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Abstract. Fixed-parameter algorithms, approximation algorithms and
moderately exponential algorithms are three major approaches to algo-
rithms design. While each of them being very active in its own, there is
an increasing attention to the connection between different approaches.
In particular, whether Independent Set would be better approximable
once endowed with subexponential-time or fpt-time is a central question.
In this paper, we present a strong link between the linear PCP conjecture
and the inapproximability, thus partially answering this question.

1 Introduction

In this paper we look into three approaches to algorithms design: Fixed-para-
meter algorithms, approximation algorithms and moderately exponential algo-
rithms. These three areas, each of them being very active in its own, have been
considered as foreign to each other until recently. Polynomial-time approxima-
tion algorithm produces a solution whose quality is guaranteed to lie within a
certain range from the optimum. One illustrative problem indicating the develop-
ment of this area is Independent Set. The approximability of Independent

Set within constant ratios1 has remained as the most important open problems
for a long time in the field. It was only after the novel characterization of the NP
given by the PCP theorem [1, 2] that impossibility of such approximability has
been definitely proven. Subsequent improvements of the original PCP theorem,
leading to corresponding refinements of the characterization of NP have also
led to the actual very strong inapproximability result for Independent Set,
namely, that it is inapproximable within ratios Ω(nε−1) for any ε > 0, unless
P = NP [29].

Moderately exponential algorithm is to allow exponential running time for
the sake of optimality. In this case, the endeavor lies in limiting the growth of
running time function as slow as possible. Parameterized complexity provides
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1 The approximation ratio of an algorithm computing a feasible solution for some
problem is the ratio of the value of the solution computed over the optimal value for
the problem.



an alternative framework to analyze the running time in a more refined way [14,
17]. The aim is to get an O(f(k) · no(k))-time algorithm in which the exponent
of the input size n is independent of k. As these two research programs offer a
generous running time compared to polynomial-time approximation algorithms,
a growing amount of attention is paid to them as a way to cope with hardness in
approximability. The first one deals with moderately exponential approximation.
The goal of this program is to explore approximability of highly inapproximable
(in polynomial time) problems in superpolynomial or moderately exponential
time. Roughly speaking, if a given problem is solvable in time say O∗(γn) but
it is NP-hard to approximate within some ratio r, we seek r-approximation
algorithms with complexity - significantly - lower than O∗(γn). This issue has
been considered for several problems such as Set Cover [12, 6], Coloring [3,
5], Independent Set and Vertex Cover [7], Bandwidth [13, 18].

The second research program handles approximation by fixed parameter al-
gorithms. In this approximation framework, we say that a parameterized (with
parameter k) problem Π is r-approximable if there exists an algorithm taking
as inputs an instance I of Π and k and either computes a solution smaller or
greater than (depending on whether Π is, respectively, a minimization, or a
maximization problem) rk, or returns “no”, asserting in this case that there is
no solution of value at most or at least k. This line of research was initiated by
three independent works [15, 9, 11]. As an excellent overview in this direction,
see [25].

Several natural questions can be asked dealing with these two programs. In
particular, the following ones have been asked several times (see for instance [25,
15, 18, 7]) and of great interest:

Q1 can a highly inapproximable in polynomial time problem be well-approxi-
mated in subexponential time?

Q2 does a highly inapproximable in polynomial time problem become well-
approximable in parameterized time?

Few answers have been obtained until now. Regarding Q1, negative results can
be directly obtained by gap-reductions for certain problems. For instance, Col-

oring is not approximable within ratio 4/3− ǫ, since this would allow to deter-
mine whether a graph is 3-colorable or not in subexponential time. This contra-
dicts a widely-acknowledge computational assumption [22]:

Exponential Time Hypothesis (ETH): There exists an ǫ > 0 such that no
algorithm solves 3Sat in time 2ǫn, where n is the number of variables.

Regarding Q2, [15] shows that assuming FPT 6= W[2], for any r the Indepen-

dent Dominating Set problem is not r-approximable (in FPT time)2.
Among interesting problems for which Q1 and Q2 are worth being asked are

Independent Set, Coloring and Dominating Set. They fit in the frame of
both Q1 and Q2 above: they are hard to approximate in polynomial time while

2 Actually, the result is even stronger: it is impossible to obtain a ratio r = g(k) for
any function g.
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their approximability in subexponential or in parameterized time is still open.
Note that Independent Set and Dominating Set are moderately exponential
approximable within any ratio 1 − ε, for any ε > 0 [6, 7], while Coloring is
approximable within ratio (1 + 1/χ(G)), where χ(G)) denotes the chromatic
number of a graph G in moderately exponential time [3, 5].

Our contribution in this paper is to establish a link between a major con-
jecture in PCP theorem and inapproximability in subexponential-time and in
fpt-time, assuming ETH. We first state the conjecture while the definition of
PCP is deferred to the next section.

Linear PCP Conjecture (LPC): 3Sat ∈ PCP1,1/2[log n +D,E], where
n is the number of variables in the 3Sat instance, D and E are constant.

Unlike ETH which is arguably recognized as a valid statement, LPC is a wide
open question. In the main results summarized below, we claim that if LPC turns
out to hold, it immediately implies that one of the most interesting questions in
subexponential and parameterized approximation is negatively answered.

Theorem 1. (Main Result) Assuming ETH, the followings hold for Inde-

pendent Set on n vertices, for any constant 0 < r < 1.

(i) There is no r-approximation algorithm in time O(2n
1−δ

) for any δ > 0.
(ii) There is no r-approximation algorithm in time O(2o(n)) if LPC holds.
(iii) There is no r-approximation algorithm in time O(f(k)nO(1)) if LPC holds.

Note that (i) is not conditional upon LPC. In fact, this is an immediate con-
sequence of near-linear PCP construction achieved recently in [26]. It has led
to inapproximability results for Max-3Sat and Max-3Lin for some subexpo-
nential running time under ETH. Section 2 reviews the known consequences of
near-linear PCP. In Section 3, we present new results along this line. In Section 4,
we consider parameterized inapproximability of two fundamental problems In-

dependent Set and Dominating Set, provided LPC holds.

2 Preliminaries

2.1 PCP and inapproximability of Max-3Sat

A problem is in PCPα,β [q, p] if there exists a PCP verifier which uses q random
bits, reads at most p bits in the proof and is such that:

– if the instance is positive, then there exists a proof such that V(erifier)
accepts with probability at least α;

– if the instance is negative, then for any proof V accepts with probability at
most β.

Based upon the above definition, the following theorem is proved in [26], pre-
senting a further refinement of the characterization of NP.
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Theorem 2. [26] (2-query PCP) For every ǫ > 0,

3Sat ∈ PCP1,ǫ[(1 + o(1)) logn+O(log(1/ǫ)), poly(1/ǫ)]

Theorem 2 has some important corollaries in polynomial approximation. Among
those, the following two are of particular interest in what follows.

Corollary 1. [26] Under ETH, for every ǫ > 0, and δ > 0, it is impossible
to distinguish between instances of max 3-lin with m equations where at least
(1− ǫ)m are satisfiable from instances where at most (1/2 + ǫ)m are satisfiable,

in time O(2m
1−δ

).

Corollary 2. [26] Under ETH, for every ǫ > 0, and δ > 0, it is impossible
to distinguish between instances of Max-3Sat with m clauses where at least
(1− ǫ)m are satisfiable from instances where at most (7/8 + ǫ)m are satisfiable,

in time O(2m
1−δ

).

The following is a stronger version of Corollary 2: it holds if LPC holds. This
will be our working hypothesis.

Hypothesis 1 Under ETH, there exists r < 1 such that: for every ǫ > 0
it is impossible to distinguish between instances of Max-3Sat with m clauses
where at least (1− ǫ)m are satisfiable from instances where at most (r+ ǫ)m are
satisfiable, in time 2o(m).

A very standard argument gives the following fact.

Lemma 1. If LPC holds, then Hypothesis 1 also hold.

Proof. Suppose that 3Sat ∈ PCP1,1/2[log n +D,E], where n is the number of
variables in 3Sat instance, D and E are constants.

Then the size of the proof is at most E2|R| = cn for some constant c (where
|R| = log n +D is the number of random bits) since E2|R| is the total number
of bits that we read in the proof. Take one variable for each bit in the proof:
x1, · · · , xcn. For each random string R: take all the 2E possibilities for the E
variables read, and write a CNF formula which is satisfied if and only if the
verifier accepts. This can be done with a formula with a constant number of
clauses, say C1, each clause having a constant number of variables, say C2 (C1

and C2 depends on E).
If we consider the CNF formed by all theses CNF for all the random clauses,

we get a CNF with C12
|R| clauses on variables x1, · · · , xcn. The clauses are on C2

variables but by adding a constant number of variables we can replace a clause
on C2 variables by an equivalent set of clauses on 3 variables. This way we get a
3-CNF formula and multiply the number of variables and the number of clauses
by a constant, so they are still linear in n. For each R you have a set of say C ′1
clauses.

Suppose that we start from a satisfiable instance of 3Sat. Then there exists
a proof for which the verifier always accepts. By taking the corresponding values
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for the variables xi, and extending it properly to the new variables y, all the
clauses are satisfied.

Suppose that we start from a non satisfiable instance of 3Sat. Then for any
proof (i.e. any truth values of variables), the verifier rejects for at least half of
the random strings. If the verifier rejects for a random string R, then in the set
of clauses corresponding to this variable at least one clause is not satisfied. It
means that among the C ′12

|R| clauses (total number of clauses), at least 1/2 ·2|R|
are not satisfied, ie a fraction 1/(2C ′1) of the clauses.

Then either m = C ′12
|R| = O(n) clauses are satisfiable, or at least m/(2C ′1)

clauses are not satisfied by each assignment. Distinguishing between these sets
in time 2o(m) would solve 3Sat in 2o(n). ⊓⊔

Dealing with Independent Set, it is easy to see that, for any increasing and
unbounded function r(n), the problem is approximable within ratio 1/r(n) in
subexponential time (recall that ratios nǫ−1 are are very unlikely to be achieved
in polynomial time). Indeed, simply consider all the subsets of V of size at
most n/r(n) and return the largest independent set among these sets. If a maxi-
mum independent set has size at most n/r(n) then the algorithm finds it, other-
wise the algorithm outputs a solution of size n/r(n), while the size of an optimum
solution is at most n. The running time of the algorithm is O∗(

(

n
n/r(n)

)

) that is

subexponential in n.
Let us finally note that Independent Set has the so called self-improvement

property [20] claiming, roughly speaking, that either it is polynomially approx-
imable by a polynomial time approximation schema, or no polynomial algorithm
exists that guarantees some constant approximation ratio, unless P = NP.

With a similar proof, the above self-improvement property can be proved for
Independent Set also in the case of parameterized approximation.

Lemma 2. [16] The following statements are equivalent for Independent Set:

– there exists r ∈ (0, 1) such that there exists an r-approximation parameterized
algorithm;

– for any r ∈ (0, 1) there exists an r-approximation parameterized algorithm.

2.2 Expander Graphs

Expander graphs is a well known tool that has been used to amplify the inap-
proximability gap for Independent Set in polynomial time. Similar arguments
allow actually to derive a gap amplification with linear size amplification of the
instance (see Theorem 4 below). This will be useful later to derive inapprox-
imability bounds in subexponential time (where linear size amplification plays a
crucial role).

Definition 1. A graph G is a (n, d, α)-expander graph if (i) G has n vertices,
(ii) G is d-regular, (iii) all the eigenvalues λ of G but the largest one is such
that |λ| 6 αd.
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Fact 1. For any k ∈ N
∗ and any α > 0 there exists d and a (k2, d, α)-expander

graph. Moreover, d depends only on α, and this graph can be computed in poly-
nomial time for every fixed α.

This fact follows from the following lemmas.

Lemma 3 ([19], or Th. 8.1 in [21]). For every positive integer k, there exists
a (k2, 8, 5

√
2/8)-expander graph, computable in polynomial time.

If G is a graph with adjacency matrix M , let us denote Gk the graph with
adjacency matrix Mk.

Lemma 4 (Fact 1.2 in [27]). If G is a (n, d, α)-expander graph, then Gk is a
(n, dk, αk)-expander graph.

Proof. Gk is obviously dk regular, and the eigenvalues of Gk are the eigenvalues
of G to the power of k. ⊓⊔

Proof of Fact 1. Fix some α > 0 and let p be the smallest integer such that
(5
√
2/8)p 6 α. Then, Gp is as required. ⊓⊔
Let G be a graph on n vertices and H be a (n, d, α)-expander graph. Let t

be a positive integer. We build the graph G′t on N = ndt−1 vertices: each vertex
corresponds to a (t − 1)-random walk x = (x1, · · · , xt) on H (meaning that x1
is chosen at random, and xi+1 is chosen randomly in the set of neighbors of xi),
and two vertices x = (x1, · · · , xt) and y = (y1, · · · , yt) in G′t are adjacent iff
{x1, · · · , xt, y1, · · · , yt} is a clique in G.
Theorem 3 (claims 3.15 and 3.16 in [21]). Let G be a graph on n vertices
and H be a (n, d, α)-expander graph. If b > 6α, then:

– If ω(G) 6 bn then ω(G′t) 6 (b+ 2α)tN ;
– If ω(G) > bn then ω(G′t) > (b− 2α)tN .

We are now able to prove the gap amplification with linear size amplification.

Theorem 4. Let G be a graph on n vertices (for a sufficiently large n) and
a > b be two positive real numbers. Then for any real r > 0 one can build in
polynomial time a graph Gr such that:

– Gr has N 6 Cn vertices for C independent of G (C may depend on r);
– If ω(G) 6 bn then ω(Gr) 6 brN ;
– If ω(G) > an then ω(Gr) > arN ;
– br/ar 6 r.

Proof. Let k = ⌈√n⌉. We modify G by adding k2−n dummy (isolated) vertices.
Let G′ be the new graph. It has n′ = k2 vertices. Note that n′ 6 (

√
n + 1)2 =

n + 2
√
n + 1 = n + o(n). Let n be such that 1 − ǫ 6 n/n′ 6 1 for a small ǫ.

Thanks to Fact 1, we consider a (k2, d, α)-expander graph H for a sufficiently
small α (the value of which will be fixed later). According to Theorem 3 (applied
on G′) we build in polynomial time a graph G′t on N = n′dt vertices such that
(choosing α < b/6):
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– If ω(G) 6 bn then ω(G′) = ω(G) 6 bn′, hence ω(G′t) 6 (b+ 2α)tN ;
– If ω(G) > an then ω(G′) = ω(G) 6 an′(1 − ǫ), hence ω(G′t) > (a(1 − ǫ) −

2α)tN .

We choose ǫ and α such that a(1 − ǫ) − 2α > b + 2α, and then t such that
(a(1− ǫ)−2α)t/(b+2α)t 6 r. The number of vertices of G′t is clearly linear in n
(first point of the theorem). Furthermore, br = (b+2α)t and ar = (a(1−ǫ)−2α)t

fulfil items 2, 3 and 4. ⊓⊔

3 On the approximability of Independent Set and

related problems in subexponential time

As mentioned in Section 2, an almost-linear size PCP construction [26] for 3Sat

allows to get the negative results stated in Corollaries 1 and 2. In this section, we
present further consequences of Theorem 2, based upon a combination of known
reductions with (almost) linear size amplifications of the instance.

First, Theorem 2 combined with the reduction in [1] showing inapproxima-
bility results for Independent Set in polynomial time, leads to the following
result.

Theorem 5. Under ETH, for any r > 0 and any δ > 0, there is no r-

approximation algorithm for Independent Set running in time O(2N
1−δ

),
where N is the size of the input graph for Independent Set.

Proof. Consider r > 0 and δ > 0. Given an instance φ of 3 sat on n variables, we
use the fact that 3Sat∈ PCP1,r[(1+ o(1)) logn+Dr, Er] (where Dr and Er are
constants that depends only on r) to build the following graph Gφ (see also [1]):

– for any random string R, and any possible values of the Er bits read by V,
add a vertex in the graph if V accepts;

– if two vertices are such that they have at least one contradicting bit (they
read the same bit which is 1 for one of them and 0 for the other one), add
an edge between them.

In particular, the set of vertices corresponding to the same random string is a
clique.

Assume that φ is satisfiable. Then there exists a proof for which the verifier
accepts for any random string R. Take for each random string R the vertex
in Gφ corresponding to this proof. There is no conflict (no edge) between any of
these 2|R| vertices, hence α(Gφ) = 2|R| (where, in a graph G, α(G) denotes the
size of a maximum independent set).

If φ is not satisfiable, then α(Gφ) 6 r2|R|. Indeed, suppose that there is an
independent set of size α > r2|R|. This independent set corresponds to a set
of bits with no conflict, defining part of a proof that we can arbitrarily extend
to a proof P. The independent set has α vertices corresponding to α random
strings (for which V accepts), meaning that the probability of acceptance for
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this proof P is at least α/2|R| > r, a contradiction with the property of the
verifier.

Furthermore,Gφ hasN 6 2|R|2Er 6 Cn1+o(1) vertices (for some constant C).
Then, one can see that, for any r′ > r, an r′-approximation algorithm for Inde-

pendent Set running in time O(2N
1−δ

) would solve 3 sat in time O(2n
1−δ

′

)
for some δ′ < δ, contradicting ETH. ⊓⊔

Since (for k 6 N), Nk1−δ

= O(2N
1−δ

′

), for some δ′ < δ, the following result also
holds.

Corollary 3. Under ETH, for any r > 0 and any δ > 0, there is no r-
approximation algorithm for Independent Set (parameterized by k) running

in time O(Nk1−δ

), where N is the size of the input graph.

The results of Theorem 5 and Corollary 3 can be immediately extended to prob-
lems that are linked to Independent Set by approximability preserving reduc-
tions (that preserve at least constant ratios) and have linear amplifications of
the sizes of the instances.

For instance, this is the case of Set Packing (preservation of constant ratios
and of ratios functions of the input size with amplification that is the identity
function). This holds for the Max Bipartite Subgraph problem where, given
a graph G(V,E), the goal is to find a maximum-size subset V ′ ⊆ V such that
the graph G[V ′] is a bipartite graph. Consider the following reduction from
Independent Set to Max Bipartite Subgraph ([28]). Let G(V,E) be an
instance of Independent Set of order n. Construct a graph G′(V ′, E′) for Max

Bipartite Subgraph by taking two distinct copies of G (denote them by G1

and G2, respectively) and adding the following edges: a vertex vi1 of copy G1 is
linked with a vertex vj2 of G2, if and only if either i = j or (vi, vj) ∈ E. G′ has 2n
vertices. Let now S be an independent set of G. Then, obviously, taking the two
copies of S in G1 and G2 induces a bipartite graph of size 2|S|. Conversely,
consider an induced bipartite graph in G′ of size t, and take the largest among
the two color classes. By construction it corresponds to an independent set in G,
whose size is at least t/2 (note that it cannot contain two copies of the same
vertex). So, any r-approximate solution for Max Bipartite Subgraph in G′

can be transformed into an r-approximate solution for Independent Set in G.
Observe finally that the size of G′ is two times the size of G.

Proposition 1. Under ETH, for any r > 0 and any δ > 0, there is no r-
approximation algorithm for either Set Packing or Max Bipartite Sub-

graph running in time O(2n
1−δ

) in a graph of order n.

Dealing with minimization problems, Theorem 5 and Corollary 3 can be extended
to Coloring, thanks to the reduction given in [23]. Given a graph G whose
vertex set is partitioned into K cliques each of size S, and given a prime number
q > S, a graph Hq having the following properties can be built in polynomial
time:

– the vertex set of Hq is partitioned into q2K cliques, each of size q3;
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– α(Hq) 6 max{q2α(G); q2(α(G)− 1) +K; qK};
– if α(G) = K then χ(Hq) = q3.

Note that this reduction uses the particular structure of graphs produced in the
inapproximability result in [1] (as in Theorem 5). Then, we deduce the following
result.

Proposition 2. Under ETH, for any r > 1 and any δ > 0, there is no r-

approximation algorithm for Coloring running in time O(2n
1−δ

) in a graph of
order n.

Proof. Fix a ratio r > 1, and let rIS > 0 be such that rIS+r
2
IS 6 1/r. Start from

the graph Gφ produced in the proof of Theorem 5 for ratio rIS . The vertex set
of Gφ is partitioned into K = 2|R| cliques, each of size at most 2Er . By adding
dummy vertices (a linear number, since Er is a fixed constant), we can assume
that each clique has the same size S = 2Er , so the number of vertices in Gφ is
N = KS = 2|R|2Er .

Let q > max{S, 1/rIS} be a prime number, and consider the graph Hq pro-
duced from Gφ by the reduction in [23] mentioned above. If φ is satisfiable,
α(Gφ) = K and then by the third property of the graph Hq, χ(Hq) = q3. Oth-
erwise, by the second property α(Hq) 6 max{q2α(Gφ); q2(α(Gφ)− 1)+K; qK}.
Formula φ being not satisfiable, α(Gφ) 6 rISK. By the choice of q, qK 6

q2rISK, so α(Hq) 6 q2rISK +K = (q2rIS + 1)K. Since the number of vertices
in Hq is Kq5, we get that χ(Hq) > q5/(q2rIS + 1). The gap created for the
chromatic number in the two cases is then at least:

q5

(q2rIS + 1)q3
=

1

rIS + 1/q2
>

1

rIS + r2IS
> r

The result follows since Hq has Kq
5 vertices and q is a constant (that depends

only on the ratio r and on the constant number of bits p read by V), so the size
of Hq is linear in the size of Gφ. ⊓⊔

We consider the approximability of Vertex Cover and Min-Sat in subexpo-
nential time. The following statement provides a lower bound to such a possi-
bility.

Proposition 3. Under ETH, for any r > 0 and any δ > 0, there is no (7/6−
ǫ)-approximation algorithm for Vertex Cover running in time O(2N

1−δ

) in
graphs of order N .

Proof. We combine Corollary 1 with the following classical reduction. Consider
an instance I of max 3-lin on m equations. Build the following graph GI :

– for any equation and any of the eight possible values of the 3 variables in it,
add a vertex in the graph if the equation is satisfied;

– if two vertices are such that they have one contradicting variable (the same
variable has value 1 for one vertex and 0 for the other one), then add an
edge between them.
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In particular, the set of vertices corresponding to the same equation is a clique.
Note that each equation is satisfied by exactly 4 values of the variables in it.
Then, the number of vertices in the graph is N = 4m. Consider an independent
set S in the graph GI . Since there is no conflict, it corresponds to a partial
assignment that can be arbitrarily completed into an assignment τ for the whole
system. Each vertex in S corresponds to an equation satisfied by τ (and S has at
most one vertex per equation), so τ satisfies (at least) |S| equations. Reciprocally,
if an assignment τ satisfies α clauses, there is obviously an independent set
of size α in GI . Hence, if (1 − ǫ)m equations are satisfiable, there exists an
independent set of size at least (1 − ǫ)m, i.e., a vertex cover of size at most
N − (1 − ǫ)m = N(3/4 + ǫ/4). If at most (1/2 + ǫ)m equations are satisfiable,
then each vertex cover has size at least N − (1/2 + ǫ)m = N(7/8− ǫ/4). ⊓⊔
The result of Proposition 3 can be extended to the Min-Sat problem via the
following reduction [24]. Given a graph G, build the following instance on Min-

Sat. For each edge (vi, vj) add a variable xij . For each vertex vi add a clause ci.
Variablen xij appears positively in ci and negatively in cj . Then, take a vertex
cover V ∗ of size k; for any xij fix the variable to true if vi ∈ V ∗, to false otherwise.
Consider a clause cj with vj 6∈ V ∗. If xij is in cj then vi is in V ∗ hence xij is true;
if xji is in cj then, by construction, xji is false. So cj is not satisfied, and the
assignment satisfies at mostn k clauses. Conversely, consider a truth assignment
that satisfies k clauses ci1 , · · · , cik . Consider the vertex set V ∗ = {vi1 , · · · , vik}.
For an edge (vi, vj), if xij is set to true then ci is satisfied and vi is in V ∗,
otherwise cj is satisfied and vj is in V

∗, so V ∗ is a vertex cover of size k. Since
the number of clauses in the reduction equals the number of vertices in the initial
graph, we get the following result.

Proposition 4. Under ETH, for any r > 0 and any δ > 0, there is no (7/6−ǫ)-
approximation algorithm for Min-Sat running in time 2m

1−δ

in CNF formulæ
with m clauses.

All the results given in this section are valid under ETH and rule out some ratio

in subexponential time of the form 2n
1−δ

. It is worth noticing that if LPC holds,
then all these result would hold for any subexponential time.

Corollary 4. If LPC, under ETH the negative results of Theorems 5, Propo-
sitions 1, 2 and 3 (resp. 4) hold for any time complexity 2o(n) (resp. 2o(m)).

Proof. Using LPC, the same proof as in Theorem 5 creates a graph on N =
O(n) variables with either an independent set of size αN (if φ is satisfiable)
or a maximum independent set of size at most α/2N (if φ is not satisfiable).
Then Theorem 4 allows to amplify this gap from 1/2 to any constant r > 0
while preserving the linear size of the instance. Results for the other problems
immediately follow from the same arguments as above. ⊓⊔

4 Parameterized inapproximability bounds

It is shown in [10] that, under ETH, for any function f no algorithm running in
time f(k)no(k) can determine whether there exists an independent set of size k,
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or not, (in a graph with n vertices). A challenging question is to obtain a similar
result for approximation algorithms for Independent Set. In the sequel, we
propose a reduction from Max-3Sat to Independent Set that, based upon
the negative result of Corollary 2, only gives a negative result for some function f
(because Corollary 2 only avoids some subexponential running time). However,
this reduction gives the desired inapproximability result if Hypothesis 1, which
is an enforcement of Corollary 2, is used.

Based upon Hypothesis 1, the following parameterized inapproximability
bound can be proved. Recall that Hypothesis 1 assumes ETH.

Theorem 6. Under Hypothesis 1, for every ǫ > 0, no parameterized approxi-
mation algorithm for Independent Set running in time f(k)No(k) can achieve
approximation ratio r + ǫ in graphs of order N .

Proof. Suppose that such an algorithm exists for some ǫ > 0. W.l.o.g., we can
assume that f is increasing, and that f(k) > 2k. Take an instance I of Max-

3Sat, let K be an integer that will be fixed later, and do the following:

– Partition the m clauses into K groups H1, · · · , HK each of them containing,
roughly, m/K clauses each.

– Each group Hi involves a number si 6 3m/K of variables. For all possible
values of these variables, add a vertex in the graph GI if these values satisfy
at least λm/K clauses in Hi (the value of λ will also be fixed later).

– Add an edge between two vertices if they have one contradicting variable.

In particular the vertices corresponding to the same group of clauses form a
clique. It is easy to see that the so-constructed graph contains N 6 K23m/K

vertices.
The following easy claim holds.

Claim. If a variable assignment satisfies at least λm/K clauses in at most s
groups, then it satisfies at most λm+ s(1− λ)m/K clauses.

Proof of claim. Consider an assignment as the one claimed in claim’s statement.
This assignment satisfies at most m/K clauses in at most s groups, and at
most λm/K in the other K − s groups, so in total at most sm/K + (K −
s)λm/K = λm+ s(1− λ)m/K, that completes the proof of the lemma. ⊓⊔

✸

Now, let us go back to the proof of the theorem.

– Assume an independent set of size at least t in GI . Then one can achieve a
partial solution that satisfies at least λm/K clauses in at least t groups. So,
at least tλm/K clauses are satisfiable. In other words, if at most (r + ǫ′)m
clauses are satisfiable, then a maximum independent set in GI has size at
most K r+ǫ′

λ .
– Suppose that at least (1−ǫ′)m clauses are satisfiable. Then, using Lemma 4,

there exists a solution satisfying at least λm/K clauses in at least 1−ǫ′−λ
1−λ K

groups; otherwise, it should be λm+ s(1− λ)m/K < (1− ǫ′)m. Then, there
exists an independent set of size 1−ǫ′−λ

1−λ K in GI .
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Now, set K = ⌈φ(m)/(1 − ǫ2)⌉ where φ is the inverse function of f (i.e., φ =
f−1). Set also λ = 1 − ǫ, and ǫ′ = ǫ3. Run the assumed (r + ǫ)-approximation
parameterized algorithm for Independent Set in GI with parameter k = (1−
ǫ2)K. Then:

– if at least (1− ǫ′)m equations are satisfiable, there exists an independent set

of size at least 1−ǫ′−λ
1−λ K = (1 − ǫ3/ǫ)K = (1 − ǫ2)K = k; so, the algorithm

must output an independent set of size at least (r + ǫ)k;
– if at most (r+ ǫ′) equations are satisfiable, the size of an independent set is

at most K r+ǫ′

λ = K r+ǫ3

1−ǫ = k r+ǫ3

(1−ǫ)(1−ǫ2) = k(r + rǫ+ o(ǫ)).

So, for ǫ sufficiently small, the algorithm allows to distinguish between the two
cases of Max-3Sat (for ǫ′).

The running time of the yielded algorithm is f(k)No(k), but f(k) = f((1 −
ǫ2)K) = m, and No(k) = Nk/ψ(k) for some increasing and unbounded function ψ,
and No(k) = (K23m/K)k/ψ(k) = 2o(m). ⊓⊔

Using Lemma 2 together with Theorem 6, the following result can be easily
derived.

Corollary 5. Under Hypothesis 1, for any r ∈ (0, 1) there is no r-approxima-
tion parameterized algorithm (i.e., an algorithm that runs in time f(k)p(n) for
some function f and some polynomial p).

Let us now deal with Dominating Set that is known to be W[2]-hard [14]. Exis-
tence of fpt-approximation algorithms for this problem is an open question [15].
Here, we present an approximation preserving reduction (fitting the parameter-
ized framework) that works with the special set of instances produced in the
proof of Theorem 6. This reduction will allow us to obtain a lower bound (based
on the same hypothesis) for the approximation of min dominating set from
Theorem 6.

Consider a graph G(V,E) on n vertices where V is a set of K cliques
C1, · · · , CK . We build a graph G′(V ′, E′) such that G has an independent set
of size α if and only if G′ has a dominating set of size 2K − α. The graph G′ is
built as follows:

– For each clique Ci in G, add a clique C ′i of the same size in G
′. Add also:

• an independent set Si of size 3K, each vertex in Si being adjacent to all
vertices in C ′i;

• a special vertex ti adjacent to all the vertices in C
′
i.

– For each edge e = (u, v) with u and v not in the same clique in G, add an
independent set We of size 3K. Suppose that u ∈ Ci and v ∈ Cj . Then, each
vertex in We is linked to ti and to all vertices in C ′i but u (and tj and all
vertices in C ′j but v).

Informally, the reduction works as follows. The set Si ensures that we have to
take at least one vertex in each C ′i, the fact that |We| = 3K ensures that it is
never interesting to take a vertex in We. If we take vertex ti in a dominating set,
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this will mean that we do not take any vertex in the set Ci in the corresponding
independent set in G. If we take one vertex in C ′i (but not ti), this vertex will be
in the independent set in G. Let us state this property in the following lemma.

Lemma 5. G has an independent set of size α if and only if G′ has a dominating
set of size 2K − α.

Proof. Suppose thatG has an independent set S of size α. Then, S has one vertex
in α sets Ci, and no vertex in the other K−α sets. We build a dominating set T
in G′ as follows: for each vertex in S we take its copy in G′. For each clique Ci
without vertices in S, we take ti and one (anyone) vertex in C

′
i. The dominating

set T has size α + 2(K − α) = 2K − α. For each C ′i there exists a vertex in T ;
so, vertices in C ′i, ti and vertices in Si are dominated. Now take a vertex in We

with e = (u, v), u ∈ Ci and v ∈ Cj . If Ci ∩ S = ∅ (or Cj ∩ S = ∅), then ti ∈ T
(or tj ∈ T ) and, by construction, ti is adjacent to all vertices in We. Otherwise,
there exist w ∈ S ∩ Ci and x ∈ S ∩ Cj . Since S is an independent set, either
w 6= u or x 6= v. If w 6= u, by construction w (its copy in C ′i) is adjacent to all
vertices in We and, similarly, for x if x 6= v. So, T is a dominating set.

Conversely, suppose that T is a dominating set of size 2K−α. Since Si is an
independent set of size 3K, we can assume that T ∩Si = ∅ and the same occurs
with We. In particular, there exists at least one vertex in T in each Ci. Now,
suppose that T has two different vertices u and v in the same Ci. Then we can
replace v by ti getting a dominating set (vertices in Si are still dominated by u,
and any vertex in some We which is adjacent to v is adjacent to ti). So, we can
assume that T has the following form: exactly one vertex in each Ci, and K −α
vertices ti. Hence, there are α C

′
i cliques where ti is not in T . We consider in G

the set S constituted by the α vertices in T in these α sets. Take two vertices u
and v in S with, say, u ∈ C ′i and v ∈ C ′j (with ti 6∈ T and tj 6∈ T ). If there were
an edge e = (u, v) in G, neither u nor v would have dominated a vertex in We

(by construction). Since neither ti nor tj is in T , this set would not have been a
dominating set, a contradiction. So S is an independent set. ⊓⊔

Theorem 7. Under Hypothesis 1, for every ǫ > 0, no approximation algorithm
running in time f(k)No(k) can achieve approximation ratio smaller than 2−r−ǫ
for Dominating Set in graphs of order N .

Proof. In the proof of Theorem 6, we produce a graph GI which is made of K
cliques and such that: if at least (1− ǫ)m clauses are satisfiable in I, then there
exists an independent set of size (1 − O(ǫ))K; otherwise (at most (r + ǫ)m
clauses are satisfiable in I), the maximum independent set has size at most
(r + O(ǫ))K. The previous reduction transforms GI in a graph G′I such that,
applying Lemma 5, in the first case there exists a dominating set of size at
most 2K − (1 − O(ǫ))K = K(1 + O(ǫ)) while, in the second case, the size of
a dominating set is at least 2K − (r + O(ǫ))K = K(2 − r − O(ǫ)). Thus, we
get a gap with parameter k′ = K(1 + O(ǫ)). Note that the number of vertices
in G′I is N

′ = N + K + 3K + 3K|EI | = O(N3) (where EI is the set of edges
in GI). If we were able to distinguish between these two sets of instances in time
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f(k′)N ′o(k
′), this would allow to distinguish the corresponding independent set

instances in time f(k′)N ′o(k
′) = g(k)No(k) since k′ = K(1+O(ǫ)) = k(1+O(ǫ))

(k = K(1− ǫ3) being the parameter chosen for the graph GI). ⊓⊔

Such a lower bound immediately transfers to Set Cover since a graph on n ver-
tices for Dominating Set can be easily transformed into an equivalent instance
of min set cover with ground set and set system both of size n.

Corollary 6. Under Hypothesis 1, for every ǫ > 0, no approximation algorithm
running in time f(k)mo(k) can achieve approximation ratio smaller than 2−r−ǫ
for min set cover in instances with m sets.

5 Conclusion

This paper presents conditional lower bounds of approximation ratio in subexpo-

nential and fpt-time. Assuming ETH, we prove inapproximability in time 2n
1−δ

for any δ > 0 for the problems such as: Independent Set, Set Packing, Max

Bipartite Subgraph, Coloring, Vertex Cover. If Linear PCP Conjecture
turns out to hold, even in time 2o(n) we cannot approximate any better. Also
assuming ETH, we proved that Linear PCP Conjecture implies that fpt-
time inapproximabilty of Independent Set and Dominating Set. Here, let
us note that, all the results about Independent Set immediately apply also to
Clique.

Our effort in this paper is only a first step and we wish to motivate further
research. There remains a range of problems to be tackled, among which we
propose the followings.

– Our inapproximability results, in particular those in fpt-time, are conditional
upon Linear PCP Conjecture. Is it possible to relax the condition to a more
plausible one?

– Or, we dare ask whether (certain) inapproximability results in fpt-time imply
strong improvement in PCP theorem. For example, would the converse of
Lemma 1 hold?

Note finally that we have considered in this article constant approximation ra-
tios. In this sense, Theorem 5 is “tight” with respect to approximation ratios
since, as mentioned in Section 2, ratio 1/r(n) is achievable in subexponential
time for any increasing and unbounded function r. However, dealing with pa-
rameterized approximation algorithms, achieving a non constant ratio is also an
open question. More precisely, finding in fpt-time an independent set of size g(k)
when there exists an independent set of size k is not known for any unbounded
and increasing function g.
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