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Abstract

We consider the Capacitated Multi-Layer Network Design with Unsplittable demands (CMLND-
U) problem. Given a two-layer network and a set of traffic demands, this problem consists in in-
stalling minimum cost capacities on the upper layer so that each demand is routed along a unique
”virtual” path (even using a unique capacity on each link) in this layer, and each installed capacity
is in turn associated a ”physical” path in the lower layer. This particular hierarchical and unsplit-
table requirement for routing arises in the design of optical networks, including optical OFDM
based networks. In this paper, we give an ILP formulation to the CMLND-U problem and we take
advantage of its sub-problems to provide a partial characterization of the CMLND-U polytope in-
cluding several families of facets. Based on this polyhedral study, we develop a branch-and-cut
algorithm for the problem and show its effectiveness though a set of experiments, conducted on
SNDlib-derived instances and also on real instances.

Keywords: Multi-layer network design, optical networks, polytope, facet, branch-and-cut.

1. Introduction

User demand in traffic has increased significantly during the last decades. Nowadays telecom-
munication networks are already reaching their limits, and it is necessary to upgrade their transport
capacity. Indeed, the advent of new services, mainly driven by internet applications and multimedia
contents, requires more flexible and cost-effective network infrastructures. To overcome this ex-
plosive growth of traffic (estimated at 45 % per year in average [26]), telecommunication industry
actors investigate new technologies that provide a solution to the increasing capacity requirements,
as well as the flexibility needed to use smartly this capacity.

Telecommunication networks can be seen as an overlapping of multiple layers, upon which
different services may be furnished. In particular, optical fibers networks consist of two layers: a
physical layer and a virtual one. The physical layer is based on optical fibers, while the virtual
one supports the WDM (Wavelength Division Multiplexing) technology. Such a process is based
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on a set of devices referred to as multiplexers, interconnected by optical links, made of several
wavelengths. Both layers are connected, as the wavelengths of the virtual layer use the optical
fibers of the physical layer as a support to carry the customers traffic.

Although WDM technology is currently used to transport informations over long distances
(metropolitan areas, submarine communication cables), with wavelength capacities of 2.5, 10 or
40Gb/s, it is not possible to reach similar distances with higher capacities. In fact, the existence
of physical phenomena, also called transmission impairments [18], that affect the optical fibers,
highlights the difficulty of setting up higher capacitated wavelengths on long distances. Recent in-
novations in optical fibers comunications concerning a new technology called Multi-band Orthog-
onal Frequency Division Multiplexing (OFDM) have shown very promising results, and should
enable the transition of WDM-based infrastructures to high capacitated wavelengths (100 Gb/s
and more) over long distances. OFDM is based on the division of each available wavelength into
many subwavelengths, also called subbands, this is known as Optical Multi-band OFDM network.

Now consider an optical multi-band OFDM network that consists of an OFDM/WDM network
over a fiber layer. The OFDM/WDM layer is called virtual layer and the fiber layer is called
physical layer as well. The OFDM/WDM layer is composed of devices called Reconfigurable
Optical Add-Drop Multiplexers (ROADM), which are interconnected by virtual link. A virtual
link may receive one or many OFDM subbands. Note that, although a subband is said to be
installed over a virtual link, it is in fact generated by a pair of ROADMs at the extremities of the
link. The physical layer is composed of several transmission nodes interconnected by physical
links. Each physical link contains two optical fibers, so that the traffic can be transported in both
directions. The physical and virtual layers are communicating via an interface referred to as OEO
(Optical-Electrical-Optical) interface.

Each ROADM in the virtual layer is associated with a transmission node in the physical layer.
And every link in the virtual layer carries one or several subbands. We suppose that there exists a
link between each pair of ROADMs in the virtual layer, as one or many subbands may eventually
be installed between any pair of devices. Each subband installed over a virtual link is assigned a
path in the physical layer. A link in the physical layer can be assigned to several different subbands.
However, due to technical aspects of OFDM technology, a physical link can be assigned at most
once to an installed subband. In practice, one or many ROADMs may be installed upon a transmis-
sion node. However, we assume that all the subbands installed over a virtual link are produced by a
unique pair of ROADMs, set up on the extremities of this link. In addition, establishing a subband
yields a certain cost, which is the cost of ROADMs that generate this subband. We assume that we
have a traffic matrix, where each entry is a point-to-point traffic demand that may correspond to a
given service, internet application or a multimedia content. This traffic demand has a value that is
an amount of informations measured in Mb/s or Gb/s.

Figure 1 shows a bilayer network. The virtual layer includes four ROADMs denoted R1, R2,
R3 and R4, while physical layer contains six transmission nodes denoted T1 to T6. We can see
that R1, R2, R3 and R4 are connected to T1, T2, T3 and T4 via OEO interfaces. In addition, there
exists a link between each pair of installed ROADMs. Remark that nodes R5 and R6 have not
been represented in the figure, as they do not carry any ROADM. Furthermore, three subbands
are represented in the figure, respectively installed on the links (R1, R2), (R1, R4) and (R3, R4).
The traffic using these virtual links is in fact transmitted through paths made of optical fibres in
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Figure 1: Example of multilayer network

the physical layer. Indeed, the link (R1, R2) is associated with the path (T1, T2), while (R1, R4)
is assigned the path (T1, T6), (T6, T4) and (R4, R3) is physically routed by (T4, T3). It should
be pointed out that there are two levels of routing in such networks. The traffic is routed using
subbands installed on the virtual links, and the subbands themselves may be seen as demands for
the physical layer. Both the traffic and subbands may possibly be routed through multi-hop
paths. Thus, when given those two layers of network and a traffic matrix, one may determine
the set of virtual links that will receive the subbands, and the set of physical links involved in the
routing of those subbands, and establish the traffic commodities routing.

In this context, we are interested in a problem related to the design of OFDM/WDM networks.
Thereby, assume that we are given an optical fiber layer, an OFDM/WDM layer and a traffic
matrix. The Capacitated Multi-Layer Network Design with Unsplittable Demands (CMLND-U)
problem consists in determining the number of subbands to be installed over the virtual links, and
their physical path as well, so that the traffic can be routed on the virtual layer and the cost of the
design is minimum. This work was initially motivated by a collaboration with Orange Labs, whose
engineers are also interested in evaluating the performances of OFDM-based networks. For this
reason, and throughout the paper, we will use this context to explain our model and the results we
will provide.

Actually, the problem of designing layered networks have been studied first by [20]. Authors
wish to set up a set of virtual links referred to as ”pipes” on the physical layer. They propose an
integer linear programming formulation based on cut constraints for the problem. They study the
associated polytope and provide several classes of valid inequalities that define facets under some
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conditions. They also provide a cutting planes based algorithm embedding their theoretical results.
Further works consider exact methods for different variants of the multilayer network design. In
fact, in [30], Orlowski et al. propose a cutting planes approach for solving two-layer network
design problem, using different MIP-based heuristic allowing to find good solutions early in the
Branch-and-Cut tree. Belotti et al. [9] investigate the design of multilayer networks using MPLS2

technology. They propose a mathematical programming formulation based on paths, then apply a
Lagrangian relaxation working with a column generation procedure to solve their model. We also
cite a more recent work of Raghavan and Stanojević [34] that studies the two-layer network design
arising in WDM optical networks. The authors consider non-splittable traffic demands and propose
a path based formulation for the problem. They provide an exact Branch-and-Price algorithm
which solves simultaneously the WDM topology design and the traffic routing subproblems. In
[31], the authors address the problem of planning multilayer SDH3/WDM networks. They consider
the minimum cost installation of link and node hardware for both layers, under various practical
constraints such as heterogeneity of traffic bit-rates, node capacities and survivability issues. They
propose a mixed integer programming formulation and develop a Branch-and-Cut algorithm using
non-trivial valid inequalities, from the single-layer network design problem, to solve it. In [21], the
authors study the multi-layer network design problem. They propose a Branch-and-Cut algorithm
to solve a capacity formulation based on the so-called metric inequalities, enhancing the results
obtained in [25] for the same formulation. In [28], Mattia studies two versions of the two-layer
network design problem. In particular, the author proposes capacity formulations for both versions
and investigates the associated polyhedra. Some polyhedral results are provided for both versions
of the problem, specifically proving that the so-called tight metric inequalities, introduced in [6],
define all the facets of the considered polyhedra. The author also shows how to extend these
polyhedral results to an arbitrary number of layers. In [16], Borne et al. study the problem of
designing an IP-over-WDM network with survivability against failures of the links. They conduct
a polyhedral study of the problem, give several facet defining valid inequalities, and propose a
Branch-and-Cut algorithm to solve the problem. Finally, the CMLND-U is studied in [12] where
the authors propose a flow-based formulation for the problem. They further propose two path-
based formulations leading to a branch-and-price approach to solve it.

Our contribution
The capacitated design of single-layer networks has received a lot of attention in the litera-

ture, and a big amount of research has been conducted on the associated polyhedron (see [17],
[5], [4] and the references therein). Yet the investigation of capacitated multilayer network design
with unsplittable demands problems received only a limited attention, specifically in a polyhe-
dral point of view. The objective of this paper is to investigate the CMLND-U problem within a
polyhedral framework, and to provide an efficient Branch-and-Cut algorithm to solve it. In this
context, we give an integer linear programming formulation for the problem and study the polyhe-
dron associated with its solutions. We then introduce further classes of valid inequalities and study
their facial structure. These inequalities are used within an efficient Branch-and-Cut algorithm for
the CMLND-U problem.

2MultiProtocol Label Switching.
3Synchronous Digital Hierarchy.
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The rest of the paper is organized as follows. In Section 2, we describe the CMLND-U problem
in terms of graphs and give an ILP formulation to model it. In Section 3, we present the CMLND-
U polyhedron and study its basic properties. We then introduce several classes of facet-defining
valid inequalities. These results are used to devise a Branch-and-Cut algorithm which is described
in Section 4. Several series of experiments are conducted and Section 5 is devoted to present a
summary of the obtained numerical results. Finally, we give some concluding remarks in Section
6.

2. The capacitated multi-layer network design problem with unsplittable demands

2.1. Definition and notations
In terms of graphs, the CMLND-U problem can be presented as follows. We associate with

the virtual layer, a directed graph G1 = (V1, A1). G1 is a complete graph where V1 is the set of
nodes and A1 the set of arcs. Each node v ∈ V1 corresponds to a ROADM and each arc e ∈ A1

corresponds to a virtual link between a pair of ROADMs. In addition, G1 is a bi-directed graph,
i.e. there exists two arcs (u, v) ∈ A1 and (v, u) ∈ A1, connecting each pair of nodes u and v of
V1. Consider the directed graph G2 = (V2, A2) that represents the physical layer of the optical
network. V2 denotes the set of nodes and A2 the set of arcs. Each node v′ ∈ V2 corresponds to a
transmission node and each arc a ∈ A2 corresponds to an optical fibre. Every node u in V1 has its
corresponding node u′ in V2. The graph G2 is such that if there exists a link between two nodes u′

and v′ of V2, then, both arcs (u′, v′) and (v′, u′) are in A2. In this way, the link can be used in both
directions between u′ and v′.

Suppose that we have n ∈ Z+ available subbands. We denote by W = {1, 2, ..., n}, the set
of indices associated with these subbands. Every subband w ∈ W has a certain capacity C and
a cost c(w) > 0. Moreover, a subband installed over an arc e ∈ A1 can be seen as a copy of this
arc. Each pair (e, w) such that w is installed over the arc e = (u, v), is associated with a path in
G2 connecting nodes u′ and v′. The same path in G2 may be assigned to different subbands of
W . Nevertheless, an arc a ∈ A2 can be associated at most once with a given subband w. In other
words, if the subband w is installed p times, p ∈ Z+, over different arcs e1, . . . , ep of A1, then the
pairs (ei, w), i = 1, . . . , p, have to be assigned p paths in G2 that are arc-disjoint. This comes from
an engineering restriction and will be called disjunction constraint. In addition to the design cost,
we will also attribute a physical routing cost denoted bew(a) for every arc a of A2 involved in the
routing of a pair (e, w) such that w is installed on e.

Now let K be a set of commodities in G1. Each commodity k ∈ K has an origin node ok ∈ V1,
a destination node dk ∈ V1 and a traffic value Dk > 0. We suppose, that Dk ≤ C, for all k ∈ K.
Note that there might exist different commodities with the same origin and destination. A routing
path in G1 has to be assigned to each commodity k ∈ K connecting its origin and its destination.
Every section of a routing path uses the subbands installed over the arcs of A1. Thereby, we will
say that a pair (e, w), e ∈ A1, w ∈ W is used by a commodity k, if w is installed on e and (e, w)
is involved in the routing of k. Furthermore, several commodities are allowed to use the same
subband (e, w), if they fit in its capacity. However, one commodity can not be split into several
subbands or several paths.
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Definition 1. Capacitated Multi-Layer Network Design with Unsplittable demands (CMLND-U)
problem: Given two bi-directed graphs G1 and G2, a set of subbands W , the installation cost
c(w) for each subband w, a routing cost bew for each subband installed on a link e and a set of
commodities K, determine a set of subbands to be installed over the arcs of G1 such that

(i) the commodities can be routed in G1 using these subbands,

(ii) paths inG2, respecting the disjunction constraint, are associated with the installed subbands,

(iii) the total cost is minimum.

2.2. Integer linear programming formulation
Given a digraph G = (V , A) and a node set T ⊂ V , we denote by δ+G(T ) (resp. δ−G(T )), the set of

arcs of A having their initial node (resp. terminal node) in T and their terminal node (resp. initial
node) in V \ T , that is to say δ+G(T ) = {a = (u, v) ∈ A with u ∈ T and v /∈ T}.

Now we will present an integer linear programming formulation using three sets of variables.
First, let the design variables y ∈ RA1×W be such that, for each arc e ∈ A1 and for each subband
w ∈ W , yew takes the value 1, if w is installed on e, and 0 otherwise. Let the routing in G2

variables z ∈ RA1×W×A2 be such that for each arc e ∈ A1, for each subband w ∈ W and for
each arc a ∈ A2, zewa takes the value 1 if a belongs to the path in G2 associated with pair (e, w),
and 0 otherwise. Finally, we denote by x ∈ RK×A1×W the routing variables such that for each
commodity k ∈ K, for each arc e ∈ A1 and for each subband w ∈ W , xkew takes the value 1 if k
uses (e,w) for its routing in G1, and 0 otherwise.

An instance of CMLND-U is defined by the quadruplet (G1, G2, K, C). Let S(G1, G2, K, C)
denote the set of feasible solutions of the CMLND-U problem, associated with an instance (G1, G2, K, C).
The CMLND-U problem is then equivalent to the following ILP:

min
∑
e∈A1

∑
w∈W

c(w)yew +
∑
e∈A1

∑
w∈W

∑
a∈A2

bew(a)zewa (1)

∑
e∈δ+G1

(T )

∑
w∈W

xkew ≥ 1,
∀k ∈ K, ∀T ⊂ V1,
∅ 6= T 6= V1, ok ∈ T, dk /∈ T,

(2)

∑
w∈W

xkew 6 1, ∀k ∈ K, ∀e ∈ A1, (3)∑
k∈K

Dkxkew ≤ Cyew, ∀e ∈ A1,∀w ∈ W, (4)

∑
a∈δ+G2

(T )

zewa ≥ yew,
∀e = (u, v) ∈ A1, ∀w ∈ W,
∀T ⊂ V2, ∅ 6= T 6= V2, u

′ ∈ T, v′ /∈ T, (5)

∑
e∈A1

zewa ≤ 1, ∀w ∈ W,∀a ∈ A2, (6)

xkew ∈ {0, 1}, ∀k ∈ K, ∀e ∈ A1,∀w ∈ W, (7)
yew ∈ {0, 1}, e ∈ A1,∀w ∈ W, (8)
zewa ∈ {0, 1}, ∀e ∈ A1, ∀w ∈ W,∀a ∈ A2. (9)
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Inequalities (2) are the cut constraints. They will also be referred to as connectivity constraints.
They ensure that a path in G1 exists for each commodity k between nodes ok and dk. Inequalities
(4) are the capacity constraints for each subband installed over an arc of G1. They express the fact
that the flow using the subband w on arc e does not exceed the capacity of w. They also ensure that
the overall capacity installed on arc e is large enough to carry the traffic using e. Inequalities (5)
are the subband connectivity constraints. They guarantee, for each pair (e, w) where w is installed
on e = (u, v), that a path in G2 is associated with (e, w) between nodes u′ and v′. Inequalities (6)
are referred to as disjunction constraint. Finally, inequalities (7)-(9) are the integrality constraints.

Proposition 1. [10] The formulation (2)-(9) is valid for CMLND-U problem.

3. Associated polyhedron and valid inequalities

In this section, we introduce and discuss the CMLND-U polytope, that is the convex hull of
the solutions of problem (1)-(9). In what follows, we will assume that G2 = (V2, A2) is also a
complete graph. This is a reasonable assumption, since the problem when G2 is not complete can
be reduced to the case when G2 is complete by introducing dummy arcs with large costs. We also
make the assumption that the number |W | of available subbands is sufficiently large for allowing
the routing of all commodities over a single arc e ∈ A1, if this is necessary. As a consequence,
each commodity can be assigned a different subband. Note that such an assumption is resonable
because the maximum number of subbands that can be potentially installed in practice is indeed
large regarding to the number of commodities. Of course, the costs will prevent the installation of
unnecessary subbands.

Given an instance of CMLND-U, defined by the quadruplet (G1, G2, K, C), we denote by
P (G1, G2, K, C) the convex hull of the incidence vectors of S(G1, G2, K, C), that is

P (G1, G2, K, C) := conv{(x, y, z) ∈ RK×A1×W × RA1×W × RA1×W×A2 :

(x, y, z) satisfies (2)− (9)}

In what follows, we will characterize the dimension of polytope P (G1, G2, K, C) and investi-
gate the facial aspect of inequalities (2)-(9).

Theorem 1. P (G1, G2, K, C) is full dimensional.

Proof. See Appendix A.

In what follows, we will present a first class of valid inequalities arising directly from the
capacity requirement of the problem. Similar inequalities have been introduced by [27], [7] and
[13] for different variants of the Capacitated Network Loading Problem.

3.1. Capacitated Cutset Inequalities
Consider a partition of G1 nodes in two subsets T and T = V1 \ T , we denote by Kin(T )

(respectively Kin(T )) the commodities of K having both origin and destination nodes in T (re-
spectively in T ), while the remaining demands of K will be partitioned into two sets K+(T ) and
K−(T ) where K+(T ) (respectively K−(T )) is the subset of commodities having their origin node
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in T (respectively in T ) and their destination node in T (respectively in T ). We will also denote by
D(K+(T )) (respectively D(K−(T ))) the total traffic amount of K+(T ) (respectively in K−(T )).
In other words, D(K+(T )) =

∑
k∈K+(T )D

k, and D(K−(T )) =
∑

k∈K−(T )D
k. We let K(u, v) be

the subset of demands of K having their origin at node u and destination at node v.

Proposition 2. Let ∅ 6= T ( V1. Then the following inequality∑
e∈δ+G1

(T )

∑
w∈W

yew > d
D(K+(T ))

C
e (10)

is valid for P (G1, G2, K, C).

Proof. The total capacity of the subbands installed over the cut must be greater than or equal to
the traffic amount of the commodities going from T to T = V1\T and using the arcs of that cut.
Then, inequality

C
∑

e∈δ+G1
(T )

∑
w∈W

yew > D(K+(T ))

is clearly valid for P (G1, G2, K, C). By dividing this by C and rounding up the right-hand side,
we obtain inequality (10). �

We further denote by BP (K+(T )) (resp. BP (K−(T ))) the smallest number of subbands
required in δ+G1

(T ) (respectively in δ−G1
(T )) to route the commodities of K+(T ) (respectively

K−(T )). Actually, this value corresponds to the optimal solution of the bin packing problem with
K+(T ) (resp. K−(T )) being the set of items to be packed andC the capacity of a bin. For example,
if K+(T ) is composed by 3 demands with 6 units of traffic and C = 10, then BP (K+(T )) = 3.
Again, this happens because the traffic of a commodity can not be split into distinct subbands, even
if they are installed in the same arc.

Theorem 2. Inequalities (10) define facets of P (G1, G2, K, C) only if

(i) K+(T ) 6= ∅,

(ii) dD(K+(T ))
C

e = BP (K+(T )).

Proof. (i) IfK+(T ) = ∅, then inequality (10) can be obtained from the non negativity constraints
and cannot thus define a facet.

(ii) Given two nodes u and v of V1, let K(u, v) = {k ∈ K : ok = u, dk = v} and T be a subset
of nodes such that u ∈ T and v /∈ T . Now suppose that dD(K(u,v))

C
e < BP (K(u, v)). In

this case, (10) can not be tight, since the commodities of K(u, v) which need BP (K(u, v))

subbands cannot fit in dD(K(u,v))
C

e subbands. Therefore (10) cannot define a proper face. �
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Example 1. For example, ifK(u, v) = {k1, k2, k3}withDk1 =Dk2 =Dk3 = 6, whileC = 10. There
is no solution of P (G1, G2, K, C) such that all three demands are packed together in dD(K(u,v))

C
e =

2 subbands and condition (ii) is not satisfied. Thus, inequality
∑

e∈δ+G1
(T )

∑
w∈W yew = dD(K(u,v))

C
e

= 2 cannot define a facet.

Theorem 3. Inequality (10) defines a facet of P (G1, G2, K, C) if the following conditions hold.

(i) K+(T ) 6= ∅,

(ii) dD(K+(T ))
C

e = BP (K+(T )),

(iii) BP (K+(T ) ∪ {k}) = BP (K+(T )), for all k ∈ K \K+(T ),

(iv) for all k′ ∈ K+(T ), there exists k′′ ∈ K+(T ) such that Dk′ + Dk′′ 6 C,

(v) for all k ∈ K+(T ), BP (K+(T ) \ {k}) = BP (K+(T )) - 1.

Proof. See Appendix B.

Example 2. Pick the example 1 and consider a demand in Kin(T ), say k with Dk = 7. The
inequality

∑
e∈δ+G1

(T )

∑
w∈W yew = 3 defines a facet for P (G1, G2, K, C) even though conditions

(iii) and (iv) of Theorem 3 are not satisfied. Indeed, BP (K+(T )) = 3 < BP (K+(T ) ∪ {k}) = 4
and no pair of demands in K+(T ) verifies condition (iv).

Conditions (i) and (ii) are, by Theorem 2 necessary conditions for (10) to define a facet.
Conditions (iii) to (v) are used to construct feasible solutions from known ones. Condition (iii)
permits to route through the cut an extra demand without increasing its capacity. Condition (iv)
allows to route two demands of the cut through the same subband. And finally, condition (v) says
that if we remove a demand of the cut, its capacity is decreased by 1. All these conditions let the
new solutions belonging to the face induced by (10) if the original ones are so.

3.2. Flow Cutset inequalities
In what follows, we will describe a set of valid inequalities for P (G1, G2, K, C) that are a

generalization of the capacitated cutset inequalities (10). Similar inequalities have been introduced
by [19] and were discussed in [3], [14] and [33] for single-layer network design problems where
discrete modular capacities are installed on the arcs of the graph.

Proposition 3. Consider a non empty subset of nodes T ⊆ V1 and a partition F , F of the cut
δ+G1

(T ) induced by T . The following flow-cutset inequality

∑
w∈W

∑
e∈F

yew +
∑
w∈W

∑
e∈F

∑
k∈K+(T )

xkew > d
D(K+(T ))

C
e. (11)

is valid for P (G1, G2, K, C).
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Proof. It is clear that the following inequalities∑
w∈W

∑
e∈δ+G1

(T )

xkew > 1, for all k ∈ K+(T ),

are valid for P (G1, G2, K, C), as they express the connectivity constraints for the commodities of
K+(T ). Multiplying both sides of this inequality by Dk and summing over K+(T ) yields∑

w∈W

∑
e∈δ+G1

(T )

∑
k∈K+(T )

Dkxkew > D(K+(T )). (12)

In addition, we have from the capacity constraints (4), restricted to the commodities of K+(T ) and
the arcs of F , that ∑

k∈K+(T )

Dkxkew − Cyew 6 0, for all e ∈ F,w ∈ W.

By summing these inequalities, we obtain∑
w∈W

∑
e∈F

Cyew −
∑
w∈W

∑
e∈F

∑
k∈K+(T )

Dkxkew > 0. (13)

As δ+G1
(T ) = F ∪ F , by summing (12), (13), and dividing by C, we get

∑
w∈W

∑
e∈F

yew +
∑
w∈W

∑
e∈F

∑
k∈K+(T )

Dk

C
xkew >

D(K+(T ))

C
. (14)

Moreover, we have the following trivial inequality∑
w∈W

∑
e∈F

∑
k∈K+(T )

(1− Dk

C
)xkew > 0. (15)

By summing (14), (15) and rounding up the right-hand side, we get (11) . �

Theorem 4. A flow-cutset inequality (11) defines a facet of P (G1, G2, K, C), different from (10)
only if the following hold

(i) F 6= ∅ 6= F ,

(ii) D(K+(T )) > C,

(iii) D(K+(T )) is not a multiple of C,

(iv) dD(K+(T ))
C

e = BP (K+(T )),

(v) BP (K+(T )) < |K+(T )|,
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(vi) there exists Q ( K+(T ) such that BP (K+(T ) \Q) 6 BP (K+(T ))− |Q|,

(vii) BP (K+(T ) ∪ {k}) 6 BP (K+(T )), for all k ∈ K \K+(T ).

Proof. See Appendix C.

There are some connections between the sufficient conditions of Theorem 3 and the necessary
conditions of Theorem 4. Condition (v) is the same as condition (ii) in Theorem 3. This is natural
since the condition is independent of the partition of δ+G1

(T ) into F and F . Also condition (vii)
is a generalization of of condition (v) of Theorem 3. Condition (i) of Theorem 3 and Theorem 4
imply that there are demands crossing the cut δ+G1

(T ). And finally, condition (v) of Theorem 4 can
be seen as a generalization of condition (iv) of Theorem 3.

Theorem 5. A flow-cutset inequality (11) defines a facet of P (G1, G2, K, C), different from (10) if
the following conditions are satisfied

(i) conditions (i) to (vi) of Theorem 4,

(ii) if |F | = 1, then for each k ∈ K+(T ), BP (K+(T ) \ {k}) 6 BP (K+(T )) - 1,

(iii) there exists k′ ∈ K+(T ) such that Dk + Dk′ 6 C.

Proof. The proof is given in Appendix D.

3.3. Clique inequalities
In what follows, we will study an additional class of inequalities that are valid for P (G1, G2, K, C).

These inequalities are based on the so-called clique inequalities introduced by Padberg [32] for the
stable set polytope. Similar inequalities have also been studied in [8] for the Balanced Induced
Subgraph problem. More generally, clique inequalities arise in problems where conflicts may oc-
cur between objects (see [24, 15]). In order to identify these facet-defining inequalities, we will
introduce first the concept of conflict graph.

Definition 2. Given an instance of the CMLND-U problem, we consider a graph H = (V , E),
called conflict graph where each node of V is associated with a commodity in K and two com-
modities k1, k2 are connected by an edge {k1, k2} ∈ E if and only if k1 and k2 cannot be packed
in a subbband together. In other words, there exists an edge {k1, k2} in E if and only if Dk1 +
Dk2 > C.

A clique C ⊆ N in a graph is a set of nodes such that every two distinct nodes in C are adjacent.
We have the following.

Proposition 4. Let C ⊆ K be a clique in the conflict graph H , and (e, w) ∈ A1 ×W . Then the
following clique-based inequality ∑

k∈C

xkew − yew 6 0, (16)

is valid for P (G1, G2, K, C).

Proof. It is clear that if a subband w is installed on e, then at most one commodity of C can be
routed on e using w. If not, then xkew = 0 for all k ∈ C, and the constraint is trivially satisfied.
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3.4. Min set I inequalities
We introduce here a further class of valid inequalities induced by a subset of commodities for

each arc. This class of inequalities has been described first in [11] for the unsplittable non-additive
capacitated network design (UNACND) problem. They have been identified using the fact that the
single arc UNACND problem reduces to the bin packing problem.

Proposition 5. Given a subset S ⊆ K of commodities and a non negative integer p ∈ Z+, in-
equalities ∑

w∈W

∑
k∈S

xkew 6
∑
w∈W

yew + p, for all e ∈ A1, (17)

are valid for P (G1, G2, K, C) if and only if p > |S| −BP (S).

Proof. The following inequalities∑
k∈S

xke 6 ye + p, for all e ∈ A1, (18)

Introduced in [11] for the Unsplittable non-additive capacitated network design problem are clearly
valid for P (G1, G2, K, C), if p > |S| − BP (S). Indeed, by introducing new ”aggregated” vari-
ables xke ∈ {0, 1}, for all k ∈ K, e ∈ A1, and ye ∈ Z+, for all e ∈ A1, we can use the following
transformation xke =

∑
w∈W xkew and ye =

∑
w∈W yew. This is possible since a commodity cannot

be split over several subbands installed on the same arc e ∈ A1. Thus, using the original variables
to write (18) yields inequality (17).

Theorem 6. Inequality (17) defines a facet of P (G1, G2, K, C) if and only if the following holds

(i) p = |S| - BP (S),

(ii) BP (S ∪ {s}) = BP (S) = |S| - p, where s is the largest element in K \ S,

(iii) BP (S \ {s}) = BP (S) - 1 = |S| - p - 1, where s is the smallest element in S.

Proof. See Appendix E.

3.5. Min set II inequalities
Likewise Min Set I, this class of inequalities has been presented first in [11] and originates

from the study of the arc-set UNACND polyhedron.

Proposition 6. Let e be an arc of A1, S a subset of K, and p and q, two non negative integer
parameters such that q > 2. Then, the inequality∑

w∈W

∑
k∈S

xkew 6 q
∑
w∈W

yew + p, (19)

is valid for P (G1, G2, K, C), if p > (|S ′| − qBP (S ′)) for all S ′ ⊆ S.
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Proof. Let S ′ be the subset of S using arc e. By summing inequalities (3) over S ′, we get∑
k∈S′

∑
w∈W

xkew 6 |S ′|, (20)

which is valid for P (G1, G2, K, C). On the other hand, we also have that∑
w∈W

yew > BP (S ′), (21)

is valid for P (G1, G2, K, C). Thus we have from (20) and (21)∑
k∈S′

∑
w∈W

xkew =
∑
k∈S

∑
w∈W

xkew 6 |S ′|+ q(
∑
w∈W

yew −BP (S ′))

= q
∑
w∈W

yew + |S ′| − qBP (S ′) 6 q
∑
w∈W

yew + p.

The last inequality comes from the fact that p > |S ′| − qBP (S ′).

Theorem 7. Given a subset of demands S ⊆ K, an arc e = (u, v) ∈ A1, and two non-negative
integers q and p, the inequality ∑

k∈S

∑
w∈W

xkew 6 q
∑
w∈W

yew + p (22)

defines a facet of P (G1, G2, K, C) if the following holds

(i) There exists an integer r ∈ Z+, p 6 r 6 |S|− 1 such that for all S ′ ⊆ S with |S ′| = r,
BP (S ′) = |S′|−p

q
,

(ii) for all s ∈ K \ S, there exists S ′ ⊆ S such that BP (S ′) = |S′|−p
q

= BP (S ′ ∪ {s}).

Proof. The proof is given in Appendix F.

Note that Proposition 5, Theorem 6 and Proposition 6 are adaptation of results in [11], where
the facial structure of both Min Set I and Min Set II inequalities is investigated in details. The
authors give necessary and sufficient conditions for these inequalities to define facets for the arc-
set unsplittable non-additive capacitated network design polyhedron.

4. Branch-and-Cut algorithm

In this section we present a Branch-and-Cut algorithm for the CMLND-U problem. Our pur-
pose is to substantiate the efficiency of the valid inequalities described in the previous section, and
provide exact solutions for realistic and real instances of networks.
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4.1. Overview
We describe the framework of our algorithm. Suppose that we are given two graphs G1 =

(V1, A1) and G2 = (V2, A2), that instantiate the virtual layer and the physical layer of the network,
respectively. Also suppose given a set of commoditiesK where each commodity k is characterized
by a pair (ok, dk) ∈ V1 × V1 and a traffic value Dk. We consider a set W of available subbands
having a capacity C. A cost vector c ∈ RW×A1

+ , is given as well.
To start the optimization, we set up the following restricted linear program.

Min
∑
e∈A1

∑
w∈W

c(w)yew +
∑
e∈A1

∑
w∈W

∑
a∈A2

zewa

s.t :∑
w∈W

∑
e∈δ+G1

(s)

xkew ≥ 1, ∀k ∈ K, s ∈ {ok, dk},

∑
w∈W

xkew 6 1, ∀k ∈ K, ∀e ∈ A1,∑
k∈K

Dkxkew ≤ Cyew, ∀e ∈ A1,∀w ∈ W,∑
e∈A1

zewa ≤ 1, ∀w ∈ W,∀a ∈ A2,

0 ≤ xkew ≤ 1, ∀k ∈ K, e ∈ A1,

0 ≤ yew ≤ 1, ∀w ∈ W, e ∈ A1,

0 ≤ zewa ≤ 1, ∀e ∈ A1,∀w ∈ W,∀a ∈ A2.

We denote by (x, y, z), x ∈ RK×W×A1 , y ∈ RW×A1 , z ∈ RW×A1×A2 , the optimal solution of
the restricted linear relaxation of the CMLND-U problem. This solution is feasible for the problem
if (x, y, z) is an integer vector that satisfies all the cut constraints of type (2) and (5). In most of the
cases, the solution obtained this way is not feasible for the CMLND-U problem. We then manage
to identify, at each iteration of the algorithm, valid inequalities that are violated by the solution
of the current restricted linear program. This is referred to as the separation problem. Namely,
given a class of valid inequalities, the separation problem is to check whether the solution (x, y, z)
meets all the inequalities of this class, and, if this is not the case, to find an inequality that is
violated by (x, y, z). The detected inequalities are then added to the current linear program, and
such procedure is reiterated until no violated inequality can be identified. The algorithm uses then
to branch over the fractional variables.

The Branch-and-Cut algorithm includes the inequalities described in the previous chapter, and
their separations are accomplished in an order discussed in Section 5.

Observe that all the inequalities are global (i.e., valid for the whole Branch-and-Cut tree), and
several inequalities may be added at each iteration. Furthermore, we move to the next class only if
no violated inequalities of the current class are identified. Our strategy is to try to detect violated
inequalities at each node of the Branch-and-Cut tree, in order to obtain the best possible lower
bound by strengthening the linear relaxation, and thus limit the number of generated nodes.
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In the sequel, we describe the separation procedures embedded in our algorithm. We use exact
and heuristic algorithms as well, depending on the class of inequalities. Except for cut inequalities
(5), all the separation routines are applied on the graph G1.

4.2. Separation of basic Cut constraints

Algorithm 1: Separation of basic cut inequalities (2)
Data: a vector (x, y, z)
Result: a set CI of cut inequalities (2) violated by (x, y, z)
for each commodity k ∈ K do

Associate a weight c(e, w) = xkew to each pair (e, w)∈ A1 ×W ;
Use Goldberg-Tarjan push relabel algorithm [23] to find the min cut separating ok
from dk regarding to the assigned weights;

Let δ+(T ) denote this cut, where T ( V1 (T contains ok but does not contain dk);
if cut inequality (2) induced by δ+(T ) is violated by (x, y, z) then

add this inequality to CI;

return the identified cut inequalities CI to be added to the current LP;

We used the implementantion of Goldberg and Tarjan algorithm for max flow/min cut available
in LEMON GRAPH C++ library [2]. It has a worst case complexity of O(n2

1

√
m1) where n1 and

m1 are the number of nodes and arcs of G1, respectively. Therefore, the exact separation algorithm
for cut constraints (2) runs in O(n2

1t
√
m1), where t = |K|.

For the cut constraints (5), we have to solve the separation problem that consists in computing
for each pair (e = (u, v), w) ∈ A1 ×W , such that yew > 0, the minimum cut in G2 separating
u′ from v′ considering zewa as the arc capacities. Using the same Goldberg and Tarjan min cut
algorithm, the full exact separation has complexity O(n2

2m2|W |
√
m2).

4.3. Separation of capacitated cutset inequalities
The separation problem associated with the cutset inequalities has been proven NP-hard in

general [13]. In our case, the separation problem related to capacitated cut-set inequalities (10)
is also NP-hard. Therefore, we have developed two heuristics to separate these inequalities, one
of which is based on the so-called n-cut heuristic, proposed by Bienstock et al. in [13] for the
minimum cost capacity installation for multicommodity network flows. We adapt this heuristic in
order to make it suitable for our problem.

This heuristic works as follows. For any commodity k ∈ K, we check whether there is a
path in G1 connecting nodes ok and dk, and using only pairs (e, w), e ∈ A1, w ∈ W with yew >
0. Since this can be performed by any path finding algorithm, we use Dijkstra’s algorithm. If
such a path does not exist, then it is clear that a capacitated cutset inequality is violated. This
inequality is induced by a subset of nodes T such that ok ∈ T and dk /∈ T . If a path between
ok and dk is identified in G1 for each commodity k, then we randomly pick a subset of nodes,
say T ⊆ V1, 0 6= T 6= V1, and identify the subset of commodities P+ having their origin node
in T and their destination in V1 \ T . After that, we compute the right-hand side, and we check
if the constraint thus constructed is violated. Since we check the existence of a path for each
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commodity between its origin and its destination, the worst-case complexity of this procedure is
O(|K|(m1|W |+ n1log(n1))), where n1 = |V1| and m1 = |A1|.

Algorithm 2: Separation of capacitated cutset inequalities (10)
Data: a vector (x, y, z)
Result: a set CCS of capacitated cutset inequalities (10) violated by (x, y, z)
Associate a weight c(e, w) = yew to each pair (e, w)∈ A1 ×W ;
for each commodity k ∈ K do

Check if there exists a path in G1 from ok to dk using pairs (e, w) with yew > 0 ;
if such path does not exist then

a capacitated cutset inequality induced by a subset T is violated and must be added
to CCS;

if there is a path for each k between ok and dk then
Randomly pick a subset of nodes T in V1;
Construct the subset of commodities K+(T ) such that K+(T ) =
{k ∈ K : ok ∈ T and dk /∈ T} if

∑
e∈δ+(T )

∑
w∈W yew < d

D(K+(T ))
C

e then
A violated capacitated cutset inequality is identified and must be added to CCS

return the identified cut inequalities CCS to be added to the current LP;

In the second separation heuristic, we use Goldberg-Tarjan max-flow algorithm to find violated
capacitated cut-set inequalities (10). We attribute to each pair (e, w) ∈ A1 ×W the capacity yew,
and determine for each k ∈ K a minimum okdk-dicut in G1, say δ+G1

(T ∗), with T ∗ ⊆ V1. We then
identify the subset of commodities K+(T ) ⊆ K passing through this directed cut. We finally add
inequality ∑

e∈δ+G1
(T ∗)

∑
w∈W

yew ≥ d
D(K+(T ))

C
e,

in case it is violated. This procedure is based on max-flow computations, thus the worst case
complexity is O(n2

1t
√
m1).

4.4. Separation of flow-cutset inequalities
We now discuss our separation procedure for the flow-cutset inequalities (11). Atamtürk shows

in [3] that the separation problem associated with a more general form of flow-cutset inequalities
is NP-hard even for one commodity. In case of a multiple commodity set, the complexity of
simultaneously determining K+(T ) and F is not known [33]. As we do not know an efficient
procedure to separate flow-cutset inequalities in general, we use here a simple heuristic based on
Goldberg-Tarjan max-flow algorithm.
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Algorithm 3: Separation of flow-cutset inequalities (11)
Data: a vector (x, y, z)
Result: a set FCS of flow-cutset inequalities (11) violated by (x, y, z)
for each commodity k ∈ K do

Associate a weight c(e, w) = xkew + yew to each pair (e, w)∈ A1 ×W ;
Use Goldberg-Tarjan push relabel algorithm [23] to find the min cut separating ok
from dk regarding to the assigned weights;

Let δ+(T ) denote this cut, where T ( V1 (T contains ok but does not contain dk);
if flow-cutset inequality (11) induced by δ+(T ) is violated by (x, y, z) then

add this inequality to FCS;

return the identified cut inequalities FCS to be added to the current LP;

The main idea consists in identifying, for each commodity the minimum cut separating its
origin and its destination, then derivating the subset of commodities whose origin and destination
nodes are separated by the same cut (see Algorithm 3). In other words, for each k ∈ K, we assign
the capacity yew + xkew to each pair (e, w) ∈ A1 ×W , and compute the minimum cut separating
ok from dk in the graph G1. Let δ+G1

(T ∗), T ∗ ⊆ V1, denote this cut. We then pick an arbitrary
subset of arcs, say F ∗ of δ+G1

(T ∗), such that ∅ 6= F ∗ 6= δ+G1
(T ∗), and we determine the subset of

commodities K+(T ∗) ⊆ K using δ+G1
(T ∗). If D(K+(T ))/C is not integer, we add the succeeding

flow-cutset inequality∑
e∈F ∗

∑
w∈W

yew +
∑

k∈K+(T ∗)

∑
e∈F ∗

∑
w∈W

xkew ≥ d
D(K+(T ∗))

C
e,

if it is violated by the current fractional solution (x, y, z).

4.5. Separation of clique-based inequalities
Given a fractional solution (x, y, z), and a pair (ẽ, w̃) ∈ A1 × W , the separation problem

associated with the clique-based inequalities (16) consists in identifying a clique C∗ in the conflict
graph H , such that ∑

k∈C∗
xkew > yew,

if any. To do so, we use a greedy algorithm introduced by [29] for the independent set problem.
This heuristic works as follows. We first construct the conflict graph H = (V,E) where each node
v ∈ V corresponds to a commodity in K and an edge e ∈ E exists between two nodes u, v ∈ V if
Du + Dv > C. For each pair (e, w) ∈ A1×W , we assign a weight to each node v of V that is xvew,
then we choose a node, say u, having the largest weight and we set C∗ = {u}. We then iteratively
add to C∗ the maximum weighted node of V \ C∗ whenever it is neighbouring all the nodes of the
current clique C∗. We add the clique-based inequality induced by C∗ if it is violated.

4.6. Separation of Min Set I and Min Set II inequalities
Given a fractional solution (x, y, z), deciding whether there exists a Min Set I (respectively

Min Set II) inequality which is violated by (x, y, z) is not an easy problem, since it requires solv-
ing the bin packing problem (which is NP-hard in general [22]). We use for the separation of
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these inequalities heuristic procedures inspired from those proposed in [11] and adapted for the
CMLND-U problem. The idea, for both algorithms, is to identify for every arc a ∈ A1 a subset of
commodities Sa that may induce a violated Min Set I (respectively Min Set II) inequality. If such
inequality exists, then it is added to the current LP.

5. Computational experiments

We have conducted several series of experiments to test the efficiency of our Branch-and-Cut
algorithm. The purpose of this experimental study is first to give an insight of the effectiveness of
each of the introduced valid inequalities. Our second objective is to assess the performance of the
full algorithm including all inequalities, also identifying which instances features, not only size,
make them harder to solve. We have implemented our algorithm in C++ on top of CPLEX 12.6.3
using the cut callback feature and LEMON Graph library for the graph algorithms. Finally, our
algorithm was tested on an Intel(R) Xeon(R) CPU E5-2650 v2 2.60GHz machine with 128GB of
RAM, running under Linux.

The results shown in this section have been obtained by solving instances adapted from SNDlib
[1], as well as from real networks. For all the instances, the graph G1 representing the virtual layer
is supposed to be complete. The cost induced by installing each subband is given by c(w) = c(1 +
w), where w is the subband index and c is a fixed cost associated with the ROADMs generating
the subband. This cost is justified by our wish to install the subbands progressively on one hand,
and for the sake of compliance with practical costs on the other hand. In other words, a subband
wi, i > 1, is not used over an arc e before wi−1 is installed. We also take into account the length of
the routing path in G2 associated with each installed subband, each arc in the path also costs c.

In the SNDlib derived instances, graph G2 corresponds to the original instance topology while
G1 is a complete bidirected graph over the same set of nodes. Actually, if the original topology
corresponds to a non directed graph, we replace each edge by two anti-parallel arcs in G2. We
have considered two sub-classes of instances. The first one corresponds to randomly generated
traffic commodities. For each tested value of |K| we created 3 instances and report average results.
The second sub-class not only uses the SNDlib topologies, the traffic matrices are also used. For
each tested demand size, we create a single instance by picking the first |K| commodities. The
number of available subbands per arc (|W |) is set to 5, for both sub-classes. We have considered
the SNDlib topologies pdh, polska, nobel us, newyork, and geant.

The real instances are provided by Orange (formerly France Télécom, the French historical
telecommunication operator). Two topologies were considered here, all related to Bretagne area
backhaul network. The traffic commodities, as well as the subbands capacities are also given by
Orange. For each topology, we have considered three subband capacities C = 10 Gbit/s, C = 12.5
Gbit/s and C = 25 Gbit/s, so as to compare the performances of each type of OFDM multi-band
solution. The number of available subbands per arc (|W |) is set to 6.

5.1. Effectiveness of the Cuts
Before reporting the complete experiments for the instances described above, we first show

preliminary experiments devised to assess the impact of the used valid inequalities within the
Branch-and-Cut algorithm. For each topology, we choose the first instance with randomly gen-
erated traffic, for 3 different values of |K| (10, 12, and 14). So, 15 instances were used in those
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tests. The baseline for the comparisons is a Basic Branch-and-Cut that only separates essential
inequalities, those that are part of formulation (2)-(9).

Table 1 presents the integrality gaps at the root node (obtained from the root lower bound and
from the upper bound given by the optimal or best known solution for the instance) for the Basic
B&C and for a B&C that additionally separates a single family of cuts. The results in Table 1 look
somehow disappointing. The average gap reductions were quite modest, being zero for Min Set II,
the less effective family. However, the next experiments show a much more interesting picture.

Table 1: Impact of using a single family of cuts on the root node gap (%)

Topology |V2| |A2| |K| Basic B&C MSI Cutset Cliques Flow MSII

pdh 11 68 10 34.21 31.83 34.21 34.21 34.21 34.21
pdh 11 68 12 27.21 23.63 27.21 27.21 27.21 27.21
pdh 11 68 14 34.36 32.21 33.61 34.36 34.36 34.36

polska 12 36 10 44.36 39.64 42.18 44.36 41.09 44.36
polska 12 36 12 34.79 32.52 32.48 34.79 32.12 34.79
polska 12 36 14 30.92 29.98 28.38 30.92 28.81 30.92

nobel us 14 42 10 33.77 33.35 33.77 33.77 33.77 33.77
nobel us 14 42 12 30.95 30.95 30.95 30.95 30.95 30.95
nobel us 14 42 14 40.49 40.49 39.55 40.49 39.13 40.49

newyork 16 98 10 21.74 20.13 21.74 21.74 21.74 21.74
newyork 16 98 12 35.94 35.94 35.94 35.94 35.94 35.94
newyork 16 98 14 25.50 25.50 24.68 25.50 23.85 25.50

geant 22 72 10 23.20 23.20 23.20 23.20 23.20 23.20
geant 22 72 12 48.07 48.07 48.07 48.07 48.07 48.07
geant 22 72 14 36.88 36.88 35.61 36.88 34.43 36.88

Avg. 33.49 32.29 32.77 33.49 32.59 33.49

Table 2 shows the gaps obtained by running the complete Branch-and-Cut algorithm with a
time limit of 5 hours, performing the separation of a single family of cuts over all nodes of the
search tree. The reported gaps are obtained from the final lower bound at the time limit or are zero
if the instance is solved to optimality. It can be seen that the most effective families of cuts, Min Set
I and Cutset inequalities, can more than half the average final gap. Even the less effective families,
Cliques and Min Set II inequalities, still have some positive impact in the B&C performance.

Finally, Table 3 shows the combined effect of all families of cuts. The cuts are separated
successively in the following order: MSI, Cutset, Cliques, Flow Cutsets, and MSII. This means
that the separation routine for a family is only called if separation for previous families can not
find violated cuts. The chosen order is largely based in the results of the experiments reported in
Table 2, the cuts found to be more effective are separated first. However, there is an inversion,
due to relative separation costs: Clique cuts are separated before Flow-Cutsets because the latter
separation is much more costly. Columns in Table 3 correspond to final gaps, number of nodes
explored and total time (limited to 5 hours). It is clear that the cuts had a large impact in the overall
performance. While the basic B&C could only solve 2 instances, the complete B&C solved 12
instances. The additional cut separations make the solution of each node slower, but this (except

19



Table 2: Impact of using a single family of cuts on the final gap (%) - 5 hours time limit

Topology |V2| |A2| |K| B&C MSI Cutset Cliques Flow MSII

pdh 11 68 10 10.17 0.00 0.00 0.00 0.00 6.58
pdh 11 68 12 0.00 0.00 0.00 0.00 0.00 0.00
pdh 11 68 14 11.36 0.00 0.00 0.00 10.25 12.68

polska 12 36 10 24.91 13.36 0.00 27.27 35.09 22.82
polska 12 36 12 21.94 0.00 0.00 20.36 10.55 19.18
polska 12 36 14 22.4 0.00 9.60 14.3 20.9 21.52

nobel us 14 42 10 21.13 0.00 0.00 20.90 0.00 19.65
nobel us 14 42 12 19.36 0.00 2.74 18.15 12.85 16.62
nobel us 14 42 14 31.77 15.81 24.85 27.47 28.15 31.68

newyork 16 98 10 0.00 0.00 0.00 0.00 0.00 0.00
newyork 16 98 12 20.00 0.00 13.87 21.13 18.06 19.65
newyork 16 98 14 11.53 0.00 0.00 10.59 0.00 10.71

geant 22 72 10 11.31 0.00 0.00 12.46 6.74 11.09
geant 22 72 12 37.60 34.30 34.42 38.05 38.91 37.95
geant 22 72 14 30.53 20.92 19.06 29.63 31.08 30.90

Avg. 19.22 7.29 8.58 17.11 15.32 17.4

in topology geant with |K| = 12) is more than compensated by the big reduction in the number of
explored nodes.

5.2. SNDlib instances with randomly generated traffic
This subsection reports extensive experiments on the instances with SNDlib topologies and

randomly generated traffic commodities. The instances considered here have graphs with 10 up to
22 nodes and vary from sparse (like for polska) to highly meshed (like for newyork) topology. The
number of commodities ranges from 10 to 20, the distinct origin and destination nodes are random,
the Dk values are generated uniformly in the interval [εC, C], with ε = 0.2. For each graph and
number of commodities, there is a group of 3 instances. The rows in Table 4 are averages for each
of the 30 groups. The columns in that table are:

Opt : number of instances solved to optimality
NcI : number of Connectivity constraints (2) separated,
NcII : number of Subband Connectivity constraints (5) separated,
NMSI : number of Min Set I inequalities separated,
NCCS : number of Capacitated Cutset inequalities separated,
NC : number of Clique inequalities separated,
NFCS : number of Flow-Cutset inequalities separated,
NMSII : number of Min Set II inequalities separated,
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Table 3: The impact of adding all families of cuts in the overall B&C performance
Basic B&C B&C with all families of cuts

Topology |V2| |A2| |K| Final Gap Nodes TT Final Gap Nodes TT

pdh 11 68 10 10.17 98167 18000.00 0.00 169 190.55
pdh 11 68 12 0.00 6884 993.94 0.00 215 784.73
pdh 11 68 14 11.36 109514 18000.00 0.00 40 191.42

polska 12 36 10 24.91 175345 18000.00 0.00 2503 1220.38
polska 12 36 12 21.94 247373 18000.00 0.00 1152 820.48
polska 12 36 14 22.40 147090 18000.00 0.00 277 486.86

nobel us 14 42 10 21.13 86279 18000.00 0.00 846 2393.37
nobel us 14 42 12 19.36 97318 18000.00 0.00 358 1274.39
nobel us 14 42 14 31.77 97532 18000.00 13.34 5823 18000.00

newyork 16 98 10 0.00 4147 2478.13 0.00 285 863.25
newyork 16 98 12 20.00 44575 18000.00 0.00 1026 4012.61
newyork 16 98 14 11.53 32605 18000.00 0.00 439 2272.85

geant 22 72 10 11.31 45022 18000.00 0.00 1823 2267.13
geant 22 72 12 37.60 48394 18000.00 44.7 3890 18000.00
geant 22 72 14 30.53 41258 18000.00 12.53 1945 18000.00

Avg. 19.22 85433 4.69 1386

Nodes : number of nodes in the Branch-and-Cut tree,
Root Gap : the relative difference between the best upper bound (optimal solution if the

problem has been solved to optimality) and the lower bound obtained at
the root node of the Branch-and-Cut tree, before branching,

Final Gap : the relative difference between the best upper bound and the lower bound
at the time limit of 5 hours, zero if solved to optimality,

TT : total CPU time, in seconds,
TTsep : CPU time spent in performing cut separation, in seconds.

We now discuss the results in Table 4:

• It can be seen that 61 out of 90 instances were solved to optimality within the fixed time.
Considering the 30 groups, all the 3 instances were solved in 15 of them. For the groups
where some instances were not solved, good feasible solutions are often found. The average
final gap is less than 20%, except in 5 groups corresponding to the geant topology.

• The number of commodities impact a lot on the problem difficulty. While all the 15 instances
with |K| = 10 were solved, only 6 instances with |K| = 20 could be solved. This is quite
expected since the size of formulation (2)-(9) grows with |K|.

• The number of solved instances varied a lot depending on the topology: 17 for pdf, 15 for
polska, 12 for nobel us, 3 for newyork, and only 4 for geant. It seems that the number
of vertices have more impact on the difficulty than the number of arcs. For example, pdh
instances (|V2| = 11, |A2| = 68) are much easier than geant instances (|V2| = 22, |A2| = 44).
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Table 4: Branch-and-Cut results for SNDlib instances with randomly generated traffic

Topology |V2| |A2| |K| Opt NcI nCII NMSI NCCS NC NFCS NMSII Nodes Root Gap (%) Final Gap (%) TT TTsep

pdh 11 68 10 3 15.3 16.0 48.7 43.3 18.3 93.7 0.7 259.7 29.75 0.00 166.42 91.81
pdh 11 68 12 3 55.7 0.0 92.3 50.0 34.3 1286.7 2.7 229.3 29.57 0.00 612.32 384.91
pdh 11 68 14 3 92.0 0.0 125.0 59.0 69.3 363.7 3.0 201.0 27.42 0.00 428.28 239.24
pdh 11 68 16 3 192.7 0.0 207.3 71.7 180.0 5936.7 3.0 753.7 24.32 0.00 2657.58 1617.55
pdh 11 68 18 2 129.3 0.0 169.7 66.0 84.7 7365.7 4.0 777.0 23.89 1.96 6559.53 4208.32
pdh 11 68 20 3 230.7 0.3 292.7 74.7 210.0 3360.3 11.3 996.7 23.77 0.00 3448.82 2159.56

polska 12 24 10 3 87.7 70.3 93.0 44.0 27.3 866.3 5.3 1363.3 31.92 0.00 784.27 372.28
polska 12 24 12 3 111.7 84.3 161.3 49.7 65.7 940.7 6.0 1012.7 26.91 0.00 775.26 352.95
polska 12 24 14 3 166.3 72.0 145.7 71.3 107.0 2176.0 2.3 937.0 29.33 0.00 1638.42 934.25
polska 12 24 16 1 225.3 202.3 230.0 87.0 114.3 9977.7 2.0 2514.3 29.20 13.15 12093.44 7089.12
polska 12 24 18 3 329.3 131.3 250.7 50.7 327.7 2673.3 6.3 1939.3 29.66 0.00 2983.04 1317.35
polska 12 24 20 2 551.0 148.3 297.3 85.0 487.0 5933.0 4.7 4715.0 26.49 1.36 10298.53 4014.63

nobel us 14 28 10 3 121.0 30.7 106.0 101.3 20.3 1494.7 1.3 863.3 32.32 0.00 1710.06 970.37
nobel us 14 28 12 3 149.3 57.3 167.3 91.3 85.0 1486.3 2.3 636.7 33.29 0.00 1913.95 994.21
nobel us 14 28 14 1 302.0 81.7 179.3 163.0 221.0 9574.0 1.7 2683.7 34.93 12.96 14381.15 5581.83
nobel us 14 28 16 3 184.3 83.0 206.7 58.3 141.7 1184.0 2.3 748.7 24.27 0.00 2383.62 1281.57
nobel us 14 28 18 2 316.0 94.3 279.0 70.3 342.0 4755.0 1.7 2075.0 26.22 4.41 8876.75 4219.13
nobel us 14 28 20 0 558.3 244.3 447.0 107.3 376.3 4251.0 4.7 4961.7 30.64 12.27 18000.00 6651.82

newyork 16 32 10 3 84.7 0.0 72.7 82.0 40.7 1197.7 0.0 355.7 27.65 0.00 2145.57 1251.74
newyork 16 32 12 3 106.7 1.3 130.7 105.3 60.0 634.0 1.0 625.3 31.17 0.00 2859.72 1690.81
newyork 16 32 14 2 287.3 0.0 153.3 123.3 117.0 2318.0 0.7 1480.3 37.07 16.17 8432.44 3975.11
newyork 16 32 16 2 125.7 0.0 108.0 88.0 17.3 2480.7 0.0 813.3 26.34 5.55 7272.54 3917.47
newyork 16 32 18 2 150.3 2.3 168.7 101.7 139.0 2013.3 3.0 485.0 25.78 3.55 7349.32 4122.91
newyork 16 32 20 1 270.7 9.7 333.3 151.0 384.7 2060.7 2.3 880.0 26.06 9.39 12054.01 7022.06

geant 22 44 10 3 125.0 117.3 75.7 133.3 23.3 300.0 0.3 1100.7 30.81 0.00 7117.77 3931.41
geant 22 44 12 1 275.0 259.7 132.0 186.3 48.7 2557.3 0.7 2211.0 40.26 26.51 16455.93 7825.78
geant 22 44 14 0 320.3 261.0 153.7 219.7 84.0 2470.0 2.0 1300.0 39.97 25.95 18000.00 8570.22
geant 22 44 16 0 173.0 279.3 140.0 201.3 67.7 905.0 0.3 548.7 35.38 39.08 18000.00 10868.47
geant 22 44 18 0 228.3 265.3 179.7 192.7 132.7 847.0 1.0 578.3 41.00 38.84 18000.00 9502.91
geant 22 44 20 0 221.3 189.7 158.0 185.0 111.3 888.0 1.3 459.7 38.43 32.89 18000.00 11125.07

Avg. 1283.5 30.46 8.13 7513.29 3876.12
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• On all groups of instances, many Min Set I, capacitated cutset, flow-cutset and clique in-
equalities are separated along the Branch-and-Cut tree. This is an additional evidence that
they do help to solve the problem. However, the number of Min Set II inequalities separated
is much smaller. This confirms their marginal effect on B&C performance. Indeed, they
were only kept in the final algorithm because their separation is fast, so they do not harm the
efficiency.

• On average, 53% of the total time is spent on separation. We noticed that the separation pro-
cedure for flow cutset inequalities is the most time consuming. This is why we have chosen
to separate then after the clique cuts, even tough the latter cuts are usually less effective.

5.3. SNDlib instances with original traffic
The second series of experiments that we have conducted use the same SNDlib topologies, but

now also use the original SNDLib demands (the first |K| commodities) and the original values
of C. The results in Table 5 show that the resulting instances turn out to be considerably more
difficult. The root gaps are larger and only 8 out of 30 instances (27%) could be solved to optimal-
ity, compared to 61 out of 90 (68%) on the previous tests. The main explanation seems to be the
relation between the average values of Dk and C, we call that relation α. The random generator
used in previous instances produced α values around 0.6. This limits the number of combinations
of demands that can be packed in the same subband. The instances with the original SNDLIB
demands have smaller average values of α: 0.40 for pdh, 0.38 for polska, 0.32 for nobel us, 0.48
for newyork, and 0.33 for geant. As expected, as there are fewer demands where Dk > C/2, it can
be observed that very few clique cuts are separated. Nevertheless, the final gaps are still less than
50%, except on 4 geant instances.

5.4. Real instances
The real instances provided by Orange have two distinct topologies, bretagne9 an bretagne22,

with 9 and 22 nodes. The demands were also provided by Orange, with a number of commodities
that varies between 15 and 30. On bretagne9, the average traffic value is 6355.5 Mbit/s (for |K|
= 30). On bretagne22, the average traffic value is 7406.8 Mbit/s (also for |K| = 30). Orange also
indicated the value |W | = 6 for all the instances, and three possible subband capacities, namely C
= 10 Gbit/s, 12.5 Gbit/s and 25 Gbit/s. Table 6 shows the obtained results.

It can be seen that 6 out of the 18 tested instances were solved to optimality within the time
limit. The algorithm did not performed well for C = 25, none of the 6 instances with that capacity
value could be solved. This confirms the finding that instances where the average demand values
are small with respect to C are harder to the proposed B&C algorithm. On the other hand, the
results for the instances with C = 10 and C = 12.5 were much better. Half of those instances
could be solved to optimality, the remaining instances finished with a final gap smaller than 30%,
including those with topology bretagne22 and |K| = 30, that are fairly large.

6. Concluding remarks

In this paper we have studied a multilayer network design problem with specific requirements
arising in optical OFDM networks. The characteristics of the hierarchical routing and the traf-
fic indivisibility makes the problem very difficult to solve, creating a computational challenge.
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Table 5: Branch-and-Cut results for SNDlib instances with original traffic

Topology |V2| |A2| |K| Opt NcI nCII NMSI NCCS NC NFCS NMSII Nodes Root Gap (%) Final Gap (%) TT TTsep

pdh 11 68 10 1 258 0 73 179 0 5497 0 5225 60.70 0.00 6790.24 2453.09
pdh 11 68 12 1 160 0 36 136 6 841 0 472 53.09 0.00 727.96 382.56
pdh 11 68 14 1 112 0 65 107 16 1049 0 500 49.23 0.00 881.21 504.36
pdh 11 68 16 1 564 0 184 216 58 6735 1 2607 54.46 0.00 9858.83 4269.88
pdh 11 68 18 0 391 0 200 220 41 35628 0 1423 52.40 21.77 18000.00 8910.63
pdh 11 68 20 1 385 0 152 146 38 4776 3 935 38.89 0.00 5239.48 3447.56

polska 12 36 10 0 214 19 22 130 0 46638 1 1040 58.07 36.85 18000.00 6532.35
polska 12 36 12 0 408 136 61 153 0 39055 1 8999 59.82 35.02 18000.00 6755.4
polska 12 36 14 0 669 185 77 187 0 21222 3 13145 54.70 22.72 18000.00 7518.6
polska 12 36 16 0 615 176 91 166 0 23719 5 8831 56.44 43.24 18000.00 8444.21
polska 12 36 18 0 662 194 167 168 0 20459 22 7025 60.33 46.05 18000.00 9453.77
polska 12 36 20 0 614 187 205 162 0 24838 8 4791 54.56 45.52 18000.00 10396.6

nobel us 14 42 10 1 86 14 51 105 0 4537 4 1558 48.04 0.00 5055.05 3201.24
nobel us 14 42 12 0 419 29 62 161 0 18721 4 1663 53.96 38.17 18000.00 11007.1
nobel us 14 42 14 0 250 28 71 147 0 18630 0 781 52.25 44.25 18000.00 12152.00
nobel us 14 42 16 0 115 22 67 144 0 25030 0 453 54.56 43.93 18000.00 13548.4
nobel us 14 42 18 0 189 19 56 138 0 14899 1 440 56.43 47.40 18000.00 14120.4
nobel us 14 42 20 0 199 15 59 130 0 10242 0 419 58.71 50.00 18000.00 15115.6

newyork 14 98 10 1 9 0 37 31 0 52 0 139 28.69 0.00 539.95 382.81
newyork 14 98 12 1 78 0 137 59 8 398 0 495 30.55 0.00 2453.75 1515.35
newyork 14 98 14 1 271 0 244 85 17 2330 4 2183 35.41 0.00 13960.1 7569.51
newyork 14 98 16 0 520 0 400 98 47 2916 2 3883 44.97 32.46 18000.00 10270.9
newyork 14 98 18 0 433 0 344 109 7 3430 1 3207 32.61 22.36 18000.00 10556.6
newyork 14 98 20 0 601 10 414 83 5 2359 8 3639 48.61 36.86 18000.00 10268.2

geant 22 72 10 0 124 63 97 93 0 3075 2 1942 48.03 37.06 18000.00 9418.52
geant 22 72 12 0 451 208 133 237 13 2185 2 1344 52.28 46.65 18000.00 10065.5
geant 22 72 14 0 333 95 220 168 7 2368 9 1276 68.24 64.93 18000.00 11173.1
geant 22 72 16 0 143 104 151 94 7 2761 0 961 67.08 65.07 18000.00 13713.3
geant 22 72 18 0 306 119 148 129 20 2422 0 1119 65.30 60.57 18000.00 12257.4
geant 22 72 20 0 173 92 157 174 10 2942 3 707 62.98 61.01 18000.00 13572.2

Avg. 2706.7 52.05 29.96 14116.89 8299.4

Table 6: Branch-and-Cut results for real instances

Topology |V2| |A2| |K| C (Gbit/s) NcI nCII NMSI NCCS NC NFCS NMSII Nodes Root Gap (%) Final Gap (%) TT TTsep

bretagne9 9 20 15 10 67 47 133 31 181 288 0 94 29.43 0.00 97.77 48.49
bretagne9 9 20 15 12 109 47 81 47 333 267 0 208 23.08 0.00 163.40 67.53
bretagne9 9 20 15 25 270 114 148 97 83142 0 0 3601 56.25 29.29 18000.00 5312.34
bretagne9 9 20 20 10 107 66 318 58 645 753 2 379 7.11 0.00 483.27 297.86
bretagne9 9 20 20 12 175 86 223 66 5514 859 1 3082 17.62 0.00 2949.18 1664.58
bretagne9 9 20 20 25 352 78 173 156 74608 0 11 1615 48.72 39.55 18000.00 8416.61
bretagne9 9 20 30 10 293 210 968 72 3916 2437 7 4192 8.8 0.00 7573.20 4655.07
bretagne9 9 20 30 12 438 280 1060 264 22684 4407 50 7097 20.90 12.64 18000.00 7367.87
bretagne9 9 20 30 25 353 166 472 183 33698 0 34 3451 45.12 36.22 18000.00 11502.80

bretagne22 22 52 15 10 213 707 192 35 1003 894 2 1102 27.79 24.10 18000.00 8760.96
bretagne22 22 52 15 12 107 294 84 54 411 411 2 379 28.40 0.00 6312.77 3666.88
bretagne22 22 52 15 25 140 575 95 60 451 0 5 1130 65.63 62.07 18000.00 14012.60
bretagne22 22 52 20 10 144 213 159 131 738 108 0 323 22.98 22.49 18000.00 12571.80
bretagne22 22 52 20 12 209 504 94 147 230 950 0 90 25.02 18.61 18000.00 9852.16
bretagne22 22 52 20 25 129 193 53 167 675 0 0 372 65.02 60.87 18000.00 10070.25
bretagne22 22 52 30 10 120 502 149 156 535 145 1 148 21.74 13.94 18000.00 12887.50
bretagne22 22 52 30 12 218 486 135 176 712 130 0 112 44.65 25.78 18000.00 11593.70
bretagne22 22 52 30 25 131 111 85 217 436 0 2 267 67.76 67.30 18000.00 15329.30

Avg. 1535.7 34.78 22.94 12976.64 7671.02
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We have proposed a cut-based ILP formulation for the problem and studied its basic polyhedral
properties. Exploiting the underlying sub-problems, we have proposed several families of valid
inequalities and investigated their facial structure. These inequalities have been embedded within
a branch-and-cut algorithm to solve the problem.

The proposed valid inequalities have helped a lot in reducing the number of nodes in the branch-
and-cut enumeration tree, leading to optimal or provably good solution for a significant number of
instances. Yet, some of the associated separation procedures are still time-consuming and could
be enhanced. In addition, deriving good upper bounds from the fractional solutions is a non-trivial
task but would hopefully allow to further reduce the size of the branch-and-cut tree. Finally, we
expect that finding other valid inequalities involving the demand structure would be interesting for
increasing the efficiency of the algorithm, especially on instances where many demands have small
traffic value compared to the subband capacity.
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Appendices

Definition 3. A solution S of the CMLND-U problem can be represented by two subsets of arcs
F1, F2 of A1 (with F2 eventually empty), |K| subsets of arcs C1, . . ., Ck, of A1, a subset of subbands
W of W installed on the arcs of F1 ∪ F2, a subset of arcs ∆ of A2, and |A1| × |W | subsets of arcs
∆ew, e ∈ A1, w ∈ W , of A2 in such a way that

(i) at least one subband is installed on each arc of F1 ∪ F2,

(ii) F1 =
⋃
k∈K Ck,

(iii) Ck, k ∈ K, consists in a path between ok and dk,

(iv) ∆ =
⋃
e∈F1∪F2,w∈W ∆ew,

(v) with every arc e = (u, v) ∈ F1 ∪ F2 and w ∈ W , one can associate an arc subset ∆ew

(which may be empty), in such a way that if w is installed on e, then ∆ew contains a path, say
Pew ⊆ ∆ew between u′ and v′,

(vi) for every w ∈ W , any arc of ∆ belongs to at most one path Pew, for e ∈ F1 ∪ F2.

We then denote the solution S by S = (F1, F2,∆,W ). The incidence vector of S, (xS, yS, zS) ∈
RK×A1×W × RA1×W × RA1×W×A2 , will be given by:

xSkew =

{
1, if e ∈ Ck and w is installed on e,
0, otherwise.

ySew =

{
1, if w ∈ W, e ∈ F1 ∪ F2 and w is installed on e,
0, otherwise.

zSew(a) =

{
1, if a ∈ ∆ew,
0, otherwise.

We will consider throughout the polyhedral analysis that each commoditiy uses a different
subband for its routing, unless stated explicitely.

Appendix A. Proof for Theorem 1

Assume that P (G1, G2, K, C) is contained in the hyperplane defined by the linear equation

αx+ βy + γz = δ (A.1)

where α = (αkew, k ∈ K, e ∈ A1, w ∈ W ) ∈ RK×A1×W , β = (βew, e ∈ A1, w ∈ W ) ∈ RA1×W ,
γ = (γewa , e ∈ A1, w ∈ W,a ∈ A2) ∈ RA1×W×A2 and δ ∈ R. We will show that α=0, β=0, γ=0
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implying that P (G1, G2, K, C) can not be included in the hyperplane (A.1), since it is not empty.
To this end, let us first construct a solution S0 = (F 0

1 , F
0
2 ,∆

0,W 0) of the problem.
For each commodity k ∈ K, we consider a path in G1 between its origin and destination

nodes, consisting of arc (ok, dk). This is possible since G1 is complete. We install over this arc one
subband. In other words, every subband is assigned at most to one commodity. Note that every
arc (u, v) receives as much subbands as there are demands going from u to v. All the installed
subbands are supposed to be different. After that, we associate with each subband, installed over
(ok, dk), k ∈ K, a path in G2 consisting in the arc (o′k, d

′
k). Again, this is possible since G2 is also

a complete graph.
Let S0 = (F 0

1 , F
0
2 ,∆

0,W 0), be the solution given by F 0
1 = {(ok, dk), k ∈ K}, F 0

2 = ∅,
∆0 = {(o′k, d′k), k ∈ K} and W 0 the subset of |K| different subbands installed on the arcs of F 0

1 .
Note that, as all the set up subbands are different, every considered path between o′k and d′k is

associated with different subbands, and therefore, disjunction constraints (6) are satisfied. More-
over, since the capacities of the subbands are all greater than or equal to the commodity values,
and a different subband is associated with each commodity, we have that capacity constraints (4)
are also satisfied. Furthermore, by construction, the solution given above also satisfies the cut
constraints (2) and (5). Thus the solution S0 is feasible.

Consider a pair (e, w) ∈ A1 ×W . Let S1 = (F 1
1 , F

1
2 ,∆

1,W 1) be the solution obtained from
S0 by adding an arc f ∈ A2 \∆0 to ∆0

ew, while the other elements of S0 remain the same. In other
words, S1 is such that F 1

1 = F 0
1 , F 1

2 = F 0
2 , ∆1 = ∆0 ∪ {f}, and W 1 = W 0.

Obviously, S1 is also feasible for the problem. As S0 and S1 are both feasible, their incidence
vectors (xS

0
, yS

0
, zS

0
) and (xS

1
, yS

1
, zS

1
) both satisfy equality (A.1). Hence,

αxS
0

+ βyS
0

+ γzS
0

= αxS
1

+ βyS
1

+ γzS
1

= αxS
0

+ βyS
0

+ γzS
0

+ γewf

This implies that γewf = 0. As f , e and w are chosen arbitrarily in A2 \∆0, A1 and W , respec-
tively, we obtain that

γewf = 0, for all f in A2 \∆0, e ∈ A1 and w ∈ W. (A.2)

Now let f = (u′, v′) ∈ ∆0, e = (u, v) ∈ A1 and w ∈ W . Suppose first that f ∈ ∆0
ew. Consider

the solution S2 = (F 2
1 , F

2
2 ,∆

2,W 2) such that F 2
1 = F 2

2 , F 2
2 = ∅, ∆2 = (∆0 ∪ {f1, f2}) \ {f},

W 2 = W 0, where f1 = (u′, s), f2 = (s, v′) with s ∈ V2 \ {u′, v′}. In particular, ∆2
e′w′ = ∆0

e′w′ if
(e′, w′) 6= (e, w) and ∆2

ew = (∆0
ew ∪ {f1, f2}){f}. As both solutions S0 and S2 are feasible, their

incidence vectors satisfy (A.1). It follows that γewf = γewf1 + γewf2 . As by A.2, γewf1 = γewf2 = 0, we get
γewf = 0.

If f /∈ ∆0
ew, by considering the same solution S0 where we add f to ∆0

ew, we obtain that γewf =
0. We thus have, γewf = 0 for all f ∈ ∆0, e ∈ A1 and w ∈ W . Hence,

γewa = 0, for all a ∈ A2, e ∈ A1, and w ∈ W. (A.3)

Next, we will show that βew = 0, for all (e, w) ∈ A1 ×W .
Consider an arc g = (u, v) ∈ A1 \ F 0

1 . Let us install a subband ω ∈ W over g. Let S3 =
(F 3

1 , F
3
2 ,∆

3,W 3), such that F 3
1 = F 0

1 , F 3
2 = F 0

2 ∪ {g}, ∆3 = ∆0 ∪ {(u′, v′)} and W 3 = W 0 ∪ {ω}.
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Solution S3 is clearly feasible and its incidence vector satisfies (A.1). In consequence, we get βgw

= 0 and
βgω = 0, for all g ∈ A1 \ F 0

1 and ω ∈ W. (A.4)

Now suppose that g = (u, v) ∈ F 0
1 (that is g is used in the solution S0). Let w be a subband

installed on g and k be a commodity of K using the pair (g, w). Let S4 = (F 4
1 , F

4
2 ,∆

4,W 4) be a
solution obtained from S0 as follows. We consider two additional arcs g1 = (u, s) and g2 = (s, v)
of A1 \ F 0

1 , where s ∈ V1 \ {u, v}. And both g1 and g2 are added to the solution S0 by receiving
the subband w. In this solution, commodity k is moved from g to path {g1, g2}. In other words,
the routing of k uses g1, g2 instead of g. Then, S4 is such that F 4

1 = F 0
1 ∪ {g1, g2}, F 4

2 = F 0
2 , ∆4 =

∆0 ∪ {(u′, s′), (s′, v′)}, where s′ is the node of V2 associated with s. In addition, note that W 4 =
W 0 and C4k = (C0k \ {g}) ∪ {g1, g2}, while the remaining elements of C0 do not change in C4. The
solution S4 is clearly feasible for CMLND-U problem.

Now we will introduce the solution S5 which is obtained from S4 by removing the pair (g, w).
Recall that, in S4, (g, w) is not involved anymore in the routing of k. In consequence, the re-
moval of (g, w) does not affect the feasibility of this solution, which is actually ensured since all
the constraints of the problem are satisfied. As both S4 and S5 are feasible, (xS

4
, yS

4
, zS

4
) and

(xS
5
, yS

5
, zS

5
) verify (A.1). Hence, we get βgw = 0. As g and w are arbitrary in F 0

1 and W , we
obtain that

βew = 0, for all e ∈ F 0
1 and for all w ∈ W. (A.5)

And, by (A.4) and (A.5), we have

βew = 0, for all e ∈ A1 and for all w ∈ W. (A.6)

Now let us show that αkew = 0, for all k ∈ k, e ∈ A1, and w ∈ W .
Consider a commodity k ∈ K, an arc g = (u, v) ∈ A1 \ F 0

1 , and a subband ω ∈ W . We will
install ω over g. Let S6 = (F 6

1 , F
6
2 ,∆

6,W 6) be the solution defined as follows. F 6
1 = F 0

1 ∪ {g}, F 6
2

= F 0
2 , ∆6 = ∆0∪{(u′, v′)} andW 6 =W 0∪{ω}. Moreover, ∆6

gω = ∆0
gω∪{(u′, v′)} and C6k = C0k , for

all k ∈ K \{k} and C6
k

= C0
k
∪{g}, while ∆6

ew = ∆0
ew, if (e, w) 6= (g, ω) and ∆6

ew = ∆0
ew∪{(u′, v′)}

if (e, w) = (g, ω). S6 is obviously a feasible solution. Hence, both incidence vectors of S0 and S6

verify (A.1), and consequently, we have,

αkgω + βgω + γgω(u′,v′) = 0,

As by (A.3) and (A.6), βgω = γgω(u′,v′) = 0, we get αkgω = 0. Since g ∈ A1 \ F 0
1 , ω ∈ W and k ∈ K

are chosen arbitrarily and all the subbands play the same role, we obtain that

αkew = 0, for all k ∈ K, e ∈ A1 \ F 0
1 and w ∈ W. (A.7)

Suppose now that g = (ok, dk) ∈ F 0
1 . Consider the subband w0 ∈ W 0, such that (g, w0) is involved

in the routing of some commodity, say k. Let S7 be a solution obtained from S0 as follows. We pick
two arcs g1 = (ok, s) and g2 = (s, dk) ofA1\F 0

1 , with s ∈ V1\{ok, dk}. We installw0 on both g1 and
g2, and we associate with pairs (g1, w0) and (g2, w0) paths {(o′k, s′)} and {(s′, d′k)}, respectively,
with s′ ∈ V2 \ {o′k, d′k} the corresponding node of s in V2. Then S7 = (F 7

1 , F
7
2 ,∆

7,W 7), where
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F 7
1 = (F 0

1 ∪ {g1, g2}) \ {g}, F 7
2 = F 0

2 , ∆7 = ∆0 ∪ {(o′k, s′), (s′, d′k)} and W 7 = W 0. Consider
here C7k = C0k , for all k ∈ K \ {k} and C7k = (C0k ∪ {g1, g2}) \ {g}. Furthermore, ∆7

ew = ∆0
ew if

(e, w) /∈ {(g1, w0), (g2, w0)}, while ∆7
g1w0

= ∆0
g1w0
∪{(o′k, s′)} and ∆7

(s′,d′k)w0
= ∆0

g2w0
∪{(s′, d′k)}.

Solution S7 is also feasible, and its incidence vector as the one of S0, verifies equality (A.1). Thus
we obtain that

αkgw0
+ βgw0 + γgw0

(o′k,d
′
k)

= αkg1w0
+ αkg2w0

+ βg1w0 + βg2w0 + γg1w0

(o′k,s
′) + γg2w0

(s′,d′k)
,

By (A.3), γgw0

(o′k,d
′
k)

= γg1w0

(o′k,s
′) = γg2w0

(s′,d′k)
= 0. By (A.6) and (A.7) we also have βgw0 = βg1w0 = βg2w0 =

0 and αkg1w0
= αkg2w0

= 0. This yields αkgw0
= 0. As k, g and w0 are chosen arbitrarily in K, F 0

1 and
W , we get

αkew = 0, for all k ∈ K, e ∈ F 0
1 , and w ∈ W. (A.8)

Hence, by (A.7) and (A.8), we obtain

αkew = 0, for all k ∈ K, e ∈ A1, and w ∈ W. (A.9)

By (A.3), (A.5) and (A.9), α = β = γ = 0. Thus, P (G1, G2, K, C) can not be included in hyperplane
(A.1). Consequently, it is full dimensional. �

Appendix B. Proof of Theorem 3

Suppose that conditions (i) to (iv) of Theorem 3 are fulfilled. Let us denote by αx + βy +
γz ≥ δ the capacitated cutset inequality induced by T , and let F̃ denote the face induced by (10).
Then,

F̃ = {(x, y, z) ∈ P (G1, G2, K, C) :
∑

e∈δ+G1
(T )

∑
w∈W

yew = BP (K+(T ))}.

Lemma 1. F̃ is a proper face of P (G1, G2, K, C).

Proof. We first show that F̃ is a proper face of P (G1, G2, K, C). To this end, let us construct a
feasible solution S0 = (F 0

1 , F 0
2 , ∆0, W 0) that satisfies (10) with equality.

We will denote by K(s, t) all the demands of K(T ) (respectively in K(V1 \ T )) with origin s
and destination t and we install BP (K(s, t)) different subbands on the arc (s, t) of A1. Moreover,
each commodity k in K(T ) (respectively in K(V1 \ T )) is associated with the path {(s, t)} =
{(ok, dk)} and a subband wk. Note that, in this solution, a subband wk may be associated with
more than one commodity.

Now, let u, v ∈ V1 such that u ∈ T and v ∈ V1 \ T . For every demand (ok, dk) of K+(T ),
we install on the arcs (ok, u) and (v, dk) BP (K(oo, dk)) new subbands of W , while (u, v) receives
BP (K+(T )) new subbands to route the demands of K+(T ). Note that (u, v) is the only arc of
the cut δ+G1

(T ) that is used in this solution. We do the same operation for the commodities of
K−(T ). Furthemore, we associate with each pair (e, w) such that w is installed on e = (i, j) the
path {(i′, j′)} in G2. This is possible since G2 is a complete graph. Notice that, in this solution,
each commodity k ∈ K(T ), (respectively k ∈ K(V \ T )) uses the subband wk on path {ek},
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ek = (ok, dk) for its routing while the commodities of K+(T ) have a path of length at most three
{(oi, u), (u, v), (v, di), i ∈ K+(T )}. The node u (respectively v) can obviously be equal to some
oi (respectively di), i ∈ K+(T ). Moreover, in this solution, every commodity of K uses at least
one subband for its routing, and we assume that all the set up subbands are different so that the
disjunction constraints (6) are satisfied. Also note that many commodities may share the same
subband, however, as BP (K(s, t)) subbands are installed for each demand (s, t) ∈ T , we ensure
that the capacity constraints (4) are satisfied.

In this solution S0, a path in G1 is assigned to each commodity of K. Moreover, a path is also
associated with every pair (e, w) such that w is installed on e. Furthermore, both capacity con-
straints (4) and disjunction constraints (6) are satisfied, as enough different subbands are installed
on each arc used in the solution. As by condition (ii), dD(K+(T ))

C
e = BP (K+(T )), we have that

S0 induces a feasible solution of P (G1, G2, K, C) whose incidence vector belongs to F̃ . Hence,
F̃ 6= ∅. Moreover, as we have supposed that a large enough set of subbands is available, one can
install more than BP (K+(T )) different subbands on the arc (u, v) and still have a feasible solu-
tion. Clearly, this new solution is not in F̃ . Hence, P (G1, G2, K, C) \ F̃ 6= ∅. Therefore, F̃ is a
proper face of P (G1, G2, K, C).

Note that

• F 0
1 is the set of arcs (ok, dk) for k ∈ K such that {ok, dk} ⊆ T ∪ (V \ T ) and the paths (ok,
u, v, dk) (resp. (dk, v, u, ok)) for the demands of K+(T ) (resp. K−(T )),

• F 0
2 = ∅,

• ∆0 is the set of all the arcs of A2 that correspond to the paths associated with all the pairs
(e, w) such that e ∈ F 0

1 ans w is installed on e.

Now suppose that there exists a facet defining inequality λx + µy + νz ≥ ξ such that

F̃ ⊆ F = {(x, y, z) ∈ P (G1, G2, K, C) : λx+ µy + νz = ξ}.

We will show that there exists a scalar ρ ∈ R such that (α, β, γ) = ρ(λ, µ, ν).

Lemma 2. νewa = 0, for all e ∈ A1, w ∈ W and a ∈ A2.

Proof. Consider an arc a ∈ A2 \ ∆0, and a pair (e∗, w∗) ∈ A1 × W . Clearly, the solution S1

= (F 0
1 , F

0
2 ,∆

1,W 0), where ∆1
eiwi

= ∆0
eiwi

if (ei, wi) 6= (e∗, w∗) and ∆1
e∗w∗ = ∆0

e∗w∗ ∪ {a} is a
solution of P (G1, G2, K, C), and its incidence vector satisfies αx + βy + γz ≥ δ with equality. It
then follows that

λxS
0

+ µyS
0

+ νzS
0

= λxS
1

+ µyS
1

+ νzS
1

= λxS
0

+ µyS
0

+ νzS
0

+ νe
∗w∗

a ,

which implies that νe∗w∗a = 0. Since, a, e∗ and w∗ are arbitrary in A2 \∆0, A1 and W , we obtain

νewa = 0, for all e ∈ A1, w ∈ W,a ∈ A2 \∆0. (B.1)
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Now let a = (s′, t′) ∈ ∆0, such that a ∈ ∆0
e∗w∗ for some (e∗, w∗) such that w∗ is installed on e∗.

Then consider the solution S2 obtained from S0 by replacing a by (s′, r′) and (r′, t′) in ∆0
e∗w∗ , with

(s′, r′), (r′, t′) ∈ A2 \∆0 and r′ ∈ V2 \{s′, t′}. S2 = (F 0
1 , F

0
2 ,∆

2,W 0), with ∆2
ew = ∆0

ew if (e, w) 6=
(e∗, w∗), and ∆2

e∗w∗ = (∆0
e∗w∗ \ {a})∪ {(s′, r′), (r′, t′)} is obviously feasible for P (G1, G2, K, C).

As its incidence vector belongs to F̃ and thus to F , we have

λxS
0

+ µyS
0

+ νzS
0

= λxS
2

+ µyS
2

+ νzS
2

=

λxS
0

+ µyS
0

+ νzS
0 − νe∗w∗a + νe

∗w∗

(s′,r′) + νe
∗w∗

(r′,t′),

which gives that νe∗w∗a = νe∗w∗(s′,r′) + νe
∗w∗

(r′,t′). As by (B.1), νe∗w∗(s′,r′) = νe
∗w∗

(r′,t′) = 0, it follows that νe∗w∗a =
0, which yields

νewa = 0, for all e ∈ A1, w ∈ W,a ∈ ∆0. (B.2)

By (B.1) and (B.2), we obtain that

νewa = 0, for all e ∈ A1, w ∈ W,a ∈ A2. (B.3)

Lemma 3. µew = 0, for all e ∈ A1 \ δ+G1
(T ) and w ∈ W .

Proof. Let e∗ = (s, t) ∈ A1 \ (F 0
1 ∪ F 0

2 ) such that e∗ /∈ δ+G1
(T ). Let w∗ be a subband of

W . We introduce the solution S3 obtained from S0 by adding e∗ to the subset F 0
2 . Thus S3 =

(F 0
1 , F

0
2 ∪ {e∗},∆0 ∪ {(s′, t′)},W 0 ∪ {w∗}), where (s′, t′) ∈ A2 \∆0, induces a feasible solution

of P (G1, G2, K, C). In addition, (xS
3
, yS

3
, zS

3
) ∈ F̃ , and then (xS

3
, yS

3
, zS

3
) ∈ F . Hence

λxS
0

+ µyS
0

+ νzS
0

= λxS
3

+ µyS
3

+ νzS
3

=

λxS
0

+ µyS
0

+ µe
∗w∗ + νzS

0

+ νe
∗w∗

(s′,t′),

implying that µe∗w∗ = −νe∗w∗(s′,t′). In consequence, by (B.3), we obtain that µe∗w∗ = 0. Since e∗ and
w∗ are arbitrarily selected in A1 \ (F 0

1 ∪ F 0
2 ) and W , we get

µew = 0, for all e ∈ A1 \ (F 0
1 ∪ F 0

2 ), e /∈ δ+G1
(T ), w ∈ W. (B.4)

Now consider an arc e∗ = (s, t) ∈ F 0
1 ∪ F 0

2 = F 0
1 such that e∗ /∈ δ+G1

(T ). Let w∗ be a subband
installed on e∗ and assume that e∗ ∈ C0k∗ for some commodity k∗ ∈ K (that is to say e∗ is used in the
routing of k∗). Consider the solution S4 defined as follows. S4 = (F 0

1 ∪ {(s, r), (r, t)}, F 0
2 ,∆

0 ∪
{(s′, r′), (r′, t′)},W 0), with (s, r), (r, t) ∈ A1 \ F 0

1 ∪ F 0
2 , r ∈ V1 \ {s, t} and (s′, r′), (r′, t′) ∈

A2 \∆0, r′ ∈ V2 \ {s′, t′}. Notice that C4k = C0k if k 6= k∗ and C4k∗ = (C0k∗ \ {e∗}) ∪ {(s, r), (r, t)},
while ∆4

(s,r)w∗ = ∆0
(s,r)w∗ ∪{(s′, r′)} and ∆4

(r,t)w∗ = ∆0
(r,t)w∗ ∪{(r′, t′)}. We will construct a further

solution S5, obtained from S4 by removing the pair (e∗, w∗) from the solution S4. More formally,
S5 is such that S5 = (F 4

1 \ {e∗}, F 4
2 ,∆

4,W 4 \ {w∗}). Both solutions S4 and S5 are feasible for
P (G1, G2, K, C) and their incidence vectors belong to F̃ and then, toF . In consequence, it follows
that

λxS
4

+ µyS
4

+ νzS
4

= λxS
5

+ µyS
5

+ νzS
5

= λxS
4

+ µyS
4 − µe∗w∗ + νzS

4

.
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Hence, we get that µe∗w∗ = 0. Since e∗ is arbitrary in (F 0
1 ∪ F 0

2 ) \ δ+G1
(T ), we conclude that

µew = 0, for all e ∈ (F 0
1 ∪ F 0

2 ) \ δ+G1
(T ), (e, w) ∈ Γ0. (B.5)

By (B.4) and (B.5) we obtain

µew = 0, for all e ∈ A1 \ δ+G1
(T ), w ∈ W. (B.6)

In what follows, we will show that λkew = 0, for all k ∈ K, e ∈ A1 and w ∈ W .

Lemma 4. λkew = 0, for all k ∈ K, e ∈ A1 and w ∈ W .

Proof. Let e∗ = (s, t) be an arcA1\(F 0
1∪F 0

2 ) that does not belong to δ+G1
(T ) and letw∗ be a subband

ofW . Consider the solution S6 obtained from S0 by installingw∗ on e∗, and adding e∗ to any subset
C0k∗ , k∗ ∈ K. This means setting xS0

k∗e∗w∗ to 1. Then S6 = (F 0
1∪{e∗}, F 0

2 ,∆
0∪{(s′, t′)},W 0∪{w∗}),

where (s′, t′) ∈ A2 \ ∆0. Observe that C6k = C0k if k 6= k∗ and C6k∗ = C0k∗ ∪ {e∗}, while ∆6
e∗w∗ =

∆0
e∗w∗ ∪ {(s′, t′)} and ∆6

ew = ∆0
ew if (e, w) 6= (e∗, w∗). It is easy to see that S6 induces a feasible

solution of P (G1, G2, K, C) whose incidence vector verifies λx + µy + νz ≥ ξ with equality.
Hence, we have that

λk
∗

e∗w∗ + µe
∗w∗ + νe

∗w∗

(s′,t′) = 0.

Since µe∗w∗ = νe
∗w∗

(s′,t′) = 0, by (B.3) and (B.6), we obtain that λk∗e∗w∗ = 0. As e∗, w∗ and k∗ are
arbitrary, we get

λkew = 0, for all k ∈ K, e ∈ A2 \ (F 0
1 ∪ F 0

2 ).e /∈ δ+G1
(T ), w ∈ W, (B.7)

Now consider an arc e∗ = (s, t) of (F 0
1 ∪ F 0

2 ) and let w∗ be a subband of W installed on e∗.
Assume without loss of generality that e∗ is different from (u, v), and that the pair (e∗, w∗) is
associated with the routing of some commodity, say k∗. Let us introduce the solution S7, obtained
from S0 by replacing e∗ in C0k∗ by two arcs (s, r) and (r, t) of A1 \ (F 0

1 ∪ F 0
2 ). Then, S7 =

(F 0
1 ∪ {(s, r), (r, t)}, F 0

2 ,∆
0 ∪ {(s′, r′), (r′, t′)},W 0), where (s′, r′), (r′, t′) ∈ A2 \ ∆0 and C7k∗

= (C0k∗ \ {e∗}) ∪ {(s, r), (r, t)}. Also remark that ∆7
(s,r)w∗ = ∆0

(s,r)w∗ ∪ {(s′, r′)} while ∆7
(r,t)w∗ =

∆0
(r,t)w∗ ∪ {(r′, t′)}. It is clear that S7 is a feasible solution whose incidence vector is in F̃ and F .

Hence, we have
λk
∗

e∗w∗ = λk
∗

(s,r)w∗ + λk
∗

(r,t)w∗ ,

which implies that λk∗e∗w∗ = 0, as λk∗(s,r)w∗ = λk∗(r,t)w∗ = 0 by (B.7). Furthermore, since (e∗, w∗) is an
arbitrary pair in the solution S0, e∗ /∈ δ+G1

(T ), we get

λkew = 0, for all k ∈ K, (e, w) ∈ Γ0, e /∈ δ+G1
(T ). (B.8)

Now consider a commodity k∗ ∈ K. We will show that coefficient λ related to commodities of
K and arcs of δ+G1

(T ) are equal to zero. Two cases may hold here.
Case 1.
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Suppose that k∗ ∈ K \ K+(T ). Consider an arc e∗ of δ+G1
(T ) and a subband w∗ of W . We

will assume that e∗ = (u, v), since the arcs of the cut δ+G1
(T ) are interchangeable. Also sup-

pose that w∗ is installed on e∗. Consider the solution S8, obtained from S0 by associating a
new routing path to k∗ that uses e∗. This operation means that we install two more new sub-
bands on the arcs (ok∗ , u), (v, dk∗) so as to put enough capacity on the path {(ok∗ , u), e∗, (v, dk∗)}.
As in previous solutions, we also include the corresponding path of G2 in this solution (∆8 =
∆0∪{(o′k∗ , u′), (v′, d′k∗)}). In other words, S8 = (F 0

1 ∪{(ok∗ , u), (v, dk∗)}, F 0
2 ,∆

8,W 0∪{wk∗,w′
k∗
})

and C8k∗ = {(ok∗ , u), e∗, (v, dk∗)}. Condition (iii) makes the solution feasible for the problem, as it
allows capacity constraints to be satisfied. Thus, S8 as well as S0 belong to F , and consequently
to F . Hence, both incidence vectors (xS

0
, yS

0
, zS

0
) and (xS

0
, yS

0
, zS

0
) satisfy the following

λxS
8

+ µyS
8

+ νzS
8

= λxS
0

+ µyS
0

+ νzS
0

+ λk
∗

e∗w∗ ,

which yields λk∗e∗w∗ = 0. Since, k∗, e∗ and w∗ are arbitrary in K \ P+, δ+G1
(T ) and W , we obtain

that
λkew = 0, for all k ∈ K \ P+, e ∈ δ+G1

(T ), w ∈ W, (B.9)

Note that, at this step, we have shown that coefficients λkew = 0 for all the arcs e /∈ δ+G1
. In

consequence, the coefficients corresponding to the previous (resp. new) routing path of k∗ are
equal to 0.

Case 2.
Now consider the case where k∗ ∈ K+(T ), and let k be a commodity of K+(T ) such that

Dk∗ + Dk ≤ C. Such a commodity exists because of condition (iv). Let e∗ = (s, t) be an arc
of δ+G1

(T ) and let w∗ be one of the subbands installed on (u, v). We will construct a solution
S9 obtained from S0 by moving w∗ from arc (u, v) to arc (s, t), and associating with ((s, t), w∗)
the path {(s′, t′)} in G2. In this solution, we will also replace (u, v) in the routing path of k∗

by {(u, s), e∗, (t, v)}, where (u, s) and (t, v) are two arcs of A1 \ δ+G1
(T ). (u, s) and (t, v) also

receive the subband w∗ and are assigned the paths {(u′, s′)} and {(t′, v′)} in G2, respectively. S9

is feasible, since we know, by condition (iv) that capacity constraints (4) are satisfied. Now let
us derive a solution S10 which slightly differs from S9 in that we associate (s, t) to k instead of
(u, v) in its routing. Again, this is possible thanks to condition (iv). This variation in the solution
induces xS10

k(s,t)w∗ = 1 while xS9

k(s,t)w∗ = 0. Solution S10 is clearly feasible, and both incidence vectors
(xS

9
, yS

9
, zS

9
) and (xS

10
, yS

10
, zS

10
) are in F̃ , and then also in F . Thus, we obtain that λk(s,t)w∗ =

0. By the interchangeability argument on the elements of K+(T ), δ+G1
(T ) and W , we get

λkew = 0, for all k ∈ K+(T ), e ∈ δ+G1
(T ), w ∈ W, (B.10)

And, by (B.7), (B.8), (B.9) and (B.10), we finally obtain

λkew = 0, for all k ∈ K, e ∈ A1, w ∈ W, (B.11)

Lemma 5. The µew are the same for the arcs of the cut δ+G1
(T ).
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Proof. Indeed, let e∗ = (s, t) be an arc of δ+G1
(T ), different from (u, v). Recall that BP (K+(T ))

different subbands are installed over the arc (u, v). Let w be one of these subbands. Consider
the solution S9 where we replace the pair ((u, v), w) in the solution by ((u, s), w), ((s, t), w) and
((t, v), w), with (u, s), (t, v) ∈ A1 \ (F 0

1 ∪ F 0
2 ). In other words, all the demands of K+(T ) use

(s, t) instead of (u, v) to cross the cut δ+G1
(T ). Comparing solutions S0 and S9 gives

µ(u,v)w = µ(u,s)w + µ(s,t)w + µ(t,v)w + ν
(u,s)w
(u′,s′) + ν

(s,t)w
(s′,t′) + ν

(t,v)w
(t′,v′) .

By (B.3) and (B.6), we obtain that
µ(u,v)w = µ(s,t)w.

Since (s, t) is arbitrary in δ+G1
(T ), we get

µew =

{
ρ, for some ρ ∈ R∗, for all e ∈ δ+G1

(T ), w ∈ W,
0, otherwise. (B.12)

By Lemmas 1, 2, 3, 4, 5 and when replacing (xS
0
, yS

0
, zS

0
) in hyperplane λx + µy + νz ≥ ξ

we obtain
ρ
∑
w∈W

∑
e∈δ+G1

(T )

yew = ξ,

Note that ρ 6= 0, since F 6= ∅. Consequently,
∑

w∈W
∑

e∈δ+G1
(T ) yew = ξ/ρ = dD(P+)

C
e. Thus,

(α, β, γ) = ρ(λ, µ, ν), and the proof is complete.

Appendix C. Proof of Theorem 4

Let T be a subset of nodes of V1 and T = V1 \ T . Consider the cut δ+G1
(T ) induced by T , and

let F , F be a partition of δ+G1
(T ). Now consider the flow-cutset inequality induced by T and F

∑
e∈F

∑
w∈W

yew +
∑
e∈F

∑
w∈W

∑
k∈K+(T )

xkew > d
D(K+(T ))

C
e.

Let F be the hyperplane defined as follows

F = {(x, y, z) ∈ P (G1, G2, K, C) :
∑
e∈F

∑
w∈W

yew +
∑
e∈F

∑
w∈W

∑
k∈K+(T )

xkew = dD(K+(T ))

C
e}.

(i) If F = ∅, then F = δ+G1
(T ) and (11) is equivalent to

∑
w∈W

∑
e∈δ+G1

(T )

yew > d
D(K+(T ))

C
e,
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which reduces to the cutset inequality (10) and (11) cannot be a facet of P (G1, G2, K, C)
different from (10). If F = ∅, then F = δ+G1

(T ) and (11) can be written as

∑
e∈δ+G1

(T )

∑
w∈W

∑
k∈K+(T )

xkew > d
D(K+(T ))

C
e, (C.1)

which implies that the number of commodities allowed to use the cut δ+G1
(T ) is greater than

or equal to dD(K+(T ))
C

e. Note that dD(K+(T ))
C

e 6 |K+(T )|, as Dk 6 C, for all k ∈ K+(T ).
Thus, inequality (C.1) is dominated by inequality∑

k∈K+(T )

∑
e∈δ+G1

(T )

∑
w∈W

xkew > |K+(T )|,

which is nothing but the sum of the connectivity constraints (2) over the commodities of
K+(T ). Thus, (11) cannot define a facet for P (G1, G2, K, C).

(ii) Now if D(K+(T )) < C, then (11) is equivalent to∑
e∈F

∑
w∈W

yew +
∑

k∈K+(T )

∑
e∈F

∑
w∈W

xkew > 1. (C.2)

First, suppose that |K+(T )| = 1, that is to say there is only one demand, say k0, crossing the
cut δ+G1

(T ). By inequalities (4) (capacity constraints), it follows that xkew 6 yew holds for all
k ∈ K, e ∈ A1 and w ∈ W . Therefore∑

e∈F

∑
w∈W

yew +
∑
e∈F

∑
w∈W

xk0ew >
∑
e∈F

∑
w∈W

xk0ew +
∑
e∈F

∑
w∈W

xk0ew > 1,

the last inequality comes from inequality (2) (connectivity constraints). In consequence,
inequality (11) cannot define a facet.

Now suppose that |K+(T )| > 2. We claim that no solution of the face defined by (11) can
use F . Indeed, if such a solution S uses F , then it cannot use F . For otherwise, we would
have the left hand side greater than or equal to 2. In consequence, all the demands have to
use F . However, as |K+(T )| > 2, at least two variables xkew would have value 1, and hence
X S would not be in the face of (11), a contradiction. As a consequence, we have that the
face induced by (11)in contained in ⊆ {(x, y, z) ∈ P (G1, G2, K, C) : xkew = 0, for all e ∈
F , k ∈ K,w ∈ W}. Thus (11) cannot be a facet.

(iii) If D(K+(T ))/C is integer, then (11) can be obtained from inequalities (2), (4) and the trivial
constraints xkew > 0. Thus, it cannot be facet defining.

(iv) Suppose the condition does not hold. Then D(K+(T ))
C

< BP (K+(T )). We claim that no
solution S of CMLND-U may have its incidence vector satisfying inequality (11) with equal-
ity. In fact, to be routed, S needs at least BP (K+(T )) subbands. This implies that at least
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BP (K+(T )) subbands should be installed on the arcs of δ+G1
(T ). In consequence, at least

BP (K+(T )) variables among yew, e ∈ F , w ∈ W and xkew, k ∈ K+(T ), e ∈ F , w ∈ W
must have value 1. Hence, X S does not satisfy (11) with equality. In consequence, (11) does
not define a proper face and cannot then be facet defining.

(v) Suppose that BP (K+(T )) = |K+(T )|. We may assume that condition (iv) holds. For other-
wise, as previously shown, (11) cannot define a facet. Hence (11) can be written as∑

e∈F

∑
w∈W

yew +
∑

k∈K+(T )

∑
e∈F

∑
w∈W

xkew > BP (K+(T )) = |K+(T )| (C.3)

as BP (K+(T )) is a lower bound on the number of subbands used to route the demands of
K+(T ). Since Dk 6 C for all k ∈ K, |K+(T )| is an upper bound on the the installed
subbands on δ+(T ). As a consequence, every solution whose incidence vector satisfies in-
equality (C.3) also verifies the equation∑

k∈K+(T )

∑
e∈δ+(T )

∑
w∈W

xkew = |K+(T )|. (C.4)

As (C.3) is not a multiple of (C.4) and the polytope P (G1, G2, K, C) is full dimensional, the
inequality cannot define a facet.

(vi) Suppose on the contrary that for all Q ⊆ K+(T ) we have BP (K+(T ) \ Q) + |Q| >
BP (K+(T )). If (11) defines a facet, there must exist a solution S which uses arcs of F .
For otherwise, one would have F ⊆ {(x, y, z) ∈ P (G1, G2, K, C) : xkew = 0, for all k ∈
K, e ∈ F ,w ∈ W} implying that (11) cannot define a facet. Therefore, let S be a solution
such that X S ∈ F and some demands, say Q ⊆ K+(T ), use F . The minimum number
of subbands needed for routing the demands of K+(T ) \ Q (on F ) is BP (K+(T ) \ Q).
Therefore,

∑
e∈F
∑

w∈W yew > BP (K+(T ) \ Q). Since |Q| demands cross F , we must
have

∑
k∈Q

∑
e∈F
∑

w∈W xkew = |Q|. In consequence, X S cannot satisfy (11) with equality,
contradicting the fact that X S ∈ F . Hence, F = ∅, and thus F cannot define a facet.

(vii) Finally, suppose that there exists a commodity k ∈ K \ K+(T ) such that BP (K+(T ) ∪
{k}) > BP (K+(T )) + 1. Then there would be no solution of P (G1, G2, K, C) with xkew =
1 for e ∈ F ∪ F , w ∈ W , meaning that k cannot cross the cut δ+G1

(T ). In this case, F is
included in

F = {(x, y, z) ∈ P (G1, G2, K, C) : xkew = 0, for e ∈ F ∪ F ,w ∈ W},

and thus, (11) cannot define a facet.

Appendix D. Proof of Theorem 5

Suppose that conditions (i) to (vii) are satisfied. Let αx + βy + γz ≥ δ denote the flow-cutset
inequality produced by T and F , and let

F̃ = {(x, y, z) ∈ P (G1, G2, K, C) :
∑
e∈F

∑
w∈W

yew +
∑
k∈P+

∑
e∈F

∑
w∈W

xkew = dD(K+(T ))

C
e},
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Let us first show that F̃ 6= ∅. To this end, we will construct a solution S0 whose incidence vector
belongs to F̃ .

Lemma 6. F̃ is a proper face.

Proof. We install, for each k ∈ Kin(T ) (resp. k ∈ Kin(V \ T )), a subband wk on the arc (ok, dk).
This is to associate with every commodity of Kin(T ) (resp. Kin(V \ T )) a path linking ok and
dk composed by one arc, and entirely contained in T (resp. in V \ T ). This solution is such that
each arc (i, j) of A1 with i, j ∈ T (resp. i, j ∈ V \ T ), receives as many subbands as there exist
commodities with (ok, dk) = (i, j), k ∈ Kin(T ) (resp. k ∈ Kin(V \ T )). In other words, every
commodity k of Kin(T )∪Kin(V \ T ) is associated with the pair (ek, wk) for its routing, where ek
= (ok, dk).

Recall that K+(T ) (resp. K−(T )) are the sets of commodities of K having their origin in T
(resp. V \T ) and their destination in V \T (resp. T ). Consider two nodes u, s in T and two nodes
v, t in V \ T . Note that u, s (resp. v, t) may be the same, and both arcs (u, v) and (s, t) belong to
the directed cut δ+G1

(T ). We can assume, without loss of generality, that (u, v) ∈ F and (s, t) ∈ F .
Now, for every commodity k ∈ K+(T ) (resp. K−(T )), we install a subband wk (resp. w′k) over the
arc (ok, u) (resp. on (ok, v)). Similarly, we install a subband wk over (v, dk) (resp. a subband w′k
over (u, dk)), for every k ∈ K+(T ) (resp. K−(T )). We then set up dD(K+(T ))

C
e different subbands

on the arc (u, v) so that all the commodities of K+(T ) may be routed across δ+G1
(T ) using (u, v).

Note that we exactly need BP (K+(T )) subbands to pack the commodities of K+(T ). The same
is done on the arc (v, u) so as the commodities of K−(T ) may be routed as well from their origins
in V \ T to their destinations in T using the cut δ−G1

(T ). Remark that nodes ok and u (resp. dk and
v) may coincide. Observe that (u, v) is the unique arc of δ+G1

(T ) used in this solution. Now we
assign to each pair (e, w) with w ∈ W installed on e = (i, j) ∈ A1 the path {(i′, j′)} in G2. This
is possible since G2 is a complete graph, and all the subbands used in this solution are supposed to
be different. So both constraints (5) and (6) are satisfied. The solution S0 is clearly feasible for the
CMLND-U problem. Moreover, its incidence vector is such that∑

e∈F

∑
w∈W

yS
0

ew =
∑
w∈W

yS
0

(u,v)w = dD(K+(T ))

C
e,∑

k∈K+(T )

∑
e∈F

∑
w∈W

xS
0

kew = 0.

Thus, by condition (iv), solution S0 satisfies αx + βy + γz ≥ δ with equality. Hence, F̃ 6= ∅ and
F̃ 6= P (G1, G2, K, C) is a proper face of P (G1, G2, K, C).

More formally, solution S0 described above is such that S0 = (F 0
1 , F

0
2 ,∆

0,W 0) where F 0
1 is

the set of all arcs of A1 used by the commodities and F 0
2 = ∅. ∆0 contains the set of paths assigned

to the installed subbands and W 0 is the set of subbands used in S0. Observe that, in this solution, a
path is assigned to each commodity ofK. Indeed, C0k = {(ok, dk)} if k ∈ Kin(T )∪Kin(V \T ), C0k =
{(ok, u), (u, v), (v, dk)} if k ∈ K+(T ), and C0k = {(ok, v), (v, u), (u, dk)} if k ∈ K−(T ). Moreover,
for each pair (e, w) such that w is installed on e = (i, j) ∆0

ew = {(i′, j′)}, with (i′, j′) ∈ A2.
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Now let λx + µy + νz ≥ ξ be a constraint that defines a facet of P (G1, G2, K, C) and suppose
that

F̃ ⊆ F = {(x, y, z) ∈ P (G1, G2, K, C) : λx+ µy + νz = ξ}.

We will show that there exists a scalar ρ ∈ R such that (α, β, γ) = ρ(λ, µ, ν).

Lemma 7. νewa = 0, for all e ∈ A1, w ∈ W and a ∈ A2

Proof. Similar to proof of Lemma 2.

Lemma 8. µew = 0, for all (e, w) ∈ (A1 \ F )×W .

Proof. Similar to proof of Lemma 3.

The case where e∗ ∈ F will be treated further in the proof. In what follows, we will examine
the λ coefficients related to commodities not in K+(T ).

Lemma 9. λkew = 0, for all k ∈ K \K+(T ), e ∈ A1, w ∈ W .

Proof. Consider a commodity k∗ of K \ K+(T ). Let e = (i, j) and w be an arc of A1 and a
subband of W , respectively, such that w is not already installed on e. The case where e ∈ A1 \ F
is treated similarly as we did in proof of Lemma 4. Let us consider an arc e of F . Note that if |F |
= 1, then e = (u, v). Let w be some subband installed on e, such that w still has enough residual
capacity to carry k∗ in addition to the commodities already using it. Because of condition (vii),
we know that such subband exists. Consider the solution S1, obtained from S0 by associating a
path using e to the commodity k∗ instead of its initial routing, that is to say k∗ is routed along
{(ok∗ , i), e, (j, dk∗)}. A subband is installed on both arcs (ok∗ , i) and (j, dk∗) and those arcs are
associated the paths {(o′k∗ , i′)} and {(j′, d′k∗)} in G2, respectively. It is clear that S1 is feasible and
its incidence vector belongs to F̃ . Thus comparing S1 and S0 yields

λk
∗

ok∗dk∗wk∗
= λk

∗

ok∗ iwk∗
+ λk

∗

ew + λk
∗

jdk∗w
′
k∗

which is equivalent to λk∗ew = 0 (since λk∗fw = 0, for all f ∈ A1 \ F , w ∈ W ). As k∗, e and w are
arbitrary in K \K+(T ), F and W , we get λkew = 0, for all k ∈ K \K+(T ), e ∈ F , w ∈ W .

Now, let us look at the λ coefficients related to the commodities of K+(T ).

Lemma 10. λkew = 0, for all k ∈ K+(T ), e ∈ A1 \ F , w ∈ W .

Proof. Let k∗ be a commodity of K+(T ) and e = (i, j) an arc of A1. Again, the case of e ∈
A1 \ (F ∪F ) is discussed in the proof of Lemma 4, and we will assume that e ∈ δ+G1

(T ) (that is to
say e ∈ F ∪ F ). Two case may then be considered.

Suppose that e ∈ F , and let us show that λkew = 0, for k ∈ K+(T ), e ∈ F and w ∈ W .

(a) First, suppose that |F | = 1, that is to say F = e = {(u, v)}. Let k∗ be a commodity of K+(T )
and let w be some subband of W installed on e in the solution S0. Consider the solution
S2 obtained from S0 as follows. The subband w is involved in the routing of k∗ while the
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remaining BP (K+(1)) - 1 subbands are re-assigned for the routing of the left K+(T ) \ {k∗}
commodities using (u, v). Condition (ii) ensures that this induces a feasible solution.

Now let k be a commodity of K+ \ {k∗} such that Dk∗ + Dk ≤ C. This is possible since
condition (iii) guarantees that such a commodity exists. Consider the solution S3, which
slightly differs from S2 as follows. We move the commodity k from its initial subband to w,
that is k will use the pair (e, w) for its routing while the remaining elements of the solution
S2 are the same. In other words, xS3

kew is set to 1, while xS2

kew = 0. Clearly, S3 is feasible for
the problem, and both incidence vectors of S2 and S3 belong to F̃ , and then to F . Hence, we
obtain that λkew = 0. As k∗ is arbitrary in K+(T ), we get λkew = 0, for all k ∈ K+(T ), e ∈ F ,
w ∈ W .

In what follows, we will show that the λ coefficients related to commodities of K+(T ) on arcs
of F and µ coefficients for F are equal.

Let k∗ be some commodity of K+(T ) and let w the subband used for its routing along the
arc (u, v). Consider the solution S4 obtained from S0 as follows. We move the subband w
from (u, v) to (s, t) and install two subbands w′ and w′′ on the arcs (ok∗ , s) and (t, dk∗). Recall
that (u, v) ∈ F and (s, t) ∈ F . We then replace the initial routing of k∗, that uses (u, v),
by {(ok∗ , s), (s, t), (t, dk∗)}. This solution is feasible as condition (ii) ensures that enough
capacity is available on (u, v) to carry the commodities of K+(T ) \ {k∗}. Clearly, S4 is
feasible for the problem, and comparing (xS

4
, yS

4
, zS

4
) and (xS

0
, yS

0
, zS

0
) gives

λk
∗

(u,v)w + µ(u,v)w = λk
∗

(s,t)w + µ(s,t)w,

which, as shown above, implies that µ(u,v)w = λk
∗

(s,t)w. As k∗, w and (s, t) are arbitrary in
K+(T ), W and F , we obtain that

µ(u,v)w = λk(s,t)w = ρ, for all k ∈ K+(T ), (s, t) ∈ F ,w ∈ W,

for some ρ ∈ R.

(b) Suppose now that |F | ≥ 2. Let e = (i, j) be an arc of F different from (u, v). Consider two
commodities k′, k′′ of K+(T ), such that Dk′ + Dk′′ ≤ C. Condition (iii) guarantees that
such two commodities exist. Recall that in S0, all the commodities of K+(T ) are routed along
(u, v). Let w be the subband installed on (u, v) and involved in the routing of k′ . We will
consider a new solution S5 obtained from S0 as follows. We install w on (i, j) and replace
the routing path {(ok′ , u), (u, v), (v, dk′)} of k′ by {(ok′ , i), (i, j), (j, dk′)}, after installing two
new subbands on the arcs (ok′ , i), (j, dk′). By condition (ii), the remaining commodities can
be routed along (u, v) using the left BP (K+(T ))− 1 subbands. It is clear that S5 is a feasible
solution for the problem. Now consider the solution S6, obtained from S5 by associating with
the commodity k′′ one more arc, namely (i, j). Note that k′′ is still routed through (u, v). Arc
(i, j) is just added to the solution. As Dk′ + Dk′′ ≤ C, the capacity constraint (4) related to
((i, j), w) is satisfied. Hence S6 is feasible. Moreover, as the incidence vectors of S5 and S6

both belong to F̃ , and hence to F , we have that λk′′(i,j)w = 0. Consequently, λkew = 0, for all
k ∈ K+(T ), e ∈ F , w ∈ W .

40



We will go over the coefficients related to the demands in K+(T ) and the arcs of F at the end
of the proof. Let us first get back to the coefficients µ related to the arcs of F .

Simply compare solutions S5 and S0, by Lemma 10 we that

µ(i,j)w = µ(u,v)w.

Since the arc (i, j) is arbitrary in F , we get the equality of coefficients µ for the arcs of F . Hence,
we conclude that there exists a positive scalar ρ ∈ R, such that

µew = ρ, for all e ∈ F,w ∈ W.

The last case of our proof involves the coefficients of the commodities of K+(T ) and the arcs
of F .

Consider a commodity k∗ ∈ K+(T ), and let w be a subband installed on an arc (u, v), such
that the pair ((u, v), w) is involved in the routing of k∗. Assume that w is moved from (u, v) to the
arc (s, t) (which belongs to F ). This allows to introduce the latter arc in the solution S0. Let us
install subbands w′ and w′′ on the arcs (ok∗ , s) and (t, dk∗), respectively. In this way, k∗ is assigned
the path {(ok∗ , s), (s, t), (t, dk∗)} instead of the initial routing path {(ok∗ , u), (u, v), (v, dk∗)}. And
the sections of this path are themselves assigned the paths {(o′k∗ , s′)}, {(s′, t′)} and {(t′, d′k∗)} in
G2, respectively.

Let us denote by S8 the solution described above, and give in what follows its different subsets.
S8 = (F 0

1 ∪ {(ok∗ , s), (s, t), (t, dk∗)}, F 0
2 ,∆

0 ∪ {(o′k∗ , s′), (s′, t′), (t′, d′k∗)},W 0 ∪ {w′, w′′}). S8 is
obviously feasible, and (xS

8
, yS

8
, zS

8
) together with (xS

0
, yS

0
, zS

0
) belong to F̃ and then to F . In

addition, S8 is such that ∑
e∈F

∑
w∈W

yS
8

ew =
∑
w∈W

yS
8

(u,v)w = BP (K+(T ))− 1,∑
e∈F

∑
w∈W

yS
8

ew = yS
8

(s,t)w = 1,

∑
k∈K+(T )

∑
e∈F

∑
w∈W

xS
8

kew = xS
8

k∗(s,t)w = 1.

Comparing both incidence vectors (xS
8
, yS

8
, zS

8
) and (xS

0
, yS

0
, zS

0
) implies the following

λxS
8

+ µyS
8

+ νzS
8

= λxS
0 − λk∗(u,v)w + λk

∗

(ok∗ ,s)w′
+ λk

∗

(s,t)w + λk
∗

(t,dk∗ )w′′

+µyS
0 − µ(u,v)w + µ(ok∗ ,s)w

′
+ µ(s,t)w + µ(t,dk∗ )w

′′
+ νzS

0

+ ν
(ok∗ ,s)w

′

(o′
k∗ ,s

′) + ν
(s,t)w
(s′,t′) + ν

(t,dk∗ )w
′′

(t′,d′
k∗ )

.

By Lemmas 7, 8, 9, 10, it follows from the previous equality that λk∗(s,t)w = µ(u,v)w. As k∗ is arbitrary
in K+(T ), we conclude that all the coefficients λ of K+(T ) and F are equal up to the scalar ρ.
That is

λkew = ρ, for k ∈ K+(T ), e ∈ F ,w ∈ W.
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To summarize, all together we get

νewa = 0, for all e ∈ A1, w ∈ W,a ∈ A2,

µew =

{
ρ, for some scalar ρ ∈ R∗+, for all e ∈ F,w ∈ W,
0, otherwise.

λkew =

{
ρ, for k ∈ K+(T ), e ∈ F ,w ∈ W,
0, otherwise.

Note that ρ 6= 0, since F 6= ∅. Thus, replacing the values of our coefficients in λx + µy +
νz ≥ ξ, yields ∑

e∈F

∑
w∈W

ρyew +
∑

k∈K+(T )

∑
e∈F

∑
w∈W

ρxkew ≥ ξ

And, as (xS
0
, yS

0
, zS

0
) ∈ F , it follows that ρBP (K+(T )) = ξ and hence ξ

ρ
= BP (K+(T )), which

completes the proof of Theorem 3.

Appendix E. Proof of Theorem 6

Necessity

(i) The validity condition for inequalities (17) states that p > |S| - BP (S). It is clear that any
value of p > |S| − BP (S) would induce a valid inequality which is redundant with respect
to ∑

w∈W

∑
k∈S

xkew ≤
∑
w∈W

yew + (|S| −BP (S)), for all e ∈ A1,

and thus, that could not define a facet of P (G1, G2, K, C).

(ii) Now let us denote by s the largest element of K \ S such that BP (S ∪ {s}) = BP (S) + 1.
Then, inequality (17) with respect to S ∪ {s} can be written as∑

w∈W

∑
k∈S∪{s}

xkew ≤
∑
w∈W

yew + |S|+ 1−BP (S ∪ {s}) =
∑
w∈W

yew + p. (E.1)

However, (E.1) dominates (17). Thus the latter cannot define a facet of P (G1, G2, K, C).

(iii) Now let s′ denote the smallest element of S, and suppose that BP (S \ {s′}) = BP (S) = |S|
- p. Then inequality (17) with respect to S \ {s′} can be written as∑

w∈W

∑
k∈S\{s′}

xkew 6
∑
w∈W

yew + |S| − 1−BP (S \ {s′}) =
∑
w∈W

yew + p− 1. (E.2)

Note that inequalities (17) can be obtained as a linear combination of (E.2) and
∑

w∈W xs
′
ew 6

1 (constraints (3) in the formulation of the problem).
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Sufficiency
Suppose that conditions (i) to (iii) of Thorem 6 are fulfilled. Let us denote by αx+ βy + γz 6 δ
the inequality (17) induced by S̃ and ẽ = (u, v), and let widetildeF be the face defined as follows

F̃ = {(x, y, z) ∈ P (G1, G2, K, C) :
∑
k∈S̃

∑
w∈W

xkẽw =
∑
w∈W

yẽw + p}.

We first show that F̃ is a proper face of P (G1, G2, K, C). To this end, we construct a feasible
solution S1, whose incidence vector belongs to F̃ .

The solution S1 is obtained from the solution S0 introduced in the proof of Theorem 1 as
follows. We install a set of BP (S̃) non previously used and different subbands W̃ ⊆ W over
the arc ẽ and we add the pairs (ẽ, w), w ∈ W̃ to S0. In other words, we let yS1

ẽw = yS
0

ẽw + 1, for
all w ∈ W̃ . We then associate to every pair (ẽ, w), w ∈ W̃ of the solution a path in G2 that is
the arc ã = (u′, v′) ∈ A2. This is possible since the subbands of W̃ are newly installed and are
not assigned physical paths in the solution S0. The disjunction constraints are therefore satisfied.
Now let us associate with the commodities of S̃ the pairs (ẽ, w), w ∈ W̃ , in addition to their initial
routing paths. Such assignment is possible since there are enough subbands installed on ẽ so that
the capacity constraint (4) for every pair (ẽ, w) such that w ∈ W is installed on ẽ is satisfied. It
is clear that the solution S1 is feasible and (xS

1
, yS

1
, zS

1
) belongs to F̃ . Hence F̃ 6= ∅, and also

different from P (G1, G2, K, C). Therefore, it is a proper face of P (G1, G2, K, C).
Now suppose that there exists a facet-defining inequality λx + µy + νz > ξ, such that

F̃ ⊆ F = {(x, y, z) ∈ P (G1, G2, K, C) : λx+ µy + νz = ξ}.

We will show that there exists a scalar ρ ∈ R such that (α, β, γ) = ρ(λ, µ, ν).

Lemma 11. νaew = 0, for all e ∈ A1, w ∈ W , a ∈ A2.

Proof. Similar to proof of Lemma 2.

Lemma 12. µew = 0, for all e ∈ A1 \ {ẽ}, w ∈ W .

Proof. Similar to proof of Lemma 3.

Lemma 13. λkew = 0, for all k ∈ K \ S̃, e ∈ A1 and w ∈ W .

Proof. Similar to proof of Lemma 4.

It is easy to show that λkew = 0, for any commodity k ∈ S̃, e ∈ A1\{ẽ}, w ∈ W , by constructing
further feasible solutions where k is shifted to a routing path that avoids the use of arc ẽ. Besides,
if we pick a commodity k∗ in K \ S̃ and a subband installed on ẽ, say w̃, then we can easily see
that a solution obtained by associating the pair (ẽ, w̃) to k̃ in addition to its routing path remains
feasible and its incidence vector belongs to both F̃ and F (by condition (ii) of Theorem 6). This
observation implies that λkẽw = 0, for all k ∈ K \ S̃, w ∈ W .

Now let k∗ be a commodity arbitrarily choosen in S̃, and let w̃ be the subband of W such that
(ẽ, w̃) is associated with the routing of k∗. We will construct a solution S2 from S1 such that all

43



the commodities of S̃ \ {k∗} use W̃ \ {w̃} for their routing and w̃ is completely devoted to the
commodity k∗. Such a solution is feasible and its incidence vector belongs to F̃ as well as F
thanks to condition (iii).

Now if we remove some commodity, say k∗, of S̃ from ẽ and move it to a routing path that
does no longer use ẽ (that is to say only commodities of S̃ \ {k∗} use ẽ), then by condition (iii),
setting

∑
w∈W yẽw to BP (S̃) - 1 keeps the new solution feasible. Moreover, its incidence vector

belongs to F̃ and then to F . As a consequence, we obtain, by comparing both solutions, that λk∗ẽw̃
= - µẽw̃. Since k∗ and w̃ are arbitrarily chosen in S̃ and W , respectively, we obtain that

µẽw = −ρ, for all w ∈ W, (E.3)

λkẽw = ρ, for all k ∈ S̃, w ∈ W, (E.4)

where ρ ∈ R+. Finally, by replacing (xS
0
, yS

0
, zS

0
) in the hyperplane defined by λx + µy +

νz 6 ξ, we obtain λ|S|−µBP (S) = ξ. By condition (i), we have that |S|−BP (S) = p, yielding
λ = 1, µ = 1 and ξ = p and the proof is complete.

Appendix F. Proof of Theorem 7

Suppose that conditions (i) and (ii) hold. Denote inequality (6) by αx + βy + γz 6 δ and
suppose there is a facet defining inequality λx+ µy + νz 6 ξ such that

F̃ = {(x, y, z) ∈ P (G1, G2, K, C) : αx+ βy + γz = δ} ⊂

F = {(x, y, z) ∈ P (G1, G2, K, C) : λx+ µy + νz = ξ}.

It suffises to show that there is a scalar h such that h(α, β, γ) = (λ, µ, ν).
To this end, consider the solution S0 = (F 0

1 , F
0
2 ,∆

0,W 0) defined as follows. for each com-
modity k ∈ K \ S ′, we consider a path in G1 consisting of the arc (ok, dk). We install over this
arc a subband. All the subbands installed over an arc are supposed to be different. Now,
for a commodity in S ′ consider the path {(ok, u), (u, v), (v, dk)} (recall that e = (u, v)). We in-
stall on arc e BP (S ′) different subbands (denoted by We) and on each arc (ok, u) (resp. (v, dk))
a subband. Then we associate with each subband installed on an arc (u1, v1) a path in G2 con-
sisting of the arc (u′1, v

′
1). Let (F 0

1 , F
0
2 ,∆

0,W 0) be the solution given by F 0
1 = {(ok, dk), k ∈

K \ S ′} ∪ {(ok, u), (v, dk), k ∈ S ′} ∪ {e}, F 0
2 = ∅, ∆0 = {(u′1, v′1)|(u1, v1) ∈ F 0

1 } and W 0 the set
of subbands used to route the demands (observe that |W 0| = |K \ S ′|+BP (S ′) + 2|S ′|). Clearly,
S0 is feasible for the problem and its incidence vector belongs to F .

We show that ν = 0 exactly as we did in the previous proofs. Similary, we claim that µfw = 0,
for all f ∈ A1 \ {e}, w ∈ W . Indeed, let f = (v1, v2) be some arc of A1 \ {e}. Then, either
1) f does not belong to the set F 0

1 ∪ F 0
2 (f is not used in the solution) or 2) f ∈ F 0

1 ∪ F 0
2 . In

the first case, it is easy to see that a solution S1 created from S0 by adding f to F 0
2 and installing

some unused subband w ∈ W \ W 0, then associating the path {(v′1, v′2)} (that is to set ∆1 =
∆0 ∪ {(v′1, v′2)}) to the pair (f, w), is feasible and its incidence vector belongs to F . Since f and
w are arbitrarily chosen in A1 \ F 0

1 ∪ F 0
2 ∪ {e} and W \W 0, respectively, the coefficients µfw = 0

for all f ∈ A1 \F 0
1 ∪F 0

2 ∪{e}, w ∈ W \W 0. Now if f is used in S0 (that is f ∈ F 0
1 ∪F 0

2 ), we can
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introduce two further solutions S2, S3, respectively obtained from S0 as follows. Denote Kf and
Wf the demands using f and the set of subbands installed on f in the solution S0, respectively.
We first add to F 0

2 two arcs f1 = (v1, v3), f2 = (v3, v2) and install as much new subbands on f1, f2
as there is subbands carried by f in the solution S0 (2× |Wf | new subbands). The paths {(v′1, v′3)}
and {(v′3, v′2)} are associated to f1 and f2, respectively. Finaly, we shift the demands of Kf from
their initial routing so as to let them use f1, f2 instead of f . The solution S3 is obtained from S2

by removing f (and the subbands installed on it). Both S2 and S3 ate clearly feasible and their
incidence vectors belong to F , and we can conclude that µfw = 0 also for all f ∈ F 0

1 ∪ F 0
2 ∪ {e},

w ∈ W \W 0. Similarly, we show that λkfw = 0, for all k ∈ K \ S ′, f ∈ A1 \ {e}, w ∈ W as
follows. Let k be some demand of K \ S ′ and denote by fk = (ok, dk) defining its initial routing
path. We introduce the solution S4 obtained from S0 by installing two new subbands w1, w2 on
any pair of arcs (ok, l), (l, dk) and associating to {(ok, l), (l, dk)} the path {(o′k, d′k)} in G2. Now
further associate the routing path {(ok, l), (l, dk)} to k in addition to its initial path (that is fk).
Now, consider the solution S5 obtained from S4 by deleting the arc fk. We can easily observe that
both S4 and S5 are feasible and their incidence vectors are both in F . Then, we get that λkfkw = 0,
and λkfw = 0 for all k ∈ K \ S ′, f ∈ A1 \ {e}, w ∈ W .

Now let s be some commodity of K \ S and consider the solution S6 obtained from S0 by
associating a routing path to s that uses e and some subband already installed on e, say w. Two
non used subbands w1, w2, are also installed on the arcs (os, u), (v, ds) so as to route s from
its origin to its destination. Note that, by condition (ii) we know that such solution exists since
BP (S ′) = BP (S ′ ∪ {s}). Comparing solutions S0 and S6 yields

λsosdsws
= λsosuw1

+ λsew + λsvds,w2
+ µosuw1 + µvds,w2 ,

implying that λkew = 0, for all k ∈ K \ S.
We still have to show that the coefficients λkew are the same for k ∈ S and w ∈ W . Consider

a subset of commodities S ′′ ⊆ S \ S ′ such that |S ′| = |S ′′| = r, where r ∈ Z+ and let S7 be
the solution obtained from S0 by setting S ′′ = S ′ \ {k1} ∪ {k2}, that is to say we replace some
commodity k1 using e by a commodity k2 ∈ S \ S ′. By condition (i), we know that S7 is still
feasible and its incidence vector belongs to F . Comparing S0 and S7 yields λk1ew = λk2ew and since
k1, k2 are arbitrarily chosen in S, we can conclude that the coefficients λkew are equal for k ∈ S,
w ∈ W . A similar reasoning allows to show that the coefficients µew are the same for the subbands
installed over e as all the subbands of W are exchangeable (they have the same capacity).

Finaly, by replacing (xS
0
, yS

0
, zS

0
) in the hyperplane defined by λx+ µy + νz 6 ξ, we obtain

λ
∑
k∈S

∑
w∈W

xkew + µ
∑
w∈W

yew = ξ,

anbd hence
λ|S ′|+ µBP (S ′) = ξ.

By condition (i), we have that |S ′| − qBP (S ′) = p, yielding λ = 1, µ = −q, ξ = p and the proof is
complete.
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