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Abstract

Continuum and Discrete hypotheses are the only ones that have not been
abandoned, even if they have been, up to now, exposed to many falsifications.
We will use Lakatos’ methodology in order to try a rational reconstruction
of the most known theories that had in their core either the discrete or the
continuum hypothesis. Moreover, we will try an extension of the Lakatosian
terms on sets of theories.

1 Introduction

The conflict between the Continuum and the Discrete Hypothesis is very old. It is
mainly located in mathematics and philosophy, but its consequences are also visible
in physics, chemistry and all the other natural sciences. These two hypotheses are
the only ones that have not been left out even if they have been, up to now, exposed
to many falsifications. We will use Lakatos’ methodology ([7, 8, 9, 10, 11, 12]),
in order to try a rational reconstruction of the most known theories that had in
their core either the discrete or the continuum hypothesis. Moreover we will try
an extension of the Lakatosian terms. We will use alternatively the terms: discrete
(continuum), hypothesis of discrete (continuum), program of discrete (continuum) in
order to denote the set of programs (theories) that have in their core (constructed in
an eventually a priori way) the hypothesis of the discrete (continuum). More details
about this construction will be given in Section 6. We will see that the two programs
have survived concurrently despite of the signs of their degeneration. Moreover, they
have remained progressive in a concurrent way. This fact justifies Lakatos’ position

∗This article is dedicated to the memory of Dominique Champs-Brunet, former documentalist
of LAMSADE, who translated a first version of this article into French.
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in his conflict with Kuhn ([6]) about th the theories’ degeneration. We remark
also here that many times those two programs have existed in a complementary
way. Elements of the core and of the positive heuristic of the first one, were used
to corroborate the other one, or elements of the core of the former are lied in the
positive or even in the negative heuristic of the latter.

For example let us mention here the Euclidean program. Elements of the Eu-
clidean theory (concerning the infinite universe) that was lied for centuries in the
core of the discrete are used in the continuum’s theories in order for some “difficul-
ties” of those theories to be overcome (uniform convergence, discretization of the
continuum, etc.).

In general, when we try to apply an epistemologic method in mathematics this
application is problematic. This is due to the fact that the definition of the notion of
experiment is not defined in mathematics in such a coherent way as in the natural
sciences. The objects in mathematics are defined in a definition-depended way,
while the experiment preconditions an empirical frame. Then, mathematics are
used in a meta-level, in order to explain, or to generalize, the results of a particular
experiment or of a class of experiments. The absence of a mathematical equivalent
of the experiment impedes the rational reconstruction of mathematical programs
and forces us to search for social, idealogical or even metaphysical arguments that
analyse those programs and examine their limits concerning their progressiveness or
degeneration.

In any case the current work brings up a justification in Lakatos’ claims that
there is no “gestalt swhitch” ([6]) in the evolution of scientific theories. We deduce
by this study of the history of mathematics that there are no momentary decisive
experiments ([6, 18, 19]) that falsify theories. This falsification is a historically justi-
fied phenomenon, so does the definition of a decisive experiment. It is worthy to note
here that discrete was a “seemingly degenerated program” after Descartes. Moreover
the falsification of Hilbert’s program ([2]) by Gődel’s incompleteness theorem ([3])
could be something analogous to a decisive experiment for the discrete. However the
mathematical models developed in order to describe new computing models show
that discrete remains until now a progressive program in all two directions defined
by Lakatos. On the one hand there are problems that are solved by using, as axioms,
propositions situated in discrete’s core and on the other hand this program augments
its empirical content (progressiveness1 and progresiveness2 respectively, [11, 12]).

2 Discrete before 20th Century

The problem of discrete and continuum appears in Pythagorians, Prosocratics and
mainly in Plato’s philosophy.

For Pythagorians the universe is of discrete nature. The segments of a line
are equivalent to every symmetric size. Their mathematical universe contains only
symmetric sizes and thus very soon fail to overcome problems raised by their theory
and carrying on assymetric quantities, as for example, the quantity

√
2. Despite

the multiplicity of problems raised and solved by their program, this has never been
placed in the core of the discrete.

On the contrary, Euclidean thesis, as described in Στoιχεία (Elements, [4]), has
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been in the core of discrete for many centuries. What is considered as the core of
discrete’s program, is exactly the following two axioms:

1. The Euclidean axiom:
There is no point in the plane that is the intersection of more than one parallel
lines.

2. The Eudoxian or Archimedean axiom:
Given two comparable sizes a and b the greater one exceeds the smaller one in
a size which added to itself can exceed every given size comparable to a and b.

In the work of Eudoxus we find a first capture of the notion of assymetric numbers,
notion formalized later by Weierstrass and Dedekind. The second axiom of discrete’s
core is in fact a very strong hypothesis and is potentially falsified only if we add in
the mathematical universe the notion of the infinitesimals.

In Plato, discrete appears more concretely and with more constructive details. In
his dialogue Tιµαίoς (Timaios, [17]), Plato develops a cosmogony based on discrete.
More precisely this cosmogony is brought out on geometric elements, the so-called
Platonic Solids, which are exactly the convex solids demarcated by equal normal flat
polygons. We can form only three convex solids, namely the equilateral triangle, the
square and the normal pentagon. The possible convex solids that can be formed
using the previous polygons are the normal tetraedron, the cube, the normal octae-
dron, the dodecaedron, and the icosaedron. In this Platonic cosmogony it is claimed
that everything sensible is constituted from a particular combination of four basic
elementary materials: the fire, the air, the water and the earth. In their turn these
materials are not primitive but they are composed by elementary platonic solids.

• Earth is constituted from elementary cubes.

• Water from elementary normal icosaedra.

• Air from elementary normal octaedra.

• Fire from elementary normal tetraedra.

These particles can also be analysed in simpler ones. Indeed, the way Plato’s world
is composed induces that the most elementary constructive materials of this world
are some geometric primitive materials, the following two types of triangles:

• rectangle and isosceles triangle and

• rectangle triangle with angle sizes 90◦, 60◦ and 30◦ respectively.

It is obvious that in Plato’s philosophy the notion of finite divisibility of the sensible
world in real, discrete and not infinitely divisible constructive elements is present.
His ideas have influenced many philosophers as Descartes or Leibniz, even if we can
consider the latter as a scientist of the continuum.

Although Plato has not formally described his universe, his ideas are formalized
in Dimokritos’ work. Very remarkable are the philosophical conjectures of Plato
about the distinction between the phenomenon (relative) of sensible world and the
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real (absolute) of Ideas which are eternal, exact and independent from their potential
connoisseur. This philosophical position constitutes the core of a mathematical
program that appeared in the 20th century, the Intuitionists. Even if today the core
of discrete is not structured on Platonic Ideas, this notion and its extensions and
consequences contribute in enriching discrete’s positive heuristic.

To be more precise, in the frame of a natural theory there are entities introduced
even if they are not directly observable. These theoretical entities are justified only
by their observable consequences. As a recent example we can mention the quarks of
the theory of elementary particles. In the frame of this theory, we can also observe
an example of justification of the Lakatosian method concerning the way a scientific
program evolves. Without the notion of quark, elementary particle’s theory risks
to be falsified because of some inexplicable, in its frame, anomalies. Thus, quarks
is exactly the notion that helps the scientists working on the theory to direct the
modus tolens which could falsify it, not in its core but in its negative heuristic.
Following that, they do not only cancel its falsification, but they also enforce the
progressiveness of the theory.

After Plato, Eucleides, Archimides and Eudoxus the main contribution to dis-
crete’s program is due to Descartes.

Descartes tries to falsify the conjectures that began to be formed concerning the
continuity principle in the universe. His mathematical results corroborate exactly
the Platonic notions of discrete. After him, Kepler, Brahe, Copernicus, influenced
by Plato’s program, see a mathematical universe essentially discrete but, in their
works, the notion of infinite is implicitly introduced and also the one of the limit in
an even more implicit way.

Berkeley also worked in discrete’s frame. He has defined a theory for the universe
in order to answer Leibniz’s theory whose elements we be seen in next session. For
Berkeley, real infinite does not exist; indeed, admitting the existence of such a con-
ceptual object would lead to the admission of an infinity of ideas totally articulated
in the finite human mind. In the same manner, he denies the infinite divisibility
of finite objects. By doing so, he is led to a discrete notion for the universe. He
considers that space and time are discretely structured and their limits are exactly
the conceptual minimum of human mind in space and time.

With Berkeley, ends the prevalence of discrete that seems to be led to the de-
generation. Effectively, this program has stopped being progressive for a long time.
However, elements of the core of this program and particularly the long Euclidean
traditions on mathematics, influence the mathematicians and philosophers, even if
they used support the program of the continuum.

In fact, as historically justified, this program has never been refuted. It has
simply remained “inactive”. This is due to many reasons, seen as elements either
of the external or of the internal history ([7, 9]). Between the ones concerning
the external history we can distinguish the strong Aristotelian influence on the
philosophers and mathematicians up to the beginning of the 20th century (even up
to now). Another reason is that the economic, cultural and military organization
and development of the societies, mainly in Europe, needed machines. Machines
were conceived and developed on mathematical models based upon the continuous
mathematics. Moreover, the philosophical systems and economic analyses that have
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supported, or were opposed to, the given structure of societies have in the core of
their conception the notion of the continuity of both the human activity and the
construction of the universe.

A reason due to the internal history ([7, 9]) is that the scientists (mathematicians,
philosophers and even biologists) after the middle age, required more instruments
than those offered by the discrete mathematics of those times. In fact, the study of
astronomy, mechanics, physics, chemistry would have never progressed without the
introduction of elements of the mathematics, named later continuous mathematics.
It is not incidental that Newton who had constructed one of the most successful
research programs in Natural Sciences was the first that introduced the theory of
flows that were the primitive version of the infinitesimal calculus.

3 Continuum up to 20th Century

3.1 From Aristotle to Kant

The first who introduced the investigation of the continuum with a certain formalism
is Aristotle. He has influenced the conception of the continuum research program
in such a way that a lot of his ideas are lying in the core of this program.

The basic characteristic of Aristotle’s philosophy is that he does not accept the
platonic distinction between the world of ideas and the one of senses. He believes
that in every experimental object, its matter and its scheme and appearance, is not
separated or separable and their study must be unified. The mathematical objects
have two characteristic properties:

1. they are included in the experimental objects and

2. they are not unique.

This second property means that there is a multiplicity of such objects included
either as conceptual entities, or as characteristics of the form of the experimental
objects and their sets. In other words, Aristotle’s point of view on mathematics is
rather extensive than intensive and approaches largely a modern set theoretic point
of view, according to which, mathematical objects can be defined as equivalence
classes of other objects.

We think that the main contribution of Aristotle to the program of the continuum
is that he was the first who alleged that the notion of the infinity and that of the
continuum are very closely correlated in such a way that the investigation of the
continuum leads to the investigation of the infinite and vice-versa.

His conjectures on the nature of infinite were based on the following five claims:

1. Time is infinite.

2. Extended objects can be divided. The number of the divisions applied has not
a supremum.

3. The procedure “creation-ruin” for every sensitive object has no end.
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4. Everything that has limits is contained in another whose limits are more ex-
tended. Thus the totality of things cannot have any limit, because if the
opposite is true, these limits would be included in the whole of things. Let
us point out here the similarity of this claim with the main idea of the proof
that the power-set of the natural numbers is a non enumerable set (principle
of diagonalization. There is also the result of the undecidability of the halting
problem in the computation theory ([13]) that refers directly to this thesis of
Aristotle.

5. The human mind has no limits. Thus the conceptual constructions of the
human being have no more limits.

According to Aristotle there are two procedures that create the infinite: the addition
and the division.

To the question “what is the meaning of adding or dividing some quantities for
an infinite number of times, while the time of the human life and human actions are
finite concepts”, Aristotle answers:

“Everything sensible can be as large as we want but it is always finite.
However nobody can claim that the procedure of the addition is finite.
The nature of the infinite is potential and only the potential study of
that has some meaning”.

Hence, although the extended magnitudes are not really infinite, they can be seen
as potentially infinite because of their repeated divisibility. Thus the theoretical
divisibility of a natural object is equivalently expressible with the divisibility of a
finite segment of a line.

One of the main points in the study of the continuum by Aristotle is his conjec-
ture about the nature of the point (of a line) in the structure of the continuum.

The points do not really exist before the actions of dividing a part of a line. This
part (length) pre-exists of its points, as their potential carrier. There is an infinite
number of potential points that may be reconverted into real ones after the action
of an eventual division.

Thus Aristotle’s continuum is defined by the possibility of the interminable divis-
ibility on a finite length. Here we have to notice how this correlation of the procedure
of the division and the notion of the infinite is similar to Dedekinds’ intersection.

The ontology of Aristotle’s continuum and infinite includes the notion of time as
well as that of space.

Time is potentially infinite and this possibility is also additional and divisional.
The addition possibility comes from the property of the time to be the measure
of the change that is continuous in the universe. The “divisibility” of the time is
analogous to this of the finite part of a line. The only difference between the two
divisibilities is that every past segment of time is indivisible. Thus the possibility of
dividing a segment of time exists when this segment is in the future and this division
is completed when this segment becomes “present”.

For Aristotle the intellectual jump into the “mathematicalization” of the infinite
is not permitted. Hence the notion of the continuum is rather philosophical than
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mathematical. However the mathematicalization of his infinite and continuum is
present in the works of many mathematicians from Newton to Dedekind.

After Aristotle, and passing through the Hellenistic and Roman centuries up to
Middle Ages, the mathematical results and the philosophical conjectures enforce
either the program of the continuum, or that of discrete, without any surprising
result that could lead one or the other to degeneration. However, during the Middle
Age, several philosophers contribute to the enrichment of the positive heuristic of
the continuum’s program in an a posteriori but impressive way.

Saint Augustin in Civitas Dei ([22]), claims that “the whole of the sequence of
the integers forms a real infinite”. This claim is, according to Cantor, the first
proposition concerning the “hyperfinite”.

Thomas Brawardine ([22]), claims in his turn that “the continuous magnitudes
even if they consist of infinite indivisible parts, they have infinite continuums of the
same type”.

In the conjecture of Brawardine the similarities with Cantor’s theses are evident.
A bit later the early-empiricist Locke, tries to refute Aristotle’s ideas concerning

the pre-existence of the part of the line with respect to that of the point. He claims
that the simpler mathematical ideas are these of the unit and the point, which
are the basic materials for the construction of all the mathematical ideas. This
is performed by using the repetition and the combination. The similarity of his
claims with the ones of Kant concerning the constructiveness of the mathematical
objects is, as we will see, very strong. Locke, consequently, defines the infinite to be
this mathematical object produced by the unit with the procedure of the “endless”
repetition. The main interest of his theory is that he tries to move the continuous
ontology from that of time and space to that of the numbers.

The real break through in the continuum hypothesis comes up with Leibniz. He
introduces many new types of problems on the ontology of the continuum. His results
on mathematics (infinitesimal calculus) and his philosophical system are extremely
interesting and remarkable. Leibniz is mainly influenced by Aristotle, but one can
find in his work “Platonic elements” also.

According to him the present world is timeless. He is constructed from discrete
entities, the units. These units do not communicate and do not interact. They lie
under an internal procedure of representations’ interchanging.

The natural (external) world is a sequence of events that are based upon the
present world which is the best between all the possible worlds (according to Leibniz
there are many possible worlds). For him, the world has a discrete structure because
it is constructed by “units”, but the space and time are infinitely divisible. This
contradiction appearing between the construction of the universe and the possibility
of its infinite divisibility is satisfactorily resolved in his philosophical system. An
a priori principle is present throughout its work. This “principle of continuity”
appears under several forms, the main of them being that the nature makes no
jump and respects the continuity of what it creates. An other form is that the
beings have some properties that are continuous functions of their characteristics.

Leibniz’s reasoning for the principle of continuity is the following: “the supreme
Being wants the best, which is the best ordered, that is the continuum. Thus, the
principle of continuity is true” and, according to Leibniz, “the set of natural organic
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and inorganic beings forms a chain”.
This principle, as well as the infinitesimals, are Leibniz’s major contributions in

the philosophy. In a much more elaborated way, in the “non-standard” analysis of
Robinson, many of Leibniz’s ideas can be found.

The claim of the chain gives to his theory a predictive component based exactly
on the continuity principle. It predicts the discovery of other beings (in the chain)
unknown until then. In a more modern mathematical metalanguage, we would say
that “the chain of the beings is complete”.

The infinite and the continuum are closely interdependent. The infinite, accord-
ing to Leibniz, is potential but also real. This leads to a contradiction that could be
summarized as follows: “on the one hand, he denies the existence of such a thing
that really has infinite parts; on the other hand, he claims that the most little thing
is a world containing an infinite number of beings”.

Anapolitanos ([2]) proposes the following conjecture in order for this contradic-
tion to be explained: “Leibniz seems to refute the real infinity of the mathematical
continuum, as he considers it as a construction of the mind. Being such a construc-
tion, it pre-exists of its points and is potentially divisible and not really divised. On
the other hand, he accepts the real infinity of the extended natural objects in the
space and time”.

Despite its obscurity, the mathematical component of Leibniz’s world have largely
contributed in the “mathematicalization” of the continuum. In fact, he is the first
who gave concrete ideas in the ontologic investigations of both the infinite and con-
tinuum.

These two notions can also be found in Kant. In his theory we discover influ-
ences from Aristotle (potentiality of infinite) and from Leibniz (hypotheses on the
chorochronic nature, the frame of which is changeless and constant). According
Kant, infinite is both real and potential.

Kantian real infinite is a non constructible notion. This notion is opposed to the
one of three-dimensional geometric objects for which there is a concrete constructive
algorithm whose character, in Kant, is a priori as it is based in the “changeless” of
our chorochronic frame.

Here appears the main difference between Kant’s and Aristotle’s programs. This
difference concerns the ontologic status of real infinite. For Aristotle, such a notion
can not exist in the frames of our conceptual universe. For Kant, on the contrary,
real infinite is an element of this universe, where this notion is included as not
logically impossible even if its representation is a problematic.

One of the similarities among the two programs is the acceptance of the potential
infinite. In order for the relation between the two notions of infinite to be under-
standable, we will give an example in a temporary mathematical meta-language.

The existence of a constructive algorithm for the production of terms of a se-
quence of natural or conceptual objects does not imply the existence of this sequence
as a real object. Sequence as a real object corresponds to the notion of real infinite,
while the existence of the constructive algorithm corresponds exactly to the notion
of potential infinite.

In a mathematical set theoretic meta-language we could, according to Kant’s
thought, define the class of all conceptual constructions as the domain of the notion
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of potential infinite.
The example given above shows exactly the difference that forces Kant to accept

real infinite as a logical and internally consistent notion and potential infinite as a
basic instrument for the overcome of non-infinite constructive procedures. Also, in
Kant, the notion of infinite is closely related to the notion of continuum. For him,
chorochronic frame is continuous in the sense that it is infinitely divisible. This
divisibility is potential. Generally the Kantian analysis of the notion of contin-
uum is misleading and it lacks of radical analyses and hypotheses as Aristotelian of
Leibnizian philosophy.

After Kant the continuum program is separated in two main directions, the
mathematical and the philosophical one. This tendency is not surprising since it
is a component of a more general development of human thought that separates
philosophy and mathematics.

In philosophy, where continuum is rather a gnosiologic principle than a mathe-
matical construction, ontological researches for the nature of continuum are carried
out. In mathematics, the mathematicalization of infinite and continuum allows
the development of many instruments and notions, the infinitesimal calculus be-
ing the one dominating them. Infinitesimal calculus contributes to the enrichment
of continuum’s positive heuristic and the implication of its hypotheses not only in
philosophical or mathematical programs, but also in natural sciences’ ones. Con-
tinuum’s program remain dominant and progressive, in all senses of progressive-
ness, ([7, 8, 10, 12]), up to the end of 19th century, as its progressiveness allows
to scientists working in its frame, to neglect anomalies emanating from obscure
hypotheses and definitions on the nature of infinite and continuum.

3.2 Infinitesimal Calculus. The Positive Heuristic of the
Continuum’s Program

For a long time the scientific community influenced by the Aristotle’s program posed
problems that contained the continuum hypothesis as a necessary and sufficient
condition or as implied initial constraint (let us imagine what would happen if
Newton studied the low of the gravity by supposing that the space has a discrete
nature). The way the problems were posed and the philosophical tendencies and
formations that determined the space of the action of the natural phenomena, needed
the appropriate mathematical models in order firstly to describe and secondly to
treat the problems.

In the case of scientists of the 17th, 18th and 19th centuries, the continuum
hypothesis that dominated the philosophy, has obliged them to take this hypothesis
into account in the conception of their mathematical world.

The first that has presented a work on the infinitesimal calculus was Cavalieri in
his Geometria Indivisibilibus Continuorum (Geometry of the indivisible continuous).
According to him a line is produced by the move of a point, the level by the move
of a line and the solids by levels overlapping. This primitive method has permitted
him to produce results equivalent to integrations of polynomials. After him, a lot
of scientists got interested in the completeness of this type of calculus.

Fermat, proposes a method for the determination of the maxima and minima of
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a function. This method consisted in the application of slight changes of the variable
of the function and after, on the equalization of these changes with zero.

Fermat’s method have been extended by Hudde on more general algebraic curves.
They could so determine some tangents, volumes of some solids as well as some
centroids.

Barrow in his turn has explained in a geometric way, difficult to be understand-
able, the duality differentiation-integration.

We thus see how the hypothesis of the continuum began to be a progressive
program, even better, toncreate progressive programs. The aforementioned scientists
adopt this hypothesis and find a way (naive at that time) of managing difficult
notions as the “very small changes”, etc. They do not care about the explanation
and the refinement of these notions. The ability to compute quantities uncomputable
under the hypothesis of discrete, is sufficient for them.

Pascal, by reasoning on the spirit of tightness more than on the geometric intu-
ition, has proved that

(x+ dx)(y + dy)− xy = xdy + ydx

Huygens conjectures the wavy emission of the light. This work is the first on physics
based on the hypothesis of the continuous mean (space).

Newton with the method of fluxions is the first, with Leibniz, who handles in a
systematic way the infinitesimal calculus. He generalizes this method by extending
the application of the binomial theorem in the case where exponents are rational
numbers or negative integers. The combination of the primitive method of fluxions
with the extension of the binomial theorem has allowed the applicability of this
method to a large class of algebraic and transcendental functions. Of course, the
name of his method (fluxions), shows that Newton views the derivative mainly as
velocity. This “erroneous” view has not prevented him from adding surprising results
to the positive heuristic of the continuum. The main inconvenience of Newton’s work
was the absence of clarity concerning the explanation of his symbols. He does not
explain, for example, what he means when writing “infinitely small quantity”. There
is, in his work, an ambiguity concerning this term that could mean either zero or
infinitesimals or finite small numbers. Also, his theory of the first and last ratios
could not remove the ambiguities of his definitions. The time for a full and concrete
removal of the obscurities concerning the infinitesimal calculus had not arrived yet.

Leibniz has worked on differential calculus in a geometrical way and not in a
“kinematic” one and the terms differential and integral calculus, as well as the
symbols used today are owed to him. However, the same ambiguities, as those
found in Newton’s work, have not been removed. It is because of these ambiguities
that Marx ([14]) characterizes the differential calculus of these two scientists mystic
differential calculus. Also, the systematic computation of the extreme of a function
is due to Leibniz.

Bernoulli’s family, extend the positive heuristic of the continuum’s program by
solving many problems, for instance problems on geodesic lines on surfaces, or on
the motion of a point in a gravity-field. The development of the theory of differential
equations with partial derivatives is a work performed by members of this family.

10



This theory permitted to Daniel Bernoulli to fund a program on hydrodynamics and
to D’Alembert and Euler to study the theory of vibrating chords.

Therefore, we see that, even if all the details troubling the differential calculus
have not been removed, the program of the continuum being progressive, it pro-
duces new results and permits the extension and implantation of pure mathematical
theories in progressive non-directly mathematical programs. All these successful
problemshifts corroborate the program of the continuum and marginalize temporar-
ily the program of the discrete.

Euler, with his Introductio in Analysis Infinitorum, solves many trigonometric
problems and introduces symbolisms used up to now. In “Introductio in Analysis
Infinitorum”, he presents infinite series for expx, sinx, cosx, as well as investigating
the equation

exp ıx = cosx+ ı sinx

(investigated under other forms also by Johann Bernoulli). In the same work can
also be found the ζ-function and its relation with the prime numbers.

The positive heuristic of continuum’s program is enriched by the other works of
Euler:

• Institutiones Calculi Differentialis and

• Institutiones Calculi Integralis.

In these works, we find also a theory of the differential equations with a classification
in linear, complete and homogeneous ones, the formula of the Euler’s sum and the
Eulerian integrals.

In Mechanica Sive Motus Scientia Analytice Exposita and in Theoria Motus Cor-
porum Solidorum Sen Rigidorum, Euler extends his mathematical methods to solve
natural problems on physics and mechanics by enriching, in parallel, his mathemat-
ical work with the presentation of the Eulerian equations concerning the solids that
revolve around a point. Finally, in another work entitled Methodus Inveniendi Lin-
eas Curvas Maxime Mininive Proprietate Gaudentes, Euler solves major problems
of the analytical geometry.

There is something remarkable in Euler. Apart from his contribution in the
program of the continuum, he proposes a lot of problems-games that will contribute
in the future to the enrichment of the positive heuristic of discrete. For example,
the seven bridges of Kőnixberg is a famous problem, element of the positive heuristic
of discrete, the graph theory.

Obviously, even with Euler, the obscurities regarding the differential calculus
have not been removed, but, a least Euler, has tried to explain some obscure notions
as, for example, the meaning of the infinitesimal changes. In order to remove the
obscurity of the division dy/dx seen at those times by many mathematicians as the
division 0/0, Euler introduces types of zeros and types of equalities, the arithmetical
equality and the geometrical one.

In the arithmetical equality all the zeros are the same object. In the geometrical
equality two zeros are equal only if their “ratio” is equal to one. With this diver-
sification, Euler tries to remove problems on the exact nature of the infinitesimal
variations. Even if with this alternative point of view of zeros, things have not been
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clear, Euler sees a critical point of the differential calculus. This point is exactly
the merging of mathematical and metaphysical methods and thoughts. However,
with this proposition, Euler opens a discussion, unfinished yet, on the definition of
mathematical objects and the critical role of the particular definition in the solution
of a problem that uses this object.

In any case, even with the works of Euler, the problem of the “mathematicaliza-
tion” of infinite and continuum has not been resolved. Euler, despite his prestigious
work, treats these two notions in an relatively ambiguous way, for example, his con-
vergence criteria were not so correct. Because of that, he treats the divergent series
in such a way that he obtains, many times, false results. Let us recall that under a
Euler’s reasoning the following result holds:

...+
1

n2
+

1

n
+ 1 + n+ n2 + ... = 0

However, despite the ambiguities and the obsurities in all the programs based on
the continuum hypothesis, these programs were progressive and performed very
successful problemshifts, producing new and very interesting results.

D’Alembert is the first that introduces the notion of the limit of a function. He
defines a quantity to be the limit of an other quantity, if this second approaches
very (infinitely) closely the first one, and this difference can become smaller than
any other given quantity. He introduces also the notion of the infinitesimals of
different orders. He also produces results on mechanics published in his book Traité
de Dynamique. In this book we find D’Alembert’s principle which is a method for the
reduction of the dynamics of solids in statics. He studies problems of hydrodynamics,
aerodynamics and publishes a theory for the vibrating chords. This work contains
some interesting mathematical results on the partial differential equations. We see
thus, that in parallel to the progress of the pure mathematical programs based on
the continuum there is also a remarkable development of programs based on the
same hypothesis but working on natural sciences.

Landen proposes the ellipsoid integrals. He also proposes new methods for the
calculation of the derivatives. On the complexe functions he uses infinite series. His
works are, in a certain way, precursors of Lagrange’s algebraic method. The point of
view of Landen on the computation of the derivatives appeared in his work, Residual
Analysis. Even if he does not remove the obscurities on the notions of the “infinitely
small changes”, he is less metaphysical than Newton or Leibniz, reason for which,
when Marx tries to explain the mechanism of the derivation ([14]), he is bases himself
more on Landen, than on Newton or Leibniz. In any case, after those two scientists,
the accumulated knowledge on the calculus of the continuous quantities has led to
big progress. Even if the mathematicians could not take it into account (there is
no instantaneous rationality says Lakatos in [12]), the accumulated results remove
many ambiguities. Landen being a self-educated mathematician could describe a
mathematical mechanism in simpler terms than an specialised one. We think that
this is the reason that a materialist such as Marx found the hypotheses of Landen
more unambiguous.

Despite of his enormous philosophical work, Berkeley did not contribute to the
differential calculus. He has merged the mathematical formality with the theological
metaphysics in order to prove that the results obtained by this calculus were simply
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a mutual shift of faults. Moreover, we have already seen that he was a philosopher
largely accepting the discrete hypothesis.

Maclaurin, in his Methodus lncrementorum, presents his famous series, that de-
scribes the behaviour of a function under a “small” variation of its variable and is
indeed based on Newton’s binomial theorem.

Another scientist that referred to this series is Taylor. The difference between
the two mathematicians is that Maclaurin controls also, in an elementary way, the
convergence of those series.

If with Euler the differential calculus begins to find its final (actual) form, La-
grange contributes in the elementary notions and the basis of this calculus to begin to
be treated in a strictly mathematical way. His objections on the way Euler presents
this calculus lead him to write the Analytic Calculus of the Variations. This theory,
as applied in natural problems, gave rise to the work entitled Mecanique Analytique.
Although those results contributed to the enrichment of the positive heuristic of
the Newtonian research program, on a mathematical level concerning the treatment
of the whole problem of the differential calculus, Lagrange’s optic is completely in
opposition with the one of Newton. His other works, namely Théorie des Fonctions
Analytiques and Leçons sur le Calcul des Fonctions fund the reduction of the differ-
ential calculus to the algebra. Lagrange also, while working on the series, neglects
their convergence. Thus, the “algebrification” of the calculus has not given solid
results. The main contributions of Lagrange consist in the clarification of the basic
notions of the differential calculus and on the treatment of the notion of function in
an abstract way. These contributions remain always valuable.

Laplace in his turn, contributes in the construction of mathematical models based
on the continuum hypothesis, concerning a multiplicity of natural sciences as me-
chanics, electricity, astronomy. He is the most “faithful” scientist to the continuum
hypothesis. We have already seen that all the previous scientists when confronted
with the ambiguities of the mathematicalization of the continuum and of the infinite
procedures, refuged either in metaphysical hypotheses (Newton, Berkeley, Leibniz)
or in a certain “discretization” of the continuum. Laplace on the contrary neglects
these “problems”. As the continuum program is progressive and gives new results
these mathematical-philosophical anomalies can be neglected. But even this, is not
sufficient for him. He tries to “continualize” the discrete. Even if elements of the
probability theory already existed in Bernoulli’s and Legendre’s works, Lagrange is
the first that formally defines and uses the generating functions and demonstrates
their use in the solution of the differential equations. The concept of the generating
functions is the main example of the passage from the field of the discrete mathemat-
ics to this of the continuous ones. Even if Laplace presents his mathematical results
in modelling natural problems, these results are very interesting by themselves. Let
us only recall here, the pure mathematical value of Laplacian Equations as well as
this of Laplacian Transformations.

Gauss extends the admission of the continuum in several fields. Between his main
contributions in differential calculus is the systematic study of the convergence of
infinite series. Also, the studies of curves of Gauss strengthen the continuum’s pro-
gram. With his imminent work on the complex numbers, he extends the continuum
hypothesis on the plain. Recall that, up to Gauss, the conception of the continuum
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was limited to the real line. With the conception of the elliptic functions he is led
in the conception of the non Euclidean geometries. But his abstention from the
ideological conflicts prevented him from publishing his discoveries. All these math-
ematical advances and discoveries pushed Gauss to contest also Kant’s refutation
that the notion of space is a priori Euclidean. With his works on electricity and es-
pecially on the theory of the potential, Gauss enforces the hypothesis that universe
is continuous and that the propagation of the electric current is performed in con-
tinuous mean. In his works on electricity, we also find purely mathematical results,
as some principles for the spatial integrals. Between these principles we distinguish
under different terms the principle of Dirichlet.

Legendre also contests in his turn, the Euclidean ideas in geometry. At the same
time other scientists corroborate always the continuum hypothesis by producing
surprising results on research programs of natural sciences.

Poncelet and Coriolis, explain in a geometric manner the Mécanique Celeste of
Laplace, conjecture new physical lows and propose a better understanding of the
nature.

Malus, demonstrates the polarity of the light and Fresnel reformulates the theory
of the wavy transmission of the light.

Ampère, always in the frame imposed by the continuum hypothesis founds the
Electromagnetic Theory.

Fourier, in Théorie Analytique de la Chaleur, studies the model of the Thermal
Conductivity. In this book, except the explanation of this mechanism, Fourier founds
also the theory of the integration of the partial differential equations with given
boundary conditions by using trigonometric series. His main result in mathematics
is the demonstration that an arbitrary function can be developed in terms of a
trigonometric series of the form:

∞∑
n=0

An cosnx+Bn sinnx

We shall see later that he has also largely contributed to the clarification of the
notion of the convergence of mathematical series and, more basically, of the notion
of the function.

Cauchy has contributed in the theory of light and in mechanics. But his main
success is due to his results in mathematical analysis. With Cauchy the theory of
the complex functions have passed from the domain of hydrodynamics and aero-
dynamics to the domain of pure mathematics. In his Memoire sur les Integrales
Definies Prises Entre des Limites Imaginaires, we find the computation of integrals
through the residuals. His theorem, that every normal function can be developed,
around a normal point z0, to a convergent series in the interior of a cycle having
as center z0, largely contributes in the formalization of the notion of the conver-
gence and the function continuity. A major problem, appeared with the research
of Cauchy, is the conflict between the notion of function in Fourier’s sense and in
Cauchy’s sense ([10]). This difference entails a different behaviour of the functions
in the case of the Fourier’s series and this of Cauchy’s power series. Moreover, these
questions created a contestation in the nature of the mathematical infinite and con-
tinuum. Today, we know very well that this conflict is due to the vague notion of the

14



convergence as it appears in the works of both the two scientists. This conflict can
be resolved by the adoption of an other kind of convergence, namely the uniform
convergence, as this appears in Riemann and Weierstrass. Under this notion the
behaviour of all the trigonometric and power series of a function becomes identical.

Here we can see a justification of the Lakatos point of view. Despite this critical
anomaly, the program of the continuum has not been left by the scientists. It
had already produced too many results, predicted new phenomena and posed new
problems, so this anomaly is put in the margin of the program until another scientist
could remove this anomaly by transforming it to a corroboration of the continuum
program. We can also see that with the appearance of new results, many results
and theories produced previously by adopting the same core of hypotheses, are led
to falsification. For example Cauchy’s results falsified many points of Laplace’s
Méchanique Celeste. This does not prevent the program of continuum to remain a
progressive research program.

Dirichlet, works on the theory of analytic functions. He gives a formal proof for
the convergence of Cauchy’s series. With this proof, where we find the notion of the
uniform convergence, he contributes in the correct understanding of the notion of
function’s nature. Also very well known is the Dirichlet’s principle in the integral
calculus.

Riemann, by working on the theory of complex functions, proposes the so called
conformal representation. This work completes the formalization (initiated by Gauss)
of space’s continuity. He applies the previous results on the class of hypergeomet-
ric and Abelian functions. Concerning these last functions, he has also proposed a
method for their classification.

We all have beared by Rieman’s Integral. His works on the integral calculus are
very advanced for his times. The proof that the functions defined by Fourier’s series
have infinitely many minima and maxima, changes the definition of the notion of a
function. The notion of Euler’s continuous function as a continuously drawn curve
begins to be contested. Riemann gives an example of a function that is continuous
but has not derivative. The meaning of this counterexample has not been understood
as a critical anomaly of the continuum’s program, until anomalies in programs of
physics (Michelson - Morley) that could be explained by these counterexamples have
risen up. Then, the critical meaning of this anomaly has been understood. But for
the moment, continuum’s program is very solid, so does the enthusiasm of scientists.

Weirstrass continues the work of Riemann on complex functions, by founding
their theory via the use of power series. He uses also the method of Lagrange with
an absolute mathematical formality. His main contribution in the domain of the dif-
ferential and the integral calculus was the clarification of the notion of the limit, of
the minimum of a function, of the derivative and of the function itself. His method
of the ε − δ definitions concerning the limits and the variations of the quantities,
offers an explanation free of ambiguities and metaphysical hypotheses. Moreover,
this method that clarifies the nature of the limit and the infinitely small quantities,
is the precursor of the discretization of the continuum. This evolution is arranged
among the successfull problemshifts brought out by Weistrass. Effectively, it hap-
pens the contrary. It is the beginning of the end of the imminence of the continuum’s
program. The scientists unable to understand and consequently to perform the com-
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plete mathematicalization of the continuum and of the infinite, take refuge to the
safe domain of the discrete means. Weierstrass was the last mathematician that
has worked in the heart of the differential calculus. The continuum’s program has
remained for more than three centuries progressive. The successful problemshifts,
the concrete results that were produced, the predictive power of the program, have
put in the margin the program of the discrete.

The differential calculus was more than a set of results that enriched the positive
heuristic of the continuum’s program. It was something like a “core” (not in the
Lakatosian sense) for its positive heuristic, while in the same time constituted a
principal element of the negative heuristic, in the sense that many times, anomalies
appeared in the programs based on the continuum hypothesis, were prevented to
falsify them. This was done because anomalies were explained by refereeing to the
ambiguities of the hypotheses in the definitions regarding the nature of the infinites-
imal calculus. Simultaneously, there is a substantial interaction between natural
sciences’ programs and mathematical ones, based on the continuum hypothesis.
Never after the times of Greek antiquity and its Euclidean hypotheses, a mathe-
matical program has lived so many centuries by performing so many progress as the
differential calculus did.

We close this section by discussing how the founders of one of the most successful
programs on Socio-economics examined the questions of the continuum, the infinite
and the infinitesimal calculus.

We do that because, on the one hand, the mathematical programs influence on
all the scientific programs having to do with the economy and in general, with the
human behaviour and, on the other hand, because the program of Marx seems to
be very well structured in Lakatosian terms.

What do we mean by this? This program has a core structured on some a priori
conjectures concerning the nature of the organization of the civil society as well
as the one of the economic laws. His negative heuristic has very well functioned
for decades by explaining the enormous anomalies appeared in the program. Let
us simply recall the contradiction between Marx’s conjecture for the revolution in
England or in Germany and the reality of the revolution in Russia and the explication
of Lenin on this contradiction. Or, the conjectures of many occidental marxists on
the failure of the communist system in Soviet Union ([1, 20, 21]). Moreover this
program has remained progressive (in the Lakatosian sense) by explaining a lot
of social and economical phenomena and by predicting many others. Finally we
examine this program because as Kastoriades said: On reflechira encore sur Marx
lorsqu’on cherchera peniblement les noms de M.M. von Hayek and Friedman dans
les dictionnaires1, (Journal le Monde 24/4/90).

Marx has worked on the differential calculus even if the relative notions of the
continuum and infinite are introduced marginally in his program.

Engels says about the infinite ([14]): We can know only the infinite. In fact any
real and complete knowledge consists simply of reducing every isolated thing in our
mind, from the particular to the partial and from this last to the total. We search and
we define the infinite through the finite, the eternal through the momentary. How-

1We will continue to think on Marx when we will search in vain the names of von Hayek and
Friedman in the dictionnaries
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ever, the form of the totality is the form of the self completeness and consequently
the form of infinite; it is the perception of many “finites” in infinite.

We can see that, in his manner, Engels defines informally infinite in such a way
that can be considered almost equivalent to the classical definition of the induction
in Logic Positivism. This notion of infinite allows suppose that for Marx and Engels
the universe has a discrete nature. In any case, this is a logical hypothesis if we
take into account that Marx opposed to the Hegelian spirit and infinite idea as well
as the to Hegelian conjecture on the infinity of the human experience as the major
form of the infinite motion of matter (substance), which refers to the Aristotelian
potential infinite.

For Marx the evolution of differential calculus is divided in three periods.

• The period of mystic differential calculus of Newton and Leibniz.

• The period of rational differential calculus of Euler and D’Alembert.

• The period of pure algebraic calculus of Lagrange.

For the first period, Marx sees more the metaphysical hypotheses on the notion of
infinitesimals than the theory that begins to be developped. We think that his thesis
is due to the absence of an algebraic foundation of the theory of differential calculus
defined by Newton and Leibniz. It is true that the infinite variations, particularly
their value and nature (are they or not equal to zero?) are not formally defined
in the works of the above scientists. But Marx, being opposite to all hypotheses
that had metaphysical origins, ignores the power of this type of calculus. For him,
the most obscure point in the procedure of differentiation is the “division” dy/dx
seen as a division 0/0. Euler, by having explained more satisfactorily (even not
formally) the nature of variations by introducing the “types of zeros”, allows Marx
to discover a rationality in his works. The other point that was hardly explicable
for Marx, was the “algorithmicity” of the differantiation method which is due to his
conception of a discrete world. Marx’s proposition for the differentiation procedure
is the following ([14]):

• We take x1 6= x and we form the difference f(x1) − f(x). Let us denote
F (x, x1) = f(x1) − f(x). Of course F is a 2-variable function. We ex-
press F (x, x1) as F (x, x1) = (x − x1)G(x, x1). In function G we take x1 = x.
This quantity G(x, x) is f ′(x). In this way we cancel all the difficulties ema-
nating from our game with infinitely small quantities.

A mathematical remark for the above procedure is that Marx does not consider
the continuity of G in the neighbourhood of x as a sufficient condition for the
differentiation of f . Another remark also is that he introduces, in his own terms, a
notion of discretization of the continuum by capturing in his proper informal way,
the the meaning of “infinite variation”. This way is intuitively very similar to the
one of Weierstrass.

Marx sees the world under a discrete form. Moreover, most of his remarks on
Lacroix’s works were carried on the conjecture of the latter that the form ϕ(x0) =
f(x0)/g(x0) was mathematically legal even in the case where f(x0) = g(x0) = 0. Of
course today this conjecture is seen as a consequence of the continuity on the line of
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the real numbers, however Marx found it metaphysical, hence rejectable. Anyway,
the critics of Marx on differential calculus and on continuum shows how this program
with his rich positive heuristic has influenced non-mathematical theories.

4 Continuum and Discrete in 20th Century

The main mathematical research programs in 20th century are Logical Positivism
with main representatives Russel and Frege, Formalism with Hilbert and Intutionism.

Logical Positivism has no explicitely viewed itself in the frame, neither of con-
tinuum, nor of discrete. But Russel’s philosophical influences have an important
Aristotelian and Leibnizian origin. We think that it would not be wrong to say that
Russel’s overall (and general) view of mathematical universe was closer to contin-
uum’s than to discrete’s program.

Hilbert by founding Formalism, has tried to model a philosophical approach for
mathematical activity called Peratokratism. The core of his program is structured
on two theses:

• Mathematical activity must be continuous and without limits imposed by on-
tologic views concerning the nature of real infinite.

• The safe supporting of mathematical creativity has to be the main query of
every effort for an overall philosophical view of this creativity.

His basic ideas on infinite and discrete are included in his article Űber das Un-
endliche dedicated to Weierstrass ([2]). In this article, Hilbert shows his preferences
in Weierstrass’ point of view in what concerns discretization of continuum, that is
the introduction of ε− δ techniques in defining the notion of the limit and the treat-
ment of the continuum as a sequence of “very small” discrete quantities. According
to Hilbert, two are the sources for searching for an ontologic justification of the
notion of infinite: the nature and the intellection.

Concerning nature, Hilbert looks for support in programs of physics, where, the
dominating theories contest (even today) the infinite divisibility of an extended ob-
ject, given that Inductivism, which is the dominating principle, has a non continuous
character. This means that, when some anomaly appears to a physical program,
one searches to explain it, by supposing the existence of new elementary particles
in order to constitute a new non-inducible material reality. On the other hand,
the temporal theories suppose the universe to be finite (the notion of a Euclidean
universe was not prevalent even in Hilbert’s ages). It is for these reasons that the
nature (for Hilbert) does not justify the existence of real infinite.

Essentially by using as an analogical model, the model of the real line founded
by Weierstrass, Hilbert tends discretization of the continuum by liberating it from
“ontologically doubtful” notions (the notion of real infinite).

Main thesis of Hilbert’s program is that the set of natural numbers provided with
the class of elementary recursive functions, as well as with the possibility of using
the axiomatic schema of Peano’s arithmetic without quantifiers ([3]), is exactly the
intuitively safe domain upon which all the rest of mathematics can be based.
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Hilbert’s programm has been falsified, the critical experiment being Gődel’s in-
completeness theorems ([3]). In fact, Gődel has proved the existence of an undecid-
able well formed formula in Peano’s arithmetic. In other words, he has constructed
such a formula that neither it, nor its negation are theorems deduced by Peano’s
axioms. It is well known the method of Gődel’s numbers with which he “arithmeti-
calizes” the syntactic part of the arithmetic language.

Certainly, there was not only the “by default” adoption of discrete hypothesis
that was problematic in Hilbert’s program. We know today that if the formal
system of Zermelo-Fraenkel set theory contains an undecidable proposition, then
the addition in the system of the continuum hypothesis creates a new formal system
that contains always an undecidable proposition.

But Gődel’s theorems instead of constituting a critical experiment for the whole
program of discrete, has constituted on the contrary a regenerative factor for this
program as we will see in the next section.

The Intuitionism, in its turn, contains some contradictions in what concerns the
dual discrete-continuum. On the one hand it adopts as prevalent, for the acceptance
of a mathematical object, the existence of a property that constitutes a constructive
algorithm for this object, adopting therefore a discrete mathematical universe and,
on the other hand, it accepts the totality of real numbers by accepting the existence
of the real line even if there is no algorithm that constructs this line. In any case,
because of the nature of Intuitionist’s program, the ontologic problems on discrete
and continuum are not posed in a so acute manner as in the frame of the classical
mathematics.

5 The Discrete and the Information Technology

Today the program of discrete predominates with respect to the one of continuum
and this, we think, is due to the development of the information technology based
upon the mathematicalization of computing models, algorithms, Markov chains, etc.
Of course, this evolution is not the only reason for the relative degeneration of the
continuum which, in fact, has never resolved a number of problems posed on the
nature of the hypotheses adopted.

Already, from the time of Weierstrass, the only way to establish some explana-
tions concerning the obscurities of infinitesimal calculus, was the discretization of
the continuum. Also in the middle of 19th century Kronecker has worked on the do-
main of number theory. Moreover, he has treated mathematics in such a way that a
prevalence of natural numbers on every other mathematical object was obvious. He
accepted the definition of such an object only if it is algorithmically (hence finitely
and discretely) producible.

Moreover, even if Dedekind accepted the real infinite and continuum, his works
used Eudoxean elements. Cantor in his turn, by trying to “mathematicalize” the
infinite and the continuum, has created an arithmetic of hyper-finite numbers with
many characteristics in common with the well known discrete arithmetic. Finally,
all these scientists, have tried to justify the continuum hypothesis partially based
upon discrete’s principles.

Imminent among those “strikes”, Gődel’s incompleteness theorem ([15]). There is
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something interest with his results. Although they are supposed to refute Hilbert’s
conjectures, which accept a certain prevalence of discrete’s principles, they turn
finally against continuum. In Gődel’s proof the formal definition of the notion of
algorithm is introduced and it is exactly this notion that constitutes the key-notion
of the contemporary discrete mathematical models. Of course the “resurrection”
of discrete has not came under a form of justification of Euclidean principles. The
non-Euclidean geometries are well known today.

The main mathematical instrument of discrete is, today, the so called discrete
mathematics with their enumeration methods, combinatorial analysis, graph theory,
languages and finite state machines, that operate on discrete mathematical struc-
tures.

In the theory of algorithms and computation ([5, 16]), a problem is a general
question to be answered, usually possessing several parameters or free variables,
whose values are left unspecified. A problem Π can be formally described by giving:

1. a general description of all its parameters and

2. a statement of what properties the answer (solution) is required to satisfy.

An instance I of Π is obtained by specifying particular values for all problem’s
parameters.

An algorithm is supposed to solve Π, if it can be applied to any instance of Π and
if it guarantees always the construction of a solution for this instance. Thus, the first
condition that characterizes the good “behaviour” of an algorithm is the convergence
of the method, that is its ability in providing solutions for every instance of a given
problem in finite time. The study of this behaviour uses exclusively elements of
combinatorial analysis, set theory, graph theory and enumeration techniques, all
these instruments operating under the hypothesis of a discrete universe.

Turing and Church conjecture that the class of problems that are algorithmically
solvable, is exactly the class of partial recursive functions2. In other words, some
problems are so hard, that are not solvable by algorithmic methods (undecidable
problems).

This is the critical notion of Gődel’s incompleteness proofs. In fact Gődel proves
the undecidability of at least one well formed formula of first order logic.

The quality of an algorithm is characterized not only by its convergence but
also by its efficiency. This term reflects the time requirements for the convergence
and are conveniently expressed in terms of a single variable, the size of a problem’s
instance, which is intended to reflect the amount of input data needed to describe this
instance, whose description can be viewed as a finite string from a finite alphabet.
We thus have a particular encoding scheme that maps the natural world (instances
of the problem) to strings describing this world.

The length of an instance for a given problem is defined as the number of dis-
tinct alphabet symbols used for the description of this instance. The time complexity
function of an algorithm expresses exactly its time requirements, by giving for ev-
ery input length the greater amount of time required by the algorithm solving an
instance of this length, and this function is well defined when given:

2This is the famous Turing-Church Thesis.
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1. the encoding schema used to define the input length and

2. the computational model used to determine the execution time.

It is clear that all these definitions refer to discrete mathematical entities.
In general, data are discrete objects represented, for example, by the vertices of

some graph, or by the members of an (extensively or intensively) defined finite, or at
least enumerable, set. Thus, the manipulation and analysis of these objects is based
on discrete mathematical models. Moreover, every individual datum is treated as a
self-completed entity and it is supposed to be processed in a time period expressed
by a natural number.

In fact, there is also some other intuition behind the use of discrete mathematics
in the frame of computer technology. Computer is a machine constructed to operate
in discrete steps (like all machines up to now). Electrical signals, interpreted to
information of any kind, are of discrete level. Thus, the conception of any model
that controls computer’s operation or efficiency of computation’s method, has to
be based on discrete mathematical entities. Moreover, the communication of a
computing machine with either the human environment, or with other computing
machines is expressed and controlled by discrete models as Markov chains, finite
state machines, etc.

According to Turing-Church thesis ([3, 13]), the mathematical equivalent of an
algorithm is the class of partial recursive functions whose domain is IN (the set of
natural numbers), the model for mathematicalization of discrete. On the other hand
the definition of the notion of algorithm (expressed in the beginning of 20th century)
is to be a “machine” for solving equations (problems more generally) proceeding
by succesive elementary discrete steps. Thus, even by its definition, the notion
of discrete is present in the notion of algorithm. Moreover, use of any kind of
mathematical objects referring to the so-called continuous mathematics, has not
led, until now, in the conception of reliable computational models. Everything
concerning computer’s operation is based on the “arithmeticalization” of every kind
of data concerning either hardware (electrical signals and their level, memory units,
etc.) or software.

Moreover, in what concerns numerical problems carried on continuous math-
ematics, numerous between them can satisfactorily been solved into the discrete
mathematical universe. Let us take, for example, numerical methods as Runge
Cuta’s method, or the method of Simpson, or more generally all the finite elements
techniques. All these methods solve equations with functions defined on IR (Runge
Cuta’s method) or evaluate integrals (method of Simpson) or solve differential equa-
tions. These mathematical problems are classically considered as continuous math-
ematics’ problems, but can be solved by techniques that “discretize” continuum.
In general, there are numerous methods that solve problems of continuous math-
ematics in a discrete environment. Those techniques are step-by-step techniques
approximating discretely the solution under research. Here is a case where problems
lying in the negative or even in the positive heuristic of continuum are coming to be
added to the positive heuristic of discrete.

We see thus how, for example, the discretization of the continuum has advanced
more than the ε−δ definitions of Weierstrass or the hyperfinite numbers of Dedekind.
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On the contrary the “continualization” of the discrete, the only “counter-attack”
that has to demonstrate is the use of generating functions in the theory of arithmetic
functions. Moreover, the major theoretical concept of information technology: the
study of algorithm’s efficiency and the completeness of algorithmic problems, is
closely related to nature and size of input data. The main instruments used in
modelling this concepts, are borrowed from graph theory and combinatorial methods
and operate on the hypothesis of a discrete universe. This is because even the
notions of datum, or of size input, are discrete natural or mathematical entities that
can be represented by means of graph theory, or of strings of languages over an
alphabet, or of array’s or list’s elements. Obviously, the techniques of elaborating
such entities (for example enumeration techniques, etc.) come from the domain of
discrete mathematics.

The mathematical principles of enumerable sets, constitute the core of discrete
program; the information technology, that is a major part of its positive heuristic,
assumes discrete mathematical models, operating in a discrete universe.

Hence, discrete is a progressive program. It has performed many progressive
problemshifts which have resolved numerous open problems and, on the other hand,
pose many other problems and open many research domains. Let us simply think
that a simple core of a priori hypotheses on discrete universe have bolstered a scien-
tific revolution whose impacts have changed not only the human development but
also the the social structure of the world ([23]). The intelligent cells of von Neu-
man have been transformed today to supercomputers and artificial neural networks.
The simple idea of a decidable problem in Gődel’s proofs, has open the domain
of the complexity theory (NP-completeness, polynomial approximation, etc.), of the
parallel computation, etc. The “games” of Euler and Hamilton are today famous
problems and have contributed to the development of the powerful domain of graph
theory. The essays on probabilities of Fermat have became enumeration techniques
on discrete structures and random graph theory.

We think that the previous thoughts explain, in a certain way, the break through
on the research on discrete mathematics, that implies the re-appearance of discrete’s
program. This arrives after many centuries of continuum’s scientific prevalence. Of
course, claiming that information technology is the crucial experiment for the con-
tinuum, is either erroneous or at least pre-mature. Although during centuries con-
tinuum’s prevalence was almost total, discrete was not a “dead” scientific program,
it was simply in crisis, possibly acute but not fatal. Perhaps this is exactly the case
of the continuum.

We have to keep in mind that discrete has not satisfactorily answered to problems
as this of infinite or continuum. But it behaves as every (temporarily) successful
program. It borrows from the continuum, notions (as for example the notion of
limit) defined in the proper frame of its opponent. Let us recall that the same
questions (via the duality) were the crucial points of continuum’s degeneration.

6 Discussion

We have tried to examine the history of the evolution of the continuum and dis-
crete hypotheses in mathematics. We have seen that the limits of progression or
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degeneration of these programs are hardly discriminated because of their nature
and of the non formal and concrete definition of the notion of critical experiment in
mathematics. There were always an interaction between mathematics and natural
sciences, in the sense that: mathematical models were applied on natural science’s
problems in order, on the one hand, to produce results for these problems and, on
the other hand, in order that these mathematical models be tested. This means
that if we have an instrument to decide the progress or the degeneration of a math-
ematical program, this instrument is provided by the association of this program
with the corresponding natural science programs based on it. This association is not
straightforward. There is a multiplicity of “natural” programs, based upon a given
mathematical program and, moreover, some of those programs become degenerated
while other ones remain progressive. Here is exactly the strong point of Lakatos’
approach on mathematical theories, since the “historicity” on the evolution of those
theories is much more clear and evident than the one of “natural” theories.

When dealing with mathematics, in order to associate the term program to each
distinct theory, it seems better to associate it to sets of theories. In fact throughout
the paper we have applied the following constructing schema:

A mathematical program is a set of mathematical theories.
The core of the program is the intersection of the a priori hypotheses of
the theories deriving this program.
Its positive (negative) heuristic is the union of the positive (negative)
heuristics of the deriving theories.

It is easy to see that the above construction, applied to the set of theories pre-
sented above, implies the a priory hypotheses either of discrete or of continuum
mathematical (and not only) universe.

Thus, the discrete, for example, is the essential matter in the core of all theories
up to Aristotle. This phenomenon is quite reasonable. The objects of the surround-
ing world are discrete and finite and hence all conjectures in the “nature of things”
are based in this view of the world. The notion of infinite that produces effectively
the continuum is not directly supervised.

Pythagorians, Euclides, Plato and Archimedes give each one in his domain, ex-
plications or conjectures concerning phenomena of their known and limited universe
and moreover they foresee a lot of new phenomena. Even after the degeneration
of Pythagorian theories, the ones of Euclides or Archimedes remain progressive for
centuries.

With Aristotle, human mind and vision become deeper and more complex. No-
tions more abstract and not directly supervised, enter in the conception of the
universe. This abstraction leads to the foundation of another program based on
the continuum hypothesis. But even with the foundation of this new program that
can predict and explain more new phenomena, discrete does not disappear. On
the contrary, even if continuum is more powerful, discrete remains more “popular”
among the members of the scientific community up to Alexandrian times, this fact
having as consequences that continuum program appears to be almost inactive. But
the accumulated scientific progress of discrete, accumulates also open problems and
unexplained phenomena.
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Moreover, Christian dogma, full of metaphysical and obscure hypotheses, politi-
cally strong and socially popular, changes the beautiful and symmetric conception of
discrete universe, with its finite mathematical objects and its Gods who constituted
almost a partition on human activities. For Christian ontology, continuum is more
convenient. For mathematics, the theory of irrational and asymmetric numbers de-
stroys the conviction for the universal constructibility by using the rule and the pair
of compasses.

The hypothesis on continuous universe, obliges the scientists to use new math-
ematical instruments containing and using notions of continuum and infinite. The
main impact of the continuum hypothesis, the infinitesimal calculus, add more and
more new results, solves open problems and predicts new phenomena. During this
evolution, discrete passes in a second plan but does not disappear.

On the contrary, it exercises a strong influence in the conception of continuum.
The Euclidean, Archimedean and Democritean worlds are present in the most of
hypotheses made about the nature of continuous universe. Let us remember that
the structure of Democritean microcosm is omnipresent even in programs that refute
this structure. Let us also remember that the negative heuristic of Cauhy’s program
has used the “bad Euclidean influence” in order to explain the anomalies of this
program indicated by Fourier. In fact, the introduction of the notion of “uniform
convergence” is the negation of some Euclidean conjectures but, almost in the same
time, Euler and, later, Weirstrass introduce some other Euclidean hypotheses in
order to explain the “infinitely small changes”.

After Middle Ages, begins a very strong interaction between mathematical and
natural programs. The results of natural programs are directly added in the positive
heuristic of the corresponding mathematical programs. This, as we have seen, has
constituted the triumph but also the “calamity” of the continuum.

The main problem of discrete program were that has largely been based upon the
constructiveness of objects. This main anomaly, constitutes his strong point today,
where the constructiveness of an object is the main measure of its value. On the
contrary, in continuum’s program there is a lot of abstraction. The “game” is played
more on formalism and “intuition” than on constructiveness and “algorithmicity”.

The hypotheses of the continuous world have given satisfactory explications in
mechanical problems as well as in problems concerning the outer-earth universe and
the “visible” world, but failed out in explaining the microcosm. There, discrete
program seems to be more successful and progressive. Theories of quantization
of energy like these of De Broglie’s or Plunck’s hypotheses on the existence of new
particles in the microcosm, even if those particles are not directly observable, support
a discrete notion of the universe. In those scientific streams, we have to add the
new convictions and claims on the finiteness of the universe, as well as an external
factor, the vertiginous development of the information technology based in discrete
mathematical models, discrete (of course) materials and discrete conception of the
world (let us think that the only primitive information and notion in the whole
conception of information technology are the quantities 0,1).

We can speak today for temporal “victory” of the discrete program, as also tem-
poral was the prevalence of the continuum one. The two rivals remain in the field of
the scientific war. Only the history can nominate the winner and the “final count-
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down” is not yet played. Contrary to the current opinion of some naive “scientists”,
History has not come to an end.

References

[1] L. Althusser, Positions, Themelio, 3rd edition, Athens, 1981.

[2] D. Anapolitanos, Introduction to the Philosophy of Mathematics, Nefeli, Athens,
1985.

[3] H. B. Enderton, A Mathematical Introduction to Logic, Academic Press, New
York, 1972.
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[17] Πλάτων, Tιµαίoς, I. Zacharopoulos, Athens, 1976.

[18] K. R. Popper, The Logic of Scientific Discovery, Hutchinson, London, 1959.

[19] K. R. Popper, Conjectures and Refutations, Routledge& Kegan, London, 1963.

[20] N. Poulantzas, Political Authority and Social Classes, volume B, Themelio,
Athens, 1977.

[21] N. Poulantzas, Questions of the Marxist Conception on State, Proc. of the 2nd
Week on Marxist Thought, Center of Marxist Studies and Researches, pp. 354-
403, Themelio, Athens, 1966.

[22] D. J. Struik, A Consise History of Mathematics, I. Zacharopoulos, Athens,
1982.

[23] J. Weizenbaum, Computer Power and Human Reason. From Judgment to Cal-
culation, W. H. Freeman and Company, San Francisco, 1976.

26


	premiere page cahier 341.pdf
	cahier_341.pdf
	Première page cahier.pdf
	Page 1

	Première page cahier.pdf
	Page 1






