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Abstract

Outranking relations such as produced by the Electre I or II or the Tactic
methods are based on a concordance and non-discordance principle that leads to
declaring that an alternative is “superior” to another, if the coalition of attributes
supporting this proposition is “sufficiently important” (concordance condition) and
if there is no attribute that “strongly rejects” it (non-discordance condition). Such
a way of comparing alternatives is rather natural and does not require a detailed
analysis of tradeoffs between the various attributes. However, it is well known that
it may produce binary relations that do not possess any remarkable property of
transitivity or completeness. The axiomatic foundations of outranking relations
have recently received attention. Within a conjoint measurement framework, char-
acterizations of reflexive concordance-discordance relations have been obtained.
These relations encompass those generated by the Electre I and II methods,
which are non-strict (reflexive) relations. A different characterization has been
provided for strict (asymmetric) preference relations such as produced by Tac-
tic. The goal of this paper is to analyze the relationships between reflexive and
asymmetric outranking relations. Co-duality plays an essential rôle in our analysis.
It allows to understand the correspondence between the previous characterizations.
Making a step further, we provide a common axiomatic characterization for both
types of relations. Applying the co-duality operator to concordance-discordance
relations also yields a new and interesting type of preference relation that we call
concordance relation with bonus. The axiomatic characterization of such relations
results directly from co-duality arguments.
Keywords: Multiple criteria analysis, Concordance, Discordance, Outranking
methods, Conjoint measurement, Nontransitive preferences, Veto, Bonus, Co-
duality
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1 Introduction
Most outranking methods, including the well known Electre methods (Roy,
1968, Roy and Bertier, 1973), base the comparison of alternatives on the so-called
concordance & non-discordance principle. It leads to accepting the proposition
that an alternative is “superior” to another if the following two conditions are
fulfilled:

• concordance condition: the coalition of attributes supporting this assertion
is “sufficiently important”,

• non-discordance condition: there is no attribute that “strongly rejects” this
assertion.

Stating that an alternative is “superior” to another may have two different mean-
ings. In Electre methods, “superior” means “not worse” i.e., “at least as good
as". Such methods aim at building a reflexive preference relation that is inter-
preted as an “at least as good as” relation. In general, such relations may lack
nice transitivity or completeness properties (on these issues, see Bouyssou, 1992,
1996). In previous work (BP09b)1, we have characterized the reflexive binary re-
lations that can be obtained on the basis of the concordance-discordance principle
like in the Electre I (Roy, 1968) and Electre II methods (Roy and Bertier,
1973).

In other outranking methods, like the Tactic method (Vansnick, 1986), “su-
perior” means “strictly better than”. Such methods build an asymmetric relation
that is interpreted as strict preference. As in the reflexive case, the obtained
relations are not necessarily transitive and they may have cycles. Asymmetric re-
lations satisfying the concordance/non-discordance condition have been previously
characterized in BP02c, BP05b, BP06.

Common sense and usage suggest a simple relationship between strict and non-
strict preference relations: alternative x is at least as good as alternative y if y
is not better than x and vice versa. In terms of binary relations, this amounts
saying that the “at least as good as” and “better than” relations are the co-dual of
each other, i.e., one is the complement of the inverse of the other. This intuition
should be questioned. Indeed, starting from an asymmetric preference relation
and taking its co-dual leads to a complete preference, while, usually, non-strict
outranking relations are incomplete preference relations. Conversely, the co-dual of
an incomplete relation, such as a non-strict outranking relation, is not asymmetric,
hence it hardly can be interpreted as a strict preference. Should we consider the

1In the sequel, previous papers by the present authors will be referred to by the authors’
initials, BP, followed by the year of publication and possibly a letter to distinguish different
papers published the same year.

1



asymmetric part of the co-dual? As we shall see, such a relation is not a strict
outranking relation as they can be defined in the spirit of the Tactic method.

The purpose of this paper is to examine the correspondence between strict and
non-strict outranking relations. After notation is presented in the next section, we
discuss this question in an informal way in Section 3, using definitions of strict and
non-strict outranking relations that respectively encompass the relations yielded
by the Tactic and Electre methods. In Section 4, we recall what is needed from
our previous axiomatic work and analyze in depth the relationship between strict
and non-strict outranking relations mainly using co-duality. This analysis leads
us to the definition and characterization of a new model for preference relations
(strict and non-strict concordance relations with “bonus”). Finally, we draw some
conclusions and present perspectives for future research.

2 Notation and definitions
In this section we set the notation and recall some elementary definitions that will
be used throughout the paper.

A preference relation on a set X is, in general, denoted by R. A binary relation
R on X is said to be reflexive if a R a, for all a ∈ X. It is complete if a R b or
b R a, for all a, b ∈ X. Relation R is asymmetric if a R b ⇒ Not[b R a], for all
a, b ∈ X. It is transitive if (a R b and b R c) ⇒ a R c, for all a, b, c ∈ X. It
is Ferrers if (a R b and c R d) ⇒ (a R d or c R b), for all a, b, c, d ∈ X. It is
semi-transitive if (a R b and b R c) ⇒ (a R d or d R c), for all a, b, c, d ∈ X. A
weak order is a complete transitive relation. A semiorder is a reflexive Ferrers and
semi-transitive relation. A pair of semiorders (R1,R2) on X form a homogeneous
chain of semiorders (Doignon et al., 1988) if R1 ⊆ R2 and there is a weak order
T on X such that, for i = 1, 2, we have

x T y ⇒ for all z ∈ X, [y Ri z ⇒ x Ri z] and [z Ri x⇒ z Ri y]. (1)

When a pair of alternatives (a, b) belongs to a relation R, we write indifferently
(a, b) ∈ R or a R b. Starting from a relation R, we can derive several other
relations by using appropriate operators. For all a, b ∈ X, we define:

• the dual (or inverse or reciprocal) Rd: a Rd b if b R a

• the complement Rc: a Rc b if Not[a R b]

• the co-dual Rcd: a Rcd b if Not[b R a]

• the asymmetric part Rα: a Rα b if a R b and Not[b R a]

• the symmetric part Rσ: a Rσ b if a R b and b R a
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• the symmetric complement Rρ: a Rρ b if Not[a R b] and Not[b R a].

We recall a few straightforward properties of the co-dual operator, for they will
be used in the sequel. The co-dual of a complete relation is its asymmetric part.
The co-dual of an asymmetric relation is complete. The co-dual operator is an
involution between the set of complete relations and the set of asymmetric ones.
It also establishes an involution between reflexive and irreflexive relations (see
Monjardet (1978) for proofs and many more results).

The set of alternatives will be denoted by X. As is usual in conjoint mea-
surement this set will be identified with the Cartesian product ∏n

i=1 Xi of n sets
Xi. The latter are interpreted as the range of values of n attributes (n ≥ 2) that
completely describe the alternatives in the decision problem at hand. These sets
Xi are not assumed to be sets of numbers, not even to be ordered sets. The set
{1, 2, . . . , n} will be denoted by N . We use X−i to denote the cartesian product∏
j∈N,j 6=iXj. Assuming that x is an element of X, x−i is the element of X−i ob-

tained by removing the ith coordinate of vector x, which describes x on attribute
i. Assuming that a belongs to X and xi ∈ Xi, (xi, a−i) is the element of X which
has the same description as a on all attributes but one: the description of (xi, a−i)
on the ith attribute is xi.

3 Variants of outranking relations
We start with briefly recalling the definition of a reflexive outranking relation as
used in the Electre I method and show that such relations fit in with a slightly
more general and abstract definition. Such relations are interpreted as non-strict
preferences. We do the same with the asymmetric outranking relation of the
Tactic method. Such relations are interpreted as strict preferences. On the basis
of these general definitions, we investigate the relationship between reflexive and
asymmetric outranking relations, mainly using co-duality.

In order to avoid unnecessary minor complications, we restrict our attention
to relations R on X = ∏n

i=1 Xi for which each attribute is influential. This re-
quirement is a sort of non-triviality condition for attributes. We say that attribute
i ∈ N is influential (for R ) if there are xi, yi, zi, wi ∈ Xi and x−i, y−i ∈ X−i
such that (xi, x−i) R (yi, y−i) and Not[(zi, x−i) R (wi, y−i)] and degenerate other-
wise. A degenerate attribute has no influence whatsoever on the comparison of
the elements of X and may be suppressed from N .
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3.1 Electre I
We describe how a reflexive outranking relation, interpreted as a non-strict prefer-
ence, is built according to the Electre I method2. Using a real-valued function
ui defined on Xi, and a pair of non-negative thresholds pti and vti, with pti ≤ vti,
we define the semiorders Si and Ui as follows3: for all xi, yi ∈ Xi,

xi Si yi ⇔ ui(xi) ≥ ui(yi)− pti (2)
xi Ui yi ⇔ ui(xi) ≥ ui(yi)− vti. (3)

The pair of relations (Si, Ui) on Xi form a homogeneous nested chain of semiorders
as defined in Section 2 (with the underlying weak order Ti such that xi Ti yi ⇔
ui(xi) ≥ ui(yi)). Relation Si interprets as the “at least as good” relation on
attribute i. The relation Pi, the asymmetric part of Si, is interpreted as a “better
than” relation. pti is the preference threshold on attribute i. We read “xi Ui yi”
as “level xi is not unacceptably bad with respect to level yi”. The relation Ui is a
non-veto relation on attribute i. In contrast, the co-dual of Ui is the veto relation
Vi. It is defined as follows: for all xi, yi ∈ Xi,

yi Vi xi ⇔ Not[xi Ui yi]
⇔ ui(xi) < ui(yi)− vti.

(4)

Hence yi Vi xi means that yi is far better than xi.
In Electre I, the outranking relation R is determined using positive weights

wi attached to each attribute and a threshold s with (1/2 ≤ s ≤ 1), such that, for
all x, y ∈ X,

x R y ⇔
∑
i∈S(x,y) wi∑
j∈N wj

≥ s and V (y, x) = ∅, (5)

where S(x, y) = {i ∈ N : xi Si yi}, the set of attributes on which x is at least as
good as y, and V (y, x) = {i ∈ N : yi Vi xi}, the set of attributes on which x is
unacceptably bad as compared to y.

Outranking relations such as R are reflexive, need not be complete and do not
in general enjoy nice transitivity properties (Bouyssou, 1996). As a consequence,
deriving a recommendation to the decision maker on the basis of such relations is
not straightforward. In order to do that, the analyst may use one of the so-called
exploitation procedures (see Roy and Bouyssou (1993, Ch. 6), or Bouyssou et al.
(2006, Ch. 7)).

2This version of the Electre I method is not the historical one (Roy, 1968), but a more
“modern” version as presented in Roy and Bouyssou (1993, p. 251).

3Assuming the existence of constant threshold representations for these semiorders is not
restrictive for finite Xi (Aleskerov et al., 2007, p.222).
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Remark 1
Note that we do not consider valued outranking relations such as those obtained
by the Electre III (see Roy (1978), Roy and Bouyssou (1993, pp. 284–289)) and
the Promethee (Brans and Vincke, 1985) methods. This is due to the fact that
the tools currently developed in the framework of conjoint measurement theory
only deal with crisp relations. In contrast, our analysis does encompass the crisp
outranking relations produced by the Electre II method. We do not develop
this point further for the sake of conciseness. •

3.2 Outranking relations
A general definition of a reflexive outranking relation was given in BP09b, where
such a relation is referred to as a reflexive concordance-discordance relation (R-
CDR). The same paper established a characterization of such relations by a system
of independent axioms. Since it turns out that reflexivity plays no rôle in the
analysis, we restate this definition below, dropping the assumption that the relation
is reflexive. In the sequel, the expression outranking relation will be used as exact
synonymous of concordance-discordance relation (CDR).

Definition 2 (Concordance-discordance relation (CDR))
A binary relation R on X = ∏n

i=1 Xi is a concordance-discordance relation (CDR)
if there are:

1. a complete binary relation Si on each Xi (i = 1, 2, . . . , n) (with asymmetric
part Pi and symmetric part Ii),

2. an asymmetric binary relation Vi on each Xi (i = 1, 2, . . . , n) such that
Vi ⊆ Pi,

3. a binary relation � between subsets of N having N for union that is mono-
tonic w.r.t. inclusion, i.e., for all A,B,C,D ⊆ N with A ∪ B = N and
C ∪D = N ,

[A � B,C ⊇ A,B ⊇ D]⇒ C � D, (6)

such that, for all x, y ∈ X,

x R y ⇔ [S(x, y) � S(y, x) and V (y, x) = ∅] , (7)

where S(x, y) = {i ∈ N : xi Si yi} and V (y, x) = {i ∈ N : yi Vi xi}.
We say that 〈�, Si, Vi〉 is a type I representation of R as a CDR.
A concordance relation (CR) is a CDR in which the Vi relations are all empty4.
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.
As explained in BP09b, the type I representation 〈�, Si, Vi〉 of a CDR may

not be unique. This is true even if all attributes are supposed to be influential.
When we speak below of a representation of type I 〈�, Si, Vi〉 of a CDR, we mean
one possible representation of type I of the CDR. As detailed in BP05a, BP07
the situation is different with CR. When all attributes are influential, they have a
unique representation of type I. Similar remarks will hold for the representations
of type II introduced below.

In the above definition, for each attribute i, Si is interpreted as a non-strict
preference relation on Xi. The asymmetric part Pi of Si is the strict preference
on Xi and Vi is the veto relation. Relation � is used in pairwise comparisons of
alternatives, it compares coalitions of attributes in terms of their importance: if A
and B denote subsets of attributes, A � B reads “the coalition of attributes A is
at least as important as the coalition B”. In the sequel, we shall use the notation
� (resp. ,) to denote the asymmetric (resp. symmetric) part of �. Consequently,
A � B (resp. A , B) reads “the coalition of attributes A is strictly more important
(resp. equally important as) coalition B).

It is easy to see that the outranking relation of Electre I satisfies the above
definition. In particular5, the relation � is defined by:

A � B if
∑
i∈Awi∑
j∈N wj

≥ s.

Rule (5) implies that the relation built in the Electre I procedure is reflexive.

Remark 3 (Outranking relations with attribute transitivity)
Due to (2) and (3), relations Si and Vi in Electre I have additional proper-
ties, namely Si is a semiorder, Vi is the asymmetric part of the semiorder Ui and
Si and Ui form a homogeneous chain of two semiorders. Concordance discor-
dance relations with these additional properties have been defined and charac-
terized in BP09b under the name reflexive concordance-discordance relations with
attribute transitivity (R-CDR-AT). When required, the suffix “-AT” will be added
to acronyms characterizing outranking relations, meaning that the corresponding
relations also have the attribute transitivity property. •

Remark 4 (Concordance and non-discordance relations)
Condition (7) explicitly defines an outranking relation as a relation that satisfies
two rules: a concordance rule (S(x, y) � S(y, x)) and a non-discordance rule

4When a concordance discordance (resp. concordance relation) relation is irreflexive, reflexive
or asymmetric we will use the acronyms I-CDR, R-CDR and A-CDR (resp. I-CR, R-CR and
A-CR) when we want to emphasize this fact.

5See BP09b, p. 470, for more detail.
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(V (y, x) 6= ∅). Alternatively, an outranking relation R can be viewed as the
intersection of two relations: a concordance relation C(R) and a non-discordance
relation. The concordance relation C(R) is defined by x C(R) y if S(x, y) � S(y, x).
The non-discordance relation ND(R) is defined by x ND(R) y if V (y, x) = ∅.
Hence, we have x R y iff [x C(R) y and x ND(R) y].

Note that the concordance relation C(R) associated with a concordance-discor-
dance relation in the sense of Definition 2 is itself a particular case of this definition,
in which the veto relation Vi is assumed to be empty. Such relations were studied
and characterized in (BP05a, BP07)6. •

3.3 Tactic
Another type of outranking relation has been introduced by Vansnick (1986). His
Tactic method yields an asymmetric outranking relation interpreted as a strict
preference. We briefly recall its definition. Let Pi be the asymmetric part of the
semiorder Si defined by (2) and let Vi be the asymmetric part of relation Ui defined
by (3). Since Ui is complete, Vi is also the co-dual of Ui. An outranking relation
R of the Tactic type is defined as follows:

x R y ⇔
∑

i∈P (x,y)
wi > ρ

∑
j∈P (y,x)

wj + ε and V (y, x) = ∅, (8)

where wi is a weight assigned to attribute i, ρ is a multiplicative threshold with
ρ ≥ 1, ε is a nonnegative additive threshold, P (y, x) = {i ∈ N : xi Pi yi} and
V (y, x) = {i ∈ N : yi Vi xi}.

Such an outranking relation is clearly asymmetric by construction, hence ir-
reflexive.

As with Electre I, Tactic inspires a general definition of outranking rela-
tions that we discuss in the next section.

3.4 An alternative definition of outranking relations
The alternative definition of a concordance-discordance relation that we give below
is a variant of the one originally proposed in BP06, BP12, which was restricted
to asymmetric preference relations. We drop this restriction and, in Lemma 6, we
show that the unrestricted version of the definition is equivalent to Definition 2.

Definition 5
A binary relation R on X = ∏n

i=1 Xi is a concordance-discordance relation if there
are:

6This characterization was given for reflexive concordance relations (R-CR), but this restric-
tion is inessential and our characterization is valid for general CR.
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• an asymmetric binary relation P ◦i on each Xi (i = 1, 2, . . . , n),

• an asymmetric binary relation V ◦i on each Xi (i = 1, 2, . . . , n), with V ◦i ⊆ P ◦i ,

• a binary relation �◦ between disjoint subsets of N that is monotonic w.r.t.
inclusion, i.e., for all A,B,C,D ⊆ N with A ∩B = ∅ and C ∩D = ∅,

[A �◦ B,C ⊇ A,B ⊇ D]⇒ C �◦ D, (9)

such that, for all x, y ∈ X,

x R y ⇔ [P ◦(x, y) �◦ P ◦(y, x) and V ◦(y, x) = ∅], (10)

where P ◦(x, y) = {i ∈ N : xi P ◦i yi} and V ◦(y, x) = {i ∈ N : yi V ◦i xi}.
We say that 〈�◦, P ◦i , V ◦i 〉 is a type II representation of R .

It is readily checked that the outranking relation produced by Tactic satisfies
this definition. In Tactic the relation �◦ is asymmetric.
Lemma 6 (Equivalence of the definitions of CDR)
Definitions 2 and 5 are equivalent.

Proof
Assume that R satisfies Definition 2 and that 〈�, Si, Vi〉 is a type I representation
of R. We construct a representation 〈�◦, P ◦i , V ◦i 〉 of type II satisfying (10) letting:

P ◦i = Pi (the asymmetric part of Si),∀i ∈ N
V ◦i = Vi, ∀i ∈ N

(11)

and �◦ is defined as follows: for all A,B ⊆ N , with A ∩B = ∅,

A �◦ B if (N \B) � (N \ A). (12)

It is straightforward to check that �◦ satisfies monotonicity condition (9) and that
R satisfies condition (10).

Conversely, let R be a relation that satisfies (10) and 〈�◦, P ◦i , V ◦i 〉 a type II
representation of R. We build a type I representation 〈�, Si, Vi〉 of R by letting:

Si = (P ◦i )cd (the co-dual of P ◦i ),∀i ∈ N (13)
Vi = V ◦i , ∀i ∈ N (14)

and � is defined as follows: for all A,B ⊆ N , with A ∪B = N ,

A � B if (N \B) �◦ (N \ A). (15)

Again, it is easy to prove that � satisfies (6) and that R satisfies condition (7).
Observe that because P ◦i , it co-dual Si is complete. 2

8



The proof of the lemma has established a correspondence between representa-
tions of type I and type II of a CDR, which we state in the following definition.

Definition 7 (Conjugate representations)
Let R be a CDR and 〈�, Si, Vi〉 (resp. 〈�◦, P ◦i , V ◦i 〉) a representation of type I
(resp. of type II) of R. We say that these representations are conjugate if Si and
P ◦i are linked by co-duality, i.e., xi Si yi if and only if yi P ◦i xi, Vi = V ◦i , and
provided � and �◦ are linked by (12) or, equivalently, by (15).

We state below three consequences of the equivalence of the two definitions of
CDR.

1. It is immediate that an asymmetric outranking relation as yielded by the
Tactic method described above satisfies the alternative definition of a CDR
(Definition 5). By Lemma 6, it also satisfies Definition 2. Asymmetric
concordance-discordance relations will be referred to by the acronym A-CDR.

2. If 〈�, Si, Vi〉 and 〈�◦, P ◦i , V ◦i 〉) are dual representations of a CDR, R, we see
that condition (5) in Electre I could equivalently be formulated in terms
of the strict preference Pi as∑

i∈P (y,x) wi∑
j∈N wj

≤ 1− s.

3. LetR be a CDR and let 〈�, Si, Vi〉, 〈�◦, P ◦i , V ◦i 〉 be conjugate representations
of R. The concordance part C(R) of the outranking relation R has been
defined, using (7) and assuming Vi = ∅, by x C(R) y if S(x, y) � S(y, x).
In the same spirit, we may use (10), assuming V ◦i = ∅, yielding x C(R) y if
P (x, y) � P (y, x). Assuming that 〈�, Si, Vi〉 and 〈�◦, P ◦i , V ◦i 〉 are conjugate
representations of R, it is easy to see that the latter definition is equivalent
with the initial one.

Summarizing, we may say that all crisp outranking relations, either those re-
flexive relations produced e.g., by the Electre I method, or the asymmetric
ones produced e.g., by Tactic are CDR. Their distinctive structural features are
mainly properties such as reflexivity vs irreflexivity, asymmetry or completeness.
These properties of the outranking relations are reflected in their representations,
more precisely, in corresponding properties of � or �◦. The following proposition
formally states some useful related results.

Proposition 8
Let R be a CDR and 〈�, Si, Vi〉 (resp. 〈�◦, P ◦i , V ◦i 〉) its representation of type I
(resp. of type II). We have:

9



1. R is either reflexive or irreflexive,
R is reflexive ⇔ N � N ⇔ ∅ �◦ ∅,
otherwise, R is irreflexive,

2. R is asymmetric ⇔� is asymmetric ⇔�◦ is asymmetric,

3. R is complete
⇔ (A � B or B � A), ∀A,B ⊆ N,A ∪B = N
⇔ (C �◦ D or C �◦ D), ∀C,D ⊆ N,C ∩D = ∅.

The straightforward proof is left to the reader. For Parts 2 and 3, the proof of
the ⇒ part uses the hypothesis that all attributes are influential (so that, for all
A,B ⊆ N such that A ∪ B = N , there are x, y ∈ X such that S(x, y) = A and
S(y, x) = B and for all C,D ⊆ N such that C ∩D = ∅, there are z, w ∈ X such
that P ◦(z, w) = C and P ◦(w, z) = D).

These properties can immediately be applied to outranking relations built using
Electre I or Tactic. If R arises from Electre I, it satisfies (5) so that N � N .
As a consequence of Proposition 8.1, R is reflexive. A relation R arising from
Tactic satisfies (8). This implies ∅ �◦ ∅ and [C �◦ D ⇒ Not[D �◦ C]], for all
C,D ⊆ N with C ∩D = ∅. Hence, using Proposition 8.1 and 8.2, we see that R
is irreflexive and asymmetric.

Remark 9 (The rôle of co-duality)
This section has shown that both reflexive and asymmetric outranking relations
can be described in a common framework specified by either Definition 2 or, equiv-
alently, Definition 5. In spite of this resemblance, their interpretations are rather
contrasted since reflexive preferences are usually interpreted as “at least as good”
relations while asymmetric preferences are interpreted as “better than” relations.
With these interpretations, some sort of semantic relationship is intuitively ex-
pected between “at least as good” and “better than” relations. If we start with a
reflexive preference relation R, interpreted as an “at least as good” relation, the
corresponding “better than” relation is the asymmetric part Rα of R. Conversely,
starting with an asymmetric preference relation R (like in the Tactic method),
how can we define the corresponding “at least as good” relation? At first glance,
it is tempting to say that x is at least as good as y if y is not better than x, which
amounts to define the “at least as good” relation as the co-dual of R . Such a
definition automatically yields a complete reflexive relation (in view of the prop-
erties of the co-dual operator that were recalled in Section 2). This is problematic
since reflexive preference relations cannot always be assumed to be complete (see
Deparis et al., 2012, for an experimental investigation of incomparability in pref-
erences). In particular, in the context of outranking methods, pairs of alternatives
may be incomparable, due for instance to veto effects (see Roy, 1996). Actually, an

10



asymmetric outranking relation can be, in general, the asymmetric part of several
reflexive outranking relations. Determining a unique reflexive relation having a
given asymmetric part requires additional information, namely the specification
of the list of incomparable pairs of alternatives (referred to as the incomparability
relation in Roy, 1996).

Although co-duality does not determine a correspondence between reflexive
and asymmetric outranking relations, it plays a major rôle for understanding their
relationship. Therefore, we devote the rest of Section 3 to investigate the effect of
the the co-dual and asymmetric part operators on outranking relations. We first
consider concordance relations (with empty veto relations) then we examine the
case of concordance-discordance relations.

3.5 The co-dual and the asymmetric part of a concordance
relation
We first define the co-dual of the relation comparing the coalitions of attributes in
Definition 2 and state properties of such relations that will be useful in the sequel.
Definition 10
Let � be a relation between subsets of N having N for union. We call the co-dual
of �, the relation �cd between subsets of N having N for union that is defined as
follows: for all A,B ⊆ N , with A ∪B = N , we have A �cd B ⇔ Not[B � A].

Lemma 11
Let � and �̃ be two relations between subsets of N having N for union and satis-
fying monotonicity condition (6).

1. The intersection � ∩�̃ of these relations is a relation between subsets of N
having N for union and satisfying (6).

2. The co-dual �cd and the asymmetric part �α of � both satisfy condition (6).

Proof. The proof is left to the reader.
Remark 12
Similar properties can be established for relations �◦ that intervene in type II
representations of concordance relations (CR). We emphasize that �◦ is a relation
between disjoint subsets of N and satisfies monotonicity condition (9). •

The co-dual of a CR is a CR and there is a correspondence between the type
I representations of these relations.
Proposition 13
Let R be a CR that has a representation of type I, 〈�, Si〉. The co-dual Rcd of R
is also a CR with a representation of type I that is 〈�cd, Si〉.
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Proof
We have x R y ⇔ [S(x, y) � S(y, x)]. The co-dual Rcd of R is such that x Rcd

y ⇔ Not[y R x]. Hence, we have x Rcd y ⇔ Not[S(y, x) � S(x, y)]. The latter
condition can be rewritten as x Rcd y ⇔

[
S(x, y) �cd S(y, x)

]
, where �cd is the

co-dual of �. Using Lemma 11.2, we know that 〈�cd, Si〉 is a type I representation
of Rcd. 2

Remark 14
A quite similar correspondence holds for type II representations. If 〈�◦, P ◦i 〉 is a
type II representation ofR, 〈�◦ cd, P ◦i 〉 is a type II representation ofRcd. Moreover,
if the type I and II representations of R are dual of one another (Definition 7), the
corresponding representations of Rcd are also dual of one another. In particular, if
� and �◦ are linked through relations (12) and (15) then their respective co-dual
�cd and �◦cd are linked through the same relations. •

Remark 15
The general properties of the co-dual operator, which were recalled in Section 2,
apply to the particular case of concordance relations. In particular, the co-dual
of a reflexive CR is an irreflexive CR and conversely. Also, the co-dual of an
asymmetric CR is a complete CR and conversely. •

We now turn to considering the asymmetric part of a R-CR. Taking the asym-
metric part of a R-CR yields a CR (that is of course asymmetric hence irreflexive).

Proposition 16
The asymmetric part of a R-CR, that has a type I representation 〈�, Si〉, is the
A-CR that has a type I representation 〈�α, Si〉 with �α, the asymmetric part of
�.

Proof
Let R be a R-CR. We have x R y ⇔ [S(x, y) � S(y, x)]. The asymmetric part
Rα of R is such that x Rα y ⇔ x R y and Not[y R x]. Hence, we have x Rα

y ⇔ [S(x, y) � S(y, x) and Not[S(y, x) � S(x, y)]]. The latter condition can be
rewritten as x Rα y ⇔ [S(x, y) �α S(y, x)], where �α is the asymmetric part of
�. Using Lemma 11.2, we know that 〈�α, Si〉 is a type I representation of Rα. 2

Remark 17 (Type II representations)
A remark similar to Remark 14 can be formulated for type II representations of
R and Rα. In particular, let 〈�◦, P ◦i 〉 be a type II representation of R. The
asymmetric part Rα of R has a type II representation 〈�◦α, P ◦i 〉, with �◦α, the
asymmetric part of �◦. •

12



Summarizing, if a R-CR is complete, its asymmetric part is an A-CR which
is also its co-dual. On the other hand, for a given A-CR, there are several R-CR
having it as their asymmetric part. One of them is a complete relation and its
co-dual. Note also that all what we said for CR remains valid for CR-AT, i.e., CR
with attribute transitivity (as defined in Remark 3).

3.6 Vetoes and bonuses
We now address the general case of outranking relations with veto. Consider-
ing concordance-discordance relations changes the picture. The correspondence
between R-CR and A-CR described in the previous section no longer holds. In
particular, the asymmetric part of a R-CDR is not, in general, an A-CDR. We
investigate such issues below.

Let R be a R-CDR. For all x, y ∈ X, we have that x R y if x C(R) y and
x ND(R) y, where C(R) is the R-CR associated with R and x ND(R) y if
Not[yi Vi xi], for all i ∈ N (see Remark 4).

The asymmetric part Rα of R obtains as follows:

x Rα y ⇔ x R y and Not[y R x]

⇔
{

[x C(R) y and x ND(R) y] and
[Not[y C(R) x] or Not[y ND(R) x]]

It is easy to see that the above definition can equivalently be written as:

x Rα y ⇔{
[x C(R) y and Not[y C(R) x] and x ND(R) y] or
[x C(R) y and y C(R) x and x ND(R) y and Not[y ND(R) x]] .

Hence we have x Rα y if and only if one of the following two exclusive conditions
is fulfilled:

1. (x, y) belongs to the asymmetric part of C(R) and x ND(R) y or

2. (x, y) belongs to the symmetric part of C(R), x ND(R) y and, for some
i ∈ N , xi Vi yi

Case 1 corresponds to the definition of an A-CDR since, by Proposition 16,
the asymmetric part of C(R), which is a R-CR, is an A-CR, a non-discordance
condition is imposed on it.

Case 2 looks a bit more unexpected. There is no such condition in the definition
of an A-CDR or in the Tactic motivating example of an A-CDR. With Case 2,
we have x Rα y when (x, y) belongs to the symmetric part of C(R) and there is no
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veto of y against x (∀j, Not[yj Vj xj]) but on some attribute i, we have xi Vi yi,
which means that xi is a much better performance than yi on attribute i. The
presence of a veto in favor of x against y can thus have a positive effect in breaking
a tie in the concordance relation. We call such an effect a bonus.

In contrast with Proposition 16, the asymmetric part of an R-CDR is not, in
general, an A-CDR, due to the possible occurrence of bonus effects.

Let us now examine the effect of the co-dual operator on concordance-discor-
dance relations. Assume, for instance, that R is an A-CDR. By definition of an
A-CDR, we have: x R y if x C(R) y and x ND(R) y, where C(R) is the A-CR
associated with R. The co-dual Rcd of R is such that:

x Rcd y ⇔ Not[y C(R) x] or Not[y ND(R) x]. (16)

The first condition in the righthand side of (16) states that (x, y) belongs to
the co-dual of C(R). We know that the co-dual of this A-CR is a complete R-
CR (Proposition 13). The second condition in the righthand side of (16), means
again that there may be a bonus effect, i.e., that xi Vi yi (for any i ∈ N) entails
x Rcd y. Condition (16) defining the co-dual of an A-CDR is very similar to the
one defining a R-CDR except that veto plays a positive rôle here. In contrast
with Proposition 13, the co-dual of a CDR is not, in general, a CDR, due to the
possible occurrence of bonus effects. It is a concordance relation with bonus (CRB)
as defined below. In this definition, the non-veto condition in Definition 2 is just
transformed into a bonus condition.
Definition 18 (Concordance relation with bonus (CRB))
A binary relation R on X = ∏n

i=1 Xi is a concordance relation with bonus (CRB)
if there are:

1. a complete binary relation Si on each Xi (i = 1, 2, . . . , n) (with asymmetric
part Pi and symmetric part Ii),

2. an asymmetric binary relation Vi on each Xi (i = 1, 2, . . . , n) such that
Vi ⊆ Pi,

3. a binary relation � between subsets of N having N for union that is mono-
tonic w.r.t. inclusion, i.e., for all A,B,C,D ⊆ N with A ∪ B = N and
C ∪D = N ,

[A � B,C ⊇ A,B ⊇ D]⇒ C � D, (17)

such that, for all x, y ∈ X,

x R y ⇔ [S(x, y) � S(y, x) or V (x, y) 6= ∅] , (18)

where S(x, y) = {i ∈ N : xi Si yi} and V (x, y) = {i ∈ N : xi Vi yi}.
We say that 〈�, Si, Vi〉 is a representation of R as a CRB.
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Note that a concordance relation (CR) is a CRB in which all the Vi relations
are empty. As for concordance-discordance relations, we may distinguish reflexive
CRB’s (R-CRB) on the one hand and asymmetric CRB’s (A-CRB) on the other
hand. The alternative definition of a CDR established in Lemma 6 can also be
transposed for CRB’s without any difficulty and we omit the details.

It is easy to see that CRB’s and CDR’s are related through co-duality as stated
in the following proposition.

Proposition 19
Relation R on X is a concordance-discordance relation if and only if its co-dual
Rcd is a concordance relation with bonus and conversely.

Proof
Let R be a CDR having 〈�, Si, Vi〉 as a representation of type I. Using Propo-
sition 13, we know that Rcd is a concordance relation that has 〈�cd, Si〉 as a
representation of type I as a CR. Since Rcd is defined, for all x, y ∈ X, by

x Rcd y ⇔ Not[S(y, x) � S(x, y) and V (y, x) = ∅]
⇔ Not[S(y, x) � S(x, y)] or [V (y, x) 6= ∅]
⇔ [S(x, y) �cd S(y, x)] or [V (y, x) 6= ∅],

we see that it is a CRB having a representation of type I, which is 〈�cd, Si, Vi〉.
The converse is also true. Starting with R, a CRB that has a type I represen-

tation 〈�cd, Si〉, we apply the co-dual operator as follows:

x Rcd y ⇔ Not[S(y, x) � S(x, y) or V (y, x) 6= ∅]
⇔ Not[S(y, x) � S(x, y)] and [V (y, x) = ∅]
⇔ [S(x, y) �cd S(y, x)] and [V (y, x) = ∅].

Relation Rcd is a CDR that admits the type I representation 〈�cd, Si, Vi〉. 2

Because the asymmetric part Rα of a R-CDR, R may involve at the same time
bonus and veto effects, simple examples show that it is neither an asymmetric CDR
nor an asymmetric CRB. Such relations require an analysis that is more complex
than the one for CDR or CRB. It is detailed in Bouyssou and Pirlot (2013).

3.7 Summary
Summarizing the above analysis of the relationship between non-strict and strict
outranking relations, we draw the reader’s attention to the following points.
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1. As long as we are concerned with concordance relations, without considering
vetoes, we see that there is no deep difference in nature between non-strict
and strict concordance relations: R-CR and A-CR satisfy the same definition
(Definition 2). They just differ by the additional property that they are
respectively reflexive or asymmetric. Moreover, the asymmetric part of a
R-CR is an A-CR. The co-dual of an A-CR is a complete R-CR. Knowing an
A-CR, there is no way of distinguishing indifference from incomparability in
view of reconstructing an hypothetic original R-CR of which the A-CR that
we know would be the asymmetric part. From a practical point of view, this
can be seen as an advantage of R-CR models over A-CR’s. The preferential
information encoded in a R-CR permits to distinguish incomparable pairs of
alternatives from indifferent ones, while A-CR’s do not allow for that.

2. Allowing for vetoes changes the picture. The asymmetric part of a R-CDR
is not an A-CDR but a more complex object, in general consisting of two
disjoint relations: on the one hand, the intersection of the asymmetric part
of the associated concordance relation and the non discordance relation (as
expected). On the other hand, a part of the indifference relation of the
associated concordance relation determined as follows: if one of the two
arcs linking a pair of alternatives in the indifference part of the concordance
relation is broken due to a veto, while the other is not, then the remaining
arc belongs to the asymmetric part of the R-CDR. In this case, the veto
relation acts as a bonus.

In the rest of this paper, we take advantage of the just explored co-duality
relationships between strict and and non-strict outranking relations, in order to
unify and deepen the axiomatic analysis that we presented in several previous
papers (BP02b, BP05a, BP06, BP07, BP09b).

4 Axiomatic analysis
We start by recalling some of earlier results on the characterization of CR and
CDR. Then we study the effect of the co-dual operator on our axioms. We de-
rive new axiomatic characterizations of classical outranking relations as well as
we obtain characterizations of preference relations involving bonuses instead of ve-
toes. Our main goal is to offer a unified and comprehensive framework allowing
clear understanding of the relationships between strict and non strict outranking
relations.
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4.1 Background
We briefly recall the axioms used in the characterization of reflexive CDR obtained
in BP09b, under the assumption that all attributes are influential.

Definition 20 (Axioms RC1, RC2)
Let R be a binary relation on a set X = ∏n

i=1 Xi. This relation is said to satisfy:

RC1i if
(xi, a−i) R (yi, b−i)

and
(zi, c−i) R (wi, d−i)

⇒


(zi, a−i) R (wi, b−i)
or

(xi, c−i) R (yi, d−i),

RC2i if
(xi, a−i) R (yi, b−i)

and
(yi, c−i) R (xi, d−i)

⇒


(zi, a−i) R (wi, b−i)
or

(wi, c−i) R (zi, d−i),
for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i. We say that R satisfies
RC1 (resp. RC2) if it satisfies RC1i (resp. RC2i) for all i ∈ N .

An interpretation of these axioms was provided in BP02a. Basically, axiom RC1i
amounts to say that all preference differences (xi, yi) on Xi can be weakly ordered.
Axiom RC2i establishes a link between opposite differences of preferences such as
(xi, yi) and (yi, xi). Note that RC2 entails that R is an independent preference
relation. Since they will be useful in the sequel, we recall the precise definition of
the weak orders on preference differences induced on each attribute Xi as well as
the main properties linking them to axioms RC1 and RC2.

Definition 21 (Relations %∗
i , %∗∗

i )
Let R be a binary relation on a set X = ∏n

i=1 Xi. We define the binary relations
%∗i and %∗∗i on X2

i letting, for all xi, yi, zi, wi ∈ Xi,

(xi, yi) %∗i (zi, wi)⇔
∀a−i, b−i ∈ X−i, [(zi, a−i) R (wi, b−i)⇒ (xi, a−i) R (yi, b−i)],

(xi, yi) %∗∗i (zi, wi)⇔ [(xi, yi) %∗i (zi, wi) and (wi, zi) %∗i (yi, xi)] .

These relations allow to give a precise meaning to the comparison of preference
differences on each attribute (see BP02a, for more detail). In the same paper, we
have shown the following result.

Lemma 22 (Bouyssou and Pirlot, 2002a, Lemma 1)
1. RC1i ⇔ [%∗i is complete],

2. RC2i ⇔
[for all xi, yi, zi, wi ∈ Xi,Not[(xi, yi) %∗i (zi, wi)]⇒ (yi, xi) %∗i (wi, zi)],
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3. [RC1i and RC2i] ⇔ [%∗∗i is complete].

Since %∗i and %∗∗i are transitive by definition, the above lemma states that %∗i
(resp. %∗∗i is a weak order if and only if RC1i holds (resp. RC1i and RC2i hold).

A crucial feature of CR and CDR is that they induce relations %∗i and %∗∗i
having a limited number of equivalence classes. This is the motivation for the
following two conditions.

Definition 23 (Axioms M1, M2)
Let R be a binary relation on a set X = ∏n

i=1 Xi. This relation is said to satisfy:

M1i if
(xi, a−i) R (yi, b−i)

and
(zi, c−i) R (wi, d−i)

⇒


(yi, a−i) R (xi, b−i)
or

(wi, a−i) R (zi, b−i)
or

(xi, c−i) R (yi, d−i),

(19)

M2i if
(xi, a−i) R (yi, b−i)

and
(yi, c−i) R (xi, d−i)

⇒


(yi, a−i) R (xi, b−i)
or

(zi, a−i) R (wi, b−i)
or

(zi, c−i) R (wi, d−i),

(20)

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i. We say that M1 (resp.
M2) holds if M1i (resp. M2i) holds for all i ∈ N .

The interpretation of M1i and M2i, respectively conditional on RC2i and RC1i,
results from the following lemma.

Lemma 24
1. If R satisfies RC2i, then R satisfies M1i ⇔

[for all xi, yi, zi, wi ∈ Xi,Not[(yi, xi) %∗i (xi, yi)]⇒ (xi, yi) %∗i (zi, wi)],

2. If R satisfies RC1i, then R satisfies M2i ⇔
[for all xi, yi, zi, wi ∈ Xi,Not[(yi, xi) %∗i (xi, yi)]⇒ (zi, wi) %∗i (yi, xi)],

Proof
The proof of item 1 (resp. item 2) results from the combination of BP07, Lemma
11.1 and 11.3 (resp. 11.2 and 11.4) and BP05a, Lemma 16.1 (resp. 16.2). 2

Let us call a positive preference difference (resp. negative preference difference)
one that is at least (resp. at most) as large as the opposite preference difference.
Under RC2i, M1i says that a positive preference difference is at least as large as
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any other preference difference. In other terms, there is only one class of positive
preference differences. Under RC1i, M2i states the symmetric property for nega-
tive preference differences. For more detail on the interpretation of M1 and M2,
see BP05a, BP07).

Remark 25 (Axioms UC and LC)
A simpler–and slightly stronger–version of axioms M1i, M2i was used in our ini-
tial characterization of concordance relations in BP05a. These axioms, respectively
labeled UC i and LC i, obtain by dropping the second in the three possible con-
clusions in the definitions of M1i and M2i. The substitution of UC i and LC i by
M1i and M2i in the characterization of reflexive CR was motivated by the need
for independent sets of axioms. By Lemma 16.3 in BP05a, we established indeed
that RC2i,UC i and LC i imply RC1i. The second in the three possible conclu-
sions in the definitions of M1i and M2i has precisely the effect of guaranteeing
the independence of the set of axioms RC1i,RC2i,M1i and M2i, as is shown in
the next theorem. •

Theorems 26 and 28 below are variants of Theorems 13 in BP07 and Theorem
19 in BP09b, respectively. The theorems stated below are slightly more general
than their previous versions in two respects. First they are stated for general
binary relations, instead of reflexive relations. The reflexivity property was actu-
ally playing no rôle in the proofs of the previous characterizations, which remain
unchanged and are thus omitted. The second detail is that the independence of
the axioms is now stated in the class of complete relations (instead of the class of
reflexive ones). Most of the examples previously used to show the independence
of the axioms were complete relations. For the sake of completeness, we recall
these examples below and provide an additional one that is needed for proving
Theorem 28.
Theorem 26
The binary relation R on X = ∏n

i=1 Xi is a concordance relation (CR) iff it satisfies
RC1, RC2, M1 and M2. These axioms are independent in the class of complete
binary relations.

Proof
As we said before, the proof of Theorem 13 in BP07 remains valid for general
binary relations and we omit it. The independence of the axioms in the class of
complete relations results from the following examples (see Appendix):

Violated axiom RC1i RC2i M1i M2i
Example 78 76 77 82

2
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We now introduce a weakened version of M2i, axiom M3i, which allows for
vetoes, i.e., “large negative” preference differences forbidding that a pair of alter-
natives may belong to the global preference relation.

Definition 27
Let R be a binary relation on a set X = ∏n

i=1 Xi. This relation is said to satisfy:

M3i if

(xi, a−i) R (yi, b−i)
and

(yi, c−i) R (xi, d−i)
and

(zi, e−i) R (wi, f−i)


⇒



(yi, a−i) R (xi, b−i)
or

(zi, a−i) R (wi, b−i)
or

(zi, c−i) R (wi, d−i),

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i, e−i, f−i ∈ X−i. We say that R
satisfies M3 if it satisfies M3i for all i ∈ N .

We observe thatM3i only differs fromM2i by the adjunction of the third premise,
implying that M3i is a weakening of M2i. The interpretation of M3i, under the
hypothesis that RC1i holds, results from that of M2i as stated in Lemma 24.2.
Assuming RC1i amounts to say that %∗i is complete. Hence if the first two
premises of M3i hold and neither the first nor the third conclusion do, then we
have (xi, yi) �∗i (yi, xi) �∗i (zi, wi). In these circumstances, the second conclusion
cannot be true, since this would imply that (zi, wi) �∗i (yi, xi), a contradiction
with (yi, xi) �∗i (zi, wi). Hence, none of the three conclusions holds and M3i can
only be satisfied if it never happens that (zi, e−i) R (wi, f−i). This means that the
pair (zi, wi) represents an unacceptable preference difference, leading to a veto.
We have the following result.

Theorem 28
The binary relation R on X = ∏n

i=1 Xi is a concordance-discordance relation
(CDR) iff it satisfies RC1, RC2, M1 and M3. These axioms are independent
in the class of complete binary relations.

Proof
As said before, the proof of Theorem 19 in BP09b remains valid for general binary
relations and we omit it. In order to prove the independence of the axioms in the
class of complete relations, we may invoke again those examples used in the proof of
Theorem 26. It only remains to exhibit an example of a complete relation satisfying
RC1,RC2,M1 andM3i on all attributes but one. Example 82 in appendix fulfills
this requirement. 2
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4.2 Characterizations of CR via co-duality
From Proposition 13 we know that the co-dual of a concordance relation R is also
a CR. Starting from the axioms above, it is not difficult to reformulate them in
terms of the co-dual relation Rcd. Let R be any relation on X. Consider for
instance axiom RC1i. Using contraposition, we obtain:
R satisfies RC1i, i.e.,

Not[(xi, c−i) R (yi, d−i)]
and

Not[(zi, a−i) R (wi, b−i)]

⇒


Not[(xi, a−i) R (yi, b−i)]
or

Not[(zi, c−i) R (wi, d−i)]

if and only if Rcd satisfies:

(yi, d−i) Rcd (xi, c−i)
and

(wi, b−i) Rcd (zi, a−i)

⇒


(yi, b−i) Rcd (xi, a−i)
or

(wi, d−i) Rcd (zi, c−i),

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i. Clearly, the above condition
is axiom RC1i imposed on relation Rcd. Hence, R satisfies RC11 iff its co-dual
does. It can be similarly shown that it is also the case for RC2i. We refer to this
property saying that axioms RC1 and RC2 are self co-dual.

The picture is not exactly the same for M1 and M2. Let us recall axioms
Maj1 and Maj2 that have been introduced for characterizing strict concordance
relations in BP05b, BP06, Th. 2.

Definition 29 (Axioms Maj1, Maj2)
Let R be a binary relation on a set X = ∏n

i=1 Xi. This relation is said to satisfy:

Maj1i if

(xi, a−i) R (yi, b−i)
and

(zi, a−i) R (wi, b−i)
and

(zi, c−i) R (wi, d−i)


⇒


(yi, a−i) R (xi, b−i)

or
(xi, c−i) R (yi, d−i),

(21)

Maj2i if

(xi, a−i) R (yi, b−i)
and

(wi, a−i) R (zi, b−i)
and

(yi, c−i) R (xi, d−i)


⇒


(yi, a−i) R (xi, b−i)

or
(zi, c−i) R (wi, d−i),

(22)

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i. We say that Maj1 (resp.
Maj2) holds if Maj1i (resp. Maj2i) holds for all i ∈ N .
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Contraposition of M1i yields: R satisfies M1i if and only if Rcd satisfies the
following condition: for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i,

(xi, b−i) Rcd (yi, a−i)
and

(zi, b−i) Rcd (wi, a−i)
and

(yi, d−i) Rcd (xi, c−i)


⇒


(yi, b−i) Rcd (xi, a−i)

or
(wi, d−i) Rcd (zi, c−i).

(23)

It is readily seen that this condition is axiom Maj2i imposed on relation Rcd.
Indeed expressions (22) and (23) only differ by the positions of a−i and b−i, c−i
and d−i, zi and wi, which have been interchanged, and by the substitution ofR with
Rcd. Paraphrasing this result, we state that imposing M1i on R is tantamount to
imposing Maj2i on its co-dual Rcd and conversely.

In a similar way, starting from condition M2i imposed on R, we obtain the
following equivalent condition imposed on Rcd: for all xi, yi, zi, wi ∈ Xi and all
a−i, b−i, c−i, d−i ∈ X−i,

(xi, b−i) Rcd (yi, a−i)
and

(wi, b−i) Rcd (zi, a−i)
and

(wi, d−i) Rcd (zi, c−i)


⇒


(yi, b−i) Rcd (xi, a−i)

or
(xi, d−i) Rcd (yi, c−i).

(24)

We observe that the latter condition is axiom Maj1i imposed on relation Rcd (with
the positions of a−i and b−i, c−i and d−i, zi and wi having been interchanged). Im-
posingM2i onR is equivalent to imposing Maj1i on its co-dualRcd and conversely.

We collect our findings in the next lemma. Its proof results from the above
observations.
Lemma 30
Let R be any relation on X and Rcd its co-dual. The following statements hold,
for all i ∈ N :

1. R satisfies RC1i iff Rcd satisfies RC1i,

2. R satisfies RC2i iff Rcd satisfies RC2i,

3. R satisfies M1i iff Rcd satisfies Maj2i,

4. R satisfies M2i iff Rcd satisfies Maj1i.
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Co-duality induces a simple correspondence between the relations comparing
preference differences on each attribute, namely the relations %∗i (resp. %∗∗i ) asso-
ciated with a relation R and its co-dual Rcd. To avoid ambiguity, we write %∗i (R),
%∗∗i (R) (resp. %∗i (Rcd), %∗∗i (Rcd)) to denote the two relations comparing prefer-
ence differences on attribute i associated with R (resp. Rcd). Using Definition 21
and that of Rcd, it is straightforward to establish the following result.

Lemma 31
Let R be any relation on X and Rcd its co-dual. For all i ∈ N , for all xi, yi, zi, wi ∈
Xi, we have:

1. (xi, yi) %∗i (Rcd) (zi, wi) iff (wi, zi) %∗i (R) (yi, xi),

2. (xi, yi) %∗∗i (Rcd) (zi, wi) iff (xi, yi) %∗∗i (R) (zi, wi).

Remark 32
In Remark 25, we pointed out that M1i (resp. M2i) is a weakening of axiom
UC i (resp. LC i) that was used in an earlier–non independent–characterization of
concordance relations. It is easy to see that also axioms Maj1i and Maj2i are
respectively weakened forms of UC i and LC i, obtained by imposing an additional
clause (the second one) as a premise. We thus have that UC i entails Maj1i and
LC i entails Maj2i, a property that will be used below.

In the context of the present paper, UC and LC are at an advantage w.r.t.M1
and M2 or Maj1 and Maj2 since they form a pair of cross co-dual conditions. It
is indeed easy to check that imposing UC i on relation R is equivalent to imposing
LCi on its co-dual Rcd and conversely. •

Starting from the characterization of a reflexive concordance relation (Theo-
rem 26) and using the results of Lemma 30, we easily obtain a “dual” characteriza-
tion of irreflexive CR’s. Actually, the characterization of reflexive CR’s is also valid
for irreflexive CR’s and conversely. The following lemma will help us establish-
ing characterizations that are valid for both reflexive and irreflexive concordance
relations. Recall that a CR is either reflexive or irreflexive (Proposition 8.1).

Lemma 33
The following implications hold for all i ∈ N :

1. M1i and RC2i entail Maj1i,

2. Maj1i and RC1i entail M1i,

3. M2i and RC1i entail Maj2i,

4. Maj2i and RC2i entail M2i.
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Under RC1i and RC2i, we have:

1. M1i ⇔ Maj1i,

2. M2i ⇔ Maj2i.

Proof
1. Assume that RC2i andM1i hold for a relationR . If we have Not[(wi, a−i) R

(zi, b−i)] in (19), M1i entails the two remaining possible consequences in
(21). On the contrary, if (wi, a−i) R (zi, b−i) holds true, since we have that
(zi, c−i) R (wi, d−i), we may apply RC2i yielding (yi, a−i) R (xi, b−i) or
(xi, c−i) R (yi, d−i), which are the desired consequences in order to establish
that Maj1i holds.

2. Assume that RC1i and Maj1i hold. If (zi, a−i) R (wi, b−i) is true then Maj1i
implies that the first or the third conclusion of M1i is true. Otherwise, we
have (xi, a−i) R (yi, b−i) and (zi, c−i) R (wi, d−i). Applying RC1i we get
either (zi, a−i) R (wi, b−i) or (xi, c−i) R (yi, d−i). We have assumed that the
former does not hold, hence the latter is true, which establishes M1i.

3. Assuming that RC1i and M2i hold, we show that Maj2i is satisfied. If the
second consequence in (20) does not hold, i.e., if we have Not[(zi, a−i) R
(wi, b−i)], then M2i entails one or the other consequence in Maj2i. On the
contrary, if (zi, a−i) R (wi, b−i) holds, considering the third premise of Maj2i,
i.e., (yi, c−i) R (xi, d−i) and using RC1i, we get either consequence of Maj2i.

4. Finally, assuming that RC2i and Maj2i hold, we derive M2i. This is im-
mediate whenever (wi, a−i) R (zi, b−i) is true since then Maj2i implies that
the first or the third conclusion of M2i is true. In the opposite case, from
(xi, a−i) R (yi, b−i) and (yi, c−i) R (xi, d−i), we obtain, using RC2i, that
(wi, a−i) R (zi, b−i) or (zi, c−i) R (wi, d−i). Since the former has been as-
sumed to be false, the latter, which is the third conclusion of M2i, is true,
concluding the proof.

The equivalence ofM1i and Maj1i under RC1i and RC2i results from the first two
items. The equivalence of M2i and Maj2i, under RC1i and RC2i is a consequence
of items 3 and 4. 2

We also have the following result.

Lemma 34
If relation R satisfies RC2i, M1i and Maj2i, then it satisfies RC1i.
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Proof
By Lemma 11.3 in BP07, we have that RC2i and M1i imply UC i. By co-duality
arguments, this implies that RC2i and Maj2i imply LC i. By Lemma 8.3 in BP07,
RC2i, UC i and LC i imply RC1i. 2

Theorem 35 (Characterizations of CR)
Let R be a relation on X. The following statements are equivalent:

1. R is a concordance relation (CR),

2. R satisfies RC1, RC2, M1 and M2,

3. R satisfies RC1, RC2, Maj1 and Maj2.

The axioms used in each of the above characterizations are independent in the class
of complete relations and in the class of asymmetric relations.

Proof
1. Let us first note that any relation R that satisfies RC2 is either reflexive or

irreflexive. The relation is irreflexive if for all x ∈ X, we have Not[x R x].
Assume there is some x such that x R x and consider any z ∈ X. From
(xi, x−i) R (xi, x−i) and RC2i, we deduce that (zi, x−i) R (zi, x−i). For
j 6= i, using RC2j, we can similarly show that (zi, zj, x−ij) R (zi, zj, x−ij).
Continuing in a similar way, we finally obtain z R z.

2. By Proposition 8.1, we know that any concordance relationR is either reflex-
ive or irreflexive. If R is reflexive, Theorem 26 establishes the first character-
ization. Since any irreflexive CR is the co-dual of a reflexive CR, Lemma 30
implies that the second characterization holds for irreflexive CR’s.

3. Lemma 33 establishes that under conditions RC1 and RC2,M1 is equivalent
to Maj1 and M2 is equivalent to Maj2. As a consequence, both characteri-
zations are valid for reflexive CR’s. Using Lemma 30, this implies that both
characterizations are also valid for irreflexive CR’s.

4. We know (Theorem 26) that axioms RC1, RC2, M1 and M2 (first charac-
terization) are independent in the class of complete relations. The following
examples (the same as for Theorem 26) show their independence. Each ax-
iom is violated on a single attribute, referred to by i, and satisfied on all
other attributes.

Violated axiom RC1i RC2i M1i M2i
Example 78 76 77 82
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The following examples (see in appendix) prove that RC1, RC2, Maj1 and
Maj2 are also independent in the class of complete relations:

Violated axiom RC1i RC2i Maj1i Maj2i
Example 79 76 77 82

Using co-duality, this implies that both sets of axioms are independent in
the class of asymmetric relations. 2

Remark 36
For showing the independence of RC1 in both characterizations, we need two
different examples (we used Examples 78 and 79). It is indeed a consequence of
Lemma 34 that there is no relation satisfying RC2i, M1i, Maj1i, M2i, Maj2i and
Not[RC1i]. •

Remark 37 (Earlier characterization of asymmetric CR)
For asymmetric relations, the properties in the third item in Theorem 35 have
been previously shown to constitute a characterization of a concordance relation
by a set of independent axioms (BP06, Theorem 2). •

Remark 38 (Other characterizations)
In view of Lemma 33, it is clear that

• R satisfies RC1, RC2, Maj1 and M2,

• R satisfies RC1, RC2, M1 and Maj2,

are two alternative characterizations of a CR. The examples used in the proof of
Theorem 35 for showing that RC1, RC2, M1 andM2 are independent in the class
of complete relations also show that RC1, RC2, Maj1 and M2 are independent
in the same class. By co-duality, this implies that RC1, RC2, Maj1 and M2 are
independent in the class of asymmetric relations. This means that these axioms
constitute a third independent characterization of CR. In contrast, RC1, RC2,
M1 and Maj2 do not form an independent family of axioms, be it in the class of
complete or in the class of asymmetric relations, as implied by Lemma 34. We
have no simple explanation for this asymmetry. We conjecture that it is linked to
the fact that the respective rôles of RC1 and of RC2 are not symmetric in our
analysis. •
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Remark 39 (Axioms UC and LC and co-duality)
Since UC and LC are cross co-dual conditions (see Remark 32), the family of
axioms RC1,RC2,UC and LC clearly offer a characterization of concordance re-
lations within both reflexive or irreflexive relations (as well as within both complete
or asymmetric relations). Unfortunately, these axioms are not independent since
BP05a, Lemma 16 establishes that RC2i,UC i and LC i imply RC1i. Dropping
RC1, however, yields an independent characterization of a CR since we know
(BP05a, Theorem 18) that a binary relation is a CR iff it satisfies RC2,UC and
LC . Moreover, the latter axioms are independent in the class of complete re-
lations as attested by Examples 76, 77 and 82, in appendix. The dependence
of RC1,RC2,UC and LC lead us to introduce axioms M1 and M2, which are
discussed in BP07. Theorem 35 tells us that Maj1 and Maj2, introduced for char-
acterizing asymmetric relations, can substitute M1 and M2, also in the case of
complete relations, without hampering the independence of the axioms. •

4.3 A new independent self co-dual characterization of CR
Axioms M1i and Maj1i (resp. M2i and Maj2i) admit a common weaker formula-
tion, MM1i (resp. MM2i), that simplifies the characterizations of CR and will be
useful in the sequel.

Definition 40 (Axioms MM1, MM2)
Let R be a binary relation on a set X = ∏n

i=1 Xi. This relation is said to satisfy:

MM1i if

(xi, a−i) R (yi, b−i)
and

(zi, a−i) R (wi, b−i)
and

(zi, c−i) R (wi, d−i)


⇒



(yi, a−i) R (xi, b−i)
or

(wi, a−i) R (zi, b−i)
or

(xi, c−i) R (yi, d−i),

MM2i if

(xi, a−i) R (yi, b−i)
and

(wi, a−i) R (zi, b−i)
and

(yi, c−i) R (xi, d−i)


⇒



(yi, a−i) R (xi, b−i)
or

(zi, a−i) R (wi, b−i)
or

(zi, c−i) R (wi, d−i),
for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i. We say that MM1 (resp.
MM2) holds if MM1i (resp. MM2i) holds for all i ∈ N .

Note that MM1i, without its second premise, is identical to M1i. MM1i, without
its second conclusion, is Maj1i. MM1i, without both its second premise and its
second conclusion, is UC i. MM1i is clearly a weaker condition than bothM1i and
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Maj1i. Similar observations can be made, linking MM2i,M2i and Maj2i. MM2i
is a weakened variant of the two others. However, under RC1i and RC2i, MM1i
can be shown to be equivalent to M1i,Maj1i and UCi, as stated in the following
lemma. A similar statement holds for MM2i.

Lemma 41
The following implications hold for all i ∈ N :

1. MM1i and RC1i entail M1i,

2. MM1i and RC2i entail Maj1i,

3. MM2i and RC2i entail M2i,

4. MM2i and RC1i entail Maj2i.

Under RC1i and RC2i, we have:

1. MM1i ⇔M1i ⇔ Maj1i ⇔ UC i,

2. MM2i ⇔M2i ⇔ Maj2i ⇔ LC i.

Proof
The proofs are very similar to those used to establish Lemma 33. We prove the
first implication, leaving the three others to the reader. Assume that MM1i and
RC1i hold. We show that M1i must be true. Applying RC1i to the premises of
M1i yields (xi, c−i) R (yi, di) or (zi, a−i) R (wi, b−i). If the former is true, then
M1i is verified. Else, all three premises of MM1i are satisfied, which entails the
disjunction of three conclusions that is common to M1i and MM1i. The proofs
of the two equivalences directly results from the four implications, Lemma 33 and
Lemma 11.3 and 11.4 in BP07. The latter says that RC2i andM1i entail UC i and
that RC1i and M2i entail LC i. By definition, UC i entails M1i and LC i entails
M2i. 2

Axioms MM1i and MM2i are cross co-dual, as are UC i and LC i (Remark 32).
More precisely, we have:

Lemma 42
Let R be a binary relation on X and Rcd its co-dual. The following hold for all
i ∈ N :

1. R satisfies MM1i iff Rcd satisfies MM2i,

2. R satisfies MM2i iff Rcd satisfies MM1i.
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Proof
The proof results immediately from contraposition and using the definition of the
co-dual. 2

Using Lemmas 41 and 42, it is easy to derive the following new characterization
result.
Theorem 43
The relation R on X is a CR iff it satisfies RC1,RC2,MM1 and MM2. These
axioms are independent both in the class of complete relations and in the class of
asymmetric relations.

Proof
Using Lemma 41.1 and 41.3, we obtain that a relation R satisfying RC1, RC2,
MM1 and MM2 also satisfies M1 and M2. Theorem 35 entails that R is a CR.
The converse is also true by Theorem 35 and the fact that M1 implies MM1 and
M2 implies MM2. The examples used to show the independence of the axioms
in Theorem 35 can be used here. This is due to the fact, on the one hand, that
M1 and Maj1 imply MM1, hence if R is an example of relation satisfying one of
the former, it satisfies the latter. On the other hand, if R is an example that does
not satisfy M1i or Maj1i (resp. M2i or Maj2i), while satisfying RC1 and RC2, it
cannot satisfy MM1i (resp. MM2i), due to Lemma 41. 2

4.4 Concordance relations with attribute transitivity
An additional property of CR, called attribute transitivity, was defined and studied
in BP05a, BP07. Attribute transitivity amounts to assuming that the relations Si
in Definition 2 are semiorders as is the case in most ordinal aggregation methods.
We have shown in the two above-mentioned papers that reflexive concordance rela-
tions with attribute transitivity (R-CR-AT) can be characterized by adding axioms
AC1,AC2 and AC3, which are similar to RC1 and RC2 and were introduced and
discussed in BP02a, BP04. We recall these axioms and examine how they behave
w.r.t. co-duality. Reflexive CR with attribute transitivity have been characterized
in BP05a, BP07. We use co-duality to derive characterizations of irreflexive CR
with attribute transitivity.

Axioms AC1, AC2 and AC3 are recalled in the following definition.

Definition 44 (Axioms AC1, AC2, AC3)
Let R be a binary relation on a set X = ∏n

i=1 Xi. This relation is said to satisfy:

AC1i if
(xi, a−i) R (yi, b−i)

and
(zi, c−i) R (wi, d−i)

⇒


(zi, a−i) R (yi, b−i)
or

(xi, c−i) R (wi, d−i),
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AC2i if
(xi, a−i) R (yi, b−i)

and
(zi, c−i) R (wi, d−i)

⇒


(xi, a−i) R (wi, b−i)
or

(zi, c−i) R (yi, d−i)

AC3i if
(xi, a−i) R (yi, b−i)

and
(yi, c−i) R (wi, d−i)

⇒


(xi, a−i) R (zi, b−i)
or

(zi, c−i) R (wi, d−i)
for all xi, yi, zi, wi ∈ Xi, all a−i, b−i, c−i, d−i ∈ X−i.

We say that R satisfies AC1 (resp. AC2, AC3) if it satisfies AC1i (resp. AC2i,
AC3i) for all i ∈ N .

An interpretation of these axioms was provided in BP04. Essentially, these ax-
ioms are related to the existence of linear arrangements of the elements (levels)
of Xi. AC1i suggests that the elements of Xi can be linearly ordered relatively
to “upward dominance”: if xi “upward dominates” zi, then (zi, c−i) R (wi, d−i)
entails (xi, c−i) R (wi, d−i). AC2i has a similar interpretation regarding “down-
ward dominance”. AC3i ensures that the upward and downward dominance orders
are not incompatible. The following gives a precise definition of the upward and
downward dominance relations.

Definition 45 (Relations %+
i , %

−
i and %±

i )
Let R be a binary relation on a set X = ∏n

i=1 Xi. We define the binary relations
%+
i , %−i and %±i on Xi letting, for all xi, yi ∈ Xi,

xi %
+
i yi ⇔ ∀a−i ∈ X−i, b ∈ X, [(yi, a−i) R b⇒ (xi, a−i) R b], (25)

xi %
−
i yi ⇔ ∀a ∈ X, b−i ∈ X−i, [a R (xi, b−i)⇒ a R (yi, b−i)], (26)

xi %
±
i yi ⇔ xi %

+
i yi and xi %−i yi. (27)

By definition, %+
i , %−i and %±i are transitive relations. Axioms AC1i, AC2i and

AC3i ensure that they are complete, as restated in the next lemma.

Lemma 46 (Bouyssou and Pirlot (2004), Lemma 3.1–4)
Let R be a binary relation on a set X = ∏n

i=1 Xi. R satisfies:

1. AC1i ⇔ %+
i is complete,

2. AC2i ⇔ %−i is complete,

3. AC3i ⇔ [Not[xi %+
i yi]⇒ yi %

−
i xi]⇔ [Not[xi %−i yi]⇒ yi %

+
i xi],

4. [AC1i, AC2i and AC3i] ⇔ %±i is complete.
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As implied by Remark 3, a concordance relation with attribute transitivity is
a CR having a representation 〈�, Si〉, with relations Si that are semiorders. The
following theorem characterizes CR with attribute transitivity. As for Theorems 26
and 28, it is a slight variation on Theorem 26 in BP07, which is formulated here
for general binary relations. The independence of the axioms is not only valid for
reflexive but also complete relations.
Theorem 47
The binary relation R on X = ∏n

i=1 Xi is a concordance relation with attribute
transitivity (CR-AT), i.e., has a representation 〈�, Si〉 in which all Si are semi-
orders, iff it satisfies RC1, RC2, AC1, AC3, M1, M2. In the class of complete
relations, these axioms are independent

Proof
The proof of the characterization result in Theorem 26 in BP07 remains valid for
general binary relations and it is omitted. The latter was formulated for reflexive
relations but this hypothesis plays no rôle in the proof so that the result is valid
for general relations. We recall the examples establishing the independence of the
axioms in the proof of Lemma 19 in BP07:

Violated axiom RC1i RC2i AC1i AC3i M1i M2i
Example 78 76 80 81 77 82

All these relations are complete. Therefore the axioms are independent in the set
of complete relations. 2

Remark 48
Note that axiom AC2 does not appear in this characterization because it is not
independent of the other axioms. Indeed, Lemma 27.1 in BP06 and Lemma 11,
items 3 and 4 in BP07 imply that under RC1, RC2, M1 and M2, axioms AC1
and AC2 are equivalent. AC2 can thus substitute AC1 in the characterization of
reflexive CR with attribute transitivity. •

We now examine how axioms AC1, AC2, AC3 can be transposed in terms of
the co-dual relation Rcd. Using contraposition, as we have done above with RC1i,
we can easily prove the following results.
Lemma 49
Let R be any relation on X and Rcd its co-dual. The following equivalences hold,
for all i ∈ N :

1. R satisfies AC1i iff Rcd satisfies AC2i,

2. R satisfies AC2i iff Rcd satisfies AC1i,
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3. R satisfies AC3i iff Rcd satisfies AC3i.

In the theorem below we extend the characterizations obtained in Theorem 35 to
CR with attribute transitivity (CR-AT). The next lemma will be used in the proof
of the theorem.
Lemma 50
Let R be a relation on X and Rd its dual relation. We have the following:

1. R satisfies RC1i (resp. RC2i, AC3i, M1i, Maj1i, M2i, Maj2i, UC i, LC i)
for some i ∈ N if and only if Rd satisfies the same property,

2. R satisfies AC1i (resp. AC2i) for some i ∈ N if and only if Rd satisfies
AC2i (resp. AC1i) for the same i.

Proof
The proof consists in checking that each of the equivalences holds, starting from
the properties definition. It is easy once it is noted that, for all i ∈ N and all
xi, yi, zi, wi ∈ Xi,

xi %
+
i (Rd) yi ⇔ yi %

−
i (R) xi,

xi %
−
i (Rd) yi ⇔ yi %

+
i (R) xi,

(xi, yi) %∗i (Rd) (zi, wi)⇔ (yi, xi) %∗i (R) (wi, zi),

where %+
i (K) (resp. %−i (K), %∗i (K)) denotes the relation %+

i (resp. %−i , %∗i ) using
K as the base relation. 2

A result similar to Lemma 31 can be established for the upward and downward
dominance relations %+

i ,%
−
i ,%

±
i . As in this lemma, our notation makes explicit

whether the upward and downward dominance relations refer to R or its co-dual
Rcd.
Lemma 51
Let R be a binary relation on X and Rcd its co-dual. For all i ∈ N , for all
xi, yi ∈ Xi, we have:

1. xi %+
i (Rcd) yi iff xi %

−
i (R) yi,

2. xi %−i (Rcd) yi iff xi %
+
i (R) yi,

3. xi %±i (Rcd) yi iff xi %
±
i (R) yi.

Proof
The proof follows immediately from Definition 45 and from that of Rcd. 2
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Theorem 52 (Characterization of CR-AT)
The relation R on X is a concordance relation with attribute transitivity (CR-AT)
iff R satisfies RC1, RC2, AC1, AC3, MM1 and MM2. These axioms are inde-
pendent in the class of complete relations and in the class of asymmetric relations.
In this characterization, AC1 can be substituted by AC2 without any other change.

Proof
If R is a CR-AT, we know by Theorem 47 that it satisfies RC1, RC2, AC1, AC3,
M1 andM2. M1 (resp.M2) implies MM1 (resp. MM2). Conversely, if R satisfies
RC1, RC2, AC1, AC3, MM1 and MM2, it satisfiesM1 andM2 (Lemma 41) hence
it is a CR-AT.

By Remark 48, we may substitute AC1 by AC2 in the characterization since,
under RC1, RC2, M1 and M2, axioms AC1 and AC2 are equivalent.

To prove the independence of the axioms in the set of complete relations, the
examples used in the proof of Theorem 47 are also suitable here since these exam-
ples satisfy M1i whenever they satisfy MM1i and similarly for M2i and MM2i.
According with Lemma 50, t he duals of these examples show that substituting
AC1 by AC2 in the characterization preserves the independence of the axioms.
The co-duals of the same examples and of their duals are asymmetric relations
showing the independence of the axioms characterizing CR-AT in the class of
asymmetric relations. 2

Corollary 53
The relation R on X is a concordance relation with attribute transitivity (CR-AT)
iff R satisfies RC1, RC2, AC1, AC3, Maj1 and Maj2. These axioms are inde-
pendent in the class of complete relations and in the class of asymmetric relations.
In this characterization, AC1 can be substituted by AC2 without any other change.

Proof
Under RC1 and RC2, MM1 is equivalent to Maj1 and MM2 to Maj2 (Lemma 41).
This new characterization hence results from Theorem 52. The independence of
the axioms in the set of complete relations results from the following examples (in
appendix):

Violated axiom RC1i RC2i AC1i AC3i Maj1i Maj2i
Example (79)d 76 80 81 77 82

Note that (79)d denotes the dual7 of the relation described in Example 79. In
view of Lemma 50, this relation does not satisfy RC11. It satisfies AC11 but not
AC21. The possibility of substituting AC1 by AC2 and keep the independence of

7We really mean the dual, not the co-dual.
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the axioms is shown as in Theorem 52 by taking the dual of the examples. The
independence of the axioms in the set of asymmetric relations is established by
taking the co-dual of the examples. 2

4.5 Characterizations of a CDR
In the last section we have shown that two different “dual” characterizations of
concordance relations (Theorem 47 and Corollary 53) can be obtained using co-
duality. The picture is not the same for concordance-discordance relations, which
are significantly more complex objects than CR. As discussed in Section 3.6, re-
flexes of automatic “co-dualization” must be abandoned since the co-dual of a CDR
is not a CDR but a CRB (Proposition 19). Nonetheless, two characterizations of
reflexive and irreflexive CDR can be obtained from previous results.

With Theorem 28, we have recalled a characterization of a reflexive concor-
dance-discordance relation (R-CDR). It involves axiom M1 and a weakening of
axiom M2, called M3 (see Definition 27). Examining the proof of this result
in BP09b shows that the reflexivity of the relation plays no rôle, so that this
characterization is valid both for reflexive and irreflexive CDR’s.

A similar characterization of asymmetric CDR was given in BP06, using axiom
Maj1 and a weakening of Maj2, that was called Maj3. This axiom was constructed
as M3 from M2, by adding a premise to Maj2.

In the same spirit as we introduced, in the previous section, axiom MM1 (resp.
MM2) generalizing both M1 and Maj1 (resp. M2 and Maj2), we now define the
new axiom MM3 as follows.
Definition 54 (MM3 and Maj3)
A relation R on X satisfies

MM3i if

(xi, a−i) R (yi, b−i)
and

(wi, a−i) R (zi, b−i)
and

(yi, c−i) R (xi, d−i)
and

(zi, e−i) R (wi, f−i)


⇒



(yi, a−i) R (xi, b−i)
or

(zi, a−i) R (wi, b−i)
or

(zi, c−i) R (wi, d−i),

(28)

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i, e−i, f−i ∈ X−i. Maj3i is the
same condition as MM3i except that the second conclusion has been removed. We
say that R satisfies MM3 (resp. Maj3) if it satisfies MM3i (resp. Maj3i) for all
i ∈ N .

Dropping the second premise in MM3i yields M3i. Removing the second conclu-
sion yields Maj3i. Obviously, M3i (resp. Maj3i) entails MM3i. Under RC1i and
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RC2i, axioms M3i, Maj3i and MM3i are equivalent as shown in the following
lemma.
Lemma 55
The following implications hold:

1. MM3i and RC2i entail M3i,

2. MM3i and RC1i entail Maj3i,

3. M3i and RC1i entail Maj3i,

4. Maj3i and RC2i entail M3i.

Under RC1i and RC2i, we have:

MM3i ⇔M3i ⇔ Maj3i.

Proof
The proof, similar to that of Lemma 41, is left to the reader. 2

Remark 56
Note that axioms M3i and Maj3i are not linked by co-duality. The co-dual coun-
terpart of MM3i has not been met before. This is related with the fact that the
co-dual of a CDR is not a CDR, in general, but a CRB, i.e., a concordance relation
with bonus (Proposition 19). Such relations will be studied and characterized in
Section 4.7. •

We are in position to produce a new characterization result, valid for any CDR,
which is the following.

Theorem 57 (Characterization of CDR)
The relation R on X is a concordance-discordance relation (CDR) iff R satisfies
RC1, RC2, MM1 and MM3. These axioms are independent in the set of complete
relations and in the set of asymmetric relations.

Proof
By Theorem 28, we know that a relation R that is a CDR satisfies RC1, RC2,M1
andM2. SinceM1 implies MM1 andM3 implies MM3, R also satisfies MM1 and
MM3. Conversely, if a relation R satisfies RC1 and RC2, then MM1 (resp. MM3)
is equivalent toM1 (resp.M3) (by Lemmas 41 and 55). Hence, using Theorem 28,
we have that R is a CDR.

In the class of complete relations, the following examples (in appendix) prove
the independence of the axioms.
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Violated axiom RC1i RC2i MM1i MM3i
Example 79 76 77 82

For proving the independence of the axioms in the class of asymmetric relations,
we can still use co-duality arguments for obtaining part of the required examples
but not all of them. Since Examples 79 and 76 satisfy MM1 and MM2, their
co-dual also satisfy these two properties (Lemma 42), hence they satisfy MM3.
In addition, Example (79)cd satisfies RC2i but not RC1i and conversely for Ex-
ample (76)cd. Example 82 satisfies RC1, RC2, MM1, MM2j, for j 6= 1 but not
MM21. Its co-dual satisfies RC1,RC2,MM1j for j 6= 1, MM2, hence MM3, but
not MM11. It thus proves the independence of MM11 for asymmetric relations.
For proving the independence of MM3, we need a new example. Example 83 is
an asymmetric relation verifying RC1,RC2,MM1, but not MM31. To sum up,
the following examples (in appendix) prove the independence of the axioms in the
class of asymmetric relations:

Violated axiom RC1i RC2i MM1i MM3i
Example (79)cd (76)cd (82)cd 83

2

Corollary 58
The relation R on X is a concordance-discordance relation (CDR)

1. iff R satisfies RC1, RC2, Maj1 and Maj3,

2. iff R satisfies RC1, RC2, M1 and M3.

Both sets of axioms are independent in the class of complete relations and in the
class of asymmetric relations.

Proof
Under RC1 and RC2, axiom MM1 (resp. MM3) is equivalent to Maj1 (resp. Maj3)
by Lemmas 41 and 55. Using the same lemmas also entails that, under RC1 and
RC2, axiom M1 (resp. M3) is equivalent to MM1 (resp. MM3). The new charac-
terizations are thus a direct consequence of Theorem 57. The independence of the
axioms for complete relations as well as for asymmetric relations is established by
the same examples as in Theorem 57, except in one case. For complete relations,
in order to prove the independence of RC1 from the other axioms in the second
characterization, we need to invoke Example 78, which is a complete relations
satisfying RC2, M1, M3 and RC1j for j 6= 1, but not RC11. 2
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4.6 CDR with attribute transitivity
A CDR with attribute transitivity (CDR-AT) is not just a CDR which admits a
representation in which Si are semiorders. A certain relationship between Si and
Vi must also be verified. CDR-AT have been studied in BP09b, Section 5.2. We
first recall the definition of a CDR-AT and the characterization result obtained in
BP09b.
Definition 59 (CDR with attribute transitivity)
A CDR with attribute transitivity (CDR-AT) is a CDR for which, for all i ∈ N :

• Si is a semiorder with asymmetric part Pi,

• Vi is the asymmetric part of a semiorder Ui with Ui ⊇ Si and, hence, Vi ⊆ Pi,

• (Si, Ui) form a homogeneous chain of semiorders.

The following is Theorem 29 in BP09b. The independence of the axioms is stated
for reflexive relations.
Theorem 60
The relation R on X is a CDR-AT iff R satisfies RC1, RC2, AC1, AC2, AC3,
M1 and M3. These axioms are independent in the class of reflexive relations.

The question of the independence–or not–of the axioms in the class of complete
relations and in the class of asymmetric relations is more delicate for CDR-AT
than for CR-AT (Theorem 52) or for CDR (Theorem 57). In view of examining the
independence issue for CDR-AT in a simpler way, we relax axiomsM1 andM3 into
MM1 and MM3 respectively. In view of Lemmas 41 and 55, it is clear that axioms
RC1, RC2, AC1, AC2, AC3, MM1 and MM3 yield another characterization of
CDR-AT. In the class of complete relations, this set of axioms, although weaker
than those used in Theorem 60, are not independent as attested by Proposition 73
in Appendix. Similarly, Proposition 75 in Appendix shows that, if R is a relation
(that may not be complete or asymmetric) on X satisfying RC2, AC1, AC2,
AC3, Maj1 and Maj3, then it also also satisfies RC1. These are other cases of
asymmetry in our results for which we do not presently have a clear explanation.

Our next result is a new characterization theorem for CDR-AT, in the general
case and in the case of complete and of asymmetric relations.

Theorem 61
1. The relation R on X is a CDR-AT iff R satisfies RC1, RC2, AC1, AC2,

AC3, MM1 and MM3. These axioms are independent in the class of reflexive
relations.
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2. If R is a complete relation on X, it is a CDR-AT iff R satisfies RC2, AC1,
AC2, AC3, MM1 and MM3. These axioms are independent in the class of
complete relations.

3. If R is an asymmetric relation on X, it is a CDR-AT iff R satisfies RC1,
RC2, AC1, AC2, AC3, MM1 and MM3. These axioms are independent in
the class of asymmetric relations.

Proof
The usual argument, based on Lemmas 41 and 55 allows us to substitute M1 by
MM1 and M3 by MM3 in the characterization of (general) CDR-AT provided in
Theorem 60. The independence of the axioms is established by the same examples
as in Theorem 60.

For complete CDR-AT, axiom RC1 can be dropped from their characterization,
in view of Proposition 73. In the class of complete relations, axioms RC2, AC1,
AC2, AC3, MM1 and MM3 are independent as attested by the following examples:

Violated axiom RC2i AC1i AC2i AC3i MM1i MM3i
Example 76 84 85 81 77 82

In the class of asymmetric CDR-AT, the axioms RC1,RC2, AC1, AC2, AC3,
MM1 and MM3 are independent as shown by the examples below.

Violated axiom RC1 RC2i AC1i AC2i AC3i MM1i MM3i
Example 89 (76)cd 87 88 (81)cd 86 83

(76)cd designates the co-dual of the relation in Example 76 and similarly for
(81)cd. 2

Remark 62
Substituting MM1 by M1 or by Maj1 and/or MM3 by M3 or by Maj3 in one of
the characterizations in Theorem 61 leads to other characterizations of CDR-AT.
The resulting sets of axioms remain independent in the class of complete relations
but this is not always the case in the class of asymmetric relations, as we shall see.

1. The case of complete relations. The examples used in the proof of Theo-
rem 61 for showing the independence of RC2i, AC1i, AC2i and AC3i, namely
Examples 76, 84, 85 and 81, all satisfy axiomsM1, Maj1, M3, Maj3. Exam-
ples 77 (resp. 82) showing the independence of MM1 (resp. MM3) satisfies
neither M1 nor Maj1 (resp. neither M3 nor Maj3).
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2. The case of asymmetric relations. In view of Proposition 75 in Appendix,
RC1i is implied by RC2i, AC1i, AC2i, AC3i, Maj1i and Maj3i. It is also the
case when Maj3 is substituted by M3 (since Lemma 55.4 tells us that Maj3i
and RC2i entailM3i). The following sets of axioms however are independent
in the class of asymmetric relations:

(a) RC1, RC2, AC1, AC2, AC3, M1 and M3,
(b) RC1, RC2, AC1, AC2, AC3, Maj1 and M3.

The independence of these axioms results from the same examples as those
used in Theorem 61 for asymmetric relations. Indeed, Examples 89, (76)cd,
87, 88 and (81)cd all satisfy MM1, M1, Maj1, MM3, M3 and Maj3. Exam-
ple 86 violates not only MM1 but also M1 and Maj1. Example 83 violates
not only MM3 but also M3 and Maj3. •

4.7 Concordance relations with bonus
We know that the co-dual of a CDR is a CRB, i.e., a concordance relation with
bonus (Definition 18) by Proposition 19. Starting from the characterization of a
CDR given in Theorem 57, we can easily derive a characterization of a CRB using
contraposition and co-duality.

Lemmas 30 and 42 entail that the co-dual of a CDR is a relation that satisfies
RC1,RC2,MM2 and an axiom that is obtained from MM3 by using contraposition
and co-duality. We call the latter DMM3 and define it below.
Definition 63 (Axiom DMM3)
A relation R on X satisfies

DMM3i if

(xi, a−i) R (yi, b−i)
and

(zi, a−i) R (wi, b−i)
and

(zi, c−i) R (wi, d−i)


⇒



(yi, a−i) R (xi, b−i)
or

(wi, a−i) R (zi, b−i)
or

(xi, c−i) R (yi, d−i)
or

(zi, e−i) R (wi, f−i),

(29)

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i, e−i, f−i ∈ X−i. We say that R
satisfies DMM3 if it satisfies DMM3i for all i ∈ N .

Note that dropping the second conclusion of DMM3i yields an axiom that is the
“co-dual” of M3i and which we call DM3i. In a similar way, dropping the second
premise of DMM3i yields an axiom that is the “co-dual” of Maj3i and which we
shall call DMaj3i. We note these results in the following lemma.
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Lemma 64
The relation R on X satisfies MM3i (resp. M3i,Maj3i) iff its co-dual Rcd satisfies
DMM3i (resp. DM3i,DMaj3i).

Comparing DMM3i with MM1i, we observe that the former only differ from
the latter by an additional conclusion. We thus have the following.

Lemma 65
If the relation R on X satisfies MM1i then it satisfies DMM3i.

As compared with MM1i, DMM3i offers a fourth possible conclusion, which
interprets, under RC1i and RC2i, as the possible existence of a “preference dif-
ference” (zi, wi) on attribute i that is “so large” that we always have (zi, e−i) R
(wi, f−i) whatever the levels e−i and f−i on the other attributes can be. Such a
large difference of preference was called a bonus in Section 3.6. This interpretation
is established in the next lemma.
Lemma 66
Let R be a binary relation on X. If R satisfies RC1i, RC2i and DMM3i, then,
for all xi, yi, zi, wi, ri, si ∈ Xi, if (zi, wi) �∗i (xi, yi) �∗i (yi, xi), we then have:

1. (zi, wi) %∗i (ri, si),

2. (zi, e−i) R (wi, f−i), for all e−i, f−i ∈ X−i.

Proof
If (zi, wi) �∗i (xi, yi) �∗i (yi, xi), there are a−i, b−i, c−i, d−i ∈ X−i, such that (i)
(xi, a−i) R (yi, b−i), (ii) Not[(yi, a−i) R (xi, b−i)], (iii) (zi, c−i) R (wi, d−i) and
(iv) Not[(xi, c−i) R (yi, d−i)]. Applying RC1i to (i) and (iii), and taking (iv) into
account yields (v) (zi, a−i) R (wi, b−i). Since (i), (iii) and (v) match the premises
of DMM3i, we get one of the four possible conclusions. The first and the third one
are in contradiction with (ii) and (iv). Due to RC2i and Lemma 22.2, we obtain
that (yi, xi) %∗i (wi, zi). From this and (ii) we deduce that the third conclusion is
not true. The only remaining possibility is thus the fourth conclusion of DMM3i,
which establishes the second part of the lemma and implies the first part. 2

Starting from Theorem 57 and considering a relation R that is the co-dual of
a CDR, we obtain directly the following characterization of a CRB.

Theorem 67 (Characterization of CRB)
The relation R on X is a CRB iff it satisfies RC1,RC2,MM2 and DMM3. These
axioms are independent both in the class of complete and in the class of asymmetric
relations.
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Proof
This result is a direct consequence of two facts:

• by definition, the co-dual of a CRB is a CDR and conversely,

• R satisfies RC1, RC2, MM2 and DMM3 iff its co-dual Rcd satisfies RC1,
RC2, MM1 and MM3 (Lemmas 30, 42 and 64).

Examples showing the independence of the axioms are obtained by taking the co-
dual of those used in the proof of Theorem 57 to show the independence of the
axioms characterizing a CDR. 2

Corollary 68
The relation R on X is a CRB

1. iff it satisfies RC1,RC2,M2 and DM3,

2. iff it satisfies RC1,RC2,Maj2 and DMaj3.

These two families of axioms are independent both in the class of complete and in
the class of asymmetric relations.

Proof
These characterizations, as well as the independence of the axioms, result from
Theorem 28 and Corollary 58 respectively, by the same argument as we used to
prove Theorem 67 starting from Theorem 57. 2

4.8 CRB with attribute transitivity
The co-dual of a CDR-AT is a CRB with attribute transitivity (CRB-AT), i.e.,
a CRB which satisfies AC1, AC2 and AC3 since the first two axioms are cross
co-dual and the latter is self co-dual (Lemma 49). In view of Proposition 19, and
its proof, the co-dual of a CDR, R, having a type I representation 〈�, Si, Vi〉, is a
CRB having a type I representation which is 〈�cd, Si, Vi〉, with the same relations
Si, Vi as for R . If it happens that R is a CDR-AT, Si, Vi form an homogeneous
chain of semiorders as defined in Section 2. These properties are thus inherited by
the co-dual of R, which prompts the following definition of a CRB-AT.

Definition 69 (CRB with attribute transitivity)
A CRB with attribute transitivity (CRB-AT) is a CRB for which, for all i ∈ N :

• Si is a semiorder with asymmetric part Pi,

• Vi is the asymmetric part of a semiorder Ui with Ui ⊇ Si and, hence, Vi ⊆ Pi,

• (Si, Ui) form an homogeneous chain of semiorders.
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We obtain a characterization of a CRB-AT from that of a CDR-AT, by co-duality
arguments. This yields the following theorem, which is similar to Theorem 61
Theorem 70

1. The relation R on X is a CRB-AT iff R satisfies RC1, RC2, AC1, AC2,
AC3, MM2 and DMM3. These axioms are independent in the class of ir-
reflexive relations.

2. If R is an asymmetric relation on X, it is a CDR-AT iff R satisfies RC2,
AC1, AC2, AC3, MM2 and DMM3. These axioms are independent in the
class of asymmetric relations.

3. If R is a complete relation on X, it is a CDR-AT iff R satisfies RC1, RC2,
AC1, AC2, AC3, MM2 and DMM3. These axioms are independent in the
class of complete relations.

Proof
The proof of this theorem obtains from that of Theorem 61 by co-duality argu-
ments. In particular, the co-dual of the examples used to prove the independence
of the axioms in the three cases considered in Theorem 61 can be used here in
the co-dual case. We emphasize that co-duality transforms complete relations into
asymmetric ones and conversely. 2

Remark 71
The independence result in the class of irreflexive relations (Part 1 of Theorem 70)
is not semantically attractive in a preference modelling context, since strict pref-
erence relations are not only irreflexive but also asymmetric. The relevant result
for strict preference relations is contained in Part 2 of Theorem 70. For non-strict
preference relations, which are just supposed to be reflexive, Part 3 is the relevant
result, since independence in the class of complete relations entails independence
in the larger class of reflexive relations. •

Remark 72
Remark 62 can be transposed by co-duality to yield alternative characterizations
of CRB-AT. In particular, for asymmetric CRB-AT, independent characteriza-
tions are obtained by substituting MM2 by M2 or by Maj2 and/or DMM3 by
DM3 or by DMaj3 in the characterization of asymmetric CDR-AT given in the
previous theorem. For complete CRB-AT, the following sets of axioms constitute
independent characterizations:

• RC1, RC2, AC1, AC2, AC3, Maj2 and DM3,

• RC1, RC2, AC1, AC2, AC3, M2 and DM3. •

42



5 Conclusion
From the present research and a series of previous papers investigating outranking
relations, we draw the following lessons.

1. It is possible to analyze concordance relations and concordance-discordance
relations, both reflexive (such as Electre) and asymmetric (such as Tac-
tic), in the framework and with the classical tools of conjoint measurement,

2. This research has illustrated the interest of an axiomatic analysis by showing

(a) that new models (namely, concordance relations with bonus) can be
defined and characterized just by using such a simple transformation as
co-duality,

(b) that new characterizations of known models can be obtained using such
a transformation,

(c) that axiomatic analysis allows to present a corpus of models (reflexive
and asymmetric outranking relations) in a unified framework and to
better understand their inter-relations,

Note also that the aim of characterizing methods is not just better under-
standing: the axioms used in the characterizations are testable in practice, they
are expressed in a language, that of preferences, which allows them to be refuted
experimentally.

Co-duality has played an important rôle in our analysis. While the co-dual of
a concordance relation is a concordance relation, it is no longer the case as soon
as vetoes come into play.

A noticeable product of our investigation using co-duality is the observation
that the asymmetric part of a reflexive concordance-discordance relation is not
a concordance-discordance relation since it involves both veto and bonus effects.
Knowing the properties of such relations (i.e., the asymmetric part of a reflexive
concordance discordance relation) is of importance since they are used in some
multi-criteria sorting methods, namely the optimistic version of the Electre
Tri method (Roy and Bouyssou, 1993, p.391). The pessimistic version of this
method is well-understood (characterized in Słowiński et al. (2002), Bouyssou
and Marchant (2007a,b)) and methods for learning its parameters on the basis of
assignment examples were developed since 1998 (see e.g., Mousseau and Słowiński
(1998), Mousseau et al. (2006), Leroy et al. (2011)). It is not the case with the
optimistic version. No axiomatic characterization is known. A method for learning
its parameters was recently proposed (Zheng et al., 2011). The recent interest for
this method in applications (Metchebon Takougang et al., 2014) motivates further
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investigation. For lack of place, an axiomatic characterization of the asymmetric
part of a concordance-discordance relation was not included in the present paper.
We leave it for another publication.

In closing, two brief remarks on possible additional developments arising from
the present analysis.

With the idea of bonus, some light was shed on what could be called an opti-
mistic counterpart of the notion of veto. The notion of bonus could make sense in
practical situations. Indeed, taking for granted that the usual outranking concept
is relevant for modeling preferences in certain cases, the notion of bonus naturally
comes into play in the asymmetric part of the traditional non-strict outranking
relations as it became apparent in our analysis. Alternative outranking models
could thus consider the possibility of bonuses instead of vetoes.

Another interesting issue is related to recent work by Bisdorff (2010, 2013).
This author adopts a logicist and argumentative viewpoint in his interpretation of
outranking. This is in line with the usual presentation of the outranking concept
according to which alternative x outranks alternative y if there are enough reasons
for asserting that x is at least as good as y while there is no reason that strongly
opposes this assertion (Roy, 1991). Bisdorff starts with the same observation that
we made in Remark 9: for preferences that are not complete relations, their co-
dual is not their asymmetric part, hence the interpretation of the co-dual as the
“better than” relation corresponding to the preference viewed as an “at least as
good” relation is impaired. In order to restore this relationship viewed as essential
in the framework of an argumentative interpretation of outranking relations, R.
Bisdorff uses a bipolar representation of concordance and discordance relations (on
a [−1, 1] scale, with 0 playing the special rôle of coding contradictory information).
He proposes an adapted definition of an outranking relation, which restores the
identity of the co-dual and the asymmetric part of the relation.

The latter remarks show that new and interesting models of preference can be
developed in the spirit of the classical outranking relations by combining ingredi-
ents such as concordance, vetoes and bonuses, in a way that preserves intuitively
appealing properties. The usefulness of such models for representing actual pref-
erences in practical applications has yet to be investigated.
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Appendices
A Propositions 73 and 75
Proposition 73
If R is a complete binary relation on X satisfying RC2, AC1, AC2, AC3, MM1
and MM3, then R satisfies RC1.

For proving this proposition, we need the following lemma.
Lemma 74
Let R be a binary relation on X satisfying RC2i, AC1i, AC2i, AC3i and Maj1i,
on some attribute i. Consider four levels x, y, z, w ∈ Xi such that the pairs (x, y)
and (z, w) are not comparable w.r.t. the relation %∗i , which we denote by (x, y) ./
(z, w)). The relative positions of these pairs and the opposite pairs are as follows:

1. [(y, x) ∼∗i (w, z)] �∗i [(x, y) ./ (z, w)],

2. furthermore, one of the following configurations holds true:

(a) [(y, z) ∼∗i (y, x) ∼∗i (w, z)] �∗i [(x, y) ./ (z, w)] �∗i (z, y)
(b) [(w, x) ∼∗i (y, x) ∼∗i (w, z)] �∗i [(x, y) ./ (z, w)] �∗i (x,w).

In the above, the notation [(x, y) ./ (z, w)] means that the incomparable pairs
[(x, y) and (z, w) have the same relationships with the other pairs listed.

Proof (of Lemma 74)
1. Let x, y, z, w ∈ Xi be such that the pairs (x, y) and (z, w) are incomparable
w.r.t. relation %∗i , i.e., we have:

Not[(x, y) %∗i (z, w)] and Not[(z, w) %∗i (x, y)]. (30)

In view of Definition 21, this means that there are a, b, c, d ∈ X−i such that:

(x, c) R (y, d), Not[(z, c) R (w, d)],
(z, a) R (w, b), Not[(x, a) R (y, b)], (31)

in other words, R does not satisfy RC1i.
Using RC2i and Lemma 22.2 imply that we have (y, x) %∗i (w, z) and (w, z) %∗i

(y, x), yielding:
(y, x) ∼∗i (w, z) (32)

The same axiom and lemma entail that (x, y) and (y, x) are comparable w.r.t. %∗i ,
i.e., we must have (x, y) %∗i (y, x) or (y, x) %∗i (x, y). The former is incompatible
with Maj1i as we shall see. Note that R satisfies Maj1i by Lemma 33.1.
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2. We show that assuming (x, y) %∗i (y, x) leads to a contradiction. From (x, y) %∗i
(y, x), we first derive the following consequences:

1. (z, w) �∗i (w, z). Assuming Not[(z, w) %∗i (w, z)] implies, by Lemma 22.2,
that (w, z) %∗i (z, w). Hence we would have: (x, y) %∗i (y, x) ∼∗i (w, z) %∗i
(z, w). Using the transitivity of %∗i leads to (x, y) %∗i (z, w), a contradiction.
The same contradiction can be derived if we suppose (z, w) ∼∗i (w, z).

2. (x, y) �∗i (y, x). Else, from (x, y) ∼∗i (y, x) we would derive (z, w) �∗i
(w, z) ∼∗i (y, x) ∼∗i (x, y), from which we deduce (z, w) �∗i (x, y), a con-
tradiction.

3. (x, y) �∗i (w, z). Assuming Not[(x, y) %∗i (w, z)] implies, by Lemma 22.2,
that (y, x) %∗i (z, w). Hence we would have: (w, z) ∼∗i (y, x) %∗i (z, w).
Using the transitivity of %∗i leads to (w, z) %∗i (z, w), a contradiction. The
same contradiction can be derived if we suppose (x, y) ∼∗i (w, z).

4. (z, w) �∗i (y, x) is established in a similar way as the previous item.

We thus have the following situation: (x, y) and (z, w) are incomparable differences
w.r.t. %∗i , both are strictly preferred to (y, x) and (w, z), which are indifferent pairs.

We now use AC1i, AC2i and AC3i. The main consequence of these axioms is
that the relations %+

i ,%
−
i and %±i are complete (Lemma 46). Moreover, we have,

for all s, t, u, v ∈ Xi:

s %+
i t⇒ (s, u) %∗i (t, u) (33)

s %−i t⇒ (v, t) %∗i (v, s) (34)

(direct consequence of AC1i,AC2i and the definitions of %+
i ,%

−
i and %∗i ).

Consider the pairs (x, y) and (z, w). We claim that there are u, v ∈ Xi such
that (u, v) �∗i (x, y) and (u, v) �∗i (z, w). Furthermore, (u, v) is either (x,w) or
(z, y). Observe first that we cannot have:

1. x %±i z and w %±i y. Else, using (33) and (34), we would have (x, y) %∗i
(z, y) %∗i (z, w), a contradiction with the fact that (x, y) and (z, w) are
incomparable,

2. z %±i x and y %±i w. Else, using (33) and (34), we would have (z, w) %∗i
(x,w) %∗i (x, y), a contradiction with the fact that (x, y) and (z, w) are
incomparable.

Since %±i is complete, we thus have either [x %±i z and y %±i w] or [z %±i x and
w %±i y]. Consider the former case. Using (33) and (34) yields (x,w) %∗i (z, w)
and (x,w) %∗i (x, y). We can have neither (x,w) ∼∗i (z, w) nor (x,w) ∼∗i (x, y),
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because this would imply that (x, y) and (z, w) are comparable. Our claim is thus
proved with (u, v) = (x,w). If the situation was such that z %±i x and w %±i y,
then we would have that (z, y) %∗i (z, w) and (z, y) %∗i (x, y). The rôle of (u, v)
would be played by (z, y). Our claim is proved.

Assume first that (u, v) = (x,w). From (x, c) R (y, d) in (31) and (x,w) %∗i
(x, y), we derive (x, c) R (w, d). Similarly, (z, a) R (w, b) and (x,w) %∗i (z, w)
entail (x, a) R (w, b). This allows to derive a contradiction with Maj1i. Indeed, we
have (x, c) R (w, d), (x, a) R (w, b) and (z, a) R (w, b). Using Maj1i yields either
(w, a) R (z, b) or (z, c) R (w, d). None of this conclusions holds true. The latter is
false by hypothesis (see (31)) and the former cannot be true since (x, y) �∗i (w, z)
and Not[(x, a) R (y, b)]. The case in which we assume (u, v) = (z, y) yields a
similar contradiction. As a conclusion, we have established that (y, x) �∗i (x, y).
3. We draw the consequences of the fact that (y, x) �∗i (x, y), by adapting the
ideas that we used in Part 2 of the present proof, under the opposite hypothesis.

The fact that (y, x) %∗i (x, y) entails the following:

1. (w, z) �∗i (z, w). Assuming Not[(w, z) %∗i (z, w)] implies, by Lemma 22.2,
that (z, w) %∗i (w, z). Hence we would have: (z, w) %∗i (w, z) ∼∗i (y, x) %∗i
(x, y). Using the transitivity of %∗i leads to (z, w) %∗i (x, y), a contradiction.
The same contradiction arises if we suppose (z, w) ∼∗i (w, z).

2. (y, x) �∗i (x, y). Else, from (y, x) ∼∗i (x, y) we would derive (x, y) ∼∗i
(y, x) ∼∗i (w, z) �∗i (z, w), from which we deduce (x, y) �∗i (z, w), a con-
tradiction.

3. (y, x) �∗i (z, w). Assuming Not[(y, x) %∗i (z, w)] implies, by Lemma 22.2,
that (x, y) %∗i (w, z). Hence we would have: (x, y) %∗i (w, z) ∼∗i (y, x). Using
the transitivity of %∗i leads to (x, y) %∗i (y, x), a contradiction. The same
contradiction can be derived if we suppose (y, x) ∼∗i (z, w).

4. (w, z) �∗i (x, y) is established in a similar way as the previous item.

We thus have the following situation: (y, x) and (w, z) are incomparable differences
w.r.t. %∗i . Both are strictly preferred to (x, y) and (z, w), which are indifferent
pairs.

Using AC1i, AC2i and AC3i, we derive exactly the same consequences as in
Part 2, i.e., we have either [x %±i z and y %±i w] or [z %±i x and w %±i y].

If [x %±i z and y %±i w], we conclude that (x, y) %∗i (z, y) and (z, w) %∗i (z, y).
We can have neither (x, y) ∼∗i (z, y) nor (z, w) ∼∗i (z, y), because this would
imply that (x, y) and (z, w) are comparable. Since we have Not[(z, y) %∗i (x, y)],
we deduce that (y, z) %∗i (y, x), using Lemma 22.2. Having (y, z) �∗i (y, x) is
impossible since this would contradict Maj1i. Indeed, assume that there are e, f ∈
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X−i such that (y, e) R (z, f) and Not[(y, e) R (x, f)]. Since (y, x) �∗i (z, w) and
(z, a) R (w, b), we get (y, a) R (x, b). From (y, z) %∗i (y, x) and (y, a) R (x, b), we
derive (y, a) R (z, b). By (31), we also have Not[(x, a) R (y, b)] . The following
configuration is not compatible with Maj1i: (y, a) R (x, b), (y, a) R (z, b), (y, e) R
(z, f), Not[(x, a) R (y, b)], Not[(y, e) R (x, f)]. We have thus established that
(y, z) ∼∗i (y, x). Starting from Not[(z, y) %∗i (z, w)], one proves similarly that
(y, z) ∼∗i (w, z) and we finally have that (y, z) ∼∗i (w, z) ∼∗i (y, x).

In the case in which [z %±i x and w %±i y], one proves in an analogous way
that (x, y) �∗i (x,w), (z, w) �∗i (x,w) and (w, x) ∼∗i (y, x) ∼∗i (w, z).

This concludes the proof of Lemma 74. 2

Proof (of Proposition 73)
Since R satisfies MM1 and RC2, it satisfies also Maj1 (Lemma 41.2). Let us
assume that R does not verify RC1i on some attribute i. We shall derive a
contradiction from this assumption. If RC1i is not verified by R, there exist four
levels x, y, z, w ∈ Xi such that (x, y) and (z, w) are incomparable w.r.t. relation
%∗i , or, in other words, there are a, b, c, d ∈ X−i such that:

(x, c) R (y, d) Not[(z, c) R (w, d)]
(z, a) R (w, b) Not[(x, a) R (y, b)] (35)

Hence R is in the conditions of application of Lemma 74. We shall assume that
the configuration described in conclusion 2.(a) of the lemma holds true, i.e., we
have:

[(y, z) ∼∗i (y, x) ∼∗i (w, z)] �∗i [(x, y) ./ (z, w)] �∗i (z, y). (36)
Note that case 2.(b) can be dealt with similarly. We leave it to the reader.

Since R satisfies MM3 and RC2, it satisfies M3 (Lemma 55.1). In the con-
figuration described by (36), M3i implies that the pair (z, y) is a veto. In-
deed, assume that there are e, f ∈ X−i such that (z, e) R (y, f). We have
(x, y) �∗i (z, y), which means there are g, h ∈ X−i such that (x, g) R (y, h) and
Not[(z, g) R (y, h)]. It holds true that (y, a) R (x, b) since, by (35), (z, a) R (w, b)
and, by (36), (y, x) �∗i (z, w). Finally, we have Not[(x, a) R (y, b)] by (35)
and Not[(z, a) R (y, b)] since (x, y) �∗i (z, y). Gathering the relevant prefer-
ences, i.e., (y, a) R (x, b), (x, g) R (y, h), (z, e) R (y, f), Not[(x, a) R (y, b)],
Not[(z, a) R (y, b)] and Not[(z, g) R (y, h)], yields a contradiction with M3i. We
thus have shown that for all e, f ∈ X−i, we have

Not[(z, e) R (y, f)] (37)

The fact that R is complete enters into play in the following way. Since R
is complete, (37) entails that for all e, f ∈ X−i, we have (y, e) R (z, f). Since
(36) tells us that (y, z) ∼∗i (w, z) ∼∗i (y, x), we also have, for all e, f ∈ X−i,
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(w, e) R (z, f) and (y, e) R (x, f). In other words, (y, z), (w, z) and (y, x) are
bonuses as defined in Section 3.6.

The relation R induces not only a relation %∗i comparing pairs of levels on Xi,
but also a similar relation %∗−i on the pairs of elements of X−i. For e, f, g, h ∈ X−i,
we have (e, f) %∗−i (g, h) iff, for all u, v ∈ Xi, [(u, g) R (v, h)] ⇒ [(u, e) R (v, f)].
The assumption (35) also means that the pairs (a, b), (c, d) ∈ X−i × X−i are not
comparable w.r.t. %∗−i. This relation is transitive by definition and complete iff
RC1i holds.

If AC1,AC2 and AC3 hold, we claim that there are g, h ∈ X−i with (a, b) %∗−i
(g, h) and (c, d) %∗−i (g, h). AC1,AC2 and AC3 imply that %±j is a complete weak
order for all j ∈ N . We define g (resp.h) by specifying its level gj (resp. hj) for
each j 6= i as follows: for all j 6= i,

gj = min {aj, cj} =
{
aj if cj %±j aj
cj if aj %±j cj

(38)

hj = max {bj, dj} =
{
bj if bj %±j dj
dj if dj %±j bj

(39)

Starting from the trivial (a, b) %∗−i (a, b) and applying repeatedly (33) and (34),
using g and h, we obtain (a, b) %∗−i (g, h). One proves similarly that (c, d) %∗−i
(g, h).

We finish the proof by showing that the above induces a contradiction with
M3i. We have that Not[(x, a) R (y, b)] entails Not[(x, g) R (y, h)] and Not[(z, c) R
(w, d)] entails Not[(z, g) R (w, h)] (since a difference on X−i is substituted by a
smaller one w.r.t.%∗−i). Since (y, x) is a bonus, we have in particular (y, g) R (x, h).
By (35), we have (x, c) R (y, d) and (z, a) R (w, b). Gathering the relevant
preferences, i.e., (y, g) R (x, h), (x, c) R (y, d), (z, a) R (w, b), Not[(x, g) R (y, h)],
Not[(z, g) R (w, h)] and Not[(z, c) R (w, d)], yields a contradiction with M3i. 2

The proposition below is another result, besides Proposition 73, showing that
RC1 has relationships with the other axioms even though the considered relations
here are neither complete nor asymmetric.
Proposition 75
If R is a relation on X satisfying RC2i, AC1i, AC2i, AC3i, Maj1i and Maj3i,
for some i ∈ N , then R satisfies RC1i.

Proof
Let us assume that R does not verify RC1i on some attribute i, i.e., there exist
x, y, z, w ∈ Xi and a, b, c, d ∈ X−i such that:

(x, c) R (y, d) Not[(z, c) R (w, d)]
(z, a) R (w, b) Not[(x, a) R (y, b)]. (40)
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In other words, the pairs (x, y) and (z, w) are incomparable w.r.t. relation %∗i .
Therefore, R is in the conditions of application of Lemma 74 and we have [(y, x) ∼∗i
(w, z)] �∗i [(x, y), (z, w)].

The latter is not compatible with Maj3i as we shall see. Since (y, x) �∗i (z, w)
and using (z, a) R (w, b) in (40), we obtain that (y, a) R (x, b). From (w, z) ∼∗i
(y, x) and (y, a) R (x, b), we derive (w, a) R (z, b). We also directly use the
four clauses in (40). The following facts contradict Maj3i: (y, a) R (x, b), (w, a) R
(z, b), (x, c) R (y, d), (z, a) R (w, b), Not[(x, a) R (y, b)] and Not[(z, c) R (w, d)]. 2

B Examples
The examples below have been checked in order to determine whether they satisfy
the following axioms:

RC1, RC2, AC1, AC2, AC3, UC , LC , M1, M2, Maj1, Maj2,
MM1, MM2, M3, Maj3, MM3, DMM3.

Those among these axioms that are not satisfied are mentioned below next to the
example label. All axioms from the previous list that are not explicitly mentioned
are proved to be satisfied. By default, the examples are complete relations. Rela-
tions that are asymmetric are explicitly labeled as such, as well as relations that
are neither complete nor asymmetric.

Example 76 (Not[RC2i])
This is example 25 in BP07. Let N = {1, 2} and X = {x, y}×{a, b}. Let R on X
be identical to X2 except that, Not[(y, a) R (x, a)] and Not[(y, b) R (x, a)]. This
relation is complete.

It is easy to check that we have:

• (x, y), (x, x), (y, y) �∗1 (y, x) and

• [(a, b), (b, b)] �∗2 [(a, a), (b, a)].

Using Lemma 22, it is easy to see that RC1 and RC21 hold but that RC22 is
violated. Using Lemma 8.1 and 8.2 in BP07 it is clear that UC and LC hold
so that the same is true for M1 and M2. As a consequence of Remark 32, we
have that R satisfies Maj1 and Maj2. Since M3 (resp. Maj3) is entailed by M2
(resp. Maj2), R also satisfies M3 (resp. Maj3). Since R satisfies M1 (resp. M2)
it satisfies its relaxed version MM1 (resp. MM2). As R satisfies M2 it fulfills M3
and MM3. As R satisfies M1 it fulfills DMM3.

Finally, using Lemma 15 in BP07, it is routine to check that we have :

• x �±1 y,
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• a �±2 b.

Hence AC1, AC2 and AC3 hold. 3

Example 77 (Not[UC i, M1i, Maj1i, MM1i])
This is Example 33 in BP05a. Also used in the proof of Part 5 of BP07, Lemma
11 and as Example 23 in BP07.

Let X = {a, b} × {x, y, z} and R on X be identical to the linear order:

(a, x) R (a, y) R (a, z) R (b, x) R (b, y) R (b, z),

except that (a, z) and (b, x) are indifferent: (a, z) R (b, x) and (b, x) R (a, z) both
hold true.

This is a complete relation.
We have, abusing notation,

• (a, b) �∗1 [(a, a), (b, b)] �∗1 (b, a) and

• (x, z) �∗2 [(x, x), (y, y), (z, z), (x, y), (y, z)] �∗2 [(y, x), (z, x), (z, y)],

• a �±1 b and x �±2 y �±2 z.

Using Lemma 22, it is easy to check that R satisfies RC1, RC2, AC1, AC2, AC3.
It is clear that UC1, LC1 and LC2 hold. UC2 is violated since we have (x, y) �∗2

(y, x) and Not[(x, y) %∗2 (x, z)].
Parts 1 and 2 of Lemma 11 in BP07, show that conditions M11 and M2 hold.

By Part 3 of Lemma 11 in BP07, M12 cannot hold. Using Lemma 33 shows that
Maj11 and Maj2 hold while Maj12 does not. Using Lemma 41 shows that MM11
and MM2 hold while MM12 does not. Since R satisfies M2 (resp. Maj2, MM2),
this implies that M3 (resp. Maj3, MM3) also holds. Since M11 holds, DMM31
holds too. We show that DMM32 also holds. Assume the contrary. Taking RC12
into account, this implies that there are x2, y2, z2, w2 ∈ X1 such that (z2, w2) �∗2
(x2, y2) �∗2 (y2, x2). Hence (z2, w2) can only be (x, z). The fourth conclusion of
DMM32 is always true since (u, x) R (v, z) for all u, v ∈ X1 = {a, b}. 3

Example 78 (Not[RC1i, AC2i, LC i, Maj2i, Maj31])
This is Example 12 in BP07. Also used in Example 24 in the same paper.

Let N = {1, 2, 3} and X = {x, y, z, w} × {a, b} × {p, q}. Let R on X be
identical to X2 except that, for all α1, β1 ∈ X1, all α2, β2 ∈ X2 and all α3, β3 ∈ X3
the following pairs are missing:

Not[(x, a, α3) R (y, b, β3)], Not[(z, α2, p) R (w, β2, q)],
Not[(x, α2, p) R (w, β2, q)], Not[(α1, a, p) R (β1, b, q)],
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xap xaq xbp xbq yap yaq ybp ybq zap zaq zbp zbq wap waq wbp wbq

xap – – – × – – × × – – – × – × – ×
xaq – – – – – – × × – – – – – – – –
xbp – – – – – – – – – – – – – × – ×
xbq – – – – – – – – – – – – – – – –

yap – – – × – – – × – – – × – – – ×
yaq – – – – – – – – – – – – – – – –
ybp – – – – – – – – – – – – – – – –
ybq – – – – – – – – – – – – – – – –

zap – – – × – – – × – – – × – × – ×
zaq – – – – – – – – – – – – – – – –
zbp – – – – – – – – – – – – – × – ×
zbq – – – – – – – – – – – – – – – –

wap – – – × – – – × – – – × – – – ×
waq – – – – – – – – – – – – – – – –
wbp – – – – – – – – – – – – – – – –
wbq – – – – – – – – – – – – – – – –

Table 1: Relation R in Example 78: the missing pairs are marked by a cross.

There is a total of 25 such pairs that are marked by a cross in Table 1.
It is not difficult to check that R is complete.
For i ∈ {2, 3}, it is easy to check that we have:

[(b, a), (a, a), (b, b)] �∗2 (a, b),
[(q, p), (p, p), (q, q)] �∗3 (p, q),

b �±2 a, q �±3 p,

which shows,

• using Parts 1 and 2 of Lemma 22, that RC12, RC13, RC22 and RC23 hold,

• using Lemma 46, that AC12, AC13, AC22, AC23, AC32 and AC33 hold.

Using Parts 1 and 2 of Lemma 8 in BP07, it is easy to check that LC2, LC3,
UC2 and UC3 hold. Hence, using Parts 3 and 4 of Lemma 11 in BP07, we know
thatM12,M13,M22 andM23 hold. Using Lemma 33, we have also Maj12, Maj13,
Maj22 and Maj23.

On attribute 1, it is easy to check that we have:

(c1, d1) �∗1 (x, y) and
(c1, d1) �∗1 [(x,w), (z, w)],

for all (c1, d1) ∈ Γ = {(x, x), (x, z), (y, x), (y, y), (y, z), (y, w), (z, x), (z, y), (z, z),
(w, x), (w, y), (w, z), (w,w)}. The pairs (x,w) and (z, w) are linked by ∼∗1.
The pairs (x, y) and (x,w) are not comparable in terms of %∗1 since (x, a, p) R
(y, a, q) and Not[(x, a, p) R (w, a, q)], while (x, a, p) R (w, b, p) and Not[(x, a, p) R
(y, b, p)]. Similarly, the pairs (x, y) and (z, w) are not comparable in terms of %∗1.
This shows, using Part 1 of Lemma 22, that RC11 is violated.
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Using Part 2 of Lemma 22, it is easy to see that RC21 holds. Using Part 1 of
Lemma 8 in BP07, shows that UC1 holds. Hence, using Part 3 of Lemma 11 in
BP07, we know that M11 holds.

In view of Part 6 of Lemma 16 in BP05a, LC 1 does not hold (since this lemma
tells us that RC21,UC 1 and LC 1 entail RC11. We now check that M21 holds.
The two premises of M21 are that (a1, a−1) R (b1, b−1) and (b1, c−1) R (a1, d−1).
The three possible conclusions of M21 are that (b1, a−1) R (a1, b−1) or (c1, a−1) R
(d1, b−1) or (c1, c−1) R (d1, d−1).

Suppose first that (b1, a1) ∈ Γ. In this case, we have (b1, a1) %∗1 (a1, b1), so
that (a1, a−1) R (b1, b−1) implies (b1, a−1) R (a1, b−1). Hence, the first conclusion
of M21 holds.

Suppose now that (b1, a1) = (x, y).
If (c1, d1) is distinct from (x,w) and (z, w), we have (c1, d1) %∗1 (x, y), so that

(b1, c−1) R (a1, d−1) implies (c1, c−1) R (d1, d−1) and the third conclusion of M21
holds.

If (c1, d1) = (x,w), it is easy to check that there are no a−1, b−1 ∈ X−i such
that (y, a−1) R (x, b−1), Not[(x, a−1) R (y, b−1)] and Not[(x, a−1) R (w, b−1)], so
that no violation of M21 is possible in this case. Since (x,w) ∼∗1 (z, w), the same
is true if (c1, d1) = (z, w).

This shows thatM21 cannot be violated if (b1, a1) = (x, y). A similar reasoning
shows thatM21 cannot be violated if (b1, a1) = (x,w) or if (b1, a1) = (z, w). Hence,
M21 holds and so does M31.

Using Remark 32, we know that R satisfies Maj11 since UC i entails Maj1i.
Since R satisfies RC21, M11 but not RC11, it cannot satisfy Maj21, as a

consequence of Lemma 34. Since R satisfies M1 and M2, it also satisfies MM1,
DMM3, MM2, M3 and MM3.

Maj32 (resp. Maj33) holds because Maj22 (resp. Maj23) holds but Maj31 is
violated as shown by the following configuration (which also confirms that Maj21
is violated): (y, a, p) R (x, b, p), (w, a, p) R (z, a, p), (w, a, p) R (z, a, q), (z, a, p) R
(w, a, p), Not[(x, a, p) R (y, b, p)], Not[(z, a, p) R (w, a, q)].

On attribute 1, it is easy to check that we have:

{y, w} �+
1 z �+

1 x.

Hence AC11 holds. Since (x,w) and (x, y) are not comparable w.r.t. %∗1, y and w
are not comparable w.r.t. �−1 , hence AC21 is violated. It is easy to check, using
Lemma 15 in BP07, that AC31 is satisfied. 3

Remark The co-dual of Example 78 is an asymmetric relation that satisfies all
axioms but RC1,AC1,UC and M1.
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Example 79 (Not[RC1i, AC1i, UC i, M1i, DMaj3i])
The co-dual of the relation R described in Table 2 is a complete relation satisfying
all properties except for RC1, AC2, M1 and DMaj3. Note that this relation
verifies DM3 and DMM3.

Let X = {x, y, z} × {a, b} × {p, q} and R consist of the set of pairs listed
in Table 2. We have to show that R satisfies all properties but RC1, AC1,

xap xaq xbp xbq yap yaq ybp ybq zap zaq zbp zbq

xap – R R R – R R R – R R R
xaq – – – R – – – R – – – R
xbp – – – R – – – R – – – R
xbq – – – – – – – – – – –

yap – – R R – R R R – R R R
yaq – – – R – – – R – – – R
ybp – – – – – – – R – – – R
ybq – – – – – – – – – – –

zap – R – R – R R R – R R R
zaq – – – – – – – R – – – R
zbp – – – R – – – R – – – R
zbq – – – – – – – – – – –

Table 2: Relation R in Example 79.

LC , Maj2, Maj3. It is easy to check that R is asymmetric. As for the com-
parison of preference differences on each attribute, we have for all (α, β) ∈ Γ =
{(x, x), (y, y), (z, z), (x, y), (x, z), (y, z), (z, y)},

• [(α, β)] �∗1 (y, x) and [(α, β)] �∗1 (z, x), while (y, x) and (z, x) are incompa-
rable in terms of %∗1,

• (a, b) �∗2 [(a, a), (b, b)] �∗2 (b, a),

• (p, q) �∗3 [(p, p), (q, q)] �∗3 (q, p).

The upward and downward dominance relations on attributes 2 and 3 are as fol-
lows:

• a �±2 b,

• p �±3 q.

On attribute 1, we have:

• x �+
1 y, x �+

i z,

• y and z are not comparable w.r.t. %+
i since, on the one hand, zap R xaq and

Not[yap R xaq], and on the other hand, yap R xbp and Not[zap R xbp],

• x �−1 y �−i z.
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For j ∈ {2, 3}, RC1j, RC2j, AC1j, AC2j, AC3j, UC j and LC j are clearly
satisfied, implyingM1j andM2j (see Remark 25) as well as Maj1j and Maj2j (see
Remark 32), MM1j and MM2j. On attribute 1 it is easy to check that RC21, AC21
and AC31 are verified while RC11 and AC11 are violated. Using Lemma 8(1) in
BP07, we observe that UC 1 is satisfied, implying M11, Maj11 and MM11. LC 1
does not hold but M21 does as we shall see.

Using the notation in condition (20), for establishing M21 we only have to
consider the cases in which (y1, x) = (y, x) or (y1, x) = (z, x) (otherwise (y1, x) %∗1
(x, y1) and consequently the first conclusion of (20) is satisfied). Assume that
(y1, x) = (y, x) and that the first conclusion is not satisfied. This means that
either a−1 = ap and b−1 = aq or a−1 = bp and b−1 = bq. We now distinguish two
cases regarding (zi, wi):

1. if (zi, wi) 6= (z, x), the third conclusion is always satisfied because of the
second premise and the fact that (zi, wi) %∗1 (y, x),

2. if (zi, wi) = (z, x) and a−1 = ap and b−1 = aq or a−1 = bp and b−1 = bq, the
second conclusion is satisfied because we have zap R xaq and zbp R xbq.

The case in which (y1, x) = (z, x) is dealt with similarly. Consequently, R satisfies
M21, MM21, M31 and MM31.

For establishing that Maj21 does not hold, we consider the case in which
(y1, x) = (y, x) and use the notation of (22) in Definition 29. In the previous
analysis we only need to reconsider the case in which the second conclusion of
M2i was used, i.e., when (zi, wi) = (z, x) and a−1 = ap and b−1 = aq or a−1 = bp
and b−1 = bq. We have xap R yaq, Not[yap R xaq], xap R zaq, yap R xbp and
Not[zap R xbp], which means that Maj21 does not hold. Since (z, x) is no veto (as
we have, e.g., zap R xaq), the latter also shows that R does not satisfy Maj31. 3

Example 80 (Not[AC1i, AC2i])
This is Example 36 in BP05a. Also used in Example 21 in BP07.

Let X = {a, b, c, d} × {x, y}. We build R as the CR in which:

• a I1 b, a P1 c, a I1 d, b I1 c, b P1 d, c I1 d,

• x P2 y,

• {1, 2} � ∅, {1, 2} , {2}, {1, 2} , {1}, {2} , {1}.

Therefore, R links any two elements of X except that we have: (a, x) R (c, y)
but Not[(c, y) R (a, x)] and (b, x) R (d, y) but Not[(d, y) R (b, x)]. Hence R is
a complete relation. Since it is a CR, it satisfies RC1, RC2, UC , LC , M1, M2,
Maj1, Maj2, MM1, MM2, M3, Maj3, MM3 and DMM3.
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It is easy to see that AC3 and AC12 as well as AC22 hold. AC11 is violated
since (d, y) R (a, x) and (c, y) R (b, x) but neither (c, y) R (a, x) nor (d, y) R (b, x).
AC21 is also violated (Part 1 of Lemma 27 in BP05a). 3

Example 81 (Not[AC3i])
This is Example 35 in BP05a. Also used as Example 20 in BP07.

Let X = {a, b, c, d} × {x, y}. We build the CR in which:

• a P1 b, a I1 c, a P1 d, b I1 c, b P1 d, c I1 d,

• x P2 y,

• {1, 2} � ∅, {1, 2} , {2}, {1, 2} , {1}, {2} , {1}.

Therefore, R links any two elements of X except that we have: (a, x) R (b, y) but
Not[(b, y) R (a, x)], (b, x) R (d, y) but Not[(d, y) R (b, x)] and (a, x) R (d, y) but
Not[(d, y) R (a, x)]. Hence R is a complete relation. Since it is a CR, it satisfies
RC1, RC2, UC , LC , M1, M2, Maj1, Maj2, MM1, MM2, M3, Maj3, MM3 and
DMM3.

It is easy to see that AC1 holds and, hence, AC2 (by Part 1 of Lemma 27
in BP05a). One verifies that AC32 holds. AC31 is violated since (c, y) R (a, x),
(d, y) R (c, x) but neither (b, y) R (a, x) nor (d, y) R (b, x). 3

Remark. The co-dual of this relation is an asymmetric relation that satisfies
all axioms of a CR-AT except AC31. In particular, it satisfies M3 and Maj3 since
it satisfies M2 and Maj2.

Example 82 (Not[LCi, M2i, Maj2i, MM2i, M3i, Maj3i, MM3i])
This is Example 38 in BP09a. It is used in Remark 16 in BP09b (but erroneously
referred to as Example 39 in BP09a).

Let X = X1 ×X2 ×X3 with X1 = {x, y, z}, X2 = {a, b} and X3 = {p, q}. Let
us consider the relation R such that:

x R y ⇔
3∑
i=1

pi(xi, yi) ≥ 0,

the functions pi being such that:

p1(x, y) = p1(x, z) = p1(y, z) = p1(x, x) = p1(y, y) = p1(z, z) = 4,
p1(y, x) = p1(z, y) = −1, p1(z, x) = −4,

p2(a, b) = 2, p2(a, a) = p2(b, b) = 0, p2(b, a) = −2,
p3(a, b) = 2, p3(p, p) = p3(q, q) = 0, p3(q, p) = −2.

59



This is a complete relation. Indeed if ∑3
i=1 pi(xi, yi) < 0, then p1(x, y1) < 4.

This implies that p1(y1, x) = 4, hence ∑3
i=1 pi(yi, xi) ≥ 0.

It is easily checked that we have (with (α, α) standing for (x, x), (y, y) and
(z, z)):

[(x, y) ∼∗1 (x, z) ∼∗1 (y, z) ∼∗1 (α, α)] �∗1 [(y, x) ∼∗1 (z, y)] �∗1 (z, x),
x �±1 y �±1 z,

(a, b) �∗2 [(a, a) ∼∗2 (b, b)] �∗2 (b, a),
a �±2 b,

(p, q) �∗3 [(p, p) ∼∗2 (q, q)] �∗2 (q, p),
p �±3 q.

This shows that RC1, RC2, AC1, AC2 and AC3 are satisfied. Using Parts 1 of
Lemma 8 and Lemma 11 in BP07

shows that UC and M1 hold. Similarly, using Parts 2 of Lemma 8 and
Lemma 11 in BP07

shows that R satisfies UC2, UC3, M22 and M23, which implies that M32 and
M33 hold. Condition M31 is violated since (x, b, q) R (y, a, p), (y, a, q) R (x, b, q)
and (z, a, p) R (x, b, q)

while Not[(y, b, q) R (x, a, p)], Not[(z, b, q) R (x, a, p)] and Not[(z, a, q) R
(x, b, q)].

HenceM21 is violated too. Lemma 11, Part 2, in BP07 implies that LC1 is also
violated. Using Lemmas 33, 41 and 55, we obtain that R satisfies Maj1, MM1,
Maj22, Maj23, MM22, MM23, Maj32, Maj33, MM32, MM33 but neither Maj21
nor Maj31. In view of Lemmas 55, MM31 is also violated as well as MM21. Since
R satisfies M1, it fulfills DMM3. 3

Example 83 (Asymmetric, Not[LC i, M2i, M3i, Maj2i, Maj3i, MM2i, MM3i])
This is Example 5 in BP06.

Let X = {x, y, z} × {a, b} × {p, q} and R on X be be as described in Table 3:
It is easy to check that R is asymmetric. It is not difficult to see that we have,

abusing notation,

• [(x, y), (x, z), (y, z)] �∗1 [(x, x), (y, y), (z, z), (y, x), (z, y)] �∗1 (z, x),

• (a, b) �∗2 [(a, a), (b, b)] �∗2 (b, a), and

• (p, q) �∗3 [(p, p), (q, q)] �∗3 (q, p).

This shows that RC1, RC2 and Maj1 hold. It is easy to see that Maj22 and Maj23
hold so that Maj32 and Maj33 are satisfied. Condition Maj31 is violated since

60



xap xaq xbp xbq yap yaq ybp ybq zap zaq zbp zbq

xap – – R R R R R R R R R R
xaq – – – R – R – R – R – R
xbp – – – – – – R R – – R R
xbq – – – – – – – R – – – R

yap – – R R – – R R R R R R
yaq – – – R – – – R – R – R
ybp – – – – – – – – – – R R
ybq – – – – – – – – – – – R

zap – – – R – – R R – – R R
zaq – – – – – – – R – – – R
zbp – – – – – – – – – – – –
zbq – – – – – – – – – – – –

Table 3: Relation R in Example 83.

(x, a, p) R (y, a, p), (x, a, p) R (z, a, p), (y, a, p) R (x, b, p) and (z, a, p) R (x, b, q)
but neither (y, a, p) R (x, a, p) nor (z, a, p) R (x, b, p).

Since RC1 and RC2 hold, Lemma 33 implies that R satisfies M1, M22, M23
but notM21. M32 andM33 hold whileM31 is violated (Lemma 55). By Lemma 11
in BP07, R satisfies UC , LC 2, LC 3 but not LC 1. By Lemmas 41 and 55, we know
that MM21 and MM31 are violated. MM2j and MM3j are satisfied for j = 2, 3.
R satisfies MM1 so that it also satisfies DMM3.

From relations %∗i described above, we infer the following:

x �±1 y �±1 z,

a �±2 b,

p �±3 q,

which implies that R satisfies AC1, AC2 and AC3. 3

Example 84 (Not[AC1i, M2i, Maj2i, MM2i, LC i])
This is Example 36 in BP09a.

Let X = X1×X2 with X1 = {x, y, z, w} and X2 = {a, b}. We build a CDR on
X with:

• z P1 x, z P1 y, z P1 w, x P1 w, x I1 y, y I1 w,

• the relation V1 is empty except that z V1 y,

• b P2 a,

• the relation V2 is empty,

• {1, 2} � ∅, {1, 2} , {2}, {1, 2} , {1} and {1} , {2}.

By construction, R is a CDR. Hence, it satisfies RC1, RC2, M1, Maj1, MM1,
M3, Maj3 and MM3 (Theorem 57 and Lemmas 41 and 55). It satisfies M22,
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Maj22, MM22, but not M21 (due to the veto on X1), not Maj21 (by Lemma 33)
and not MM21 (by Lemma 41). Since R satisfies M1 it also fulfills DMM3. Using
Lemma 11 in BP07, we get that UC and LC 2 are satisfied but LC 1 is violated.

The relation R contains all pairs in X ×X except the following ones:

• Not[(x, b) R (z, a)], Not[(y, b) R (z, a)], Not[(w, b) R (z, a)], Not[(w, b) R
(x, a)], due to the fact that Not[∅ � {1, 2}], and

• Not[(y, a) R (z, a)], Not[(y, b) R (z, b)], Not[(y, b) R (z, a)], Not[(y, a) R
(z, b)], due to the fact that z V1 y.

One pair is common to these two series of four pairs, so that R is equal to X ×X
minus the seven distinct pairs in the lists above. It is a complete relation.

On X2, it is easy to check that we have b �±2 a, so that AC12, AC22 and AC32
hold.

On X1, it is easy to check that %−1 is complete. We indeed have that:

z �−1 x �−1 [y ∼−1 w].

The relation %+
1 is not complete. We have z �+

1 x, x �+
1 y and x �+

1 w but neither
y %+

1 w nor w %+
1 y since (y, b) R (x, a) but Not[(w, b) R (x, a)] and (w, a) R (z, a)

but Not[(y, a) R (z, a)]. This shows that AC11 is violated. Condition AC31 holds
since %+

1 and %−1 are not incompatible. 3

Example 85 (Not[AC2i, M2i, Maj2i, MM2i, LC i])
This is Example 35 in BP09a. It is a slight variation on Example 84 obtained by
reversing all relations Si and Vi.

Let X = X1×X2 with X1 = {x, y, z, w} and X2 = {a, b}. We build a CDR on
X with:

• w P1 z, x P1 z, y P1 z, w P1 x, y I1 w, y I1 x (and all I1 loops),

• V1 is empty except that y V1 z,

• a P2 b (and all I2 loops) and the relation V2 is empty,

• {1, 2} � ∅, {1, 2} , {2}, {1, 2} , {1} and {1} , {2}.

Observe that S1 is a semiorder (the weak order it induces ranks the elements
of X1 in the following order: w, y, x, z). The relation V1 is a strict semiorder that
is included in P1. But (S1, U1) is not an homogeneous chain of semiorders on X1
since the weak order induced by U1 ranks y before w, while the weak order induced
by S1 does the opposite.

By construction, R is a CDR. Hence, it satisfies RC1, RC2, M1, Maj1, MM1,
M3, Maj3 and MM3 (Theorem57 and Lemmas 41 and 55). It satisfies M22,
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Maj22, MM22, but not M21 (due to the veto on X1), not Maj21 (by Lemma 33)
and not MM21 (by Lemma 41). Since R satisfies M1 it also fulfills DMM3. Using
Lemma 11 in BP07, we get that UC and LC 2 are satisfied but LC 1 is violated.

The relation R contains all pairs in X ×X except the following ones:

• Not[(z, b) R (w, a)], Not[(z, b) R (x, a)], Not[(z, b) R (y, a)], Not[(x, b) R
(w, a)], due to the fact that Not[∅ � {1, 2}], and

• Not[(z, a) R (y, a)], Not[(z, a) R (y, b)], Not[(z, b) R (y, a)], Not[(z, b) R
(y, b)], due to the fact that y V1 z.

One pair is common to these two series of four pairs, so that R is equal to X ×X
minus the seven distinct pairs in the lists above. It is clear that R is complete.

On X2, it is easy to check that we have a �±2 b, so that AC12, AC22 and AC32
hold.

On X1, it is easy to check that %+
1 is complete. We indeed have that:

[y ∼+
1 w] �+

1 x �+
1 z.

The relation %−1 is not complete. We have w �−1 x, y �−1 x and x �−1 z but neither
y %−1 w nor w %−1 y since (z, a) R (w, a) but Not[(z, a) R (y, a)] and (x, b) R (y, a)
but Not[(x, b) R (w, a)]. This shows that AC21 is violated. Condition AC31 holds
since %+

1 and %−1 are not incompatible. 3

Example 86 (Asymmetric, Not[UCi, M1i, Maj1i, MM1i])
This is Example 3 in BP06.

Let X = {a, b} × {x, y, z} and R on X be identical to the strict linear order
(abusing notation in an obvious way):

(a, x) R (b, x) R (a, y) R (b, y) R (a, z) R (b, z),

except that we have also (a, y) R (b, x).
It is easy to see that R is asymmetric. We have, abusing notation:

• (a, b) �∗1 [(a, a), (b, b)] �∗1 (b, a), and

• [(x, z), (y, z)] �∗2 (x, y) �∗2 [(x, x), (y, y), (z, z)] �∗2 [(y, x), (z, x), (z, y)].

Using Lemma 22, it is easy to check that R satisfies RC1 and RC2.
It is clear that UC1, LC1 and LC2 hold. This implies that M2, Maj2, MM2,

M3, Maj3, MM3 hold as well as M11, Maj11 and MM11.
Maj12 is violated since (a, x) R (a, y), (a, x) R (a, z), (b, x) R (a, z) but neither

(a, y) R (a, x) nor (b, x) R (a, y). As a consequence, UC1 is also violated. Since
RC1 and RC2 hold, Lemmas 33 and 41 imply that M12 and MM12 are violated.
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SinceM11 holds, DMM31 holds too. We show that DMM32 also holds. Assume
the contrary. Taking RC12 into account, this implies that there are a, b, z2, w2 ∈
X2 such that (z2, w2) �∗2 (a, b) �∗2 (b, a). Hence (z2, w2) can only be (x, z) or
(y, z). The fourth conclusion of DMM32 is always true since (u, x) R (v, z) and
(u, y) R (v, z) for all u, v ∈ X1 = {a, b}.

Using Lemma 46, we have:

• a %±1 b and

• x %±2 y %±3 z.

Hence AC1, AC2 and AC3 hold. 3

Example 87 (Asymmetric, Not[AC1i, M2i, Maj2i, MM2i, LC i])
This example is an asymmetric variant of Example 84.

Let X = X1×X2 with X1 = {x, y, z, w} and X2 = {a, b}. We build a CDR on
X with:

• z P ◦1 x, z P ◦1 y, z P ◦1 w, x P ◦1 w, y P ◦1 w,

• the relation V ◦1 is empty except that z V ◦1 y,

• b P ◦2 a,

• the relation V ◦2 is empty,

• {1} �◦ ∅, {2} �◦ {1}, {1, 2} �◦ ∅.

By construction, R is an asymmetric CDR. Hence, it satisfies RC1, RC2, M1,
Maj1, MM1, M3, Maj3, MM3 (Theorem 57 and Lemmas 41 and 55). It satisfies
M22 but not M21 (due to the veto on X1), not Maj21 (by Lemma 41) and not
MM21 (by Lemma 41). Using Lemma 11 in BP07, we get that UC and LC2 are
satisfied but LC 1 is violated8.

Since R satisfies M1 it verifies DMM3.
The relation R contains the following pairs in X ×X:

• (x, a) R (w, a), (x, b) R (x, a), (x, b) R (y, a), (x, b) R (z, a), (x, b) R (w, a),

• (y, a) R (w, a), (y, b) R (x, a), (y, b) R (y, a), (y, b) R (w, a) (but, due to
z V ◦1 y, Not[(y, b) R (z, a)]),

• (z, a) R (x, a), (z, a) R (y, a), (z, a) R (w, a), (z, b) R (x, a), (z, a) R (x, b),
(z, b) R (y, a), (z, b) R (y, b), (z, b) R (z, a), (z, b) R (w, a), (z, b) R (w, b),

8This lemma was stated for reflexive relations but its proof does not depend on the reflexivity
hypothesis. It is also valid for irreflexive, and a fortiori asymmetric, relations.
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• (w, b) R (x, a), (w, b) R (y, a), (w, b) R (z, a), (w, b) R (w, a).

On X2, it is easy to check that we have b �±2 a, so that AC12, AC22 and AC32
hold.

On X1, it is easy to check that %−1 is complete. We indeed have that:

z �−1 x �−1 y �−1 w.

The relation %+
1 is not complete. We have z �+

1 x, x �+
1 y and x �+

1 w but neither
y %+

1 w nor w %+
1 y since (y, a) R (w, a) but Not[(w, a) R (w, a)] and (w, b) R

(z, a) but Not[(y, b) R (z, a)]. This shows that AC11 is violated. Condition AC31
holds since %+

1 and %−1 are not incompatible.
Each of P ◦1 and V ◦1 is the asymmetric part of some semiorder but these semior-

ders do not form an homogeneous chain of semiorders (the weak order induced by
P ◦1 imposes that w is placed in the last position while that induced by V ◦1 imposes
the last position to y). 3

Example 88 (Asymmetric, Not[AC2i, M2i, Maj2i, LC i])
This example is an asymmetric variant of Example 85

Let X = X1×X2 with X1 = {x, y, z, w} and X2 = {a, b}. We build a CDR on
X with:

• w P ◦1 y, w P ◦1 z, x P ◦1 z, y P ◦1 z,

• the relation V ◦1 is empty except that y V ◦1 z,

• a P ◦2 b,

• the relation V ◦2 is empty,

• {1} �◦ ∅, {2} �◦ {1}.

By construction, R is an asymmetric CDR. Hence, it satisfies RC1, RC2, M1,
Maj1, MM1, M3, Maj3, MM3 (Theorem 57 and Lemmas 41 and 55). It satisfies
M22 but not M21 (due to the veto on X1), not Maj21 (by Lemma 41) and not
MM21 (by Lemma 41). Using Lemma 11 in BP07, we get that UC and LC2 are
satisfied but LC 1 is violated9.

Since R satisfies M1 it verifies DMM3.
The relation R contains the following pairs in X ×X:

• (x, a) R (x, b), (x, a) R (y, b), (x, a) R (z, a), (x, a) R (z, b), (x, a) R (w, b),
(x, b) R (z, b),

9This lemma was stated for reflexive relations but its proof does not depend on the reflexivity
hypothesis. It is also valid for irreflexive, and a fortiori asymmetric, relations.
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• (y, a) R (x, b), (y, a) R (y, b), (y, a) R (z, a), (y, a) R (z, b), (y, a) R (w, b),
(y, b) R (z, b),

• (z, a) R (x, b), (z, a) R (z, b), (z, a) R (w, b) (but Not[(z, a) R (y, b)], due to
y V ◦1 z),

• (w, a) R (x, b), (w, a) R (y, a), (w, a) R (y, b), (w, a) R (z, a), (w, a) R (z, b),
(w, a) R (w, b), (w, b) R (y, b), (w, b) R (z, b).

On X2, it is easy to check that we have a �±2 b, so that AC12, AC22 and AC32
hold.

On X1, it is easy to check that %+
1 is complete. We indeed have that:

w �±1 [x ∼+
1 y] �+

1 z.

The relation %−1 is not complete. We have w �−1 x, w �−1 y, x �−1 z and y �−1 z
but neither x %−1 y nor y %−1 x since (z, a) R (x, b) but Not[(z, a) R (y, b)]
and (w, a) R (y, a) but Not[(w, a) R (x, a)]. This shows that AC21 is violated.
Condition AC31 holds since %+

1 and %−1 are not incompatible.
Each of P ◦1 and V ◦1 is the asymmetric part of some semiorder but these semior-

ders do not form an homogeneous chain of semiorders (the weak order induced by
P ◦1 imposes that w is placed in the first position while that induced by V ◦1 imposes
the first position to y). 3

Example 89 (Asymmetric Not[RC1i, M2i, Maj2i, MM2i, Maj3i])
This example was not published before.

Let X = {x, y, z, w}× {a, b}× {p, q} and R consist of the set of pairs listed in
Table 4.

xap xaq xbp xbq yap yaq ybp ybq zap zaq zbp zbq wap waq wbp wbq

xap – R R R – R – R – R R R – R R R
xaq – – – R – – – – – – – R – – – R
xbp – – – R – – – R – – – R – – – R
xbq – – – – – – – – – – – – – – – –

yap – R R R – R R R – R R R – R R R
yaq – – – R – – – R – – – R – – – R
ybp – – – R – – – R – – – R – – – R
ybq – – – – – – – – – – – – – – – –

zap – R R R – – – – – R R R – – R R
zaq – – – R – – – – – – – R – – – R
zbp – – – R – – – – – – – R – – – –
zbq – – – – – – – – – – – – – – – –

wap – R R R – R R R – R R R – R R R
waq – – – R – – – R – – – R – – – R
wbp – – – R – – – R – – – R – – – R
wbq – – – – – – – – – – – – – – – –

Table 4: Relation R in Example 89.
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It is easy to see that R is an asymmetric relation.
As for the comparison of preference differences on each attribute, we have,

for all (α, β) ∈ Γ = {(x, x), (y, y), (z, z), (w,w), (x, z), (x,w), (y, x), (y, z), (y,w),
(z,x),(w, x), (w, y), (w, z)]},

• (α, β) �∗1 (x, y) �∗1 (z, y) and (α, β) �∗1 (z, w) �∗1 (z, y), while (x, y) and
(z, w) are incomparable in terms of %∗1,

• (a, b) �∗2 [(a, a), (b, b)] �∗3 (b, a),

• (p, q) �∗3 [(p, p), (q, q)] �∗3 (q, p).

The upward and downward dominance relations are as follows:

• y �±1 w �±1 x �±1 z,

• a �±2 b,

• p �±3 q.

RC11 does not hold since the pairs (x, y) and (z, w) are not comparable w.r.t.
%∗1, but RC12 and RC13 hold true. For j ∈ {1, 2, 3}, RC2j, AC1j, AC2j, AC3j
are clearly satisfied. For j = 2 and j = 3, using Lemma 24, we see that R
fulfills M1j and M2j hence it satisfies UC j and LC j (by Lemma 11 in BP07),
Maj1j and Maj2j ( by Lemma33), UC j and LC j (by Lemma 11 in BP07), M3j,
Maj3j, MM1j, MM2j and MM3j (since each of the latter is implied by one of the
previously established properties of R ).
R satisfies M11. Assume to the contrary that there are s, t, u, v ∈ X1 and

S, T, U, V ∈ X−1 such that: (1) (s, S) R (t, T ), (2) (u, U) R (v, V ), (3) Not[(t, S) R
(s, T )], (4) Not[(s, U) R (t, V )], (5) Not[(v, S) R (u, T )]. Using (1), (3) and
Lemma 22.2, we deduce that (s, t) can only be one of the pairs (y, x), (y, z) or
(w, z). In all three cases, (2) and (4) cannot both hold true since (s, t) %∗1 (u, v),
for all u, v ∈ X1, a contradiction.
R satisfies Maj11. Assume to the contrary that there are s, t, u, v ∈ X1 and

S, T, U, V ∈ X−1 such that: (1) (s, S) R (t, T ), (2) (u, S) R (v, T ), (3) (u, U) R
(v, V ), (4) Not[(t, S) R (s, T )], (5) Not[(s, U) R (t, V )]. Using (1), (4) and
Lemma 22.2, we deduce that (s, t) can only be one of the pairs (y, x), (y, z) or
(w, z). In all three cases, (3) and (5) cannot both hold true since (s, t) %∗1 (u, v),
a contradiction.
R satisfies M31. Assume to the contrary that there are s, t, u, v ∈ X1 and

S, T, U, V,Q,R ∈ X−1 such that: (1) (s, S) R (t, T ), (2) (t, U) R (s, V ), (3) (u,Q) R
(v,R), (4) Not[(t, S) R (s, T )], (5) Not[(u, S) R (v, T )], (6) Not[(u, U) R (v, V )].
Using (1), (4) and Lemma 22.2, we deduce that (s, t) can only be one of the pairs
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(y, x), (y, z) or (w, z). If (s, t) = (y, z), (2) never holds true. In case (s, t) = (y, x),
(1) and (4) imply [S = ap and T = bp] or [S = aq and T = bq]. Contradicting
(5), we have (u, S) R (v, T ) for all u, v ∈ X1 except for (u, v) = (z, y), for which
(3) does not hold. The case in which (s, t) = (w, z) is dealt with similarly. As a
conclusion, M31 holds for R .
R violatesM21. M21 does not hold if we can find s, t, u, v ∈ X1 and S, T, U, V ∈

X−1 such that: (1) (s, S) R (t, T ), (2) (t, U) R (s, V ), (3) Not[(t, S) R (s, T )],
(4) Not[(u, S) R (v, T )], (5) Not[(u, U) R (v, V )]. These 5 conditions can be
simultaneously fulfilled by setting: s = y, t = x, u = z, v = y and S = ap, T =
bp, U = ap, V = aq. Since MM2i and RC2i entail M2i (Lemma 41.3), R violates
MM21.
R violates Maj31. Maj31 does not hold if we can find s, t, u, v ∈ X1 and

S, T, U, V,Q,R ∈ X−1 such that: (1) (s, S) R (t, T ), (2) (v, S) R (u, T ), (3) (t, U) R
(s, V ), (4) (u,Q) R (v,R), (5) Not[(t, S) R (s, T )], (6) Not[(u, U) R (v, V )]. These
6 conditions can be simultaneously fulfilled by setting: s = y, t = x, u = z, v = w
and S = ap, T = bp, U = ap, V = aq,Q = ap,R = bq. Since Maj2i entails Maj3i,
R also violates Maj21.

Since R satisfies M11 (resp. M31) it satisfies MM11 (resp. MM31).
Since R satisfies MM11 it satisfies DMM31 (by Lemma 65). 3
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