
la
m
sa

d
e

LAMSADE

Laboratoire d’Analyse et Modélisation de Systèmes pour
l’Aide à la Décision

UMR 7243

Décembre 2012

Moderate exponential time approximation and
branching algorithms

B. Escoffier, V.Th. Paschos, E. Tourniaire

CAHIER DU
 331

Moderate exponential time approximation and

branching algorithms∗

Bruno Escoffier Vangelis Th. Paschos(a) Émeric Tourniaire
PSL Research University, Université Paris-Dauphine

LAMSADE, CNRS UMR 7243, France
{escoffier,paschos,emeric.tourniaire}@lamsade.dauphine.fr

December 13, 2012

Abstract

We study links between approximation, exponential time computation and fixed parameter
tractability. In particular, rather than focusing on one particular optimization problem, we
tackle the question of finding sufficient conditions for a problem to admit “good” approxima-
tion algorithms in exponential time. In particular, we focus on the existence of “approximation
schemata” (ratios 1 ± ǫ for arbitrarily small ǫ) and we exhibit conditions under which a tech-
nique of devising approximate branching algorithms reaches interesting results.

1 Introduction

Polytime approximation, exponential time computation and fixed parameter tractability (FPT) are
three main fields aiming at coping with NP-hard problems. Considering an optimisation problem,
a ρ-approximation algorithm is an algorithm that, on any instance, outputs a solution whose value
is at least (for a maximisation problem, at most for a minimization problem) ρ times the optimal
value. Polytime approximation is the field of studying whether one can derive approximation
algorithms working in polynomial time for an NP-hard problem (see for instance [1]). The goal of
exponential time computation (see [19]) is to devise exact algorithms whose worst case complexity,
though not polynomially bounded, is as low as possible. For many NP-hard problems, the best
known algorithm works in exponential time O∗(γn) (meaning O(γnp(n)) for some polynomial p).
A natural objective is then to minimize the value of γ. FPT is in some sense a complementary
field where an instance is given together with a parameter k ∈ N; the goal is to know whether
the problem is solvable by an algorithm working in time O(f(k)p(n)) for some function f and
some polynomial p [12]. Such an algorithm is called an FPT algorithm, and if such an algorithm
exists the problem is in the FPT class (for this particular parameterization). A usual parameter
(called standard parameterization) is the value of the sought solution. Formally, for the standard
parameterization1, a problem is in FPT if there exists an algorithm such that given an instance I
of size n and an integer k, (i) it outputs YES if there is a solution of value at least k (for a
maximization problem, at most k for a minimization problem) and NO otherwise; (ii) it works in
time O(f(k)p(n)) for some function f and polynomial p.
Interestingly, negative results have been obtained in these three fields. For polytime approxima-

tion, tight lower bounds are known for many optimization problem, under the hypothesis P Ó= NP.
For instance, Max 3SAT2 is well known to be approximable in polytime within ratio 7/8, and not

∗Research supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010
(a)Institut Universitaire de France

1We will use the standard parameterization in all this article, so we will omit to precise it.
2Given a set of binary variables and a set of clauses, Max SAT is to find a truth assignment of variables that

maximizes the number of satisfied clauses. Max kSAT is a restricted version where each clause contains exactly k

literals.

1

approximable in polytime within ratio 7/8 + ǫ unless P = NP for any ǫ > 0 [24]. Dealing with ex-
ponential time computation, [25] have introduced the Exponential Time Hypothesis (ETH) which
supposes that there is no algorithm for Max 3SAT that works in time 2o(n) where n is the number
of variables. Under ETH, many classical optimization problems do not have subexponential time
algorithms3. Finally, the parameterized complexity theory considers the hypothesis W[1] Ó= FPT
(see [12] for the definition of the class W[1]) under which it is shown that many optimization
problems do not admit FPT algorithms (under the standard parameterization for instance).
In recent years, a growing interest appeared in trying to combine these approaches. The

first way that has been considered is to devise (sub)exponential approximation algorithms. In
this topic, we take a problem that is inapproximable with some ratio ρ (in polytime), and for
which the best known complexity is O∗(γn). A natural question is whether there exists a ρ-
approximation algorithm that works in time much smaller than O∗(γn). This issue has been
considered for several optimization problems such as Max SAT [8, 15], Max Independent Set and
Min Vertex Cover [4], Min Bandwidth [7, 21], . . . In these articles, approximation algorithms
working in exponential time are provided. Interestingly, the existence of subexponential time
approximation algorithms (achieving constant ratios forbidden in polytime) seems to be unlikely
for several classical optimization problems (see [29, 14]).
Another research direction introduced in [6, 13] aims at combining approximation algorithms

and fixed parameter tractability. In the parameterized framework, given an instance I of an
optimization problem and an integer k, a ρ-approximation algorithm either outputs a solution of
value at least ρk (for a maximization problem, at most ρk for a minimization problem), or answers
NO, asserting in this latter case that there is no solution of value at least (resp., at most) k.
Then, if a problem is both W[1]-hard and hard to approximate within ratio ρ in polytime, the
existence of an FPT ρ-approximation algorithm is worth being considered. Both positive and
negative results have been obtained (see the survey [28]). If a problem is solvable in time O∗(f(k))
but hard to approximate within ratio ρ in polytime, it is also interesting to seek a parameterized ρ-
approximation algorithm working in time O∗(f ′(k)) for some function f ′ significantly lower than f .
In this direction, positive answers have been provided for instance for Min Vertex Cover [3, 17].
In this work, we further study the link between approximation algorithms, exponential time

computation and fixed parameter tractability. In particular, rather than focusing on one particular
optimization problem, we tackle the question of finding sufficient conditions for a problem to admit
“good” approximation algorithms in exponential time. Especially, we focus on the existence of
“approximation schemata” (ratios 1 ± ǫ for arbitrarily small ǫ). The article is organized as follows.
We define approximation classes and give some basic properties in Section 2. In Section 3, we
give sufficient conditions to derive approximation schemata in exponential time using branching
algorithms, which is the main result of this article. We conclude the article in Section 4 where we
mention in particular FPT approximation algorithms.

2 Approximation classes and first results

2.1 Approximation classes

We focus on the well known classNPO of optimization problems whose decision versions are inNP.
An NPO problem P is defined on a set I of instances. To each instance I ∈ I corresponds a
set S (I) of feasible solutions. A function f associates for each instance I and each feasible solution
S ∈ S (I) a value f(I, S) ∈ N, to be either maximized or minimized. Furthermore, (i) instances
of P are recognized in polynomial time; (ii) the size of feasible solutions are polynomially bounded
in the size of the instance and, moreover, it can be checked in polynomial time whether a given S
is in S (I) or not; (iii) f is polynomially computable.
An optimal solution of an instance I will be denoted OPT(I), or simply OPT if there is no

ambiguity. We use the notation f(I) for f(I,OPT(I)).
Following the discussion in introduction, considering an optimization problem that is solvable in

time O∗(γn), we may wonder whether the problem is ρ-approximable in time O∗(γn
ρ) with γρ < γ

3Note that speaking of (sub)exponential time algorithm requires to have defined a parameter representing the
size of the instance, such as the number of vertices in a graph, with respect to which the complexity is measured.

2

for some ratio ρ, or even for any ratio ρ Ó= 1, or not. This motivates the definition of the following
two classes. Note that we give the definition for maximization problems, but everything said in
this section can be easily translated to minimization problems.

Class 1 (EAS): For δ > 1, a maximization NPO problem is in EAS[δ] if, for any ρ < 1, there
exists a ρ-approximation algorithm with computation time O∗(δn

ρ), with δρ < δ.

This defines a notion of approximation schema, the existence of which of course depends on the
parameter δ which is the “target” basis of the exponential function expressing the running time.
Dealing with approximation for a specific ratio, we define the class EAX[γ, ρ].

Class 2 (EAX): For γ > 1, ρ Ó= 1, an NPO problem is in EAX[γ, ρ] if there exists a ρ-
approximation algorithm with computation time O∗(γn).

Let us begin with some properties of these classes. First, note that of course any problem that
can be solved exactly in time O∗(δn) is in EAS[δ′] for any δ′ > δ. On the other hand, one may
expect at first sight that if a problem is in EAS[δ], then the problem is solvable in O∗(δn). For
several exponential approximation schemata obtained so far in the literature problems shown to
be in EAS[δ] are indeed solvable in O∗(δn), but the following result is worth being mentioned:
Max Unused Colors4 can be approximated with ratio (1 − ǫ) in time O∗(2n) and polynomial space
for any ǫ > 0, whereas the best known exact algorithm in polynomial space is in O∗(2.25n) [5].
However, we say that a problem has a full γ-exponential approximation schema, if it is possible

to perform a (1 − ǫ) approximation in time O(p(1/ǫ) × γn
ǫ) for some polynomial p and γǫ < γ.

Then, we have the following easy result.

Proposition 3. If an NPO maximization problem has a full γ-exponential approximation schema
and is polynomially bounded5, then it can be solved in time O∗(γn).

Proof. If the value is bounded by Pm(n), with Pm a polynomial, then using the schema, we can
get a (1 + 1/Pm(n))-approximation in time O(P (Pm(n))γn), which is a computation time O∗(γn).
With this ratio, the difference between the optimal solution and the obtained solution would be
less than one, which means that we have an exact solution.

Now, let us make some observations on the classes EAS and EAX.

Proposition 4. The following holds: (i) ∀δ < δ′EAS[δ] ⊆ EAS[δ′]; (ii) ∀γ < γ′, ∀ρ, EAX[γ, ρ] ⊆
EAX[γ′, ρ]; (iii) ∀γ, ∀ρ′ < ρ, EAX[γ, ρ] ⊆ EAX[γ, ρ′]. Furthermore, assuming the SETH6, the
above inclusions are strict.

Proof. Inclusions are trivial. We prove the strict inclusions under SETH. We first deal with the first
inclusion Let δ and δ′ be two real numbers such that 1 < δ < δ′, and δ′′ be such that δ < δ′′ < δ′.
We create a problem where the value of solutions is either 0 or 1, and such that it is solvable
in O∗(δ′′n) (and hence is in EAS[δ′]) but not in O∗(δn) under SETH (and hence not in EAS[δ]
since obviously any approximate solution allows to solve optimally the problem).

Let Pδ,δ′′ be the following problem. An instance of it, is a set of n variables (x1, · · · , xn), n
nonnegative integers (a1, · · · , an) such that the average value ai =

∑n
i=1

ai/n lies in the interval
(ln(δ)/ ln(2), ln(δ′′)/ ln(2)], and a polynomially computable function f : Nn → {0, 1}. Every
variable xi can take values from 0 to 2ai − 1 (this defines the set of feasible solutions), and the
value of a solution is f(x1, · · · , xn), to be maximized. This problem is obviously in NPO.

Note that
∏n

i=1
2ai = 2

∑
n

i=1
ai ≤ δ′′n; so, an exhaustive search allows us to solve the problem

in time O∗(δ′′n).
Now, take an instance of SAT with N variables. Let n = ⌈ln(2)N/ ln(δ′′)⌉. Note that

ln(2)N/ ln(δ′′) ≤ n < ln(2)N/ ln(δ′′)+1, meaning that ln(2)/ ln(δ′′) ≤ n/N < ln(2)/ ln(δ′′)+1/N ≤
4Given a graph G on n vertices, the goal is to find a proper coloring of G maximizing n−k where k is the number

of colors of the coloring.
5This means that the value of a solution is polynomialy bounded in the size of the instance.
6The strong exponential time hypothesis (SETH [25]) claims that there is no constant γ < 2 such that SAT is

solvable in time O∗(γn).

3

ln(2)/ ln(δ) for N large enough. Then choose n nonnegative integers ai such that
∑n

i=1
ai = N .

Intuitively, if for instance ai = 2 this means that our variable xi will have value in {0, 1, 2, 3} which
allows to simulate 2 variables of the SAT instance. This way, since

∑n
i=1

ai = N , each variable
of the SAT instance is simulated in our set of n variables with value in {0, · · · , 2ai − 1}. The
function f is now trivial: its value is 1 if (x1, · · · , xn) corresponds to a truth value that satisfies the

SAT instance, and 0 otherwise. Now, note that δn < 2
∑

n

i=1
ai = 2N , so an algorithm solving Pδ,δ′

in O∗(δn) would contradict SETH.
The same argument shows the second inclusion claimed. Just take a problem that is not solvable

in O∗(γn) under SETH like in the above construction, but define the values to be either 1 or ρ
(instead of either 1 or 0).

2.2 FPT and exponential time approximation schemata

As explained in introduction, our main concern in this article is to provide sufficient conditions for
a problem solvable in time O∗(γn) to be in EAS[γ].
In this line of work, a first general result has been obtained in [4] for hereditary graph problems7:

using a method consisting of partitioning the instance, the authors show that if an hereditary graph
problem is solvable in O∗(γn) then it is ρ-approximable in time O∗(γρn) for any ratio ρ, and hence
it is in EAS[γ].
As a first simple result here, we show that exponential time approximation schemata can be

easily derived from FPT problems having some basic properties.

Proposition 5. Let P be a maximization (resp., minimization) problem in FPT solvable in O∗(δk)
such that: (i) the value of any feasible solution is at most n (n is the size of the instance); (ii) if
there exists a solution of value k, then there exists a solution of size l, for any l 6 k (resp., for
any k 6 l 6 n). Then P is also in EAS[δ], and it is possible to reach any approximation ratio ρ
in computation time O∗(δρn) (resp., O∗(δn/ρ)).

Proof. Let us first consider that P is a maximization problem. Given a ρ ∈ (0, 1), we apply the
parameterized algorithm with every value for k between 0 and ρn. If the best solution has value at
most ρn, we find it. Otherwise, the optimum value is between ρn and n, hence there is a solution
of value ρn. We will find such a solution, that trivially achieves an approximation ratio ρ. The
complexity is clearly in O∗(δρn).
If P is a minimization problem, for ρ ≥ 1, we apply the parameterized algorithm with every

value for k between 0 and n/ρ. If no solution is found, we output any feasible solution (by
hypothesis we know how to compute a feasible solution in polynomial time). If the optimal value
is at most n/ρ we find it. Otherwise, any feasible solution achieves an approximation ratio ρ. The
complexity is O∗(δn/ρ).

The conditions in Proposition 5 are not very restrictive so that this proposition applies to a
large range of problems, including for instance Min Vertex Cover, Max SAT, . . .

3 Approximation schemata by branching algorithms

Hereditary problems and FPT problems having additional properties admit approximation sche-
mata in exponential time. However, many other problems are known to be (exactly) solvable in
exponential time, and a classical way to achieve these exponential time algorithms is to use a search
tree (see [19] for instance). Then, a natural idea is to extend this technique to derive exponential
time approximation algorithms. This has been done for Max SAT in [8, 15]. In this section, we
formalize and generalize this technique, and show a sufficient condition on the problem dealt that
makes the technique efficient.

7A graph property π is hereditary if the following holds: if π holds for a graph G, then π holds for any induced
subgraph of G. Given an hereditary property π, a usual goal is to find the largest induced subgraph of a given graph
that satisfies the property π.

4

Example 6: We give a basic overview of the schema on Max Independent Set. On this problem,
using classical reduction rules (including vertex folding, see for instance [18]), vertices of degree
at most two can be removed from the instance in polynomial time. When there is no such
vertex, the naive exact algorithm is to pick a vertex, and to branch with two instances: either
we add the vertex in the final solution and remove its neighbors from the “child” instance, either
we remove this vertex from the instance. In the first case, the size of the instance decreases by
at least 4 (one vertex in the solution, at least three vertices removed) ; in the second, the size
decreases by 1, and this gives a complexity O∗(1.38n) (solution of C(n) 6 C(n−4)+C(n−1)). In
this situation we can achieve a 1/2-ratio by removing an additional vertex in the first branching
case. The complexity of this new algorithm will satisfy C(n) 6 C(n − 5) + C(n − 1) giving a
complexity O∗(1.32n). Although in this case, this is not an improvement over some existing
approximation algorithms, this is a good illustration of the schema.

We will now introduce some notation to formalize what is a (exact) branching algorithm. We
then present what is a diminution rule, and the results on approximate branching algorithms in
Section 3.1, and finally illustrate this technique on a very detailed example and some others in
Section 3.2.
Given an optimization problem, we have a size function I Ô→ |I|. Note that this can be any

measure of the size of the instance (number of vertices in a graph, or number of edges, . . .). We
require that when |I| = 0 the instance is solvable in polynomial time. For the sake of clarity we
will suppose that |I| ∈ N but similar results can be obtained with |I| ∈ R+ (in particular |I| can
be the weight associated to |I| in the measure and conquer paradigm).
A branching algorithm solves a given optimization problem by building a search tree. To each

node of the tree is associated an instance; a branching rule (such as “take a particular vertex in the
solution or do not take it”) gives birth to several subinstances that are the children of the node in
the search tree8. The leaves of the tree correspond to trivial instances. This might be formalized
as follows.

I

I1 I2 Ir
· · ·

PB1(S1) PB2(S2)

S2

. . . PBr(Sr)

. . . SrS1

Payback
functions

Instance Solutions

Figure 1: Branching rule

Definition 7 (Branching rule; Figure 1): A branching rule of fan-out r is a mapping from an
instance I to a set of r subinstances (I1, I2, · · · , Ir) and a set of algorithms (PB1,PB2, · · · ,PBr),
that we call payback functions, with the following properties:
a) If Si is a solution for the subinstance Ii, then PBi(I, Ii, Si) is a solution for I (for simplicity,
we will denote PBi(I, Ii, Si) by PBi(Si)).
b) The branching and every payback function are computable in polynomial time with respect
to the size of the instance.
c) (size reduction) We have a family of positive numbers (ai)i=1··· ,r giving a guarantee on the
instance size decreasing. This gives Rule (B1): ∀i, |Ii| 6 |I| − ai.
d) (exhaustiveness) For (at least) one of the subinstances Ii, the payback function increases the
value of a feasible solution by at least the difference in the optimal between I and Ii. This,
gives Rule (B2): ∃i, ∀S ∈ S (Ii), f(PBi(S)) − f(S) > f(I) − f(Ii).

8Note that branching algorithms usually use reduction rules that are polynomial time rules applied on each node
to simplify the instance. Reduction rules can be formally incorporated in the branching rule, so we do not need to
state them explicitly.

5

Of course, the greater the ai (in Rule (B1)), the faster the algorithm. Exhaustiveness ensures
that an optimal solution for an instance can be found with the branching rule: indeed, exhaustive-
ness is satisfied in branching algorithms in the branch corresponding to the choice of an optimum
solution.
Given an optimization problem P with such a branching rule, we define the following branching

algorithm.

Algorithm 8: Input: an instance I0. Output: an optimal solution for I0.
We build a tree using the following rules:
a) each node is labeled with an instance, the root’s label being I0.
b) each node with a non-empty instance I has r children, given by the branching rule.
c) each node with an empty instance is a leaf.
Then, for each leaf in the tree, we compute an optimal solution. We use the payback functions
to get a solution for the root of the tree in a bottom up fashion: the solution for a node with
instance I is the best solution among the r solutions computed by the payback functions.

The following result is very common in the domain’s literature.

Theorem 9. Algorithm 8 gives an optimal solution in time O∗(γ|I0|), with γ the only positive
solution of the equation 1 =

∑r
i=1

γ−ai .

Proof. Let us call I0 the instance in the root of the tree. We know that at least one child of I0

satisfies Rule (B2). We call this child I1. Then I1 has a child I2 that satisfies the same rule. And
so on till we reach a leaf, Ik. The instance on the leaf is solvable exactly in polynomial time, giving
a solution Sk such that f(Sk) = f(Ik). Then, we use the payback functions to compute solutions
for every instance from Ik to I0, and we call these solutions Sk, Sk−1, · · · , S0. With these solution,
we have, using (B2), f(Si) − f(Si+1) > f(Ii) − f(Ii+1), for i = 0, · · · , k − 1. Summing these
inequalities, we get f(S0)−f(Sk) > f(I0)−f(Ik). So, f(S0) = f(I0), which proves the correctness
of the algorithm.
The complexity is given by the number of nodes in the tree. For an instance of size n, this

number satisfies the equation C(n) 6 C(n − a1) + C(n − a2) + · · · + C(n − ar), which gives the
complexity claimed.

3.1 Approximate branching algorithms

Suppose that we have for a given maximization problem a branching algorithm as given above.
We are interested in modifying this algorithm to get an approximation algorithm with a better
running time. We show that two properties are sufficient to reach this for any ratio ρ Ó= 1, i.e.,
to get an exponential time approximation schema. The first condition, called strict monotonicity,
deals with the branching rule. Note that it is generally satisfied by most of the branching rules
used in the literature for classical optimization problems. The other condition, called diminution
rule, is independent of the branching rule (it it directly linked to the problem, not to a particular
branching algorithm).

Definition 10 (Strict monotonicity): A branching rule is said to be strictly monotonic if for at
least one subinstance Ii the payback function increases (strictly) the value of feasible solutions
(while the other ones do not decrease the value of feasible solutions). Formally, there exists a
family of nonnegative integers (si)i=1··· ,r with at least one of them greater than 0 such that the
following rule is satisfied: Rule (B3): ∀i, ∀S ∈ S (Ii), f(PBi(S)) > f(S) + si.

Of course, the greater the integers si, the faster our approximation algorithm. In Example 6,
the branching rule is strictly monotonic: the payback function will increase by one the value of
solutions in the branch where we have taken v (and by 0 in the other branch).

Definition 11 (Diminution rule; Figure 2): A diminution rule is a mapping from an instance
I to another instance I ′ together with an polynomial time algorithm (which we call payback
function) PB′, with the following properties:
1) The new instance’s size has decreased by at least one: Rule (D1): |I ′| 6 |I| − 1.

6

Instance

I

I ′

Solution

PB′(S)

S

Diminu-
tion rule

Payback
function

Figure 2: Diminution rule

2) The value of optimal solutions has not decreased by more than one. This gives Rule (D2):
f(I ′) > f(I) − 1.
3) The payback function PB′ preserves the value of the solutions. This gives Rule (D3):
∀S′ ∈ S (I ′), f(PB′(S′)) > f(S′).

Example 12: For Max Independent Set (see also Example 6), the diminution rule we use is to
remove a vertex from the graph: from a graph G we obtain a graph G′ with one vertex less
(Rule (D1)). Of course the optimum value in G is at most the optimum value in G′ plus one
(Rule (D2)). The payback function is the identity function (an independent set in G′ is an
independent set in G) and satisfies Rule (D3).

Given a problem that has both a diminution rule and a strictly monotonic branching rule, we
can define the following ρ-approximation algorithm.

Algorithm 13: Input: an instance I0 and a ratio ρ. Output: a ρ-approximate solution for I0.
We define α0 such that α0 = ρ

1−ρ . We build a tree using the following rules:

a) each node is labeled with an instance I and a number α. We write a node [I, α]. The root’s
label is [I0, 0].
b) for each node [I, α], with I non-empty and α < α0, we create up to r children ([I1, α +
s1], · · · , [Ir, α + sr]), corresponding to the branching rule.
c) for each node [I, α], with I non-empty and α > α0, we create one child. Its instance is
obtained by applying the diminution rule, and its integer is α − α0.
d) the leaves are the empty instances (with any number).
Then, for each leaf in the tree, we compute an optimal solution. We use the payback functions
to get a solution for the root of the tree in a bottom up fashion: in case b), the solution for
a node with instance I is the best solution among the r solutions computed by the payback
functions. In case c), the solution for a node with instance I is given by the payback function
of the diminution rule (see Figure 3 for an illustration of the algorithm).

Theorem 14. Algorithm 13 outputs a ρ-approximate solution in time O∗(γ
|I|
ρ), where γρ is the

only positive root of the equation 1 =
∑r

i=1
γ−ai−α0si

ρ . In particular, the problem is in EAS[γ]
where γ is the only positive root of the equation 1 =

∑r
i=1

γ−ai .

Proof. We first analyze the approximation ratio of the algorithm. Let us show that each non-leaf
node [I, α] in the tree has at least one child [I ′, α′] with a payback function PB, and satisfying the
following:

∀S′ ∈ S (I ′), f(PB(S′)) − f(S′) +
1

1 + α0

(α − α′) >
α0

1 + α0

(f(I) − f(I ′)) (1)

We examine the following two cases concerning α and α0.
i) α > α0. Then I ′ is derived from I using the diminution rule. For any solution S′ ∈ S (I ′), we

call S = PB(S′). Then using Rule (D3), we have f(S) − f(S′) > 0. Also, as we used a diminution,
we know that α′ = α − α0, and so,

1

1+α0

(α − α′) = 1

1+α0

× α0 = α0

1+α0

.

7

I0

0

I1

α1

I2

α2

Ik

αk

I ′
k

αk − α0

diminution rule

Ir

αr

. . .

Here, αk > α0

Figure 3: Illustration of Algorithm 13

Using Rule (D2), since f(I) − f(I ′) 6 1, α0

1+α0

(f(I) − f(I ′)) 6 1

1+α0

(α − α′) 6 f(S) − f(S′) +
1

1+α0

(α − α′).
ii) α < α0. Then, I has up to r children, and using Rule (B2), we know that for one child [I ′, α′],

and for any solution S′ ∈ S (I ′) f(S) − f(S′) > f(I) − f(I ′) where S = PB(S′). In particular:

α0

1 + α0

(f(S) − f(S′)) >
α0

1 + α0

(f(I) − f(I ′)) (2)

Also, we use the definition of α and α′, and Rule (B3), and we have f(S) − f(S′) > α′ − α. So:

1

1 + α0

(f(S) − f(S′)) +
1

1 + α0

(α − α′) > 0 (3)

Summing (2) and (3), we get 1+α0

1+α0

(f(S) − f(S′)) + 1

1+α0

(α − α′) >
α0

1+α0

(f(I) − f(I ′)), which
derives (1).
From the above cases, one can see that it is possible to find a branch in the tree, going from the

root [I0, 0] to a leaf [If , αf], satisfying the Proposition (1) at each step. We find in polynomial time
a solution Sf for the instance If , and then apply the paybacks functions to find a solution S0 on I0.
If we sum the equations derived from (1), we get f(S0)−f(Sf)+ 1

1+α0

(−αf) > α0

1+α0

(f(I0)−f(If)).
As αf > 0, and f(Sf) = f(If) > 0, we have: f(S) − f(Sf) >

α0

1+α0

f(I) − α0

1+α0

f(If) i.e.,

f(S) > α0

1+α0

f(I) f(Sf) − α0

1 + α0

f(If)

︸ ︷︷ ︸

>0

>
α0

1+α0

f(I) = ρf(I), that concludes the proof of the ratio.

We now study the running-time of the algorithm. Set, for each node [I, α], T ([I, α]) = |I|−α/α0.
When doing a branching rule, a node is replaced by at most r nodes of sizes |I| − a1, |I| −

a2, · · · , |I| − ar, and with α values α + s1, α + s2, · · · , α + sr. Note that, for each child, there are
at most |I| (i.e., a polynomial number) diminutions (the size decrease by one after a diminution).
In any diminution that transforms [I, α] into [I ′, α′], the quantity T becomes T ′, and T ′ 6 T ,

so these will not affect the overall computation time of our algorithm. Indeed, we know that
|I ′| 6 |I| − 1 because of Rule (D1). Also we have α′ = α − α0, due to the definition of the

algorithm. Then, T ′ = |I ′| − α′

α0

6 |I| − 1 − α−α0

α0

= |I| − α
α0

= T .
With the branching rule, if the k-th child of [I, α] is [Ik, αk], and the quantity T becomes Tk,

then we have Tk 6 T − ak − sk/α0. Indeed, we know using Rule (B1) that |Ik| 6 |I| − ak. Also,
by definition, we have αk = α + sk. Then, Tk = |Ik| − αk

α0

6 |I| − ak − α+sk

α0

= T − ak − sk

α0

.

8

So, the complexity according to the quantity T satisfies C(T) 6
∑r

k=1
C(T − ak − sk

α0

). For
the first node, the quantity T equals the size of the initial instance. Finally, we get a complexity

O∗(γ
|I|
ρ), with γρ root of 1 =

∑r
k=1

γ
−ak−sk(1−ρ)/ρ
ρ , as claimed.

Note that γ corresponds to the complexity of the exact branching algorithm (its complexity
is O∗(γn)). The fact that γρ < γ follows from the fact that at least one si is strictly positive by
hypothesis.
We can adapt this technique to make it work for minimization problems. The necessary condi-

tion to use this algorithm is as following: we need a branching rule with nearly the same properties
as before: Rule (B2) becomes the following Rule (B2’): ∃i, ∀Si ∈ S (Ii), f(PBi(Si)) − f(Si) 6

f(I) − f(Ii) (note that Rule (B3) remains the same).

Example 15: For Min Vertex Cover, the branching rule “corresponding” to the one in Example 6
is either to add a vertex v to the vertex cover (and to remove it from the graph), or to take all
its neighbors in the vertex cover (and to remove them and v from the graph). This branching
rule clearly satisfies Rules (B2’) and (B3).

For the diminution rule, we need the same properties with the following modifications:
– Rule (D2) becomes: Rule (D2’): f(I ′) 6 f(I);
– Rule (D3) becomes: Rule (D3’): ∀S′ ∈ S (I ′), f(PB′(S′)) 6 1 + f(S), i.e., the PB′ function
will not increase the size of a solution by more than one.
Take for Min Vertex Cover the rule consisting in removing a vertex v in the graph G (thus

getting a graph G′) and putting it into the vertex cover under construction. Given a vertex cover
on G′, the payback function simply adds v to G′, thus producing a vertex cover of G. Then
Rules (D1), (D2’) and (D3’) are obviously satisfied.

Theorem 16. For a minimization problem, with the new set of properties, Algorithm 13 has an
approximation ratio of (α0 + 1)/α0 and the same complexity as before.

Proof. To prove the correctness, we have nearly the same property as in the demonstration above:
each non-leaf node [I, α] in the tree has at least one child [I ′, α′] with a payback function PB, and
satisfying:

∀S′ ∈ S (I ′), f(PB(S′)) − f(S′) +
α′ − α

α0

6
α0 + 1

α0

(f(I) − f(I ′)) (1’)

Indeed, we have two cases with respect to α.
i) α > α0. In this case, I ′ is derived from I using the diminution rule. For any solution

S′ ∈ S (I ′), we call S = PB′(S′). Then with Rule (D3’), we have f(S) − f(S′) 6 1. Also, as we

used a diminution, we know that α′ = α − α0, and so f(S) − f(S′) + α′−α
α0

6 1 − 1 6 0. Using
Rule (D2’), we know that f(I) − f(I ′) > 0, which gives (1’).
ii) α < α0. Then, I has up to r children, and using Rule (B2’), we know that for one child [I ′, α′],

and for any solution S′ ∈ S (I ′), f(S) − f(S′) 6 f(I) − f(I ′) where S = PB(S′). Also, f(S) −
f(S′) > α′ − α (cf. Rule (B3)). So, it holds that f(S) − f(S′) + α′−α

α0

6
1+α0

α0

(f(S) − f(S′)) 6

1+α0

α0

(f(I) − f(I ′)).
The end of the proof is therefore the same as previously.

Let us conclude this section by the following remark. For clarity, we have fixed constants to 1
in Rules (D1) and (D2). It is worth noticing that similar results would immediately follow from
using other constants. In particular (this will be useful for the examples below), suppose that we
simply replace Rule (D2) by a new one: (D2”): There exists a k such that f(I ′) > f(I)−k. In this
case, all we have to do is dividing the evaluation function by k, which preserves the approximation
ratio. Therefore, the parameters si will become si/k (see Rule (B3)), and the complexity will be

O∗
(

γ|I|), with γ root of 1 =
∑r

i=1
γ−ai − (si/k)(1 − ρ)/ρ.

3.2 Getting results with approximate branching

The techniques devised in Section 3.1 may be applied to a large variety of optimization problems.
We first present in this section a detailed example on the Feedback Vertex Set problem. Then

9

[30]

[2]
γ

ρ1 1.5 2
1

1.99

(a) On undirected graphs

[20]

[2]
γ

ρ1 1.5 2
1

1.73

(b) On directed graphs

Figure 4: Approximating Feedback Vertex Set. The grey area represents the improvement over
the existing.

we show that it is in some sense more general than the technique of partitioning the instance [4]
since it also works for hereditary problems. Finally, we present three other examples, handling
the Feedback Vertex Set problem, the Max Cut problem and a non-hereditary problem, the Max
k-Coverage problem. Note that we mention here simple applications of this technique: as already
mentioned, a more involved implementation of this technique has been used in [15] to derive the
best known bounds (until now) for approximating Max Sat for some ratios.

3.2.1 Feedback Vertex Set

Given a graph of order n, Feedback Vertex Set consists of finding a minimum-size set of vertices
whose deletion makes the graph acyclic. This problem is NP-hard in both directed or undirected
graphs ([27]) and cn be optimally solved in time O∗(1.9977n) in the former class of graphs [30],
and in time O∗(1.7347n) in the latter one [20]. Both cases are approximable in polynomial thime
within ratio 2 [2]. We show how our method can be used in order to obtain ratios between 1 and
2 with improved computation times.
To obtain a branching rule on this problem, we formalize an instance of Feedback Vertex Set as

a graph G(V, E) with a set D of vertices excluded from the solution (we set D = ∅ at the beginning
of the algorithm). The size of an instance is |V | − |D|. If we have an instance I = (G, D), we can
pick a vertex v from V − D and define I1 = (G[V − {v}], D) and I2 = (G, D ∪ {v}). Our payback
functions are PB1(S) = S ∪ {v} and PB2(S) = S. Note that if D ∪ {v} contains a cycle, then we
can skip the I2 branch as this instance will not have a solution. This branching has the desired
properties: the size of the instance decreases by one on each branch, the payback functions give
a feasible solution, they can be computed in polynomial time, and the optimal solution can be
reached (take the first branch only when the vertex v is in the optimal solution), which ensures
exhaustiveness.
We also have a diminution rule: if we have an instance I = (G, D), then we pick any vertex v

and we have I ′ = (G[V − {v}], D) and PB′(S) = S ∪ {v}. Also here we see that the size of the
instance decreases by one, that the computations are polynomial, and the payback function does
not increase the size of a solution by more than one.

Theorem 17. Feedback Vertex Set can be approximately solved within any ratio ρ in time O∗(γn),
with γ solution of the equation γ 6 γ−1 + γ−ρ (this result is summarized Figure 4).

3.2.2 Hereditary problems

Our method can also handle hereditary problems. Let P be a maximization problem where, given
an instance I, feasible solutions are subsets of a given set S that satisfy a given hereditary property
π (if S′ ⊆ S satisfies π, then any S′′ ⊆ S′ satisfies π), the goal being to maximize the size of the
subset.

10

To make hereditary problems fitting the previous framework, we formulate P in a different
(equivalent) manner, defining a problem P ′ where an instance is given by: (i) an instance I for the
problem P ; (ii) a set of nodes in the solution T ⊆ S; (iii) a set of nodes not in the solution D ⊆ S
with D ∩ T = ∅. Feasible solutions of an instance (I, T, D) of P ′ are subsets S′ ⊆ S \ (T ∪ D) such
that T ∪ S′ satisfies π (i.e., these are the feasible solutions of I containing T). The value of the
solutions S′ is its size |S′|.

As already mentioned, for any instance (I, T, D) of this new problem P ′, we have a natural
branching rule: we take an element from S that is neither in T nor in D, and we add it either
in T or in D. The branching continue as long as T is a feasible solution. This gives a trivial
branching algorithm in time O∗(2n), where n = |S|. This branching rule is strictly monotonic.
As a diminution rule, we only add one element to D. In the worst case, the element was in the
optimal solution, then its size decreases by one.

So our algorithm applies, and gives an answer with approximation ratio ρ and computation

time in O∗(γn
ρ), γρ being the greatest real solution of the equation 1 = γ−1

ρ + γ
−1−(1−ρ)/ρ
ρ .

Note that if this indicates that approximate branching algorithms seems to apply to more
problems than the technique of partitioning the instance, it is worth noticing that the latter
technique derives better running times for hereditary problems (compare γρn with the running
time of Theorem 14).

3.2.3 Minimization Problems

Analogous results can be obtained for minimization problems where feasible solutions are subsets
of a given set S that satisfy some property π such that if S′ ⊆ S satisfies π, then any S′′ ⊇ S′

satisfies π, the goal being to minimize the size of the subset.
Suppose that P is such a problem. Then, we rephrase P as in the maximization case by

considering the sets T and D of already taken and discarded vertices. A feasible solution is a set
S′ ⊆ S \ (T ∪D) such that S′ ∪T satisfies π, and its value is |S′|. We can use as branching rule the
same as above. The diminution rule is to take an element that and put it in the solution, which
satisfies Rule (D2’). This allow us to find a ρ-approximation in O∗(γn), γ being the solution of
the equation 1 = γ−1 + γ−ρ.

For example, Min Set Cover consists, giving a set E = {E1, E2, · · · , En} of sets, of finding a
subset E′ of E with as few elements as possible such that

⋃

Ei∈E′ Ei =
⋃

Ei∈E Ei. This problem is
NP-hard. We can can use the method of approximate branching because this problem is to find a
subset of a solution satisfying the property above, and any set containing a solution is a solution.

3.2.4 Max Cut

Max Cut consists, given a graph G(V, E), of partitioning V into two subsets V1 and V2 such that
the number of edges having one endpoint in V1 and the other one in V2 is maximal. The set of
these crossing edges is called the cut (associated to V1).

This problem could also be seen as an hereditary problem: if a set S of edges is a cut, then
any subset of S is also a cut (or at least a part of a cut). This would lead, using our algorithm,

to an approximation algorithm with a complexity of O∗(γ|E|) = O∗(γ(n2
)) (with γ > 1 a constant

depending on the approximation ratio). On the other hand, the basic branching schema consisting
of fixing, let say, set V1 and then of considering, for every vertex, that either it belongs, or it does
not belongs to V1, solves the problem in time O∗(2n) and this is the best worst-case running-time
known for this problem in general graphs. However, in sparse graphs, i.e., in graphs with maximum
degree bounded by d, the problem is solvable in time O∗(2(1−(2/d))n) [10]. On the other hand, Max
Cut is approximable in polynomial time within ratio 0.8785 [23], but it is APX-hard [31].

Consider a graph with maximum degree d. We will show how we can use the techniques
developed above in order to get non-trivial moderately exponential ratios.

Branching rule. We need a branching rule that guarantee us that, for each instance of the
problem, at last one child will increase the size of any solution by one (cf. Rule (B3)). To achieve
this, we first eliminate one pathologic case. If the graph is not connected, then we apply our
algorithm on each connected component (which gives, of course, the optimal solution). Therefore,
we will suppose in the following that our graph is connected. In the initial instance, we pick one

11

vertex randomly, and we assign it in V1. Then, the branching rule is to chose a vertex that is
adjacent to another one in V1 or V2, and to make two children, placing this vertex in V1 or V2. If
the first node was in V1, then placing the node in V2 will guarantee an increasing of the solution
of at least one.

Diminution rule. If we now consider a graph G of degree at most d, then we can use the
following easy result.

Proposition 18. In a graph of degree at most d, removing a vertex and all its edges decreases the
size of the maximum cut by at most d.

Now we have a diminution rule: take a vertex, throw it away and remove every edge adjacent
to this vertex in the same time, and the following theorem holds.

Theorem 19. If G(V, E) is a graph of maximum degree d, then we can compute a ρ-approximation
for Max Cut in time O∗(γ|V |), with γ solution of 1 = γ−1 + γ−1−(1−ρ)/dρ.

3.2.5 Max k-Coverage

Let us finally consider a non-hereditary problem, the Max k-Coverage problem in graphs with
maximum degree d. In the Max k-Coverage problem, given a graph G(V, E) and an integer k, one
asks for determining a subset S of V of size k that maximizes the number of edges incident to a
vertex in S.
Here again, we will consider graphs of bounded degree d. Note that this problem is solvable

in O∗(2(d−1)n/(d+1)) by the basic branching schema (take a vertex or do not take it), in graphs
with maximum degree d [9], and it is approximable in polynomial time within ratio 3/4 [16, 26],
but it is APX-hard as generalization of Min Vertex Cover.
Max k-Coverage problem is polynomial if k is bounded by a fixed constant. The branching rule

is trivial: take a vertex, add it in the solution or not. Stop branching when k vertex have been
added. The diminution rule is simply to take a vertex and eliminate it. As the degree of the graph
is bounded, then this elimination can’t decrease the solution’s size by more than d.

Theorem 20. If G(V, E) is an instance of Max k-Coverage of degree at most d, then we can
compute a ρ-approximation of the solution with complexity in O∗(γ|V |), with γ solution of 1 =
γ−1 + γ−1−(1−ρ)/dρ.

4 Around FPT approximation

We have proposed in this article a general framework to devise approximate branching algorithms
that achieve polynomial time approximation schemata. We conclude this article by some con-
siderations on similar issues for parameterized complexity. As mentioned in introduction, several
recent articles aim at combining parameterized complexity and approximation algorithms (see for
instance [28]). Following these works, we shall define approximation classes in the parameterized
framework9.

Class 21 (AFPT): A problem is in AFPT[ρ] if there is a function f such that, for any instance
of size n, it is possible in time O∗(f(k, ρ)) either to find a solution of size at least ρk or to show
that there is no solution of size k.

A similar definition can be given for minimization problems.

Class 22 (ASFPT): A problem is said to have an ASFPT if it is in AFPT[ρ] for any ρ Ó= 1.

Clearly, we know that FPT ⊆ AFPT[ρ] for any ρ. Though there does not exist to our
knowledge a “natural” problem that distinguishes between these classes, the inclusion is indeed
strict. Take a ρ > 1 and the following problem: given a graph G, feasible solutions are proper
colorings of G, and a coloring has value 3 if it uses at most 3 colors and 3ρ otherwise. Clearly, this
problem is ρ approximable in polynomial time (hence in FPT time) and is not in XP (so not in
FPT) unless P = NP.

9Note that we only consider here the standard parameterization by the value of the solution, results dealing with
other parameters have also been considered [28].

12

Proposition 23. ∀ρ, FPT AFPT[ρ], unless P = NP.

We also know that APX[ρ] ⊆ AFPT[ρ] (where APX[ρ] denotes the set of problems ρ-
approximable in polynomial time). Note that Min Vertex Cover is in FPT but is NP-hard to
approximate with ratio ρ < 1.36 [11]. This shows strict inclusion for ratios ρ < 1.36. An ampli-
fication of the value of solutions allows to extend the strict inclusion for any ratio ρ: take t such
that 1.36t > ρ, and define a modified vertex cover problem where the value of a vertex cover V ′

is |V ′|t. Then the problem is still in FPT but a polytime approximation ratio smaller than 1.36t

would solve vertex cover within ratio 1.36.

Proposition 24. ∀ρ, APX[ρ] AFPT[ρ] unless P = NP.

Finally, in the field of approximation parameterized algorithms, strong negative results have
been obtained for Min Independent Dominating Set10 by [13], leaving as open questions the exis-
tence of approximation parameterized algorithms for Max Independent Set and Min Dominating
Set. As a last result, we deduce from the self-improvement property of Max Independent Set [22]
that either Max Independent Set has a parameterized approximation schema or it does not ad-
mit constant approximation parameterized algorithms for any ratio. Note that this result has been
used in [14] to obtain conditional negative results for the existence of parameterized approximation
algorithms for Max Independent Set.

Theorem 25. If there is a ratio ρ such that Max Independent Set is in AFPT[ρ], then it is also
in AFPT[1 − ǫ] for any ǫ > 0.

Proof. We suppose that Max Independent Set isAFPT[ρ], which means that we have an algorithm
with complexity O(f(k)p(n)) (with p a polynomial function) that either outputs an independent
set of size at least ρk or outputs no (and in this latter case there is no independent set of size k).
Let G(V, E) be a graph of size n. We build a new graph G′ [22] with n2 vertices Vi,j , with

1 6 i 6 n and 1 6 j 6 n. There is an edge between (i1, j1) and (i2, j2) if:

• i1 = i2 and (j1, j2) ∈ E.

• i1 Ó= i2 and (i1, i2) ∈ E.

First, we remark that if we have an independent set of size k in G, then we have an independent
set of size k2 in G′. Reciprocally, if we have an independent set of size k in G′, then we can find
an independent set of size

√
k in G:

• either this independent set has vertices in more than
√

k copy of G, and then the numbers
of these copy give an independent set on G.

• either is has vertices in less than
√

k copy of G, and then there is at least
√

k vertices in one
of them, which gives an independent set on G too.

When given a graph G and a parameter k, we apply our parameteric algorithm to G′ with the
parameter k2. If the algorithm outputs no, then we know that there is no independent set of size
k in G and we output no too. Else, the algorithm outputs an independent set of size ρk2 on G′.
We know that this leads to an independent set of size

√
ρk on G. The complexity of this new

algorithm O(f(k2)p(n2)). In other words, we know that Max Independent Set is now AFPT[
√

ρ].
Iterating this process proves the claimed result.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and approximation. Combinatorial optimization problems and their approximabil-
ity properties. Springer-Verlag, Berlin, 1999.

[2] A. Becker and D. Geiger. Optimization of Pearl’s method of conditioning and greedy-like
approximation algorithms for the vertex feedback set problem. Artificial Intelligence, 83 (1):
167–188, 1996.

10Given a graph G, find the minimum size vertex subset which is both an independent set and a dominating set.

13

[3] L. Brankovic and H. Fernau. Combining two worlds: parameterized approximation for vertex
cover. In O. Cheong and K.-Y. Chwa ans K. Park, editors, Proc. International Symposium on
Algorithms and Computation, ISAAC’10, volume 6506 of Lecture Notes in Computer Science,
pages 390–402. Spinger-Verlag, 2010.

[4] N. Bourgeois, B. Escoffier, and V. Th. Paschos. Approximation of max independent set, min
vertex cover and related problems by moderately exponential algorithms. Discrete Appl. Math,
159 (17): 1954–1970, 2011.

[5] N. Bourgeois, B. Escoffier, and V. Th. Paschos. Efficient approximation of min coloring by
moderately exponential algorithms. Inform. Process. Lett., 109(16):950–954, 2009.

[6] L. Cai and X. Huang. Fixed-parameter approximation: conceptual framework and approxima-
bility results. In H. L. Bodlaender and M. A. Langston, editors, Proc. International Workshop
on Parameterized and Exact Computation, IWPEC’06, volume 4169 of Lecture Notes in Com-
puter Science, pages 96–108. Springer-Verlag, 2006.

[7] M. Cygan and M. Pilipczuk. Exact and approximate bandwidth. Theoret. Comput. Sci.,
411(40–42):3701–3713, 2010.

[8] E. Dantsin, M. Gavrilovich, E. A. Hirsch, and B. Konev. max sat approximation beyond the
limits of polynomial-time approximation. Ann. Pure and Appl. Logic, 113:81–94, 2001.

[9] F. Della Croce and V. Th. Paschos. Efficient algorithms for the max k-vertex cover

problem. J. Comb. Optim. To appear

[10] F. Della Croce, M. J. Kaminski, and V. Th. Paschos. An exact algorithm for max cut in
sparse graphs. Oper. Res. Lett., 35:403–408, 2007.

[11] I. Dinur and M. Safra. The importance of being biased. Proc. STOC 2002: 33-42.

[12] R. G. Downey and M. R. Fellows Parameterized Complexity. Monographs in Computer
Science. Springer, 1999.

[13] R. G. Downey, M. R. Fellows, and C. McCartin. Parameterized approximation problems. In
H. L. Bodlaender and M. A. Langston, editors, Proc. International Workshop on Parameterized
and Exact Computation, IWPEC’06, volume 4169 of Lecture Notes in Computer Science, pages
121–129. Springer-Verlag, 2006.

[14] B. Escoffier, E. Kim and V. Th. Paschos: Subexponential and FPT-time Inapproximabil-
ity of Independent Set and Related Problems. http://www.lamsade.dauphine.fr/sites/

default/IMG/pdf/cahier_321.pdf Cahier du Lamsade 321, 2012.

[15] B. Escoffier, V.Th. Paschos and E. Tourniaire. Approximating Max Sat by moderately ex-
ponential and parameterized algorithms. In Proc. TAMC’12, to appear in Lecture Notes in
Computer Science. Springer-Verlag, 2012.

[16] U. Feige and M. Langberg. Approximation algorithms for maximization problems arising in
graph partitioning. J. Algorithms, 41(2), 2001.

[17] M. R. Fellows, A. Kulik, F. A. Rosamond and H. Shachnai. Parameterized Approximation
via Fidelity Preserving Transformations. Proc. of ICALP (1) 2012, pages 351-362, 2012.

[18] F. V. Fomin, F. Grandoni and D. Kratsch. A measure & conquer approach for the analysis
of exact algorithms. J. ACM 56(5), 2012.

[19] F. V. Fomin and D. Kratsch Exact Exponential Algorithms. Springer, 2011.

[20] Fomin, Fedor, Villanger and Yngve Finding induced subgraphs via minimal triangulations
Proc. of STACS’10, 2010.

14

[21] M. Fürer, S. Gaspers, and S. P. Kasiviswanathan. An exponential time 2-approximation
algorithm for bandwidth. In Proc. International Workshop on Parameterized and Exact Com-
putation, IWPEC’09, volume 5917 of Lecture Notes in Computer Science, pages 173–184.
Springer, 2009.

[22] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of
NP-completeness. W. H. Freeman, San Francisco, 1979.

[23] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach.,
42(6):1115–1145, 1995.

[24] J. Håstad. Some optimal inapproximability results. Proc. 29th Ann. ACM Symp. on Theory
of Comp., ACM, pages 1–10, 1997.

[25] R. Impagliazzo and R. Paturi. On the Complexity of k-SAT. J. Comput. Syst. Sci. 62(2):
367-375, 2001.

[26] G. Jäger and A. Srivastav. Improved approximation algorithms for maximum graph parti-
tioning problems. J. Comb. Optim., 10(2):133–167, 2005.

[27] R. Karp Reducibility Among Combinatorial problems. Complexity of Computer Computa-
tions, 85–103, 1972.

[28] D. Marx. Parameterized complexity and approximation algorithms. The Computer Journal,
51(1):60–78, 2008.

[29] D. Moshkovitz and R. Raz. Two-query PCP with subconstant error. J. ACM 57(5), 2010.

[30] I. Razgon. Computing minimum directed feedback vertex set in O∗(1.9977n). Proceedings of
the 10th Italian Conference on Theoretical Computer Science 70–81, 2007.

[31] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes.
J. Comput. System Sci., 43:425–440, 1991.

15

	Première page cahier.pdf
	Page 1

