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Abstract

In the literature of coalitional games, power indices have been widely
used to assess the influence that a player has in situations where coalitions
may be winning or losing. However, in many cases things are not so simple
as that: in some practical situations, all that we know about coalitions
is a relative comparison of strength. For instance, we know that a foot-
ball team is stronger than another team, a political party is more reliable
than another party, an evaluation committee is more representative than
another one, and so on, but we are not able to determine which teams,
parties, or committees share the characteristics to be winning (or loosing)
in general. Still, in those situations we could be interested to rank single
individuals according to their ability to influence the relative strength of
coalitions. In this direction, we introduce a different coalitional frame-
work where we analyse a new notion of ordinal power “index” or social
ranking by associating to each total preorder on the set of all coalitions
(representing the relative power of coalitions) a ranking over the player
set. We study some properties for this class of social rankings, and we pro-
vide axiomatic characterizations of particular ones showing close affinities
with the classical Banzhaf index of coalitional games.

1 Introduction

In cooperative game theory, classical measures of agents’ power, like the Shapley
index [9] or the Banzhaf index [1], are computed on the characteristic function
of a game and, if additional information is available about the identities of the
players and their interactions, may depend on some combinatorial structures de-
scribing which coalitions are more likely to form [5, 6]. In practical situations,
however, the information concerning both the power and the effective coopera-
tion possibilities of coalitions, are not easily accessible, and may concern hardly
quantifiable factors like bargaining abilities, moral and ethical codes and other
“psychological” attributes [3].

For example, in addition to what it can gain by itself, a coalition may ob-
tain some more “power” by threatening not to cooperate with other players
and causing them losses [3]. This is what happened in Italy after the recent
election which took place on 24-25 February 2013 for the determination of the
630 members of the Chamber of Deputies and the 315 members of the Senate
of the Italian Republic. The outcome of the election was that the centre-left

1I am grateful to Giulia Bernardi, Roberto Lucchetti and an anonymous referee for helpful

comments on a previous version of this paper.
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alliance, led by the Democratic Party, obtained a clear majority of seats in the
Chamber of Deputies, while in the Senate, no political group or party won an
outright majority. More precisely, in order to form a coalition government hold-
ing the majority of seats in the Senate of the Republic, the Center-left alliance
needed to make a coalition with the Center-right alliance or, alternatively, with
the anti-establishment Five Star Movement. Holding the majority of the Cham-
ber of Deputies, the centre-left alliance was clearly more powerful of the other
parties, while the Center-right alliance and the Five Star Movement seemed to
share the same power. On the other hand, according to the electoral system of
the Italian Parliament, no single party was a winning one in the Senate of the
Republic, and there was no unambiguous way to quantify how much power each
party effectively had. Eventually, a coalition government between the Centre
left and Centre right was formed, because of the refuse of the Five Star Move-
ment to make a coalition with the Center-left alliance, that in turn accused a
big loss in terms of party’s public support consequent to the agreement with its
historical antagonist. But how much important was the threat of the Five Star
Movement not to cooperate with the Center-left alliance? Were the Five Star
Movement and the Center-right alliance really equally powerful?

Face to the practical difficulty of establishing a quantitative estimation of
the strength of coalitions, as in the Italian political situation described above,
the objective of this paper is to determine how to rank the agents of a coalitional
situation according to their ability to form (or to threat) alliance, and when only
the relative comparison of power between coalitions is considered.

In a similar direction, recently the authors of [8] have introduced a model
of coalition formation where the relative strength of disjoint coalitions is repre-
sented by an exogenous binary relation (namely, a power relation), and where
the players build the society (represented by a partition of the player set) driven
by the maximization of their position in the social ranking (a linear order over
the players). A social ranking in [8] is computed over each partition of the
player set in the following way: player i is ranked higher than j if i belongs to
a more powerful coalition than j in the partition or, if they belong to the same
coalition, the singleton {i} is more powerful than the singleton coalition {j},
with respect to the original power relation.

In this paper, our goal is not to describe the process of coalition formation.
Here we are interested in providing an analytical method to describe how the
relative comparison of the strength of coalitions may influence the ranking of
agents in the society. Therefore, we define a social ranking as a map assigning
to each total preorder on the set of all coalitions, a total preorder on the set
of players. Differently from the model of [8], where a power relation is defined
as a binary relation over disjoint coalitions, our power relation allows for the
comparison of each pair of coalitions, even if their intersection is nonempty.
This is an important aspect, because it allows for considering the potential
threats inside a group. Moreover, we axiomatically characterize social rankings
by means of properties dealing with the ordinal structure of power relations. The
first property is the dominance axiom, which states that a player i is ranked
better than j if, for every coalition S, the number of coalitions more powerful
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than S and containing i is higher than the number of those containing j. The
interpretation of this property is clear: whatever coalition S is going to form,
a player with more opportunities to form stronger coalitions should be ranked
higher than another with less. Roughly speaking, players with a systematically
larger power of threatening should be ranked higher. The second property,
namely the additivity axiom, allows for the composition of power relations with
opposite social ranking. This composition is ruled out by the “strength” of the
opposite social rankings, that is a measure of the “average” capacity of players
to threaten coalitions. Surprisingly, on the class of all power relations over
coalitions, a social ranking that satisfies both the dominance and the additivity
axioms coincides with the ranking provided by the Banzhaf value of particular
coalitional games related to the numerical representation of the power relation.

In next section we recall some notations and definitions about total pre-
orders and coalitional games. Section 3 deals with the notion of dominance for
social rankings and provides some characterizations for special classes of power
relations. Section 4 introduces the notion of additivity for power relations and
the composition of social rankings, and provides the axiomatic characterization
of a social ranking satisfying both properties. Section 5 concludes with some
further directions.

2 Preliminaries

A binary relation R on a finite set N = {1, . . . , n} is a collection of ordered
pairs of elements of N and is denoted by R ⊆ N × N . For each x, y ∈ N , the
more familiar notation xRy will be used instead of the more formal (x, y) ∈ R.
The following are some standard properties for a binary relation R ⊆ N × N .
Reflexivity : for each x ∈ N , xRx; transitivity : for each x, y, z ∈ N , xRy and
yRz ⇒ xRz; totality : for each x, y ∈ N , x 6= y ⇒ xRy or yRx; antisymmetry :
for each x, y ∈ N , xRy and yRx ⇒ x = y. A reflexive, transitive, total binary
relation is called total preorder. A total preorder that also satisfies antisymmetry
is called linear order. In the following we denote the fact that it is not true that
xRy with the notation ¬(xRy). We denote by T N and PN the set of all total
binary relations and all total preorders, respectively, on a finite set N . A total
preorder on 2N is a reflexive, transitive and total binary relation <⊆ 2N × 2N .
Often we will use the standard notation S ≻ T to denote the fact that S < T

and ¬(T < S). Given a set T ∈ 2N , we denote by [T ] the indifference class of
T , i.e. [T ] = {S ∈ 2N |S < T and T < S}, and by |[T ]| its cardinality. Given
a set T ∈ 2N such that there exists B with T ≻ B, we shall denote by T σ an
element of 2N such that T ≻ T σ and there is no C such that T ≻ C ≻ T σ.

Given a total preorder <∈ P2N , consider a bijection θ : {1, . . . , 2n} → 2N

such that

S ≻ T ⇒ θ−1(S) < θ−1(T ),

for every S, T ∈ 2N . Now, for each i ∈ N , let Γi(<) be a 2n-vector of natu-
ral numbers such that the k-th component represents the number of coalitions
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containing i which are in relation with θ(k), i.e.

Γi
k(<) = |{S ∈ 2N\{i} : S ∪ {i} < θ(k)}|

for each k = 1, . . . , 2n. Note that vector Γ(<) does not depend on the choice
of the bijection θ, since Γi

k(<) = Γi
l(<) for every k, l such that θ(k) < θ(l) and

θ(l) < θ(k).
A total preorder is called dichotomous if there is a partition of 2N in two

indifference classes, say G and B, such that each element in the class G is pre-

ferred to each element in B. Given a total preorder <∈ P2N , for each T ∈ 2N

we denote by <T the dichotomous total preorder on 2N such that the class of
most preferred elements is defined as GT := {S ∈ 2N : S < T}, and the less
preferred one as BT := 2N \ GT . We shall say that <T is a dichotomous total
preorder associated to < on T for each T ∈ 2N .

Now, we provide some basic definitions about coalitional games. A coali-
tional game on a finite set N of players is a pair (N, v), or simply v, where the
characteristic function v is a map v : 2N → R assigning to each coalition S ⊆ N

a real value, and with v(∅) = 0. A total preorder < on 2N naturally induces a
coalitional game for each utility function v representing < (such that v(∅) = 0),
i.e. v(S) ≥ v(T ) ⇔ S < T for each S, T ∈ 2N . We shall denote by V (<) the set
of all v representing the total preorder <.

Let <∈ P2N . We define the canonical game representing < as the coalitional
game v̂ ∈ V (<) such that v̂(T )− v̂(T σ) = |[T ]| for each T ∈ 2N (with v̂(∅) = 0).
For each v ∈ V (<) and each S, T ∈ 2N , consider the game v∗T such that:

if T ≻ ∅, v∗T (S) =

{ 1
|[T ]| (v(T )− v(T σ)) if S < T,

0 otherwise,
(1)

if ∅ < T, v∗T (S) =

{ 1
|[T ]| (v(T

σ)− v(T )) if T ≻ S,

0 otherwise.
(2)

As also remarked in [2], it is easy to check that v∗T induces the dichotomous total
preorder <T associated to < on T , for every T ∈ 2N , and that v =

∑

T∈2N v∗T .

For example, according to relations (1) and (2), respectively, with the canonical
game v̂ in the role of v, we have that v∗T (S) ∈ {0, 1} if T ≻ ∅, and v∗T (S) ∈
{0,−1} if ∅ < T , for each S, T ∈ 2N .

The Banzhaf value [1] a coalitional game (N, v) is defined as the n-vector
β(v) = (β1(v), . . . , βn(v)), such that for each i ∈ N

βi(v) =
1

2n−1

∑

S∈2N\{i}

(v(S ∪ {i})− v(S)). (3)

Note that the difference between the Banzhaf value of two players i and j in N

can be written as the following relation

βi(v)− βj(v) =
1

2n−2

∑

S∈2N\{i,j}

(

v(S ∪ {i})− v(S ∪ {j})
)

. (4)

for every i, j ∈ N and where 2N\{i,j} is the set of all subsets of N which do not
contain neither i nor j. For further details on how the Banzhaf value ranks the
players of a coalitional game see [2, 4].
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3 Social ranking and the dominance axiom

In the remaining of the paper, we interpret a total preorder < on 2N as a power
relation on 2N , that is, for each S, T ∈ 2N , S < T stands for ‘S is considered

at least as powerful as T according to <’. We call the map ρ : P2N −→ T N ,
assigning to each power relation on 2N a total binary relation on N , a social
ranking solution or, simply, a social ranking. Then, given a power relation <,
we will interpret the total binary relation ρ(<) associated to < by the social
ranking ρ, as the relative strength of players in the society represented by the
power relation <. Precisely, for each i, j ∈ N , iρ(<)i stands for ‘i is considered
at least as strong as j according to the social ranking ρ(<)’. Note that we require
that ρ(<) is a total binary relation, that is we always want to express the relative
comparison of two agents, but we do not exclude a priori the possibility of cycles
in the relative comparison of strength among agents.

In the following, for every i, j ∈ N , we will say that Γi(<) dominates Γj(<)
(denoted by Γi(<) ≥ Γj(<)) iff Γi

k(<) ≥ Γj
k(<) for each k = 1, . . . , 2N . We can

now introduce the first property for social rankings.

Axiom 1 (DOM). A social ranking ρ satisfies the dominance property iff for

each i, j ∈ N and <∈ P2N ,

Γi(<) ≥ Γj(<) ⇒ iρ(<)j.

The DOM axiom states that if player i has more possibilities than j to form
coalitions more powerful than S, for every possible coalition S ∈ 2N which is
going to form, than i should be ranked higher than j according to the social
ranking. The intuition behind this property is that if Γi(<) dominates Γj(<),
for some i and j in N , than player i has a larger power of threatening S than j,
whatever coalition S is currently formed, since i has more opportunities than j

to create coalition more appealing than S.

Example 1. Consider the power relation ≻ such that {1, 2, 3} ≻ {2} ≻ {1, 3} ≻
{1, 2} ≻ {3} ≻ {1} ≻ ∅ ≻ {2, 3}. We have that Γ1(≻) = (1, 1, 2, 3, 3, 4, 4, 4),
Γ2(≻) = (1, 2, 2, 3, 3, 3, 3, 4) and Γ3(≻) = (1, 1, 2, 2, 3, 3, 3, 4). Note that both
Γ1 and Γ2 dominate Γ3, whereas neither Γ1 dominates Γ2 nor Γ2 dominates
Γ1. If a social ranking ρ satisfies DOM, then we have that both 1ρ(≻)3 and
2ρ(≻)3, but we can say nothing about the relative comparison between 1 and 2
in the social ranking ρ(≻). Moreover, note that the dominance is purely ordinal,
in the sense that no considerations about the “strength” of the dominance is
made to determine the social ranking. So, for instance, the fact that the score
∑2n

k=1 Γ
1
k(≻) = 22 is larger than the score

∑2n

k=1 Γ
2
k(≻) = 21, does not play any

role in the relative comparison between 1 and 2 with respect to ρ(≻).

Remark 1. If <∈ P2N is such that for some i, j ∈ N , Γi(<) ≥ Γj(<), then the

relative score defined as sij(<) =
∑2n

k=1 Γ
i
k(<)−

∑2n

k=1 Γ
j
k(<) is not negative, and

may be interpreted as an indication of the intensity of the dominance: so, the
dominance of 1 over 3 seems to be stronger than the one of 2 over 3, according
to s13(<) and s23(<).
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The following lemma is useful to guarantee that sij(<) ≥ 0 implies the
dominance of Γi(<) over Γj(<).

Lemma 1. Let <∈ P2N , R ∈ T N and i, j ∈ N such that Γi(<) ≥ Γj(<) ⇔ iRj.
Let ρ be a social ranking which satisfies DOM. Then,

iρ(<)j ⇔ Γi(<) ≥ Γj(<) ⇔ sij(<) ≥ 0.

Proof. Since R is total, we have that either Γi(<) ≥ Γj(<) or Γj(<) ≥ Γi(<)
for every i, j ∈ N then, by the DOM of ρ, we have that

Γi(<) ≥ Γj(<) ⇔ iρ(<)j,

and by Remark 1, we also have that

Γi(<) ≥ Γj(<) ⇔
2n
∑

k=1

Γi
k(<) ≥

2n
∑

k=1

Γj
k(<).

The following proposition shows that the DOM axiom is sufficient to char-
acterize social rankings on dichotomous power relations, and the rankings are
represented by the Banzhaf value.

Proposition 1. Let ρ be a social ranking which satisfies DOM. Then, for each
dichotomous total preorder < on 2N and each i, j ∈ N , we have that the following
relations hold:

i) iρ(<)j ⇔ |{S ∈ 2N\{i,j} : S ∪ {i} ∈ G}| ≥ |{S ∈ 2N\{i,j} : S ∪ {j} ∈ G}|.

ii) iρ(<)j ⇔ βi(v) ≥ βj(v), for every v ∈ V (<).

where G is the indifference class of most powerful coalitions according to <.

Proof. First, note that for each i ∈ N , Γi
k(<) = 2n−1, if k = |G|+ 1, . . . , 2n (all

coalitions containing i are at least as powerful as θ(k)), and Γi
k(<) = |{S ∈ 2N :

S 6∋ i and S ∪ {i} ∈ G}|, otherwise. Then, it immediately follows that

Γi(<) ≥ Γj(<) ⇔ |{S ∈ 2N\{i} : S ∪ {i} ∈ G}| ≥ |{S ∈ 2N\{j} : S ∪ {j} ∈ G}|,

and since some elements in the sets on the right are in common, we can rewrite
the previous relation as the following one:

Γi(<) ≥ Γj(<) ⇔ |{S ∈ 2N\{i,j} : S∪{i} ∈ G}| ≥ |{S ∈ 2N\{i,j} : S∪{j} ∈ G}|.

So, the binary relation R on N such that iRj ⇔ |{S ∈ Σij : S ∪ {i} ∈ G}| ≥
|{S ∈ Σij : S ∪ {j} ∈ G}| is total and the statement (i) follows from Lemma 1.

To prove statement (ii), simply note that by relation (4), for game v such
that v(S) = a, if S ∈ G, and v(S) = b, otherwise, and a > b, we have that

βi(v)−βj(v) =
a− b

2n−2
(|{S ∈ Σij : S∪{i} ∈ G}|−|{S ∈ Σij : S∪{j} ∈ G}|). (5)
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In order to introduce the connection between the Banzhaf value of coalitional
games with social rankings that satisfy DOM, we need the following lemma.

Lemma 2. Let < be a total preorder on 2N . Then, for each i, j ∈ N

Γi(<) ≥ Γj(<) ⇔ Γi(<T ) ≥ Γj(<T ) (6)

for every T ∈ 2N .

Proof. First, note that for every i ∈ N , T ∈ 2N and k = |GT | + 1, . . . , 2n we
have that Γi

k(<) = Γj
k(<) = 2n−1 (since all sets of 2N are weakly preferred to

elements in BT w.r.t. <T ). So,

Γi
k(<T )− Γj

k(<T ) = 0

for every dichotomous preorder <T and every k = |GT |+ 1, . . . , 2n.
Then, note that for each i ∈ N ,

Γi
k(<T ) = Γi

|GT |(<T ) = Γi
|GT |(<). (7)

for every set T ∈ 2N and for every k = 1, . . . , |GT |, and relations (6) remains
proved.

Now we can introduce the main result of this section, showing that the
fact that player i dominates player j with respect to the power relation < is
equivalent to the fact that the Banzhaf value of player i is larger than the
Banzhaf value of player j for every characteristic function v ∈ V (<).

Theorem 1. Let <∈ P2N and For each i, j ∈ N

Γi(<) ≥ Γj(<) ⇔ [βi(v) ≥ βj(v) for every v ∈ V (<)]. (8)

Proof. First note that from Lemma 2 and Proposition 1 we have that

Γi(<) ≥ Γj(<) ⇔ βi(vT ) ≥ βj(vT ) (9)

for every T ∈ 2N and every vT ∈ V (<T ). Moreover, we may write every game
v ∈ V (<) as the sum

v =
∑

T∈2N

v∗T ,

for every v ∈ V (<), where v∗T , for every T ∈ 2N , is defined as in relations (1)
and (2). Consequently, for every v ∈ V (<) and every i ∈ N , for the additivity
of the Banzhaf value we have that

βi(v) =
∑

T∈2N

βi(v
∗
T ).

and thus, by relation (9), Γi(<) ≥ Γj(<) ⇒ βi(v) ≥ βj(v).
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Now, we want to prove the opposite implication; so, assume that βi(v) ≥
βj(v) for each v ∈ V (<). First, we prove that βi(vT ) ≥ βj(vT ) for every T ∈ 2N

and every vT ∈ V (<T ). Suppose, on the contrary, that there exists some T ⊂ N

and some v∗T ∈ V (<T ) such that βj(v
∗
T )−βi(v

∗
T ) = γ > 0. Then take v′ ∈ V (<)

and let α := βi(v
′)−βj(v

′) ≥ 0. Note that αv∗T + v′ is still an element in V (<).
On the other hand, by the additivity of the Banzhaf value

βj(αv
∗
T + v′)− βi(αv

∗
T + v′) =

αβj(v
∗
T ) + βj(v

′)− αβi(v
∗
T )− βi(v

′) =
α(γ − 1),

(10)

which yields a contradiction if γ > 1. Then, it remains proved that βi(vT ) ≥
βj(vT ) for every T ∈ 2N and every vT ∈ V (<T ), and the proof follows by
relation (9).

Corollary 1. Let <∈ P2N and let ρ be a social ranking which satisfies DOM.
Then, for each i, j ∈ N

[βi(v) ≥ βj(v) for every v ∈ V (<)] ⇒ iρ(<)j. (11)

4 An additive axiom for social rankings

In the previous section we have studied the effect of the DOM axiom in de-
termining the social ranking on certain classes of power relations, and we have
shown that a social ranking satisfying DOM is somehow related to the Banzhaf
value of every game representing the power relation. However, the DOM axiom
alone is not sufficient to unequivocally determine a social ranking on the class of

all power relations P2N , since in general (as illustrated in the previous section)
the relation of dominance on Γi vectors is not total.

In this section we introduce a second property, namely the additivity prop-
erty, that allows for the combination of social rankings with opposite relative
comparison. In order to do that, we need to introduce some further notations.

Given <∈ P2N , we denote by

K< = {⊒∈ P2N : S < T ⇒ S ⊒ T, for all S, T ∈ 2N}

the set of all power relations compatible with <. On K< we define the binary
operation ⊕ : K< ×K< → K< such that for each two elements ☎,⊒∈ K< and
all S, T ∈ 2N ,

S ☎ T and S ⊒ T ⇒ S ⊕ (☎,⊒)T

and

(S ✄ T and S ⊒ T )
or ⇒ (S ⊕ (☎,⊒)T ) and ¬(T ⊕ (☎,⊒)S),

(S ☎ T and S ❂ T )

(as usual, notation S ✄ T and S ❂ T means, respectively, [S ☎ T and ¬(T ☎S)]
and [S ⊒ T and ¬(T ⊒ S)]).
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Axiom 2 (ADD). Let <∈ P2N . A social ranking ρ satisfies the additivity
property iff for each i, j ∈ N and ☎,⊒∈ K< such that iρ(☎)j, and jρ(⊒)i, we
have that

sij(☎) ≥ sji(⊒) ⇔ iρ(⊕(☎,⊒))j.

The ADD axiom states that if in two compatible power relations ☎ and ⊒
the corresponding social rankings work in an opposite way in the comparison of
agents i and j, then, in the power relation resulting from the sum ⊕(☎,⊒), the
relative comparison of i and j is determined by the comparison of the relative
score between i and j in the two original power relations ☎ and ⊒. As we already
said in the previous section, the indication provided by the relative score is an
indication of the intensity of the dominance relation on vectors Γi. Then, it
seems natural to use the information provided by the relative score to measure
the effect of the combination of opposite power relations on a social ranking
that satisfies both the DOM and the ADD properties.

Example 2. Consider again the power relation presented in Example 1 and
other two power relations ☎,⊒, where ☎ is such that {1, 3} ☎ {2} and {2} ☎

{1, 3} (i.e., {2} {1, 3} belong to the same indifference class w.r.t. to ☎), and
{1, 2, 3}✄ {2}✄ {1, 2}✄ {3}✄ {1}✄ ∅✄ {2, 3}, and where ⊒ is a dichotomous
power relation with the indifference class of preferred sets G = {{1, 2, 3}, {2}}.
Note that ≻≡ ⊕(☎,⊒).

Consider a social ranking ρ that satisfies both DOM and ADD axioms. Note
that, Γ1(☎) = (1, 2, 2, 3, 3, 4, 4, 4) and Γ2(☎) = (1, 2, 2, 3, 3, 3, 3, 4) so, by the
DOM property, 1ρ(☎)2, whereas Γ1(⊒) = (1, 1, 4, 4, 4, 4, 4, 4) and Γ2(⊒) =
(2, 2, 4, 4, 4, 4, 4, 4), so, again by the DOM property, 2ρ(⊒)1. Moreover the rela-
tive score s12(☎) = 23−21 = 2, while s21(⊒) = 28−26 = 2. Then, by the ADD
property, 1ρ(≻)2 and 2ρ(≻)1.

The decomposition of a power relation provided in the previous example can
be done in general, as illustrated in the following lemma.

Lemma 3. Let <∈ P2N and i, j ∈ N .There exist ☎,⊒∈ K< such that Γi(☎) ≥
Γj(☎), Γj(⊒) ≥ Γi(⊒) and <≡ ⊕(☎,⊒)

Proof. Consider the sets Θij = {T ∈ 2N |Γi(<T ) ≥ Γj(<T )} and Θji = {T ∈
2N |Γj(<T ) ≥ Γi(<T )}, where, as usual, <T are the dichotomous preorders
associated to < for all T ∈ 2N . By Proposition 1, it is easy to check that
Θij ∪Θji = 2N and Θij ∩Θji = {T ∈ 2N |Γi(<T ) = Γj(<T )} 6= ∅ (least powerful
coalitions always belong to Θij ∩Θji).

Now, let v∗T , for each T ∈ 2N , be the characteristic functions defined by rela-
tions (1) and (2) and for some v ∈ V (<). Consider the characteristic functions
vij =

∑

T∈Θij v
∗
T and vji =

∑

T∈Θji v
∗
T , and the corresponding total preorders

☎,⊒∈ K< defined as follows:

S ☎ T :⇔ vij(S) ≥ vij(T ), (12)

and
S ⊒ T :⇔ vji(S) ≥ vji(T ), (13)
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for each S, T ∈ 2N . Note that vij + vji is also an element of V (<) and, by
definition, vij + vji is also an element of V (⊕(☎,⊒)). So, <≡ ⊕(☎,⊒).

Now, we introduce some properties of canonical games.

Lemma 4. Let <∈ P2N and i, j ∈ N . Then,

βi(v̂)− βj(v̂) = sij(<)

where v̂ ∈ V (<) is the canonical game representing <.

Proof. As in Lemma 3, consider Let the v∗T , for each T ∈ 2N , be the character-
istic functions defined by relations (1) and (2) with the canonical game v̂ in the
role of v. We have that

βi(v̂)− βj(v̂) =
∑2n

k=1

(

βi(v
∗
θ(k))− βj(v

∗
θ(k))

)

=

1
2n−2

(

∑2n

k=1 |{S ∈ 2N\{i} : S ∪ {i} ∈ Gθ(k)}|−
∑2n

k=1 |{S ∈ 2N\{j} : S ∪ {j} ∈ Gθ(k)}|
)

=

1
2n−2

(

∑2n

k=1 Γ
i
k(<θ(k))−

∑2n

k=1 Γ
j
k(<θ(k))

)

=

1
2n−2

(

∑2n

k=1 Γ
i
k(<)−

∑2n

k=1 Γ
j
k(<)

)

= sij(<).

(14)

We can now introduce the main result of this section.

Theorem 2. Let <∈ P2N and i, j ∈ N . Let ρ be a social ranking which satisfies
DOM and ADD. Then,

iρ(<)j ⇔ βi(v̂☎)− βj(v̂☎) ≥ βj(v̂⊒)− βi(v̂⊒),

where v̂☎ ∈ V (☎) and v̂⊒ ∈ V (⊒) are the canonical games representing ☎

and ⊒, respectively, and where ☎,⊒∈ K< are such that iρ(☎)j, jρ(⊒)i and
<≡ ⊕(☎,⊒).

Proof. Consider the total preorders ☎,⊒∈ K< as defined in Lemma 3.

If Γi(<) ≥ Γj(<), then by the DOM axiom we have that iρ(☎)j. Moreover,
βi(v̂⊒) − βj(v̂⊒) = 0 and βi(v̂☎) − βj(v̂☎) = βi(v̂<) − βj(v̂<) ≥ 0, where the
inequality follows by Proposition 1.

Otherwise, if ¬(Γi(<) ≥ Γj(<)) and ¬(Γj(<) ≥ Γi(<)), by the DOM axiom
we have that iρ(☎)j and jρ(<)i, and by Lemma 4, we have that βi(v̂☎) −
βj(v̂☎) = sij(☎) and βj(v̂⊒) − βi(v̂⊒) = sji(⊒), which concludes the proof by
means of the ADD axiom.
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Table 1: Canonical games representing ☎,⊒ and ≻, respectively.

{1, 2, 3} {2} {1, 3} {1, 2} {3} {1} ∅ {2, 3}
v̂☎ 6 5 5 3 2 1 0 -1
v̂⊒ 2 2 0 0 0 0 0 0
v̂ 6 5 4 3 2 1 0 -1

Example 3. Consider again the power relation of Example 1. The canonical
game v̂☎ ∈ V (☎), v̂⊒ ∈ V (⊒) and v̂ ∈ V (≻) are shown in Table 1.

According to relation (4), the difference in Banzhaf values are the following:

β1(v̂☎)− β2(v̂☎) =
1

2
(v̂☎({1})− v̂☎({2})) +

1

2
(v̂☎({1, 3})− v̂☎({2, 3})) = 1,

β1(v̂⊒)− β2(v̂⊒) =
1

2
(v̂⊒({1})− v̂⊒({2})) +

1

2
(v̂⊒({1, 3})− v̂⊒({2, 3})) = 1,

and then, by Theorem 2, we can argue again that, if ρ satisfies both ADD and
DOM properties, then 1ρ(≻)2 and 2ρ(≻)1.

We conclude with some considerations about alternative formulations of the
ADD axiom, using different criteria to evaluate the intensity of the dominance
in opposite power relations.

Axiom 3 (ADD*). Let <∈ P2N . A social ranking ρ satisfies the additivity∗

property iff for each i, j ∈ N and ☎,⊒∈ K< such that <≡ ⊕(☎,⊒), iρ(☎)j,
and jρ(⊒)i, we have that

2n
∑

k=1

min
(

Γi
k(☎),Γi

k(⊒)
)

≥
2n
∑

k=1

min
(

Γj
k(☎),Γj

k(⊒)
)

⇔ iρ(<)j.

Then, the following characterization holds.

Theorem 3. Let <∈ P2N and i, j ∈ N . Let ρ∗ be a social ranking which
satisfies DOM and ADD*. Then,

iρ(<)j ⇔ βi(v̂) ≥ βj(v̂)

where v̂ ∈ V (<) is the canonical games representing <.

Proof. We simply note that Γi
k(<) = min

(

Γi
k(☎),Γi

k(⊒)
)

for each i ∈ N and
k = 1, . . . , 2n. The remaining of the proof is similar to the proof of Theorem 2.

Example 4. Consider the canonical game v̂ in Table 1. Note that,

β1(v̂)− β2(v̂) =
1

2
(v̂({1})− v̂({2})) +

1

2
(v̂({1, 3})− v̂({2, 3})) = 1.

Then, a social ranking ρ∗(≻) satisfying DOM and ADD* is such that 1ρ∗(≻)2,
1ρ∗(≻)3 and 2ρ∗(≻)3.
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5 Concluding remarks

In this paper we have presented a preliminary approach to the problem of rank-
ing the strength of agents in a coalitional situation where only a qualitative
information about the relative power of coalitions is given.

As noticed, different notions of “intensity” of dominance, other than the one
of relative score, could apply. For instance, following the example illustrated
along the paper, one could argument that the dominance of 2 on 3 is stronger
than the one of 1 on 3 because {2} ≻ {3}, but {3} ≻ {1}. Alternatively, it would
be interesting to investigate the concept of “stronger than” relation introduced
in the domain of preference representation with intervals [7].

Another interesting direction, is the analysis of more realistic classes of power
relations, where, for instance, certain relative comparisons of power are not pos-
sible (e.g., for lack of information, incomparability of the social or the political
position of the coalitions, etc.). Assuming that two coalitions S and T are not
comparable does not imply that S and T cannot form or cannot be compared
to other coalitions. This aspect further characterizes our approach from the
theories about coalitional games with restrictions in cooperation [5].
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