
la
m
sa

d
e

LAMSADE

Laboratoire d’Analyse et Modélisation de Systèmes pour
l’Aide à la Décision

UMR 724

Mars 2019

A new robust p-center problem to locate
shelters in wild fire context

 M. Demange,V. Gabrel, M. Haddad, C. Murat

CAHIER DU
 387

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

elena
Texte tapé à la machine

A new robust p-center problem to locate shelters in

wild fire context

Marc Demange ∗,2, Virginie Gabrel †,1, Marcel Haddad ‡,1 2, and Cécile

Murat §,1

1Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243,

LAMSADE, Paris, France
2School of Science RMIT University, Melbourne, Vic., Australia

Abstract

The p-center problem on a graph is to find a set C of p vertices that minimizes

the radius which is the maximum distance between any vertex and C. We propose

a robust optimization model for this problem with uncertainty on vertices. This

problem is inspired by a wild fire management problem. The graph represents the

adjacency of zones of a landscape, where each vertex represents a zone. We consider

a finite set of fire scenarios, where the fire is restricted to one zone. Given a solution

C, its radius may change in some scenarios since some evacuation paths become

impracticable. The objective is to find a robust p-center that minimizes the worst

effective radius over all scenarios. We introduce this new problem, the Robust p-

Center Problem, and propose a first formulation based on 0-1 Linear Programming.

We give preliminary experimental results and show how to adapt our model to

other fire configurations. Finally, we present a specific realistic case relevant to our

approach.

1 Introduction

In the prevention phase of wild fires, an important problem is to determine shelters loca-
tion in a given area. The problem is basically to place p shelters minimizing the maximum

∗marc.demange@rmit.edu.au
†gabrel@lamsade.dauphine.fr
‡marcel.haddad@dauphine.psl.eu
§ murat@lamsade.dauphine.fr

Work supported by the European Union’s Horizon 2020 research and innovation programme under the

Marie Skłodowska-Curie grant agreement No 691161

1

distance people have to go to get one of these shelters in case of fire. From an Operations
Research perspective, the problem of locating p centers (warehouses, shelters . . .) has
been extensively studied. In particular, mathematical programming approaches enable to
determine optimal solution to the classical p-center problem [ELP04].

In our model, the landscape is represented by a directed adjacency graph G = (V,E).
Each node corresponds to a zone and two nodes i and j are connected by a directed edge
if it is possible for somebody to go directly from i to j without passing through another
area. Each edge (i, j) is valued by a positive weight lij that can be seen as a distance or
a travel time. Since vertices represent a zone, possibly large, the distance (or travelling
time) between adjacent vertices can be measured between median points in these areas
or as a maximum distance; this choice does not affect the model further. We assume that
shelters have to be located on vertices. Then, considering a shelter on vertex i and a zone
represented by vertex j, the distance dji from j to i is the length of a shortest path from
j to i in G. Given a solution defined as a set of p vertices, the evacuation distance of
zone j is the shortest distance between j and one of the p shelters. The objective value
of a solution, called the safety distance, corresponds to the longest evacuation distance of
vertices. The p-center problem is then to compute a solution that minimizes the safety
distance.

In the context of wild fires, one difficulty is due to the uncertainty associated to the
fire ignition and spread. To address this difficulty, the robust version of the p-center prob-
lem is usually defined by introducing uncertainty on weights: each weight may vary in
an uncertainty set (usually an interval) and the problem is to determine a p-center min-
imizing the worst case or the maximum regret [AB97, AB00, Ave03]. In these previous
works, weights vary independently one from each other. In our context, this independency
hypothesis is not relevant since, if a fire ignites on a vertex, all weights of its adjacent
edges are modified in the same way. For this reason, we represent uncertainty with a set
of scenarios. This leads to a new problem called the robust p-center problem (RpCP) that
takes into account this representation of uncertainty.

This article is organised as follows: in section 2 we define the robust p-center problem,
in Section 3 we propose a new formulation based on 0-1 Linear Programming, in section
4 we give some preliminary experimental results showing the tractability of our approach.
Our approach can easily be adapted to other fire configurations, as mentioned in section
5. In the last section we present a specific realistic case and its polynomial complexity.

2 Definition of the robust p-center problem

To model fire hazards, a scenario is associated to a specific fire outbreak in the landscape
represented by a graph G = (V,E) with n vertices. First, we restrict ourselves to single
fire outbreak events and each scenario s corresponds to a single vertex s on fire. This

2

restriction is motivated by our primary focus on a relatively short time period after igni-
tion and corresponds to the case where everybody can escape to a shelter before the fire
spreads on adjacent zones. The operational graph associated with the scenario s, denoted
Gs, is obtained by removing all edges arriving on s: Gs = (V,Es) with Es = E \ ω−(s)
where ω−(s) is the set of edges (j, s) with ending vertex s. In Gs, vertex s is no longer
accessible from another vertex. For this reason, some shortest paths in Gs, thus avoiding
s, will differ from the original ones obtained in the graph G. For all i and j, dsij denotes
the length of the shortest path from i to j in graph Gs. By convention, for all j ∈ V \{s},
we have dsjs = +∞.

Given a solution with p vertices and a scenario s, the "classical evacuation distance"
of a vertex j is the shortest distance between j and its nearest shelter. This strategy is
not adapted to our context and we consider a more realistic evacuation strategy inducing
new evacuation distances to shelters. If s is on fire, we have:

• for people on s, two cases have to be considered. If a shelter is located on s, then
people present on node s are considered as safely sheltered in it, otherwise we assume
that they first run away from the fire in any direction and after they reach a neighbor
j, they evacuate to the shortest shelter of j in Gs. The distance from zone s to a
shelter k is then the worst case defined by: max(s,j)∈Es(lsj + dsjk).

• for people who are not on s, say on j 6= s, the evacuation distance from j to shelter
k corresponds to dsjk in graph Gs, i.e., avoiding vertex s.

This evaluation of evacuation distances makes our problem specific compared to the
literature and induces some additional complexity. The justification is twofold. First,
since the area s may be relatively large, a single scenario may correspond to many possible
fire configurations, each prohibiting some paths in the zone. The second motivation is to
represent decision under stress, a very important characteristic in emergency management:
somebody close to the fire may not take rational decisions when selecting a direction while
people in another zone can be assumed to behave more rationally.

For a given solution, corresponding to a location of p shelters on some vertices, and
a given scenario s, the evacuation distance of zone j is denoted rsj . This evacuation dis-
tance remains the shortest distance between j and one of the p shelters but considering
the new distances. The radius associated to scenario s, and denoted rs is defined as
rs = maxj∈V rsj . A given solution is then valued by n radius r1, . . . , rn. In the context of
emergency evacuation, the value of a solution is obtained by considering the worst (max)
radius. The robust p-center problem is to determine the solution with the minimum worst
value.

For example, let us consider the graph G in the figure 1 and the solution corresponding
to shelters located on vertices 3 and 11. In this figure, a line between two vertices i and
j represents both directed edges (i, j) and (j, i). In case of fire in vertex 2 (scenario 2),
the modification of the graph and the evacuation strategy induce:

3

• The shortest path value from 1 to 3 is no longer 3 because we can’t go through the
fire in 2, but is now 23, with the shortest path 1, 6, 7, 8, 3. Consequently, the nearest
shelter of vertex 1 is 11 with a distance of 8. Thus the evacuation distance of 1 in
scenario 2, is equal to 8 and vertex 1 is evacuated to vertex 11.

• To compute the evacuation distance of vertex 2 in scenario 2, we have to consider
three neighbors:
- for neighbor 1, the distance to the nearest shelter 11 is 1 + 8 =9
- for neighbor 7, the distance to the nearest shelter 11 is 3 + 9 = 12
- for neighbor 3 with a shelter, the distance is 2
Consequently, r22 = 12.

• The radius of the scenario 2 is given by r2 = maxj=1,...,15 r
2
j = 12.

Finally, the radius of this solution is defined by r = maxs=1,...,15 r
s = 20 induced by

scenario 4.

6 7 8 9 10
8 5 3 2

1 2 3 4 5
1 2 3 1

4 3 6 1 8

11 12 13 14 15
4 1 3 2

4 5 6 2 1

Figure 1: Illustration for the evacuation strategy
In the following section, we propose an integer linear programming formulation for

RpCP. This model is inspired by the model proposed in [ELP04, CT13] for the deter-
ministic p-center problem. We generalize this model to take into account different fire
scenarios and our evacuation strategy.

3 Mathematical model for the robust p-center problem

We propose a mathematical model with a linear objective function on 0-1 variables repre-
senting the maximal radius over all the scenarios to be minimized under linear constraints.
The starting point of our model is the deterministic p-center model presented in [CT13].
We recall this model in the next sub-section.

3.1 Mathematical model for the p-center problem

The deterministic p-center model presented in [CT13] is based on the model proposed
by Elloumi, Labbé and Pochet in [ELP04]. In [ELP04], the formulation is based on the

4

observation that the optimal value of the p-center problem corresponds to one of the
distances between two vertices in G. We denote by D the finite list of distinct distances
between vertices: we first compute the matrix SP = (dij) of the shortest path lengths
between every couple of vertices (with dii = 0 and dij = +∞ if there is no path from i to
j); then, D is obtained by sorting in increasing order the T different finite values of the
matrix SP : Dmin = D1 < D2 < D3 < . . . < DT = Dmax.
In [ELP04] and [CT13], two kinds of binary variables are introduced. More specifically,
in [CT13], the following variables are used:

• for all j = 1, . . . , n, yj is a binary variable with yj = 1 if a center is located on j
and 0 otherwise,

• for all t = 1, . . . , T , ut is a binary variable with ut = 1 if the solution value is equal
to Dt and 0 otherwise.

In [CT13], Calik and Tansel introduce the following formulation (P det):

(P det)











































































min
T
∑

t=1

Dtut (1det)

s.t.

n
∑

j=1

yj = p (2det)

T
∑

t=1

ut = 1 (3det)

∑

j:dij≤Dt

yj ≥
∑t

q=1 uq i = 1, . . . n, t = 1, . . . , T, (4det)

yj ∈ {0, 1} j = 1, . . . , n
ut ∈ {0, 1} t = 1, . . . , T

Constraint (2det) fixes the number of centers to be located. Constraint (3det) ensures
that exactly one variable ut have to be equal to 1 and the corresponding Dt value is
selected as the solution value according to the objective function (1det). If ut = 1, then
∑t

q=1 uq = 1 and constraints (4det) ensure for each vertex i that at least one center is
located at a distance less or equal than Dt.

The number of binary variables is equal to n + T and the number of constraints is
nT + 2. The size of this model can be huge since it depends to the number T of distinct
shortest path lengths. But, as explained in [ELP04, CT13], it is possible to reduce this
size: knowing a lower bound LB and an upper bound UB for the optimal solution value
of (P det), we can delete some variables since:

ut = 0 , ∀t : Dt < LB
ut = 0 , ∀t : Dt > UB

In the following section, we present an extension of this model to RpCP.

5

3.2 New model for the robust p-center problem

We extend the formulation of (P det) to RpCP. First, we have to replace D by Drob,
the list of distinct finite distance values in all Gs considering the evacuation strategy.
The list Drob is obtained by merging and ordering all the ordered sets Ds of distinct
finite distances between vertices in Gs, for s ∈ V . The elements of Ds are denoted
Ds

min = Ds
1 < Ds

2 < Ds
3 < . . . < Ds

T s = Ds
max. For each s, Ds is computed in two stages:

• step 1: compute SP s = (dsij) the matrix of shortest path lengths from i to j in Gs;
extract from SP s the different finite shortest path lengths for all i 6= s and initialize
Ds with these values;

• step 2: compute the distance from s to k for all k 6= s ∈ V according to the worst
case value presented in the evacuation strategy: max(s,j)∈Es(lsj +dsjk) and add these
worst case values to Ds.

Finally, we merge all the lists Ds in one ordered set Drob = {Drob
1 , . . . , Drob

T rob}, with
Drob

min = Drob
1 < Drob

2 < Drob
3 < . . . < Drob

T rob = Drob
max. In our formulation (P rob), the

decision variables are the y variables (similar to (P det)) and the u variables with the
following interpretation: ut = 1 if and only if, for any given scenario, all the vertices are
at a distance to a center less or equal than Drob

t , with t = 1, . . . , T rob. We introduce then
the following formulation for RpCP:

(P rob)



















































































































min

T rob
∑

t=1

Drob
t ut (1)

s.c.

n
∑

j=1

yj = p (2)

T rob
∑

t=1

ut = 1 (3)

∑

j:dsij≤Drob
t

yj ≥
t

∑

q=1

uq s = 1, . . . , n, i = 1, . . . , s− 1, s+ 1, . . . , n,

t = 1, . . . , T rob (4)
∑

j:lsv+dsvj≤Drob
t

yj ≥
t

∑

q=1

uq − ys s = 1, . . . , n, ∀v ∈ N+(s), t = 1, . . . , T rob (5)

yj ∈ {0, 1} j = 1, . . . , n
ut ∈ {0, 1} t = 1, . . . , T rob

where N+(s) is the set of all vertices v such that (s, v) ∈ Es.
Constraints (2), and (3) are similar to constraints (2det) and (3det) with the only difference
that T is replaced by T rob. Constraints (4) ensure for each vertex i that at least one center
is located at a distance less or equal than Drob

t in every scenario s. Constraints (5) are
specific to RpCP and are necessary to model the chosen evacuation strategy:

6

• if ys = 1, then a shelter is located on s and constraints (5) are relaxed

• if ys = 0, then no shelter is located on s and the set of constraints (5) on all neighbors
of s ensure that the evacuation distance (worst case value) on scenario s is less or
equal than Drob

t

The number of binary variables is equal to n + T rob and the number of constraints is
n2T rob +mT rob with m the number of directed edges of G. As for formulation (P det), we
can reduce the size of (P rob) if we are able to identify lower and upper bounds for the
optimal robust solution value as shown in the following section.

4 Resolution and first experimental results

The size of model (P rob) depends on the size of the list Drob. Similarly to (P det), we can
reduce the size of (P rob) knowing a lower bound LB and an upper bound UB for the
optimal solution value of (P rob) since we can fix some variables in this way:

ut = 0 , ∀t : Drob
t < LB

ut = 0 , ∀t : Drob
t > UB

4.1 Heuristic bounds

We propose three different methods to compute such bounds:

• The first method uses the optimal solution of (P det). Obviously, the value of the
optimal solution of RpCP can not be less than the optimal solution value of (P det).
Thus, we denote LB1 the optimal solution value of (P det). This solution is feasible
for RpCP, and its value gives an upper bound UB1 for RpCP.

• A second method consists in considering (P rob) without the constraints (4). The
obtained model (RP rob) corresponds to the problem where only the evacuation dis-
tance of the vertex s is taken into account for scenario s. It reduces the number of
constraints by n2T rob. The value of the obtained solution is a lower bound LB2 for
RpCP. Similarly to the first method, the optimal solution of (RP rob) is feasible for
RpCP and gives a second upper bound UB2 for RpCP.

• In a third method, we randomly construct solutions and compute their value for
RpCP. The lowest obtained value represents a third upper bound UB3.

In our preliminary experiments, despite using these bounds for (P rob) the number
of constraints and variables were still too high in order to solve exactly the problem,
more precisely even to write the PL instance. Thus we propose a general scheme using a
generalization of binary search.

7

4.2 Exact solution method

We propose Algorithm 3 to solve exactly (P rob). This method uses a quantile search
algorithm presented below as Algorithm 2, which is a generalization of the binary search
algorithm.

Suppose (P (D)) a linear programming formulation whose objective value (to be min-
imized) takes a value from an ordered set D = {D1, D2, . . . , DT} and whose number of
variables and constraints depends on T . Denote LB and UB two precomputed lower and
upper bounds for P (D). A σ-quantile search (implemented in σ −Qsearch Algorithm 2)
can be used to solve (P (D)) by solving at most ⌈logσ(T + 1)⌉ instances of (P (D′)):

• First we compute a restricted set D′ ⊆ D with function Fkernel (Algorithm 1),
where the values of D are selected such that the set of values of D between UB and
LB are evenly spread between the values of D′.

• Next we solve (P (D′)) which gives us a new upper and lower bound for (P (D))

Note that for σ = 3, the σ-quantile search is actually a binary search.

Algorithm 1 Fkernel

Require: D = {D1, D2, . . . , DT}, LB, UB, σ ∈ N
+

Ensure: Return a subset of D with LB, UB and the values of the (σ − 2)-quantiles
between them.

1: Find k1 ∈ {1, . . . , T} such that Dk1 = LB
2: Find kσ ∈ {1, . . . , T} such that Dkσ = UB
3: step← ⌊(k1 + kσ)/(σ − 1)⌋
4: for i← 2 to σ − 1 do

5: ki = ki−1 + step
6: end for

7: Return {Dk1, . . . , Dki, . . . , Dkσ}

Algorithm 2 is also used to solve (RP rob) in the exact solution method in Algorithm 3.
More precisely we use LB1 to initialize the σ-search for LB2.

In the next section, we evaluate the computational merits of the proposed algorithm
using test instances from the OR-Library.

4.3 First experimental results

The input data used for the computations is a sample of 28 instances of the p-center prob-
lem from the OR-Library ([Bea90]) with n varying between 100 and 600 and p varying
between 5 and (n/3). The original data in the OR-Library consists of a listing of edges
and their lengths. We implement the Exact Algorithm in Python 3.5, and we generate
the distance matrices dij and dsij for all scenario s ∈ V using networkx library 2.2. Using
these matrices, we can compute the list D = {D1, . . . , DT} for (P det), and the list Drob for

8

Algorithm 2 σ −Qsearch

Require: P (D), LB, UB, σ ∈ N
+

Ensure: Return the optimal value and an optimal solution to P (D)
1: while UB 6= LB do

2: D′ = {Dk1, . . . , Dkσ} ← Fkernel(D,LB, UB, σ)
3: Solve P (D′)
4: Set q ∈ N

+ such that Dkq ← Optimal value of P (D′)
5: sol ← Optimal solution of P (D′)
6: if q = 1 then

7: UB ← LB
8: else

9: UB ← Dkq

10: LB ← Dkq−1

11: end if

12: end while

13: Return LB and sol

Algorithm 3 Exact Algorithm

Require: G = (V,E), p, x, σ1, σ2

1: Begin

2: Generate Drob

3: Solve (P det) and generate LB1 and UB1

4: Generate UB3 by constructing x random solutions
5: LB2, sol← σ −Qsearch((RP rob(Drob)), LB1,min{UB1, UB3}, σ1)
6: UB2 ← Value of sol for (P rob)
7: UB ← min{UB1, UB2, UB3}
8: optV alue, optSolution← σ −Qsearch((P rob(Drob)), LB2, UB, σ2)
9: Return optV alue

10: End

(P rob). We execute our experiments on a server with 254Gb of RAM and 14 Intel Core
(Haswell; no TSX) Processor at 2.3 Ghz. Mathematical models are solved with CPEX 12
(with MIPEmphasis option set to 0).All the results are presented in details in tables in
the appendix A. In the following, we present our synthetic analysis of these results.

We solve (P rob) using the Exact Algorithm with σ1 = σ2 = 3 and x = 10.

First, we observe that LB2 corresponds to the value of the optimal solution on almost
all considered instances.

Figure 2 shows the value of the upper bounds computed for the instances ordered by
the number of their vertices and by the value of p (see for details Table 1 in appendix).

9

Figure 2: Evolution of the computed bounds given the size of the instance

The up and down movements of the lines for a same value of n is due to the different
values of p. We observe that UB1 often gives the best upper bound.

Given the quality of the lower bound obtained, we observe that increasing σ2 to values
greater than 3 was counterproductive: indeed, one iteration in σ −Qsearch is enough to
prove that the lower bound is an upper bound. In this case, increasing σ2 would only
lead to an increased size of the LP model to construct in the step 8 of Exact Algorithm.
However, we still need to try different values for σ1.

In Figure 3 (see for details Table 2 in appendix), the red curve represents the total
processing time of the Exact Algorithm on the instances. We observe that we can solve
even the biggest instances (with n = 800 and m = 7200 and p = 60) in less than 2 hours.
In order to explain these computational time, we show in Figure 3 the percentage of the
computation time taken by:

• The time to generate Drob (line 2 of Exact Algorithm) denoted by T Init

• The time to solve (P det) (line 3) denoted by T Det

• The time to solve UB3 (line 4) denoted by T UB3

• The time to solve (RP rob(Drob)) (line 5) denoted by T RProb

• The time to solve (P rob) (line 8) denoted by T Exact

Observe that the initialization of the instance is the main time consuming process.
These preliminary results show that our σ − Qsearch process is specifically efficient to
solve both (P rob) and (RP rob). Note also that the proportion of T Exact to the total

10

Figure 3: Evolution of the processing time given the size of the instance

processing time remains constant. Moreover, T Exact is equal to zero when UB = LB2,
it occurs twice in our instances. The time to solve (P det) is negligible, which highlights
the increase of complexity between the deterministic and our robust version.

In addition, we examine the impact of p on the overall computing time by solving
some particular instances for p ranging from 2 to n/3. We give the results for instance
pmed4 with 100 vertices and 200 edges, which seems to us typical of the observed trend.
Figure 4 (see for details Table 3 in appendix) shows the time performance of the different
part of the Exact Algorithm on instance pmed4 in relation to p. It also indicates the
number of iterations performed inside step 8 of the Exact Algorithm. The number of iter-
ations exceeds 1 when LB2 is not equal to the optimal solution value, which happens very
sparingly as we have seen in the previous results. We can see that the overall processing
time does not increase regarding the size of p, with the exception of the cases where step
8 involves more than one iteration.

This integer linear programming approach can be adapted to solve some variants that
are interesting from a practical perspective. All these variants have been discussed with
practitioners and have been identified as relevant for some regions.

11

Figure 4: pmed4 with 100 vertices

5 Some extensions and variants of the robust p-center

problem

5.1 Concerning shelters

The first variant is motivated by the fact that, under some circumstances, a shelter can
be located only in some specific places. We denote Z the subset of vertices on which it is
possible to locate a shelter. This variant is easy to model as follows: ∀j ∈ V \ Z, yj = 0
since we consider only y variables associated to vertices that are suitable for shelters be-
longing to Z.

5.2 Concerning scenario

In the second variant, a scenario s is no longer a single burning vertex but a subset V s

of vertices in fire. This variant enables us to take into account the fire spread (in a static
way). As previously, if a vertex v is in V s, this vertex is no longer reachable. Given a
subset V s, the operational graph Gs = (V,Es) is deduced from the initial graph G by
removing all incoming arcs of the form (j, v) for all v ∈ V s. We have Es = E\∪v∈V sω−(v).
Consequently, in Gs the subset V s is an independent set without any incoming arcs from
V \ V s. In this static context, it is quite natural to assume that for all scenarios s and
s′, we have V s ∩ V s′ = ∅ since V s represents a fire ignition and its spread. Indeed, if a
vertex is common to two distinct scenarios s and s′ all vertices of s and all vertices of s′

12

belong to the same unique scenario. Our model can also easily integrate this variant:

(P rob
2)























































































































min

T rob
∑

t=1

Drob
t ut (1)

s.c.
∑

j∈Z

yj = p (2)

T rob
∑

t=1

ut = 1 (3)

∑

j∈Z:dsij≤Drob
t

yj ≥
t

∑

q=1

uq ∀s ∈ S, ∀i /∈ V s, t = 1, . . . , T rob (4)

∑

j∈Z:liv+dsvj≤Drob
t

yj ≥
t

∑

q=1

uq − yi ∀s ∈ S, ∀i ∈ V s, ∀v ∈ N+
Gs(i),

t = 1, . . . , T rob (5)
yj = 0 ∀j ∈ V \ Z (6)
yj ∈ {0, 1} j = 1, . . . , n
ut ∈ {0, 1} t = 1, . . . , T rob

where S represents the set of scenarios and N+
Gs(i) is the set of all vertices v such that

(i, v) ∈ Es.

5.3 Concerning evacuation strategy

In the third variant, only the vertices associated to a scenario must be evacuated: if a fire
occurs in a zone, no need to evacuate other zones. If we consider a more dynamic context,
it could be interesting to assume that we need to evacuate only people where fire ignites
and we have to locate shelters in order to manage this emergency first step. This variant
only requires to remove constraints (4) from models (P rob) or (P rob

2).

5.4 Concerning objective value

Finally, we propose an alternative model considering the probability πs that scenario s
happens. In this case, the goal is to minimize the expectation value of radius on all
scenarios and we obtain the Probabilistic p-Center Problem (PpCP) [DHM18]. For this
version, as we need to compute the value of the radius of scenario s, we have to introduce
variables us

t per scenario, where us
t = 1 if and only if all vertices are at a distance of a

shelter less or equal than Ds
t in scenario s for t = 1, . . . , T s. The mathematical model

13

denoted (P pro
2) is:

(P pro
2)



















































































































min
∑

s∈S

πs

T s
∑

t=1

Ds
tu

s
t (1)

s.c.
∑

j∈Z

yj = p (2)

T s
∑

t=1

us
t = 1 ∀s ∈ S (3)

∑

j∈Z:dsij≤Ds
t

yj ≥
t

∑

q=1

us
q ∀s ∈ S, ∀i /∈ V s, t = 1, . . . , T s (4)

∑

j∈Z:liv+dsvj≤Ds
t

yj ≥
t

∑

q=1

us
q − yi ∀s ∈ S, ∀i ∈ V s, ∀v ∈ N+

Gs(i),

t = 1, . . . , T s (5)
yj = 0 ∀j ∈ V \ Z (6)
yj ∈ {0, 1} j = 1, . . . , n
us
t ∈ {0, 1} ∀s ∈ S, t = 1, . . . , T s

Thus, it appears that our model is able to take into account several interesting variants.
In the following section, we present a particular realistic case and we show its polynomial
complexity.

6 One particular realistic case

Let us consider a particular case motivated by a real case in Spain. It concerns a touristic
valley where the evacuation graph is a caterpillar. We recall that a caterpillar is a tree
for which removing the leaves and incident edges produces a path, called the spin. In
our context, the spin corresponds to the valley and the leaves are associated to touristic
areas in the mountain. Shelters can be located only in the valley and the considered set
of scenarios include only subsets of leaves.

See for example the figure 5 with a spin of length 9 and 13 leaves. The set Z is equal
to {1, . . . , 9} and five scenarios are defined:

• scenario 1: V 1 = {10, 11, 12}

• scenario 2: V 2 = {14, 15}

• scenario 3: V 3 = {16, 18}

• scenario 4: V 4 = {19, 20, 21}

• scenario 5: V 5 = {22}

14

1 2 3 4 5 6 7 8 9
4 12 5 1 10 8 3 7

10 11 12 13 14 15

9 7 8 6 5 4

16 17 18 19 20 21 22

3 7 10 2 4 6 6

Figure 5: A caterpillar example

If a fire occurs on some vertices of a scenario, everybody must be evacuated. The
optimal solution of this problem with p = 2 is to locate shelters on vertices 2 and 6.
Its value is 24, coming from the vertex 22. In fact, this solution is also optimal for the
deterministic p-center problem as showed in the following proposition.

Let us denote v(P) the optimal value of a mathematical problem (P).

Proposition 1 In a connected graph G, if the two following conditions are satisfied:

• (C1): for each s ∈ S, V s only includes vertices with exactly one neighbor

• (C2): Z ∩ (∪s∈SV
s) = ∅

then v(P det) = v(P rob
2).

Proof 1 Let us remark that for all v in V s, ω−(v) = {(xv, v)} where xv is the unique
neighbor of vertex v and Gs is obtained from G by removing |V s| directed edges, so Gs =
(V,E \ ∪v∈V s(xv, v)). Then, all shortest paths are equivalent in Gs and in G excepted
those ending in v for each v ∈ V s:

dsij =

{

dij ∀s ∈ S, ∀i ∈ V, ∀j /∈ V s

+∞ ∀j ∈ V s

We first show that D = Drob. For any dij ∈ D, two cases have to be considered:

• if j /∈ ∪s∈SV
s, then dij ∈ Ds since dsij = dij

• if j ∈ ∪s∈SV
s, then it exists s′ such that dij ∈ Ds′ with j /∈ V s′,

Thus D ⊆ ∪s∈SD
s.

In each Ds, we have to add (see Step 2 in section 3.2) the worst case values induced by the
strategy evacuation: max(v,j)∈Es(lvj + dsjk) for all v in V s. Since v has only one neighbor

15

xv, we have: max(v,j)∈Es(lvj + dsjk) = lvxv
+ dsxvk

= dsvk and this value is already in Ds.

Consequently, D = Drob.
Next, we show that the set of constraints of (P rob

2) and (P det) define the same set of feasible
solutions. Due to condition (C2) and constraints (6), we have yi = 0 in constraints (5)
which become:

∑

j∈Z:dsij≤Drob
t

yj ≥
t

∑

q=1

uq ∀s ∈ S, ∀i ∈ V s, t = 1, . . . , T rob

Then constraints (4) and (5) in (P rob
2) can be rewritten in this way:

∑

j∈Z:dsij≤Drob
t

yj ≥
t

∑

q=1

uq ∀s ∈ S, ∀i ∈ V, t = 1, . . . , T rob

Since Drob = D and dsij = dij for finite values, this set of constraints defines exactly the
same set of feasible solutions than constraints (4det). Consequently, the optimal solutions
for (P det) and (P rob

2) are the same.

As the p-center problem is polynomial for trees [KH79], we obtain the following result.

Corollary 1 In a tree G, if the two conditions (C1) and (C2) are satisfied then RpCP is
polynomial.

7 Conclusion

We introduce a new version of the p-center problem appropriate to the specific context
of evacuation in case of wild fires. The problem can be modeled with an integer linear
program. The mathematical programming approach enables us to extend our model to
other fire configurations and to solve reasonably large instances of our model. The results
we have obtained open many questions and research tracks. So, they need to be considered
as preliminary results that essentially validate this problem and illustrate its richness and
potential. Further research directions will include the design of more efficient heuristics
and the study of relevant classes of topologies for real case applications. These classes
of instances motivate two main challenges: analyzing the problems and their difficulty
in such particular cases and how to take into account specific structures of real case
instances in the linear programming approaches so as to make the related models much
more tractable.

References

[AB97] Igor Averbakh and Oded Berman. Minimax regret p-center location on a net-
work with demand uncertainty. Location Science, 5(4):247–254, 1997.

16

[AB00] Igor Averbakh and Oded Berman. Algorithms for the robust 1-center problem
on a tree. European Journal of Operational Research, 123(2):292–302, 2000.

[Ave03] Igor Averbakh. Complexity of robust single facility location problems on net-
works with uncertain edge lengths. Discrete Applied Mathematics, 127(3):505–
522, 2003.

[Bea90] John E Beasley. Or-library: distributing test problems by electronic mail.
Journal of the operational research society, 41(11):1069–1072, 1990.

[CT13] H. Calik and B.C. Tansel. Double bound method for solving the p-center loca-
tion problem. Computers and Operations Research, 40:2991–2999, 2013.

[DHM18] Marc Demange, Marcel Adonis Haddad, and Cécile Murat. The probabilistic k-
center problem. In Proceedings of the GEOSAFE Workshop on Robust Solutions
for Fire Fighting, pages 62–74, L’Aquila, Italy, 2018.

[ELP04] Sourour Elloumi, Martine Labbé, and Yves Pochet. A new formulation and
resolution method for the p-center problem. INFORMS Journal on Computing,
16(1):84–94, 2004.

[KH79] Oded Kariv and S Louis Hakimi. An algorithmic approach to network location
problems. i: The p-centers. SIAM Journal on Applied Mathematics, 37(3):513–
538, 1979.

17

A Table of Results

n m p OPT LB1 UB1 LB2 UB2 UB3
100 200 5 222 127 246 222 247 265
100 200 10 194 98 274 194 277 266
100 200 10 191 93 229 191 296 252
100 200 20 157 74 220 157 211 232
100 200 33 115 48 145 115 180 195
200 800 5 180 84 207 180 224 205
200 800 10 156 64 166 156 183 180
200 800 20 143 55 158 143 181 187
200 800 40 124 37 149 124 156 169
200 800 67 100 20 127 100 145 153
300 1800 5 153 59 159 153 157 168
300 1800 10 145 51 150 145 152 163
300 1800 30 129 36 142 129 141 152
300 1800 60 116 26 126 116 129 156
300 1800 100 105 18 121 105 128 135
400 3200 5 143 47 146 143 143 157
400 3200 10 136 39 139 136 141 149
400 3200 40 122 28 127 122 147 145
400 3200 80 112 18 118 112 126 132
400 3200 133 103 13 117 103 132 134
500 5000 5 137 40 140 137 137 148
500 5000 10 133 38 137 133 138 147
500 5000 50 118 22 122 118 135 137
500 5000 100 110 15 115 110 126 132
500 5000 167 103 11 111 103 122 131
600 7200 5 134 38 137 134 140 143
600 7200 10 128 32 132 128 129 140
600 7200 60 114 18 118 114 122 134

Table 1: Value of the bounds and of the optimal robust solution computed with the Exact
Algorithm for OR Library instances

18

n m p T Init T Det T UB3 T RProb T Exact T Total
100 200 5 4.8 2.2 0.6 3.0 9.9 20.5
100 200 10 4.8 1.8 1.0 2.5 9.3 19.6
100 200 10 4.8 2.0 1.0 2.7 10.7 21.3
100 200 20 4.9 1.4 1.8 2.1 16.6 26.8
100 200 33 4.9 1.5 2.8 1.5 6.0 16.7
200 800 5 57.6 7.0 2.7 12.4 55.0 134.7
200 800 10 61.8 4.5 4.3 16.8 87.8 175.3
200 800 20 57.2 5.1 7.8 14.9 63.0 147.9
200 800 40 58.4 5.6 13.9 6.9 89.4 174.1
200 800 67 58.6 5.1 22.0 8.4 55.8 149.9
300 1800 5 266.1 10.8 6.1 44.9 179.2 507.0
300 1800 10 267.1 15.3 10.1 51.7 183.9 528.1
300 1800 30 264.3 12.6 24.7 84.4 186.8 572.8
300 1800 60 270.9 12.2 45.4 54.1 212.4 595.0
300 1800 100 264.6 10.2 72.9 29.6 185.6 562.8
400 3200 5 798.6 23.3 10.9 100.2 0.0 933.0
400 3200 10 800.4 24.1 18.5 97.4 433.1 1373.6
400 3200 40 784.5 28.2 57.2 298.4 542.3 1710.6
400 3200 80 806.6 23.6 106.7 85.3 441.5 1463.7
400 3200 133 790.0 23.0 172.7 74.1 438.4 1498.1
500 5000 5 1867.0 45.9 17.1 190.9 0.0 2120.9
500 5000 10 1906.9 115.9 28.9 199.3 884.4 3135.3
500 5000 50 1878.3 44.6 109.0 163.0 886.5 3081.3
500 5000 100 1883.6 40.1 205.8 157.1 912.1 3198.8
500 5000 167 1875.7 44.4 332.9 132.3 878.3 3263.6
600 7200 5 3821.9 77.9 25.2 348.3 1577.4 5850.6
600 7200 10 3859.8 85.0 41.3 448.6 845.4 5280.2
600 7200 60 3816.7 96.3 189.8 303.3 1584.5 5990.6

Table 2: Computing time of the different parts of the Exact Algorithm for OR Library
instances

19

p T Det T RProb T Exact Nb. Iterations
2 1.3 3.0 0.0 0
3 1.4 2.5 8.4 1
4 1.8 4.1 8.4 1
5 1.9 3.4 10.1 1
6 1.5 3.4 47.9 4
7 1.7 3.2 11.2 1
8 2.1 2.6 13.3 1
9 1.3 3.1 10.1 1
10 1.6 3.7 9.9 1
11 1.4 2.5 10.1 1
12 1.7 3.2 9.9 1
13 1.6 2.2 47.8 4
14 1.7 2.1 21.6 2
15 2.0 2.0 46.2 4
16 1.4 1.6 22.4 1
17 1.6 0.9 25.6 1
18 1.7 1.5 12.6 1
19 1.5 1.5 9.1 1
20 1.5 2.4 16.7 1
21 2.1 1.9 9.5 1
22 1.4 1.8 8.2 1
23 1.6 1.2 7.7 1
24 1.0 1.3 8.2 1
25 1.4 1.6 7.9 1
26 1.0 1.6 7.4 1
27 1.3 1.3 7.7 1
28 1.3 1.5 6.9 1
29 1.6 2.3 6.4 1
30 1.6 1.9 6.6 1
31 1.7 0.9 6.5 1
32 1.7 1.7 6.0 1

Table 3: Computing time of (P det), (RP rob) and (P rob) in the Exact Algorithm for instance
pmed4, and the number of iterations done for solving (P rob)

20

	cahier_387.pdf
	Première page cahier 376.pdf
	Page 1

	Première page cahier 376.pdf
	Page 1

