
la
m
sa

d
e

LAMSADE

Laboratoire d’Analyse et Modélisation de Systèmes pour
l’Aide à la Décision

UMR 7243

Juin 2012

Exact and approximation algorithms
for DENSEST k-SUBGRAPH

N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis, V.Th. Paschos

CAHIER DU
 324

Exact and approximation algorithms for densest k-subgraph∗

N. Bourgeois(a) A. Giannakos(b) G. Lucarelli(c) I. Milis(d) V. Th. Paschos(b)(e)

June 4, 2012

Abstract

The densest k-subgraph problem is a generalization of the maximum clique problem, in
which we are given a graph G and a positive integer k, and we search among the subsets of k
vertices of G one inducing a maximum number of edges. In this paper, we present algorithms
for finding exact solutions of densest k-subgraph improving the standard exponential time
complexity of O∗(2n) and using polynomial space. Two FPT algorithms are also proposed;
the first considers as parameter the treewidth of the input graph and uses exponential space,
while the second is parameterized by the size of the minimum vertex cover and uses polynomial
space. Finally, we propose several approximation algorithms running in moderately exponential
or parameterized time.

1 Introduction and preliminaries

In the densest k-subgraph problem we are given a graph G = (V,E), |V | = n, |E| = m, and an
integer k ∈ N

+, and we ask for a subset A ⊆ V of k vertices such that the number of edges induced
by A is maximized. densest k-subgraph is NP-hard, being a generalization of the max clique

problem [22]. Moreover, it is NP-complete even to decide if there is a solution with at least k1+ǫ

edges, for any ǫ > 0 [2]. densest k-subgraph belongs to a known class of problems, called fixed
cardinality problems, most of which are generalizations of well-known combinatorial optimization
problems. For instance, this is the case for densest k-subgraph with respect to the max clique

problem.
In this paper, we present (sub)exponential and parameterized algorithms that compute optimal

or approximate solutions for the densest k-subgraph problem. In Section 2 we propose exact
algorithms for finding an optimal solution to densest k-subgraph. These algorithms improve
the standard complexity O∗(2n) for the problem (throughout the paper we use notation O∗(·) that
ignores polynomial factors in the complexity expressions). In contrast to the algorithm presented
in [11], they need only polynomial space. In this direction, we first present a general decomposition
idea which, depending on the way we partition the graph, leads to different time complexities for
finding an optimal solution. Next, in Section 2.2, we propose two similar branch-and-cut algorithms
and we analyze their complexity using the “measure and conquer” and the “bottom-up” techniques.

∗Research supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010
(a)ESSEC, France, nbourgeo@phare.normalesup.org
(b)PSL Research University, Université Paris-Dauphine, LAMSADE, CNRS UMR 7243, Paris, France {giannako,

paschos}@lamsade.dauphine.fr
(c)Université Pierre et Marie Curie, LIP6, Paris, France, Giorgio.Lucarelli@lip6.fr
(d)Athens University of Economics and Business, Department of Informatics, Athens, Greece, milis@aueb.gr
(e)Institut Universitaire de France

1

In Section 3, we present algorithms of parameterized complexity for densest k-subgraph. We first
propose an algorithm of complexity exponential to the treewidth, tw, of the input graph, supposing
that a tree decomposition is given. However, this algorithm uses exponential space. In order to
fix this, we show that densest k-subgraph is FPT with respect to the size τ of a minimum
vertex cover of the input graph. Note that tw 6 τ , but the later algorithm uses polynomial
space. In Section 4, we first present two XP-approximation schemata for densest k-subgraph
whose approximation ratios depend on their complexity (see [16] for a formal definition of the
problem-class XP). We also give approximation algorithms that run in moderately exponential or
parameterized time.

In what follows, we denote by δ(G), ∆(G) and ∆̄(G) (or simply δ, ∆ and ∆̄) the minimum,
maximum and average degree, respectively, of a graph G. The diameter diam(G), of a graph G is
the length of the maximum shortest path between any two vertices of the graph. For a graph G,
we denote by tw(G) and χ(G) its treewidth and chromatic number, respectively. Given two sets
of vertices A,B ⊆ V , G[A] denotes the subgraph induced by A, E(A) the set of edges induced
by G[A] and E(A,B) the set of edges with their one endpoint in A and the other in B.

The approximability of densest k-subgraph has been studied in several papers. For instance,
an approximation algorithm achieving ratio 8k

9n has been proposed in [4]. In [18], three procedures

are used in order to obtain a O(n−1/3)-approximation ratio, while the best known approximation
algorithm achieves a ratio of O(n−(1/4+ǫ)) within nO(1/ǫ) time, for any ǫ > 0 [3]. From a negative
point of view is known that densest k-subgraph in general graphs does not admit a PTAS [23].

densest k-subgraph can be solved in time O∗(knω⌊k/3⌋+1+k mod 3) where ω < 2.376, by the
exact algorithm proposed in [11]. Notice, however, that this algorithm requires exponential space.

Recall that a problem is fixed-parameter tractable (FPT) with respect to a parameter t if it
can be solved (to optimality) with time-complexity O(f(t)p(n)) where f is a function that depends
on the parameter t and p is a polynomial on the size n of the instance. Cai in [11] proved that
densest k-subgraph is not FPT, i.e., it is W[1]-hard, with respect to k even for regular graphs.
This result immediately implies also that densest k-subgraph is W[1]-hard with respect to the
size of the solution ℓ, as any solution cannot contain more than k(k − 1)/2 edges.

2 Exact algorithms

2.1 A decomposition technique

A general idea for finding an exact solution for the densest k-subgraph problem in a graph
G = (V,E) is to split the vertex set V into two subsets V1 and V2. Then, for each i, 1 6 i 6 k,
and each subset A1 ⊆ V1 with |A1| = i, we search for a subset A2 ⊆ V2, |A2| = k− i, such that the
number of edges in G[A1 ∪A2] is maximized. Clearly, the complexity of this algorithm depends on:

• the size of set V1, as we create all subsets of V1;

• the complexity of determining, given the set A1, the set A2 ⊆ V2.

Hence, it is required for V1 to be of bounded size and for V2 to have some specific property that
forces A2 to be determined in polynomial time. We will show that ∆(G[V2]) 6 2 is such a property.

This idea can be applied to many problems especially to those where feasible solutions are
subsets of V satisfying some specific property. As we will see in what follows, this method provides
also a general framework for the complexity analysis of several algorithms (depending on the way V1

is chosen and on its size), and uses polynomial space. Therefore, it allows to achieve non-trivial

2

bounds to running time (using polynomial space), in particular for problems where no bounds
better than O∗(2n) are known.

Generic(V1, V2) is a procedure that takes as input a partition of the vertex set (V1, V2) and
returns an optimal densest k-subgraph in G through exhaustive search.

Generic(V1, V2)

1: for j = 0 to k do
2: for any subset A1 ⊆ V1, |A1| = j, do
3: find a solution A = A1∪A2 for the densest k-subgraph problem in G such that A2 ⊆ V2,

|A2| = k − j, and |E(A)| is maximized;
4: return the best among the solutions found in Line 3;

Whenever ∆(G[V2]) 6 2, the following proposition states that A2 is found in polynomial time.

Proposition 1. Consider a graph G = (V,E), some partition of the vertex set V into two subsets V1

and V2 such that ∆(G[V2]) 6 2, and a subset A1 ⊆ V1, |A1| 6 k. A solution A = A1 ∪ A2 for the
densest k-subgraph problem in G such that A2 ⊆ V2, |A2| = k− |A1|, and |E(A)| is maximized,
can be found in O(nk2) time.

Proof. We will polynomially transform our problem to the quadratic 0 − 1 knapsack problem,
QKP, [27]. In this problem, we are given a graph G = (V,E) and an integer b. Each vertex i ∈ V
is associated with a cost ci and a weight wi and each edge (i, j) ∈ E has a cost cij . The goal is to
find a subset A ⊆ V such that the total weight of A does not exceed b, i.e.,

∑

i∈Awi 6 b, and the
total cost of A,

∑

i∈A ci+
∑

i,j∈A cij , is maximized. It has been shown in [27] that this problem can

be solved in O(|V |b2) time for edge series-parallel (ESP) graphs. A graph of maximum degree 2
consists of cycles, paths and single vertices and can be converted to a single ESP graph by adding a
left and a right fictive terminal vertices and connecting them with the left and the right terminals of
each component, respectively (single vertices being both left and right terminals of themselves). In
this way, we convert the graph G[V2] to an ESP graph and we consider each vertex i ∈ V2 assigned
a cost ci = |E({i}, A1)| and each edge (i, j) ∈ E(V2) assigned a cost cij = 1. The fictive terminals
and their incident edges are assigned costs equal to zero. Moreover, each vertex i ∈ V2 is assigned
a weight wi = 1, while fictive terminal vertices have an infinite weight. Finally, the capacity of the
knapsack is k−|A1|. An optimal solution to this QKP problem and hence a densest k-subgraph
in G can be found within O(nk2) time [27].

Note that, in the case where ∆(G[V2]) = 0, i.e., V2 is an independent set the set A2 can be
found in O(n log k) time, by selecting the k − |A1| vertices of V2 with the largest degree to A1.

Proposition 2. Generic(V1, V2) returns an optimal densest k-subgraph-solution on G[V1∪V2]
in O∗

(

2|V1|
)

time.

Proof. In an iteration, let A1 be the subset of vertices of V1 that an optimal solution contains. By
the optimality of the solution obtained by Proposition 1, the whole solution returned in such an
iteration is an optimal one. Line 3 of Generic(V1, V2) is executed

∑k
j=0

(|V1|
j

)

times. Hence, the

complexity of the algorithm is O∗
(

2|V1|
)

.

Note that, in the case where k 6
|V1|
2 then the term O∗

(

(|V1|
k

)

)

is a better expression for the

complexity.

3

The following theorem handles four decompositions (V1, V2) of G, each one determined by the
way V1 is obtained. Other decompositions based on specific structural properties of the set V1 can
be also used to obtain different complexities.

Theorem 1. Generic(V1, V2) leads to a polynomial space algorithm for densest k-subgraph of
time complexity:

(i) O∗
(

2(1−(5/8)∆−2)n
)

, if V1 is obtained by repeated excavations of minimum dominating sets;

(ii) O∗
(

2
χ−1
χ

n
)

or O∗
(

2
∆−1
∆

n
)

, if V1 is a minimum vertex cover;

(iii) O∗
(

2
∆−2
∆−1

n
)

, for any ∆ > 3, if V1 is obtained by repeated excavations of minimum independent

dominating sets;

(iv) O∗
(

2n−diam(G)
)

, for any ∆ > 3, if V1 is the complement of the vertices of a longest path of
the graph.

Proof of Item (i). According to the Reed’s theorem [28] for the size of a minimum dominating
set: “any graph G = (V,E) of minimum degree at least three has a dominating set of size at
most 3|V |/8”. Based on this we propose the following algorithm. The following lemma shows how

Algorithm 1 Decomposition by Minimum Dominating Set

1: V∆ = V ; D = ∅;
2: for i = ∆ to 3 do
3: extend G[Vi] to the graph G′

i = (V ′
i , E

′
i), Vi ⊆ V ′

i , of minimum order and minimum degree
three;

4: find a minimum dominating set D′
i ⊆ V ′

i on G′
i;

5: Di = D′
i ∩ Vi; D = D ∪Di; Vi−1 = Vi \Di;

6: return Generic(D,V2 = V \D);

to implement Line 3 of the algorithm, without increasing significantly the number of the vertices
of the graph.

Lemma 1. Any graph G = (V,E) can be extended to a graph G′ = (V ′, E′) such that δ(G′) > 3
and |V ′| 6 |V |+ 11.

Proof. We consider the vertices of the input graph of degree two or less which appear in connected
components that contain at least a vertex of degree three or more. We complete the graph by
adding fictive edges between them until they all have degree at least three. Notice that in the
following cases this completion will be not successfully finished:

(a) A vertex v of degree one remains. In this case we add the gadget shown in Figure 1(a) and
the edges (v, u1) and (v, u2). Thus, the number of vertices of the graph becomes n′ = n+ 4.

(b) A vertex v of degree two remains. In this case we add the gadget shown in Figure 1(b),
where v coincides with u. Thus, the number of vertices of the graph becomes n′ = n+ 5.

(c) Two adjacent vertices, v1 and v2, both of degree two remain. In this case we add the gadget
shown in Figure 1(b) and the edges (v1, u) and (v2, u). Thus, the number of vertices of the
graph becomes n′ = n+ 6.

4

(d) Two adjacent vertices, v1 and v2, of degree one and two, respectively, remain. In this case
we add the gadget shown in Figure 1(b), where v1 coincides with u. Moreover, we add the
gadget shown in Figure 1(b) and the edges (v1, u) and (v2, u) Thus, the number of vertices of
the graph becomes n′ = n+ 11.

u

u1

(a) (b)

u2

Figure 1:

Note that no vertex of degree three, at the beginning of the process, will receive a new neighbor
in this way. Furthermore, the number of vertices n′ of the new graph is at most n+ 11, and hence
the proof of the lemma is completed.

Lemma 2. |D| 6
(

1− (5/8)∆−2
)

n+ o(1).

Proof. By Reed’s theorem, for the graph G′
i it holds that |D′

i| 6
3|V ′

i |
8 . By Lemma 1 we have

|V ′
i | 6 |Vi|+ 11 and hence |Di| = |D′

i ∩ Vi| 6 |D′
i| 6 3|Vi|

8 + o(1).

Thus, we have |Vi−1| = |Vi|−|Di| > |Vi|−
(

3|Vi|
8 + o(1)

)

= 5|Vi|
8 −o(1). By solving this recurrence

for i = 3 we get |V2| >
(

5
8

)∆−2 |V∆| −
∑∆−3

j=0

(

5
8

)j · o(1) >
(

5
8

)∆−2 |V | − o(1). Hence, it holds that

|D| = |V | − |V2| 6 |V | −
(

(

5
8

)∆−2 |V | − o(1)
)

, and the proof of the lemma is completed.

To complete the proof for Item (i), note that G[V2] = G[V \ D] is a graph of maximum de-
gree 2, since ∆ − 2 dominating sets have been removed from the initial graph G in Lines 2-5 of
the algorithm. The complexity of computing a minimum dominating set in Line 4 of the algo-
rithm is O∗(1.5048n) [29]. For graphs of maximum degree three, another algorithm is known of
complexity O∗(1.202n) [20]. Finally, according to Lemma 2 the size of the set V1 that takes as
input Generic(V1, V2) is |V1| 6

(

1− (5/8)∆−2
)

n+ o(1). Using Proposition 2 the proof of Item (i)
follows.

Proof of Item (ii). In this case, we search for a minimum vertex cover in the input graph and we
compute the complexity of the next algorithm with respect to the chromatic number χ(G) of the
graph. A minimum vertex cover B, can be found in O∗ (1.2738τ) 6 O∗ (1.2738n) time [13]. The

Algorithm 2 Decomposition by Minimum Vertex Cover

1: find a minimum vertex cover B, of G;
2: return Generic(B,V \B);

set V \B is a maximum independent set of size at least n
χ , since the vertex set of the input graph

can be partitioned into χ independent sets. Hence, by Proposition 2 the first part of Item (ii) of
the theorem holds.

5

If the input graph is a clique or an odd cycle then the densest k-subgraph problem is
polynomial. Otherwise, χ 6 ∆ and the second part of Item (ii) of the theorem holds.

Proof of Item (iii). Consider Algorithm 3. Note that, if there exits a Di such that |Di| > n
∆−1 , then

by Line 5 of the algorithm we have that |D| 6 n− n
∆−1 = ∆−2

∆−1n. Otherwise, for each i, 3 6 i 6 ∆,
it holds that |Di| 6 n

∆−1 , and hence, |D| 6 (∆ − 2) n
∆−1 . Since in both cases G[V \D] is a graph

of maximum degree 2, we can apply Proposition 2, completing the proof of Item (iii).

Algorithm 3 Decomposition by Minimum Independent Dominating Set

1: V∆ = V ; D = ∅;
2: for i = ∆ to 3 do
3: find an independent dominating set Di on G[Vi];
4: if |Di| > n

∆−1 then
5: D = V \Di; Go to Line 8;
6: else
7: D = D ∪Di; Vi−1 = Vi \Di;
8: return Generic(D,V \D);

Proof of Item (iv). To prove Item (iv) of the theorem, we propose another algorithm that is obtained
by considering the diameter, diam(G), of the input graph. Note, first, that P contains the vertices

Algorithm 4 Decomposition by the diameter

1: for each v ∈ V do
2: create the BFS tree rooted in v;
3: find the longest path, Pv, from v in this BFS;
4: P = {Pv : |Pv| is maximum, v ∈ V };
5: return Generic(V \ P,P);

of the maximum shortest path of the graph, that is the vertices that define the diameter of the
graph. Since the BFS tree contains edges only between two consecutive levels, G[P] is a path,
that is a graph of maximum degree 2. As |P | > diam(G), it holds that |V \ P | 6 n − diam(G).
Therefore, by applying Proposition 2 the proof of the theorem is completed. �

The complexity for optimally solving densest k-subgraph in bipartite graphs can be further
improved. Observe that, given a bipartite graph G = (U, V), we can apply Generic(U, V) getting

an algorithm with running time O∗
(

(n/2
k

)

)

(or 2n/2 if k > n/2). In the next theorem, we show how

to improve this result, by considering the balance of the vertices among the two independent sets
in an optimal solution. In what follows, we define φ(k, n) to be the complexity of our algorithm.

Theorem 2. densest k-subgraph can be solved on bipartite graphs in time O∗(φ(k, n)).

The table below gives an idea of the behavior of φ(k, n) for different ratios k/n.

k/n 1/100 1/20 1/10 1/6 1/4 1/3

φ(k, n) 1.029n 1.105n 1.177n 1.253n 1.325n 1.375n
∑

i6k

(n/2
i

)

1.051n 1.177n 1.285n 1.375n
√
2
n √

2
n

6

Proof. W.l.o.g., assume that |U | 6 n/2 and let λ = |U |/n 6 1/2. Generic(U, V) solves densest

k-subgraph in O∗(φ(k, λn)) time, while Generic(V,U) solves it in time O∗(φ(k, (1 − λ)n)). We
fix some scalar ν(λ) 6 1/2. Notice that either V contains at most νk vertices from an optimal
solution, or U contains less than (1− ν)k of them. Hence, we only need to consider small subsets:
T (n) 6 maxλ minν{φ(νk, (1 − λ)n) + φ((1 − ν)k, λn)}. Since the second term in the previous
expression involves an increasing and a decreasing function, it is easy to find the solution of this
minimization problem for a given set of parameters (k, n). However, it would be very tedious to
try to give an exact formula, especially considering all the specific cases when k is close to n. As a
consequence, we prefer to give a sample of values for the function φ.

2.2 Branch-and-Cut algorithms

In this section we propose two slightly different branching algorithms for densest k-subgraph
and we prove upper bounds on their time complexity. For the analysis of the first algorithm we
use the well known technique of measure and conquer introduced by Fomin et al. [19]. For the
analysis of the second algorithm we use the bottom-up technique which has been developed in [8]
as a technique for finely measuring the progression of a branching algorithm. This method has led
to the best known worst-case complexity for the independent set problem [8], and it has been also
used in [9].

Let us first consider a simple branch-and-cut algorithm that branches on a vertex of maximum
degree. The branching tree is cut whenever the remaining graph is of maximum degree 2. In this
case, a solution for the whole graph can be obtained by extending the solution implied by the
particular path of the search tree as stated in Proposition 1.

Theorem 3. Using measure and conquer, the basic branching algorithm solves densest k-sub-

graph in time O∗
(

2
∆−1
∆+1

n
)

.

Proof. In what follows, we denote by Gi = (Vi, Ei) the subgraph of the input graph G induced by
the set of vertices, Vi, not yet examined.

We assign to each vertex v ∈ Vi a weight according to its degree ω(v) = wdGi
(v), under the

constraints:

• wi is increasing with i.

• wi+1−wi is decreasing with i. This convexity hypothesis is necessary for accurate assessment
of worst-case branching.

In each iteration, the degree dGi(u) for each neighbor u ∈ Vi of v is decreased by one. Hence, the
total weight W =

∑

v∈V w(v) is decreased and according to the convexity hypothesis we have:

T (W) 6 2T (W − wi −
∑

u∈N(v)

(wdGi
(u) − wdGi

(u)−1)) 6 2T (W −wi − i(wi − wi−1))

In fact, we only need to verify these inequations for i > 3, since by Proposition 1 the problem is
polynomial in graphs of maximum degree 2. However, we are not allowed to fix wi = 0 for i 6 2,
since we need to verify the convexity hypothesis. It is easy to see that the following choices are
optimal:

• w0 = 0: disconnected vertices have no influence on the branching.

• w1 = w3/3 and w2 = 2w3/3. Indeed the exact value of w1 has no influence on complexity,
while the smallest w2 the best.

7

Since all other inequations have to be satisfied, the optimal weight distribution must satisfy:

∃c,∀3 6 i 6 ∆, (i+ 1)wi − iwi−1 = c

Summing up these equations, we get wi =
(i−2)c+3w2

i+1 . Hence, we have w3 = c/2, w2 = c/3, w1 = c/6.

Furthermore, we are free to fix w∆ = 1 (which means W = n) and thus we get c = ∆+1
∆−1 and, ∀i > 2,

wi =
(i−1)(∆+1)
(i+1)(∆−1) .

With this weight function, the recurrence inequality admits as a solution T (n) 6 2
∆−1
∆+1

n.

We now slightly modify the previous basic branching algorithm by proceeding to search tree
cutting whenever the remaining graph has average degree three. The analysis of this modified
branching algorithm is based on the bottom-up method. The following Lemma 3 settles the case
where the average degree of the graph is at most 3, while Lemma 4 handles the complexity of finding
a densest k-subgraph on graphs with average degree at least d− 1, given that the complexity of
finding a densest k-subgraph for graphs with average degree at most d− 1 is known.

Lemma 3. densest k-subgraph can be solved on graphs of average degree ∆̄ 6 3 with running
time O∗(221n/46).

Proof. If ∆ 6 3, then by Theorem 1 Item (i), densest k-subgraph can be solved in O∗(23n/8)
time.

Otherwise, we make a sequence of branchings, choosing each time a vertex of maximum degree,
until our graph has maximum degree three. Let ni, 4 6 i 6 ∆, be the number of vertices of degree i
on which we branch during this step. Moreover, let n′ =

∑∆
i=4 ni. Since i is the degree at the time

we branch, the number of deleted edges is
∑∆

i=4 i · ni > 4n′. For the n − n′ remaining vertices of
the graph we proceed as follows.

(α) If n−n′ < 20n/23, we greedily branch on vertices of degree three until the graph has maximum
degree 2.

(β) If n− n′ > 20n/23, we compute a minimum dominating set as described on Algorithm 1 and
branch on any vertex of it.

If (α) is true, the running time of our algorithm is O∗(2x) where:

x 6 n′ +
m− 4n′

3
=

m

3
− n′

3
6

n

2
− 1

3
· 3n
23

=
21n

46

If (β) is true, the running time is O∗(2x) where:

x 6 n′ +
3(n− n′)

8
=

3n

8
+

5n′

8
6

3n

8
+

5

8
· 3n
23

=
21n

46

Lemma 4. Assume densest k-subgraph can be computed on graphs with average degree at most
d − 1, in time O∗(2αdn) for a given αd > 1/2, d ∈ N. Then, it can be computed on graphs with

average degree at least d − 1 in time O∗(2αdn+βd(m−(d−1)n/2)), where βd = 2(1−αd)
d+1 . In particular,

it can be computed on graphs with average degree at most d with running time O∗(2αd+1n), where
αd+1 =

dαd+1
d+1 .

8

Proof. Our hypothesis is true for m0 = (d−1)n/2. Suppose that is true for any pair n′ < n,m′ < m.
Since our graph has average degree greater than d−1, there exists some vertex of degree d or more.
When branching on it, we get:

T (m,n) 6 2T (m− d, n− 1) 6 21+αd(n−1)+βd(m−(d−1)n/2)−(d+1)/2

6 21−αd−(d+1)/2×2(1−αd)/(d+1) × 2αdn+βd(m−(d−1)n/2) 6 2αdn+βd(m−(d−1)n/2)

This remains true by induction for any m,n.

Theorem 4. densest k-subgraph can be solved on graphs of average degree ∆̄ 6 d with running

time O∗(2
d−27/23

d+1
n), for any d ∈ N, d > 3.

Proof. For d = 3 the result follows by Lemma 3. Assume that it is true for ∆̄ 6 d − 1. Then,
by Lemma 4, we can find a solution when ∆̄ 6 d with running time O∗(2αd+1n), where αd+1 =

dαd+1
d+1 =

d d−1−27/23
d

+1

d+1 = d−27/23
d+1 . Thus, the statement holds by induction on d.

3 Parameterized algorithms

Given a graph G = (V,E), a tree decomposition is a pair (X,T), where X = {X1,X2, . . . ,X|X|},
Xi ⊆ V , and T is a tree such that: (i)

⋃

Xi = V , (ii) for each e = (u, v) ∈ E there is a Xi

where u, v ∈ Xi, and (iii) for each Xi,Xj ,Xl such that Xj appears on the path between Xi

and Xl it holds that Xi ∩ Xl ⊆ Xj . The treewidth, tw, of such a decomposition is defined as
tw = max{|Xi|, 1 6 i 6 |X|} − 1. It is known that finding a minimum treewidth decomposition of
a given graph is NP-hard [1]. However, deciding whether there is a tree decomposition of a graph
of a fixed treewidth is polynomial [6].

Moser [26], proposes a parameterized algorithm with respect to the treewidth of the input
graph for max k-cover. A similar approach can be used for densest k-subgraph. For the sake
of completeness, in the following theorem we briefly describe the algorithm and clarify the issues
occurring for densest k-subgraph.

Theorem 5. There is a parameterized algorithm for densest k-subgraph with respect to the
treewidth that runs in O∗(2tw · k · (tw2 + k) · |X|) and uses space exponential to tw.

Proof. Initially, we present an additional definition which is crucial for our analysis. A nice tree
decomposition is a decomposition where T is a binary tree rooted to a vertex Xr and each vertex
Xi of T is of one of the following four types:

• a leaf vertex of |Xi| = 1;

• an introduced vertex with one child Xj such that Xi = Xj ∪ {v} for some vertex v ∈ V ;

• a forgotten vertex with one child Xj such that Xj = Xi ∪ {v} for some vertex v ∈ V ;

• a join vertex with two children Xj and Xl such that Xi = Xj = Xl.

An algorithm that transforms in linear time a tree decomposition into a nice one of the same
treewidth is presented in [24].

Consider now a nice tree decomposition of G and let Ti be the subtree of T rooted at Xi

and Gi = (Vi, Ei) be the subgraph of G induced by the vertices in
⋃

Xj∈Ti
Xj . For each vertex

Xi = (v1, v2, . . . , v|Xi|) of the tree decomposition, define a configuration vector c ∈ {0, 1}|Xi|; if

9

c[j] = 1 then vj ∈ Xi belongs to the solution for densest k-subgraph. Moreover, for each
vertex Xi, consider a table Ai of size 2|Xi|× (k+1). Each row of Ai represents a configuration and
each column represents the number k′, 0 6 k′ 6 k, of vertices in Vi \Xi included in the solution.
The value of an entry of this table equals to the number of edges induced by the solution created
for G[Vi]. Then −∞ is used to define an infeasible solution.

The algorithm examines the vertices of T in a bottom-up manner and fills in the table Ai for
each vertex Xi. In the initialization step, for each leaf vertex Xi and each configuration c we have
Ai[c, k

′] = 0 if k′ = 0; otherwise Ai[c, k
′] = −∞.

If Xi is a forgotten vertex, then consider a configuration c for Xi. In Xj this configuration is
extended with the decision whether vertex v is included into the solution or not. Hence, taking
into account that v ∈ Vi \ Xi we get Ai[c, k

′] = max{Aj [c × {0}, k′], Aj [c × {1}, k′ − 1]} for each
configuration c and each k′, 0 6 k′ 6 k.

If Xi is an introduced vertex, then consider a configuration c for Xj . In the case where v is
discarded for the solution then Ai[c×{0}, k′] = Aj [c, k

′]. Otherwise, assume that the inclusion of v
adds a edges in the solution. Hence, Ai[c×{1}, k′] = Aj[c, k

′] + a, since k′ counts only the vertices
of the current solution in Vi \Xi.

If Xi is a join vertex, then for each configuration c for Xj and each k′, 0 6 k′ 6 k, we have
to find the best solution obtained by kj , 0 6 kj 6 k′, vertices in Aj plus k′ − kj vertices in Al.
However, the number, nc, of edges in this solution that are induced by Xi are counted twice. Hence,
we get Ai[c, k

′] = max06kj6k′{Aj [c, kj], Al[c, k
′ − kj]} − nc.

For the size of the minimum vertex cover τ of the input graph it holds that tw 6 τ . So,
Theorem 5 implies that densest k-subgraph is FPT with respect to τ too. In what follows we
present another application of Generic and we restate Item (ii) of Theorem 1 in order to obtain
the following parameterized result, which implies only polynomial space. The proof of the following
theorem immediately derives by the proof of Theorem 1, Item (ii).

Theorem 6. There exists an O∗(2τ)-time algorithm for densest k-subgraph that uses polyno-
mial space.

We now improve the analysis of Theorem 6 and prove that, informally, the instances of den-

sest k-subgraph that are not fixed-parameter tractable (with respect to k) are those solved with
running time better than O∗(2τ).

Theorem 7. densest k-subgraph can be solved in O∗(max{γτ , ck}), for two related constants
γ < 2 and c > 4, and needs polynomial space.

Proof. Note that by the proof of Theorem 6 the running time of Generic is O∗(
∑k

i=1

(τ
i

)

). If
τ 6 k, it follows that densest k-subgraph can be solved in O∗(2τ) = O∗(2k) time. Hence, we
can assume that k < τ .

We will prove that, for any 0 < λ < 1/2, we can determine constants γ = γ(λ) < 2 and c =
c(λ) > 4 such that densest k-subgraph can be solved in time O∗(max{γτ , ck}). We distinguish
the following two cases: τ > k > λτ and k < λτ .

If k > λτ , then using the fact that k < k/λ
2 and Stirling’s formula we get

∑k
i=1

(

τ
i

)

6 k
(k/λ

k

)

∼

k

(

(λ−1)λ
−1

(λ−1−1)(λ
−1

−1)

)k

= O∗
(

ck
)

, for some constant c that depends on λ.

If k < λτ , then k < τ/2 and hence
∑k

i=1

(

τ
i

)

6 k
(

τ
k

)

6 k
(

1
λλ(1−λ)(1−λ)

)τ
= O∗ (γτ), for some

constant γ < 2 that depends on λ.

The table below contains the values of c and γ for some values of λ.

10

λ 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40 0.45 0.49

c =

1

λ

1

λ

(1

λ
−1)(

1

λ
−1)

270.47 53.00 25.81 16.74 12.21 9.48 7.66 6.36 5.38 4.61 4.11

γ = 1
λλ(1−λ)1−λ

1.06 1.22 1.38 1.53 1.65 1.75 1.84 1.91 1.96 1.99 1.9996

4 Approximation algorithms

Under the classic complexity structure hypotheses, there is no constant factor approximation al-
gorithm for densest k-subgraph that runs in polynomial time. In this section, by relaxing the
demand of polynomiality, we present approximation algorithms that run in time exponential, but
faster than the time needed for computing an exact solution. This approach has already been
considered for several other paradigmatic problems such as minimum set cover [14], min color-

ing [5], max independent set and min vertex cover [7], min bandwidth [15, 21], etc. Note
that, the O(n−(1/4+ǫ))-approximation algorithm with complexity nO(1/ǫ) presented in [3], can be
considered as an approximation algorithm in this context, since whenever ǫ is chosen to be of the
form logn c, where c is a constant, a constant factor approximation ratio is achieved in subexponen-
tial time. Note finally that similar issues arise in the field of FPT algorithms, where approximation
notions have been introduced, for instance, in [10, 12, 17, 25].

For better readability, we partition the results of this section into two parts. In the first part,
we give approximation algorithms with complexity of the form O∗(nck), with 0 < c 6 1. In the
second part, we present approximation algorithms either with complexity of the form O∗(cn), with
1 < c 6 2, or parameterized complexity.

4.1 XP-approximation algorithms

A general idea to create an exponential time approximation algorithm is to construct a “good”
subgraph of ρk vertices in exponential time and select the remaining (1− ρ)k vertices in a greedy
way. In this vein, the following proposition gives a property of such a good subgraph.

Proposition 3. For an optimal solution A∗ for densest k-subgraph and ρ such that 0 < ρ 6 1,
there is a partition of the vertices of A∗ into two subsets A∗

1, |A∗
1| = ρk, and A∗

2, |A∗
2| = (1 − ρ)k,

such that |E(A∗
1)| > ρ

1−ρ · |E(A∗
2)|.

Proof. Consider an arbitrary partition of the vertices in A∗ into ⌈ 1
1−ρ⌉ subsets B1, B2, . . . , B⌈ 1

1−ρ
⌉

each one of at most ⌈(1 − ρ)k⌉ vertices. Assume, w.l.o.g., |E(B1)| > |E(B2)| > . . . > |E(B⌈ 1
1−ρ

⌉)|.

Then, by considering A∗
1 =

⋃⌈ 1
1−ρ

⌉−1

i=1 Bi and A∗
2 = B⌈ 1

1−ρ
⌉, we have:

|E(A∗
1)| =

⌈ 1
1−ρ

⌉−1
∑

i=1

|E(Bi)| > (⌈ 1

1− ρ
⌉ − 1) · |E(B⌈ 1

1−ρ
⌉)| >

ρ

1− ρ
· |E(A∗

2)|

that concludes the proof of the proposition.

Theorem 8. For any ρ, 0 < ρ 6 1, Algorithm 5 achieves a ρ-approximation ratio in O∗(nρk).

Proof. In an iteration, the algorithm will consider as A the set A∗
1 of Proposition 3. In this iteration

a solution of |E(A1)| + |E(A2)| + |E(A1, A2)| = |E(A∗
1)| + |E(A2)| + |E(A1, A2)| edges is created.

11

Algorithm 5 Create all subsets

1: for each of the
(n
ρk

)

subsets of vertices A1 ⊆ V , |A1| = ρk, do
2: find the set of vertices A2 ∈ V \ A1, |A2| = (1− ρ)k, which have the highest degree to A1;
3: create a solution A1 ∪ A2;
4: return the maximum solution found;

Since A2 contains the vertices of the highest degree to A∗
1, it holds that |E(A1, A2)| > |E(A∗

1, A
∗
2)|.

Therefore, using Proposition 3 we get:

sol

opt
>

|E(A∗
1)|+ |E(A2)|+ |E(A∗

1, A
∗
2)|

|E(A∗
1)|+ |E(A∗

2)|+ |E(A∗
1, A

∗
2)|

>
|E(A∗

1)|+ |E(A∗
1, A

∗
2)|

|E(A∗
1)|+ 1−ρ

ρ |E(A∗
1)|+ |E(A∗

1, A
∗
2)|

> ρ

The complexity of the algorithm is determined by the loop in Line 1 that iterates
(n
ρk

)

= O(nρk)
times.

Another way to construct a good subgraph of ρk vertices is to run an exact algorithm for
densest ρk-subgraph and to complete the solution with (1 − ρ)k arbitrary selected vertices.
The following lemma deals with the density of an induced subgraph and will be used to count the
number of edges induced by such an optimal densest ρk-subgraph.

Lemma 5. Consider a graph G = (V,E) of density ̟ = 2|E|/|V |(|V |−1). For any p, 2 6 p 6 |V |,
there exists a set of vertices Vp ⊆ V , |Vp| = p, such that the induced subgraph Gp(Vp, E(Vp)) has
density ̟.

Proof. Assume for contradiction, that there exist some p’s for which the statement of the lemma
is false. Let p be the maximum such value. Then, for any v ∈ Vp+1:

̟ · p(p− 1)

2
> |E(Vp+1 \ {v})| + 1

Summing up for all vertices in Vp+1, we get:

̟ · p(p− 1)(p + 1)

2
>

∑

v∈Vp+1

|E(Vp+1 \ {v})| + p+ 1

= (p + 1)|E(Vp+1)| −
∑

v∈Vp+1

|{(v, u) ∈ E, u ∈ Vp+1}|+ p+ 1

= (p + 1)|E(Vp+1)| − 2|E(Vp+1)|+ p+ 1

> (p − 1)
̟ · (p+ 1)

2
+ p+ 1

which is a contradiction.

In the following theorem, we consider that an algorithm of complexity φ(k, t) is known for
finding a densest k-subgraph, where t is some parameter of the instance, e.g., t = ∆, τ, ℓ, n.
This algorithm is used in order to obtain an optimal solution of size ρk for the problem, where
0 < ρ 6 1.

12

Theorem 9. Let A be an exact algorithm of complexity φ(k, t) for finding a densest k-sub-
graph, where t is a parameter of the instance. For any ρ such that 0 < ρ 6 1, it is possible to find
a ρ2-approximation for densest k-subgraph in G with running time O∗(φ(ρk, t)).

Proof. We use algorithm A to find a densest (⌈ρk⌉ + 1)-subgraph; let V ′ ⊆ V , |V ′| = ⌈ρk⌉+ 1,
be the solution obtained by A and ̟′ = 2|E(V ′)|/|V ′|(|V ′| − 1) be its density.

Consider an optimal solution A∗ ⊆ V , |A∗| = k, for the densest k-subgraph problem of
density ̟∗ = 2|E(A∗)|/k(k − 1). Let V ′′ ⊆ A∗ be a subset of A∗ such that |V ′′| = ⌈ρk⌉ + 1
and |E(A′′)| is maximized. Let ̟′′ = 2|E(V ′′)|/|V ′′|(|V ′′|− 1) be the density of G[V ′′]. Since G[V ′]
is the densest (⌈ρk⌉ + 1)-subgraph and by Proposition 5, it holds that ̟′ > ̟′′ > ̟∗, and
hence:

|E(V ′)| > ρk(ρk − 1)

k(k − 1)
|E(A∗)| > ρ2|E(A∗)|

By completing the solution with k − ⌈ρk⌉ − 1 arbitrary vertices, the theorem follows.

In Theorem 9, we count only the edges induced by the densest (⌈ρk⌉ + 1)-subgraph, as the
remaining vertices are selected arbitrarily. In Algorithm 6, we replace this greedy step and we
search for successive densest (⌈ρk⌉ + 1)-subgraphs.

Algorithm 6 Approximate subsets

1: A = ∅; i = 1; Gi = G;
2: while |A| < k do
3: compute a densest (⌈ρk⌉ + 1)-subgraph in Gi;
4: let Ai be the set of vertices of this subgraph;
5: create the graph Gi+1 by removing from Gi the edges of E(Ai);
6: A = A ∪ Ai;
7: if the vertices of Gi+1 consist an independent set then
8: complete arbitrarily A with vertices in V \ A such that |A| = k;
9: i = i+ 1;

10: return A;

Theorem 10. Let A be an exact algorithm of complexity φ(k, t) for finding a densest k-sub-
graph. For any ρ such that 0 < ρ 6 1, Algorithm 6 achieves a ρ(1 − ρ/2)-approximation for
densest k-subgraph in G with running time O∗(φ(ρk, t)).

Proof. Let λ be the number of iterations of Algorithm 6. As at the beginning of each iteration there
exists at least one edge in Gi, there exists also a vertex v ∈ Ai such that v 6∈ A. Moreover, in each
iteration at most ρk new vertices are added in the solution. Thus, it holds that 1/ρ 6 λ 6 k(1−ρ).
Therefore, the running time of the algorithm is bounded by O∗(φ(ρk, t)).

At the beginning of iteration i+1, i > 1, the current graph Gi+1 contains |E(A∗)| − |Ei| edges,
where |Ei| =

∑i
j=1 |E(Aj)|. Thus, there exists a subgraph of Gi+1 with size ρk that contains at

least ρ2(|E(A∗)| − |Ei|) edges. We prove by induction on i that |Ei| > ρ2
(

i− i(i−1)
2 ρ2

)

|E(A∗)|.

13

For i = 1, by Theorem 9 the inequality holds. Assume that it is true for i− 1. Then:

|Ei| > ρ2|E∗|+ (1− ρ2)|Ei−1|

> ρ2
(

1 + (1− ρ2)

(

i− 1− (i− 1)(i − 2)

2
ρ2
))

|E(A∗)|

> ρ2
(

i− (i− 1)(i− 2)

2
ρ2 − ρ2

(

i− 1− (i− 1)(i− 2)

2
ρ2
))

|E(A∗)|

> ρ2
(

i− (i− 1)i

2
ρ2 + ρ4

(i− 1)(i − 2)

2

)

|E(A∗)|

Let E(A) be the edges of the final solution obtained by the algorithm. As Algorithm 6 iterates at

least 1/ρ times, we have |E(A)| > ρ2

(

1
ρ
−
(

1
ρ
−1

)

2ρ

)

|E (A∗)| > ρ
(

1− ρ
2

)

|E (A∗)|.

In general, Algorithm 6 performs better than Algorithm 5 for small values of ρ, since in that
case ρ(1 − ρ/2) is close to ρ and A runs faster than exhaustive enumeration. On the other hand,
Algorithm 5 outperforms Algorithm 6 when ρ is close to 1.

4.2 Parameterized and moderately exponential approximation

As already mentioned, densest k-subgraph is not fixed parameter tractable with respect to k [11],
and hence, neither with respect to the size of the solution ℓ. However, in this section we show that
there is an approximation algorithm for densest k-subgraph achieving non-trivial approximation
ratios (though non-constants) unattainable in polynomial time, with complexity parameterized by k
(and hence by ℓ).

Theorem 11. Let R be any strictly increasing function. There is a R(n)-approximation algorithm
for densest k-subgraph with complexity parameterized by k.

Proof. If k 6 R(n), then we arbitrarily select k/2 edges. In this case, the solution consists of the
vertices incident to these edges, while we arbitrarily add some vertices if necessary in order to have
size exactly k. In general, it holds that ℓ 6 k(k − 1)/2 and hence ℓ 6 R(n)(k − 1)/2. Therefore,
the algorithm achieves a R(n)-approximation ratio in polynomial time.

If k > R(n), then let R−1 be the inverse function of R. We consider all possible subgraphs of
size k and return the densest one. In this case, the algorithm finds an exact solution with running
time O∗(2n) = O∗(2R

−1(k)).

In the two last algorithms of the paper, we use again the idea of decomposing the vertex set.

Algorithm 7 Decomposition by Vertex Cover

1: find a minimum vertex cover V ∗ (|V ∗| = τ);
2: consider a partition of V into V1 and V2 such that V1 ⊆ V ∗ and |V1| = |V2 ∩ V ∗| = τ/2;
3: solve densest k-subgraph on G[V1] (let A1 be the solution);
4: solve densest k-subgraph on G[V2] (let A2 be the solution);
5: solve densest k-subgraph on the bipartite graph B = (V1, V2;E

′) obtained by removing the
edges in E(V1) and E(V2) (let A3 be the solution);

6: return the best of A1, A2 and A3;

14

Theorem 12. Algorithm 7 achieves a 1/3-approximation ratio for densest k-subgraph in
time O∗(2τ/2).

Proof. By construction E = E(V1) ∪ E(V2) ∪ E′. Thus, the approximation ratio of Algorithm 7
is 1/3, since optimal densest k-subgraphs are built for G[V1], G[V2] and B, and one of them contains
at least opt /3 edges. In Line 1, a minimum vertex cover can be computed as in [13]. As |V1| = τ/2,
Line 3 runs in O∗(2τ/2). In Line 4, use Generic(V2 ∩ V C, V \ V C) which, by Proposition 2, runs
in O∗(2τ/2), since |V2 ∩ V C| = τ/2 and V \ V C is an independent set. Finally, as B is a bipartite
graph, Line 5 runs in O∗(2min{|V1|,|V2}) = O∗(2|V1|) = O∗(2τ/2).

Using similar arguments as in the proof of Theorem 12, the next theorem follows.

Algorithm 8 Decompose to equal parts

1: find an arbitrary partition of V into V1 and V2 such that |V1| = |V2| = n/2;
2: for i = 0 to k do
3: solve densest i-Subgraph on G[V1] (let X[i] be the solution);
4: solve densest i-Subgraph on G[V2] (let Y [i] be the solution);
5: find A1 by determining i that maximizes the edges induced by A1 = X[i] ∪ Y [k − i];
6: solve densest k-subgraph on the bipartite graph B = (V1, V2;E

′) obtained by removing the
edges in E(V1) and E(V2) (let A2 be the solution);

7: return the best of A1 and A2;

Theorem 13. Algorithm 8 achieves a 1/2-approximation ratio for densest k-subgraph in
time O∗(2n/2).

Proof. As in the proof of Theorem 12 the approximation ratio follows, by the fact that E =
E(V1) ∪ E(V2) ∪ E′, and A1 and A2 are optimal for the subgraphs G′ = (V,E \ E′) and B,
respectively.

In Lines 3 and 4 of the algorithm the densest i-Subgraph for graphs G[V1] and G[V2], respec-
tively, can be computed in O∗(2n/2), while Line 5 that finds the best solution for G′ is polynomial.
Finally, Line 6 runs in O∗(2n/2), as B is a bipartite graph. Hence the complexity of the algorithm
follows.

5 Conclusion

We have presented exact, parameterized and moderately exponential approximation algorithms for
the densest k-subgraph problem.

The general idea for creating exact algorithms by partitioning the vertex set as described in
Generic(V1, V2) can be applied to several problems. Note that the complexity of Generic(V1, V2)
is max{O(2|V1|), T (n)}, where T (n) is the complexity of obtaining the vertex set V1. In all cases
considered in Theorem 1 for densest k-subgraph the term T (n) is smaller than O(2|V1|). However,
this might not be true for other kind of partitions or problems.

Moreover, as densest k-subgraph is not parameterized with respect to k (and hence with ℓ),
an interesting question is if there exists a constant factor approximation algorithm of complexity
parameterized by k. In our opinion such an algorithm does not exist, since densest k-subgraph
is a generalization of the maximum clique problem, for which it seems to us very unlikely that it
admits a fixed-parameter constant factor approximation algorithm.

15

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.
SIAM Journal on Algebraic and Discrete Methods, 8:277–284, 1987.

[2] Y. Asahiro, R. Hassin, and K. Iwama. Complexity of finding dense subgraphs. Discrete Applied
Mathematics, 121:15–26, 2002.

[3] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting high
log-densities: An O(n1/4) approximation for densest k-subgraph. In STOC’10, pages 201–210,
2010.

[4] A. Billionnet and F. Roupin. A deterministic approximation algorithm for the densest k-
subgraph problem. International Journal of Operational Research, 3:301–314, 2008.

[5] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. SIAM
Journal of Computing, 39(2):546–563, 2009.

[6] H. L. Bodlaender. A linear-time algorithm for finding treedecompositions of small treewidth.
SIAM Journal on Computing, 25:1305–1317, 1996.

[7] N. Bourgeois, B. Escoffier, and V. Th. Paschos. Approximation of max independent set,
min vertex cover and related problems by moderately exponential algorithms. Discrete
Applied Mathematics, 159(17):1954–1970, 2011.

[8] N. Bourgeois, B. Escoffier, V. Th. Paschos, and J. M. M. van Rooij. Fast algorithms for max
independent set. Algorithmica, 62:382–415, 2012.

[9] N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis, V. Th. Paschos, and O. Pottié. The max

quasi-independent set problem. Journal of Combinatorial Optimization, 23:94–117, 2012.

[10] L. Brankovic and H. Fernau. Combining two worlds: parameterized approximation for vertex
cover. In ISAAC’10, volume 6506 of LNCS, pages 390–402. Spinger, 2010.

[11] L. Cai. Parameterized complexity of cardinality constrained optimization problems. The
Computer Journal, 51:102–121, 2007.

[12] L. Cai and X. Huang. Fixed-parameter approximation: conceptual framework and approx-
imability results. In IWPEC’06, volume 4169 of LNCS, pages 96–108. Springer, 2006.

[13] J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theoretical Computer
Science, 411:3736–3756, 2010.

[14] M. Cygan, L. Kowalik, and M. Wykurz. Exponential-time approximation of weighted set
cover. Information Processing Letters, 109(16):957–961, 2009.

[15] M. Cygan and M. Pilipczuk. Exact and approximate bandwidth. Theoretical Computer Sci-
ence, 411(40–42):3701–3713, 2010.

[16] R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in Computer Science.
Springer, New York, 1999.

[17] R. G. Downey, M. R. Fellows, and C. McCartin. Parameterized approximation problems. In
IWPEC’06, volume 4169 of LNCS, pages 121–129. Springer, 2006.

16

[18] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica, 29:410–421,
2001.

[19] F. V. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer approach for the analysis
of exact algorithms. Journal of the ACM, 56, 2009.

[20] F. V. Fomin and K. Høie. Pathwidth of cubic graphs and exact algorithms. Information
Processing Letters, 97:191–196, 2006.

[21] M. Fürer, S. Gaspers, and S. P. Kasiviswanathan. An exponential time 2-approximation
algorithm for bandwidth. In IWPEC’09, volume 5917 of LNCS, pages 173–184. Springer,
2009.

[22] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of
NP-completeness. Freeman, San Francisco, 1979.

[23] S. Khot. Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique. In
FOCS’04, pages 136–145, 2004.

[24] T. Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer, 1994.

[25] D. Marx. Parameterized complexity and approximation algorithms. The Computer Journal,
51(1):60–78, 2008.

[26] H. Moser. Exact algorithms for generalizations of vertex cover. PhD thesis, Friedrich-Schiller-
Universität Jena, 2005.

[27] D. J. Rader Jr. and G. J. Woeginger. The quadratic 0-1 knapsack problem with series-parallel
support. Operations Research Letters, 30:159–166, 2002.

[28] B. Reed. Paths, stars and the number three. Combinatorics, Probability and Computing,
5:277–295, 1996.

[29] J. M. M. van Rooij, J. Nederlof, and Th. C. van Dijk. Inclusion/exclusion meets measure and
conquer. In ESA’09, volume 5757 of LNCS, pages 554–565. Springer, 2009.

17

	Première page cahier.pdf
	Page 1

