tj+1) = gtj (x(tj), u(tj)) ;

u(tj) ∈ Utj (x(tj)) ;

j = 0, 1, 2, . . . ,

(1)

where
x(t0) = 0, t0 = 0 (2)

is a given starting representation of the dynamical system L. Here we suppose that the
functions gt and τ are known and tj+1 and x(tj+1) are determined uniquely by x(tj)
and u(tj) at every step j.

Let u(tj), j = 0, 1, 2, . . . , be a control, which generates the trajectory x(0),
x(t1), x(t2), . . . , x(tk), . . . . For this control we define the mean integral-time cost by
a trajectory

Fx0 (u(t)) = lim
k→∞

k−1∑

j=1

ctj

(
x(tj), gtj (x(tj), u(tj))

)

k−1∑

j=0

τ(u(tj))

(3)

where ctj

(
x(tj), gtj (x(tj), u(tj))

)
= ctj (x(tj), x(tj+1)) represents the cost of sys-

tem L to pass from the state x(tj) to the state x(tj+1) at the stage [j, j + 1].
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We consider the problem of finding the time-moments t = 0, t1, t2, . . . , tk−1, . . .
and the vectors of control parameters u(0), u(t1), u(t2), . . . , u(tk−1), . . . which satisfy
conditions (1), (2) and minimize functional (3).

In the case τ ≡ 1 this problem became the control problem with unit time of states
transactions from [1, 2, 5]. The problem of determining the stationary control with
unit time of states transactions has been studied in [4, 5, 9]. In the mentioned papers
it is assumed that Ut(x(t)), gt and ct do not depend on t, i.e. gt = g, ct = c and
Ut(x) = U(x) for t = 0, 1, 2, . . . . R. Bellman [1] showed that for the stationary
case of the problem with unit time of states transactions there exists optimal stationary
control u∗(0), u∗(1), u∗(2), . . . , u∗(t), . . . , such that

lim
k→∞

k−1∑
t=0

c
(
x(t), g (x(t), u∗(t))

)

k
= inf

u(t)
lim

k→∞

k−1∑
t=0

c
(
x(t), g (x(t), u(t))

)

k
= λ < ∞.

Furthermore in [5, 9] it is shown that the stationary case of the problem can be reduced
to the problem of finding the optimal mean cost cycle in a graph of states transactions
of dynamical system. Based on these results in [4, 5, 9] polynomial-time algorithms
for finding optimal stationary control are proposed.

Here we develop the results mentioned above for the general case of the problem
with arbitrary transit-time function τ . We show that this problem can by formulated as
the problem of determining optimal mean cost cycles in the graph of states transactions
of dynamical system for an arbitrary transition-time function on edges.

3 The Main Results - Decision Graph
The main results we propose are concerned with determining the stationary control in
the general case for the problem from the first part. We show that this problem can be
reduced to the following optimization problem on a so-called decision graph:

Let a strongly connected directed graph G = (X, E) which represents the graph
of states transactions of dynamical system L be given. An arbitrary vertex x of G
corresponds to a state x ∈ X and an arbitrary directed edge e = (x, y) ∈ E expresses
the possibility of system L to pass from the state x(t) to the state x(t + τ(e)), where
τ(e) is the time of the system’s passage from the state x to the state y through the edge
e = (x, y). So, on edge set E it is defined the function τ : E → R+ which gives to
each edge a positive number τ(e) which means that if the system L at the moment of
time t has the state x = x(t) then the system can reach the state y at the moment of time
t + τ(e) if it passes through the edge e = (x, y), i.e. y = x(t + τ(e)). Additionally, on
the edge set E it is defined the cost function c : E → R, which gives to each edge the
cost c(e) of the system’s passage from the state x = x(t) to the state y = x(t + τ(e))
for an arbitrary discrete moment of time t. So, finally we have that to each edge two
numbers c(e) and τ(e) are associated.
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On G we consider the following problem:
To find a directed cycle C∗ such that

∑

e∈E(C∗)

c(e)

∑

e∈E(C∗)

τ(e)
= min

{C}

∑

e∈E(C)

c(e)

∑

e∈E(C)

τ(e)
.

We show that this problem can be reduced to the following linear fractional problem:
To minimize

z =

∑

e∈E

c(e)α(e)

∑

e∈E

τ(e)α(e)

subject to ∑

e∈E+(x)

α(e)−
∑

e∈E−(x)

α(e) = 0, x ∈ X;

∑

e∈E

α(e) = 1;

α(e) ≥ 0, e ∈ E,

where E−(x) = {e = (y, x) ∈ E|y ∈ X}; E+(x) = {e = (x, y)|y ∈ E}.
Algorithms based on such approach for solving this problem are proposed. Addi-

tionally, a game theoretical approach for the considered problem is applied and some
results from [7] are developed.

4 Perspectives: Uncertainty and
Decision Support Systems

The design and optimization of comfortable decision support systems becomes more
and more important. One disadvantage of many complex systems is that they often
consist of a large amount of heterogeneous single applications that are inefficiently in-
tegrated into the overall process. This happens as such processes tend to grow over
time, caused by an increase of complexity and supplementary demands by users for
further functionalities, which leads to demands of new applications that are added to
the system and need not always be compatible to the legacy applications. This results
in process inefficiencies such as breakings in the media chain, high coordination effort,
redundancy and an inefficient handling of information as the processing time increases.
In case of threat on a critical infrastructure element, a fast and flexible acquisition, pro-
cessing, and allocation of information are crucial. Flexibility, fast adaptability, and
high process efficiency are central. Decision support management on complex net-
works structures -the basis of our mathemtical framework- is essential, even in the case
of the protection of critical infrastructures.
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5 Protection of Critical Infrastructures
Critical infrastructures are vital elements on which our daily live and society are based
on, wherefore it is of great importance to pay a special attention to the protection of
these elements. The following sectors can be identified as being critical infrastructure
elements : Banking and Finance; Chemical Industry; Commercial Facilities; Commer-
cial Nuclear Reactors, Materials, and Waste; Dams; Defence Industrial Base; Drinking
Water and Wastewater Treatment Systems; Emergency Services; Energy; Food and
Agriculture; Government Facilities; Information Technology; National Monuments
and Icons; Postal and Shipping; Public Health and Healthcare; Telecommunications;
and Transportation Systems. Break-downs or disturbances of such critical systems as a
result of e.g. war, disaster, civil unrest, vandalism, or sabotage, may cause severe dam-
age in the supply of a wide part of users linked to these systems and can have severe
consequences to vital functions of the society. A definition is given in the "Patriot Act
2001 of the U.S.A" that describes critical infrastructures as :

"systems and assets, whether physical or virtual, so vital [] that the incapacity or
destruction of such systems and assets would have a debilitation impact on security,
national economic security, national public health or safety, or any combination of
those matters."

Further definitions emphasize the interrelationship of the critical infrastructure ele-
ments :

"Critical infrastructures are the complex and highly interdependent systems, net-
works, and assets that provide the services essential in our daily life."

Our impression is that the mathematical framework presented here might be used
to model such a decision process on a complex network.

6 Summary
We present a theoretical and practical point of view to the role of networks and dy-
namic flow problems in complex environments especially in the protection of critical
infrastruvtures. We present the mathematical framework, the decision process on the
network and characterizations of the specific algorithmic approach. With our approach
we would like to support a decsion process on discrete networks which might also
support a better crisis management. First results would be presented and discussed.
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