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Some new results on generalized additive games

Stefano Moretti1and Henk Norde2

Abstract

A Generalized Additive Game (GAG) [9] is a Transferable Utility (TU) game (N, v) where each player in N is
provided with an individual value and the worth v(S) of a coalition S ⊆ N is obtained as the sum of the individual
values of players in another subset M(S) ⊆ N . Based on conditions on the map M (which associates to each
coalition S a set of beneficial players M(S) not necessarily included in S), in this paper we characterize classes
of GAGs that satisfy properties like monotonicity, superadditivity, (total) balancedness, PMAS-admissibility
and supermodularity, for all nonnegative vectors of individual values. We also illustrate the application of such
conditions onM over particular GAGs studied in the literature (e.g., glove games [23], generalized airport games
[19], fixed tree games [4], link-connection games [18, 16], simple minimum cost spanning tree games [20, 26] and
graph coloring games [10, 11]).

Keywords: TU-games, monotonicity, balancedness, population monotonic allocation scheme (PMAS), supermod-
ularity, operations research games.

1 Introduction

Generalized additive games (GAGs) are Transferable Utility (TU) games where the worth of any coalition of players
can be computed as a sum of individual contributions. As shown in [9], many TU games from the literature can be
represented as GAGs, like, for instance, airport games [14, 15], connectivity games [2, 13], argumentation games [5],
centrality games [25, 1], peer games [7], games on mountain situations [17], etc.

A basic ingredient for GAGs is the so called coalitional map [9], that specifies the set of friends (or contributors)
of a coalition S ⊆ N , where N = {1, . . . , n} is a finite set of players. Given a coalitional map and a vector of n
nonnegative real numbers representing the individual contribution of players in N , the associated GAG assigns to
every coalition S ⊆ N the sum of the contributions over the set of friends of S. In this paper we study the effect
of the combination of four properties for coalitional maps on the associated GAGs corresponding to any vector
of nonnegative individual contributions. To be more specific, the first property we introduce is a monotonicity
condition: a coalitional map is said monotonic if the friends of any coalition S ⊆ N are also friends of any coalition
T containing S. Differently, a coalitional map is said proper if any two disjoint coalitions S, T ⊆ N , S ∩T = ∅, have
no friends in common. The third property deals with the veto-behavior of players. More precisely, a coalitional map
is said veto-rich if for any player i ∈ N , either i is not a friend of any coalition, or i is a friend of the grand coalition
N and, at the same time, the intersection of coalitions having i as a friend is non-empty. Finally, a coalitional map
is supermodular if the intersection of the set of friends of two coalitons S, T ⊆ N coincides with the set of friends
of their intersection. We first prove that these properties for coalitional maps characterize some interesting classes
of GAGs as follows: 1) monotonicity of a coalitional map is equivalent to monotonicity of the associated GAGs;
2) monotonicity and properness of a coalitional map is equivalent to superadditivity of the associated GAGs; 3)
veto-richness of a coalitional map is equivalent to balancedness of the associated GAGs; 4) monotonicity and veto-
richness of a coalitional map is equivalent to both total balancedness and admissibility of a population monotonic
allocation scheme (PMAS) [24] of the associated GAGs; 5) supermodularity of a coalitional map is equivalent to
convexity of the associated GAGs. Then, we use these characterizations to analyze several classes of TU games from
the literature, with a particular focus on Operations Research (OR) games [6]. In particular, we consider (weighted)
glove games [23, 27], (generalized) airport games [19], fixed tree games [4], link-connection games [18, 16], simple
minimum cost spanning tree games (MCST) [20, 26] and (weighted) coloring games [10, 11].

A main advantage of representing and studying a TU game as a GAG lies in the combinatorial nature of the four
properties proposed for coalitional maps. In all classes of TU games from the literature considered in this paper, it is
straightforward to verify whether the properties of monotonicity, properness, veto-richness and supermodularity hold
for the associated coalitional maps. So, the method of proof that we propose in this paper is much less time-consuming
than the techniques adopted in the related literature. Moreover, some nice properties of certain well-known TU
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games, can be easily generalized over larger domains, or they can be used to investigate in more details some particular
sub-classes of games. As a simple example, consider the case of airport games [14, 15], and the corresponding cost-
saving game where the costs of the airport’s runway is supposed to increase with the length of the landing strip,
i.e. the cost vector w belongs to the convex cone K1 ⊂ IRN

+ defined by K1 = {w ∈ IRN
+ : w1 ≤ w2 ≤ · · · ≤ wn}.

Looking at the corresponding cost-saving game, and using our characterizations, the properties of monotonicity,
superadditivity, balancedness and PMAS-admissibility can be extended to airport games associated to any cost
vector in IRN

+ , and in particular to the larger cone K2 = {w ∈ IRN
+ : wi ≤ wn for every i ∈ {1, . . . , n − 1}}, whose

family of associated GAGs coincides with the class of generalized airport games introduced in [19].
We also stress the fact that all of our results hold for profit games, i.e. for GAGs whose individual contributions

can be interpreted as revenues or profits. We adopted this convention for consistency with the interpretation of a
coalitional map as a specification of friends of coalitions, and for coherence with the more popular interpretation
of TU games as revenue-sharing situations, as presented in the original paper [9]. On the other hand, the majority
of games we consider in this paper deal with cost sharing situations. Following a standard approach, we consider
an associated cost-saving game, that is a TU game where the worth of each coalition S represents the amount
that coalition S saves by cooperation, and is computed as the difference between the sum of the costs of singleton
coalitions formed by the members of S minus the total cost of coalition S. In alternative, another standard way to
transform a cost game in a profit one, is by means of the associated dual game, where a coalition S gets the rest of
the cost of the grand coalition N after the complement of coalition S pays its entire cost in the original game. So,
the dual game of a cost game can be interpreted as the opportunity for players in S to fully profit of the contribution
of players outside S.

The road-map of the paper is as follows. We start with some preliminary notions and notations on game theory
and graph theory in Section 2. In Section 3 we introduce some properties for coalitional maps and we illustrate
some characterizations of GAGs using (combinations of) these properties. Then, in Section 4, we analyze several
classes of TU games from the literature that can be represented as GAGs and can be studied in view of the results
presented in Section 3. Specifically, we consider weighted glove games in Section 4.1, generalized airport games in
Section 4.2, fixed tree games in Section 4.3, link connection games in Section 4.4, simple MCST games in Section
4.5 and (weighted) coloring games in Section 4.6. Section 5 concludes.

2 Preliminaries and notations

2.1 Game theory

A Transferable Utility (TU) game (or, simply, a game) is a pair (N, v), where N = {1, . . . , n} denotes the set of
players and v : 2N → IR is the characteristic function that maps each element of 2N (the set of all subsets of N) to
a real number (by convention, v(∅) = 0). For each S ∈ 2N , v(S) represents the worth or profit of coalition S. In the
following, we often identify a game (N, v) with its characteristic function v (if the set N is fixed). A game (N, v) is
said to be: monotonic, if it holds that v(S) ≤ v(T ) for all S, T ∈ 2N such that S ⊆ T ; superadditive, if it holds that

v(S ∪ T ) ≥ v(S) + v(T ) (1)

for all S, T ∈ 2N such that S ∩ T = ∅; supermodular or convex, if it holds that

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) (2)

for all S, T ∈ 2N or, equivalently,
v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) (3)

for all i ∈ N and all S ⊆ T ⊆ N \ {i}.
A coalitional game (N, v) such that v(S) ∈ {0, 1} (i.e., the worth of every coalition is either 0 or 1) for each

S ∈ 2N and v(N) = 1 is said a simple game.
Given a game (N, v), an allocation is a vector x ∈ IRN , and an allocation x ∈ IRN is in the core C(v) of game v

if it is efficient (i.e.,
∑

i∈N xi = v(N)) and stable (i.e.,
∑

i∈S xi ≥ v(S) for all non-empty coalitions S ∈ 2N ). So,

C(v) = {x ∈ IRN :
∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S), for all S ∈ 2N , S 6= ∅}.
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A game v such that C(v) 6= ∅ is called balanced. Given a game (N, v) and a coalition S ∈ 2N , we denote by (S, v|S)
the subgame of v restricted to coalition S such that v|S(R) = v(R) for each R ⊆ S. A game v such that C(v|S) 6= ∅
for all S ∈ 2N is called totally balanced.

A population monotonic allocation scheme or PMAS [24] of the game (N, v) is a scheme {xS,i}S∈2N\{∅},i∈S with
the properties:

i)
∑
i∈S

xS,i = v(S) for all S ∈ 2N\{∅} (efficiency);

ii) xS,i ≤ xT,i for all S, T ∈ 2N\{∅} and i ∈ N with i ∈ S ⊂ T (monotonicity).

A PMAS provides an allocation vector for every coalition in a monotonic way, i.e. the value allocated to some
player increases if the coalition to which he belongs becomes larger. If a game v has a PMAS, then it is said to be
PMAS-admissible. It is easy to check that a PMAS {xS,i}S∈2N\{∅},i∈S provides a core element for the game and all

its subgames, i.e. the allocation (xS,i)i∈S ∈ C(v|S) for all S ∈ 2N , S 6= ∅. Therefore, a game admitting a PMAS is
also totally balanced.
We now introduce some basic definitions on GAGs from [9]. A coalitional map is a map M : 2N → 2N such that
M(∅) = ∅. The elements of M(S), for each S ∈ 2N , are called friends or contributors of S via M.

Definition 2.1 A generalized additive situation (GAS)[9] is a triple (N,M, w), where N is a finite set of players,M
is a coalitional map and w ∈ IRN

+ is a vector of nonnegative real numbers wi ≥ 0, for any i ∈ N . The corresponding
generalized additive game (GAG) (N, vM,w) is defined by

vM,w(S) =
∑

i∈M(S)

wi

for every S ∈ 2N .

So, in order to compute the worth of a coalition S ∈ 2N in a GAG (N, vM,w), we first select the friends of S, i.e.
the players in M(S), and then we add their individual values according to w. Given a coalitional map M on 2N ,
the class of all GAGs (N, vM,w), for any w ∈ IRN

+ , is denoted by GM.
It is straightforward to see that a GAG (N, vM,w) is a nonnegative combination of simple games (N, vM,i),

vM,w =
∑
i∈N

wivM,i (4)

where for every i ∈ N the simple game (N, vM,i) is defined by

vM,i(S) =

{
1 if i ∈M(S)
0 if i /∈M(S)

for every S ∈ 2N . So the winning coalitions in (N, vM,i) are precisely those coalitions that select player i. Note that
(N, vM,i) can also be regarded as the GAG corresponding to coalitional map M and unit weight vector ei ∈ IRN

+

(eii = 1 and eij = 0 if j 6= i).

For each S ∈ 2N we denote by (S, (vM,w)|S) and (S, (vM,i)|S) the restriction to S of games (N, vM,w) and
(N, vM,i), i.e., (vM,w)|S(R) = vM,w(R) and (vM,i)|S(R) = vM,i(R) for each R ⊆ S. It is straightforward to see
that the subgame (S, (vM,w)|S) is a nonnegative combination of simple subgames (S, (vM,i)|S), i ∈ N , precisely,

(vM,w)|S =
∑
i∈N

wi(vM,i)|S (5)

for every S ∈ 2N .
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2.2 Graph theory

An (undirected) graph is a pair Γ = (V,E), where V is a set of vertices or nodes and E is a set of edges e of
the form {i, j} with i, j ∈ V , i 6= j. The complete graph on a set V of vertices is the graph (V,EV ), where
EV = {{i, j}|i, j ∈ V and i 6= j}. A path between two nodes i, j ∈ V in a graph Γ is a sequence of nodes (i0, i1, . . . ,
ik), where i = i0 and j = ik, k ≥ 1, such that {is, is+1} ∈ E for each s ∈ {0, ..., k − 1} and such that all these edges
are distinct. A cycle in (V,E) is a path from i to i for some i ∈ V . A path (i0, i1, . . . , ik) is without cycles if there
do not exist a, b ∈ {0, 1, . . . , k}, a 6= b, such that ia = ib. Two nodes i, j ∈ V are said to be connected in Γ if i = j or
there exists a path between i and j in Γ. A graph Γ is connected if for each i, j ∈ V with i 6= j there exists a path
between i and j in (V,E). A connected component of Γ is a maximal subset of V with the property that any two
nodes in this subset are connected. A graph where all paths are without cycles is called a forest, and a forest that
is also connected is called a tree.

Given an undirected graph Γ = (V,E), the subgraph Γ|S = (S,ES) induced by S ∈ 2V is a graph with set S as
set of vertices and where ES = {{i, j} ∈ E : i, j ∈ S}. A clique in Γ is a subset S ∈ 2V such that Γ|S is complete.

3 Some characterizations

We start with the definition of some properties for coalitional maps.

Definition 3.1 A coalitional map M : 2N → 2N is called:

1) monotonic if M(S) ⊆M(T ) for every S, T ∈ 2N with S ⊆ T ;

2) proper if M(S) ∩M(T ) = ∅ for every S, T ∈ 2N with S ∩ T = ∅;

3) veto-rich if for every i ∈ N we either have i /∈M(S) for every S ∈ 2N or i ∈M(N) and ∩{S : i ∈M(S)} 6= ∅;

4) supermodular if M(S) ∩M(T ) =M(S ∩ T ) for every S, T ∈ 2N .

Properties in Definition 3.1 are naturally recast in terms of mechanisms aimed to select friends or contributors
of coalitions. A coalitional map is said monotonic if it selects friends of coalitions in a monotonic way, i.e. each
friend of a coalition is also a friend of any superset of that coalition. A coalitional map is said proper if two disjoint
coalitions do not share any friend in common. A coalitional map is said veto-rich if it partitions the elements of N
in two particular subsets: the first subset includes those players that are never selected as friends of any coalition,
whereas each player of the second subset is a friend of the grand coalition and, in addition, all coalitions with this
player as a friend have a non-empty intersection. Finally, a coalitional map is supermodular, if the set of friends in
common between any two coalitions coincides with the set of friends selected for their intersection.

Remark 3.2 Note that in [9], a map M is said to be proper if M(S) ⊆ S for all S ∈ 2N . Clearly, the properness
property introduced in [9] implies the properness property introduced in this section, but the implication in the other
direction does not hold (for instance, take a coalitional map M with a nonempty image only for coalitions {1} and
{2} and such that M({1}) = {1, 3} and M({2}) = {2, 4}).

A natural question to ask is which properties for a coalitional map M induce nice game theoretical properties
on the corresponding family of GAGs GM. The following theorems provide necessary and sufficient conditions on a
coalitional mapM to generate associated GAGs (N, vM,w) that are, respectively, monotonic, superadditive, (totally)
balanced, PMAS-admissible and convex for every weight vector w ∈ IRN

+ .
The first theorem generalizes a result in [9] stating that a monotonic coalitional map induces a monotonic GAG

(see Proposition 1 in [9]).

Theorem 3.3 M is monotonic if and only if (N, vM,w) is monotonic for every w ∈ IRN
+ .

Proof “⇒” Suppose M is monotonic. Let w ∈ IRN
+ and S, T ∈ 2N with S ⊆ T . Then M(S) ⊆ M(T ), so

vM,w(S) =
∑

i∈M(S) wi ≤
∑

i∈M(T ) wi = vM,w(T ). So vM,w is monotonic.

“⇐” Suppose (N, vM,w) is monotonic for every w ∈ IRN
+ . This implies, taking the unit weight vector w = ei,
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that (N, vM,i) is monotonic for every i ∈ N . Now let S, T ∈ 2N with S ⊆ T . For every i ∈ M(S) we have
1 = vM,i(S) ≤ vM,i(T ) so vM,i(T ) = 1 and hence i ∈M(T ). So M(S) ⊆M(T ). Therefore M is monotonic. �

Also the following theorem generalizes a result in [9] (see Proposition 2 in [9]).

Theorem 3.4 M is monotonic and proper if and only if (N, vM,w) is superadditive for every w ∈ IRN
+ .

Proof “⇒” SupposeM is monotonic and proper. Let w ∈ IRN
+ and S, T ∈ 2N with S∩T = ∅. Due to monotonicity of

M we haveM(S) ⊆M(S∪T ) andM(T ) ⊆M(S∪T ) soM(S)∪M(T ) ⊆M(S∪T ). Due to properness ofM we have
M(S) ∩M(T ) = ∅. Therefore vM,w(S ∪ T ) =

∑
i∈M(S∪T ) wi ≥

∑
i∈M(S)∪M(T ) wi =

∑
i∈M(S) wi +

∑
i∈M(T ) wi =

vM,w(S) + vM,w(T ). So vM,w is superadditive.
“⇐” Suppose (N, vM,w) is superadditive for every w ∈ IRN

+ . Since GAGs are nonnegative it follows directly that
(N, vM,w) is monotonic for every w ∈ IRN

+ . From Theorem 3.3 it follows thatM is monotonic. Again taking the unit
weight vector w = ei we observe that in particular (N, vM,i) is superadditive for every i ∈ N . Let S, T ∈ 2N with
S∩T = ∅. SupposeM(S)∩M(T ) 6= ∅ and let i ∈M(S)∩M(T ). Then vM,i(S∪T ) ≥ vM,i(S)+vM,i(T ) = 1+1 = 2,
contradicting the fact that vM,i is a simple game. So M(S) ∩M(T ) = ∅ and hence M is proper. �

The next theorem deals with the notion of balancedness of TU games. Here, the veto-richness property for coalitional
maps plays a central role.

Theorem 3.5 M is veto-rich if and only if (N, vM,w) is balanced for every w ∈ IRN
+ .

Proof “⇒” Suppose M is veto-rich. Let i ∈ N . If i /∈M(S) for every S ∈ 2N then (N, vM,i) is the zero game and
hence balanced. If i ∈ M(N) and ∩{S : i ∈ M(S)} 6= ∅ then vM,i(N) = 1 and there is a j ∈ ∩{S : i ∈ M(S)} =
∩{S : vM,i(S) = 1}. So j is a veto player of (N, vM,i) and the unit vector ej is a core element of (N, vM,i). Hence
(N, vM,i) is balanced. Since (N, vM,i) is balanced for every i ∈ N , any nonnegative combination of the games
(N, vM,i), i ∈ N , is balanced as well. Therefore (N, vM,w) is balanced for every w ∈ IRN

+ .
“⇐” Suppose (N, vM,w) is balanced for every w ∈ IRN

+ . This implies that (N, vM,i) is balanced for every i ∈ N . Let
i ∈ N . If vM,i(N) = 0 then the simple balanced game (N, vM,i) must be the zero game. In other words, i /∈ M(S)
for every S ∈ 2N . Now assume that vM,i(N) = 1, i.e. i ∈ M(N). Suppose that ∩{S : i ∈ M(S)} = ∅. Then
∪{N\S : i ∈ M(S)} = N . Let x ∈ IRN be a core element of (N, vM,i). Then

∑
j∈N xj = vM,i(N) = 1 and

xj ≥ vM,i({j}) ≥ 0 for every j ∈ N . Let j ∈ N . There is a coalition S ∈ 2N such that i ∈ M(S) and j ∈ N\S.
Since

∑
k∈S xk ≥ vM,i(S) = 1 we get

∑
k∈N\S xk ≤ 0, so xk = 0 for every k ∈ N\S. In particular we have xj = 0.

As this is true for every j ∈ N we have a contradiction. Therefore ∩{S : i ∈M(S)} 6= ∅, hence M is veto-rich. �

It is well known that the class of TU games that admit a PMAS is a proper subset of the class of totally balanced
TU games, i.e. there exist totally balanced games (e.g., glove games) that do not admit a PMAS in general [24].
Given a coalitional mapM, the next theorem shows that, whenever all GAGs (N, vM,w), for all w ∈ IRN

+ , are totally
balanced, then they equivalently admit a PMAS, and this is also equivalent with the fact that M is veto-rich and
monotonic.

Theorem 3.6 The following statements are equivalent:

I) M is veto-rich and monotonic;

II) (N, vM,w) admits a PMAS for every w ∈ IRN
+ ;

III) (N, vM,w) is totally balanced for every w ∈ IRN
+ .

Proof “(I)⇒ (II)” SupposeM is veto-rich and monotonic. Let i ∈ N . If i /∈M(S) for every S ∈ 2N then (N, vM,i)
is the zero game, and hence vM,i admits a PMAS, because the scheme {xS,k}S∈2N\{∅},k∈S with xS,k = 0 for every

S ∈ 2N\{∅} and k ∈ S is a PMAS.
If i ∈M(N) and ∩{S : i ∈M(S)} 6= ∅ then vM,i(N) = 1 and take j ∈ ∩{S : i ∈M(S)} = ∩{S : vM,i(S) = 1}.

So j is a veto player in (N, vM,i). We are going to show that the scheme x = {xS,k}S∈2N\{∅},k∈S such that:

5



• xS,k = 1, if k = j, and xS,k = 0, otherwise, for any S with i ∈M(S) and k ∈ S,

• xS,k = 0, for any S with i /∈M(S) and k ∈ S,

is a PMAS for vM,i. In order to prove it, first notice that for all S, we have
∑

k∈S xS,k = 1 = vM,i(S), if i ∈M(S),
and

∑
k∈S xS,k = 0 = vM,i(S), if i /∈M(S) (condition (i) in the definition of PMAS, see Section 2).

In order to prove monotonicity of the scheme x (condition (ii) in the definition of PMAS), let S ⊆ T and k ∈ S.
If xS,k = 0 then obviously xS,k ≤ xT,k. If xS,k = 1, then i ∈M(S) and k = j. By monotonicity of M we have that
i ∈M(S) ⊆M(T ). So, i ∈M(T ) and then xT,k = xT,j = 1. Again xS,k ≤ xT,k for all k ∈ S.

Since (S, vM,i) admits a PMAS for every i ∈ N , any nonnegative combination of the games (N, vM,i), i ∈ N ,
admits a PMAS as well, so (N, vM,w) has a PMAS for every w ∈ IRN

+ .

“(II)⇒ (III)” It follows immediately from the fact that if a game admits a PMAS then it is also totally balanced.

“(III) ⇒ (I)” Suppose (N, vM,w) is totally balanced for every w ∈ IRN
+ . This implies that (N, vM,w) is also

balanced for every w ∈ IRN
+ and hence by Theorem 3.5,M is veto-rich. Moreover, it is well known that every totally

balanced game is superadditive. Then, by Theorem 3.4, it directly follows that M is also monotonic. �

The next theorem shows that supermodularity of a coalitional map is equivalent with the eponymous property for
GAGs on the full domain of vectors of nonnegative contributions.

Theorem 3.7 M is supermodular if and only if (N, vM,w) is supermodular for every w ∈ IRN
+ .

Proof “⇒” Take S, T ∈ 2N with S ⊆ T . By supermodularity, we have that M(S) ∩M(T ) =M(S ∩ T ) =M(S),
so M(S) ⊆M(T ) or, equivalently, M is monotonic.

Now, for every S, T ∈ 2N and w ∈ IRN
+ we have that

vM,w(S) + vM,w(T )
=
∑

i∈M(S) wi +
∑

i∈M(T ) wi

=
∑

i∈M(S)∪M(T ) wi +
∑

i∈M(S)∩M(T ) wi

≤
∑

i∈M(S∪T ) wi +
∑

i∈M(S∩T ) wi

= vM,w(S ∪ T ) + vM,w(S ∩ T ),

(6)

where the inequality follows from the fact that, by monotonicity,M(S)∪M(T ) ⊆M(S∪T ) and, by supermodularity,
M(S) ∩M(T ) =M(S ∩ T ). So, (N, vM,w) is supermodular for every w ∈ IRN

+ .
“⇐” Now, let vM,w be supermodular for every w ∈ IRN

+ . Since supermodular games are also totally balanced,
by Theorem 3.6, M is veto-rich and monotonic. Then, by monotonicity, we have that M(S ∩ T ) ⊆ M(S) and
M(S ∩ T ) ⊆M(T ). Then,

M(S ∩ T ) ⊆M(S) ∩M(T ). (7)

Moreover, let S, T ∈ 2N and consider a vector w ∈ IRN
+ such that wi = 1, if i ∈ M(S) ∩ M(T ), and wi = 0,

otherwise. We have that
2|M(S) ∩M(T )|
=
∑

i∈M(S) wi +
∑
M(T ) wi

= vM,w(S) + vM,w(T )
≤ vM,w(S ∪ T ) + vM,w(S ∩ T )
=
∑

i∈M(S∪T ) wi +
∑

i∈M(S∩T ) wi

= |M(S) ∩M(T )|+ |M(S ∩ T )|,

(8)

where the last equality follows from the fact that, by monotonicity ofM,M(S)∩M(T ) ⊆M(S ∪T ) together with
the fact that, by relation (7), the elements ofM(S∩T ) are also inM(S)∩M(T ), while the inequality directly follows
from the definition of supermodularity of vM,w. From relation (8) we have that |M(S ∩ T )| ≥ |M(S) ∩M(T )|, so,
together with relation (7), we finally obtain M(S ∩ T ) =M(S) ∩M(T ). �

We conclude this section showing the logical dependence relations between properties in Definition 3.1 and their
possible combinations.
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Proposition 3.8 The following statements about coalitional maps hold true:

i) If M is veto-rich, then it is also proper;

ii) If M is supermodular, then it is also monotonic, proper and veto-rich;

iii) M can be monotonic, proper and veto-rich but not supermodular;

iv) M can be veto-rich, but neither monotonic nor supermodular;

v) M can be both monotonic and proper, but neither veto-rich nor supermodular;

vi) M can be monotonic, but neither proper nor veto-rich nor supermodular;

vii) M can be proper, but neither monotonic nor veto-rich nor supermodular;

viii) M can be such that it does not satisfy any of the four properties.

Proof
Proof of statement (i):
Consider a coalitional map that is veto-rich. Suppose that it is not proper. Then it means that there exist two
disjoint coalitions S, T ∈ 2N suchM(S)∩M(T ) 6= ∅. Let i ∈M(S)∩M(T ). We have that i ∈M(S) and i ∈M(T )
with S ∩ T = ∅, which yields a contradiction with the fact that M(S) is veto-rich.
Proof of statement (ii):
As shown in the proof of Theorem 3.7, if a coalitional map M is supermodular then for any S, T ∈ 2N with S ⊆ T
we have that M(S) ∩M(T ) = M(S ∩ T ) = M(S), so M(S) ⊆ M(T ) which means that M is monotonic too.
Moreover, taking two disjoint coalitions S and T , by the definition of supermodular coalitional map it immediately
follows that M is also proper. Now, let i ∈ N . If there exists S ∈ 2N such that i ∈ M(S), then by monotonicity
of the coalitional map M we have that i ∈ M(N). Moreover, by a repeated application of the supermodularity
condition, we have that

∅ 6=
⋂

S∈2N :i∈M(S)

M(S) =M
( ⋂

S∈2N :i∈M(S)

S
)
.

So, by definition of coalitional map,
⋂

S∈2N :i∈M(S) S is nonempty, which means that M(S) is veto-rich too.

Proof of statement (iii):
Let i, j, k ∈ N be three distinct elements and consider a coalitional mapM3 such thatM3(N \{k}) =M3(N \{j}) =
N \ {j, k}, M3(N \ {i}) = N \ {i, k}, M3(N) = N \ {k} and M3(S) = ∅ for all the remaining coalitions S ∈ 2N .
It is easy to check that M3 is monotonic, proper and veto-rich. Now, let S = N \ {k} and T = N \ {j}. Then
i ∈M3(S) ∩M3(T ). However, M3(S ∩ T ) =M3(N \ {j, k}) = ∅. So M3 is not supermodular.
Proof of statement (iv):
Let i, j, k ∈ N be three distinct elements and consider a coalitional map M4 such that M4(N \ {j, k}) = N \ {j},
M4(N \ {j}) = N \ {i}, M4(N) = N and M4(S) = ∅ for all the remaining coalitions S ∈ 2N . M4 is veto-rich, as
i ∈ M4(N) ∩M4(N \ {j, k}) and N ∩ (N \ {j, k}) 6= ∅; j ∈ M4(N) ∩M4(N \ {j}) and N ∩ (N \ {j}) 6= ∅; and
l ∈ M4(N) ∩M4(N \ {j, k}) ∩M4(N \ {j}) and N ∩ (N \ {j, k}) ∩ (N \ {j}) 6= ∅ for all l ∈ N \ {i, j}. Of course
M4 is not monotonic, since M4(N \ {j, k}) = N \ {j} but M4(N \ {k}) = ∅, and it is not supermodular, since
M4(N \ {j}) ∩M4(N \ {j, k}) = N \ {i, j} 6= N \ {j} =M4((N \ {j}) ∩ (N \ {j, k})).
Proof of statement (v):
Let N be such that |N | ≥ 3 and i ∈ N , and consider a coalitional mapM5 such thatM5(N) =M5(N\{j}) = {i} for
all j ∈ N andM5(S) = ∅ for all the remaining coalitions S ∈ 2N . It is immediate to check thatM5 is both monotonic
and proper. On the other hand, i ∈ M5(N) but

⋂
j∈N N \ {j} = ∅ so M5 is not veto-rich. Of course M5 is not

supermodular: for any j, k ∈ N with j 6= k, we haveM5(N\{j})∩M5(N\{k}) = {i} 6= ∅ =M5((N\{j})∩(N\{k})).
Proof of statement (vi):
Let i ∈ N and consider a coalitional map M6 such that M6(S) = {i} if i ∈ S, M6(N \ {i}) = {i} and M6(T ) = ∅
for all the remaining coalitions T ∈ 2N . M6 is obviously monotonic. But it is neither proper (since M6(N \ {i}) ∩
M6({i}) = {i}), nor veto-rich (since ∩{S : i ∈M6(S)} = ∅), nor supermodular (sinceM6(N \{i})∩M6({i}) = {i}
but M6((N \ {i}) ∩ {i}) = ∅).
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Proof of statement (vii):
Let i, j, k ∈ N be three distinct elements and consider a coalitional map M7 such that M7(N \ {k}) = N \ {j, k},
M7(N) = N \{i} andM7(S) = ∅ for all the remaining coalitions S ∈ 2N . M7 is proper, sinceM7(S)∩M7(T ) = ∅
for all disjoint coalitions S and T . On the other hand,M7 is not monotonic, since i ∈M7(N \ {k}) but i /∈M7(N)
and, for the same reason, it is not even veto-rich. In addition,M7 is not supermodular, sinceM7(N)∩M7(N\{k}) =
N \ {i, j, k} 6= N \ {j, k} =M7(N ∩ (N \ {k})).
Proof of statement (viii):
Let i, j ∈ N be two distinct elements and consider a coalitional map M8 such that M8({i}) =M8({j}) = {i} and
M8(S) = ∅ for all the other coalitions S ∈ 2N . It is easy to check thatM8 is not proper (we have {i}∩ {j} = ∅ but
M8({i}) ∩M8({j}) 6= ∅); it is not monotonic (M8({j}) = {i} * ∅ =M8({i, j})); it is not veto-rich (i ∈ M8({i}),
but i /∈M8(N)); and it is not supermodular (M8({i}) ∩M8({j}) = {i} 6= ∅ =M8({i} ∩ {j})). �

In view of the results provided in this section, we can resume the inclusion relations among families of coalitional
maps M and families classes of GAGs GM as shown in Figure 1 (recall that given a coalitional map M on 2N , the
class GM is defined as the set of all GAGs (N, vM,w) for every w ∈ IRN

+ ).

(a)

All colitional maps M
.M8

Proper

.M7

Veto-rich

.M4
Supermodular

.M2

.M5

.M3

.M6
Monotonic

(b)

All classes of GAGs GM

Balanced

Supermodular

Monotonic

Superadditive

Totally balanced
PMAS-admissible

.GM
8

.GM
7

.GM
4

.GM
2

.GM
5

.GM
3

.GM
6

Figure 1: (a) Euler diagram of sets of coalitonal mapsM characterized by different properties (specified by contours’
labels); the elements M2, . . . ,M8 depicted within the zones, refer to the specific coalitional maps considered in the
proof of Proposition 3.8 for statements (ii), . . . , (viii), respectively. (b) Euler diagram of sets of classes of GAGs
GM corresponding to zones of coalitional maps represented in the diagram of Figure 1.(a). Notice that, in view of
Theorem 3.6, the set of classes of GAGs that are totally balanced coincides with the set of classes of GAGs that
admit a PMAS (dashed contour).

4 Analysis of special classes of GAGs from the literature

In this section, we illustrate some consequences of the characterizations provided in the previous section on some
well known classes of TU games. As we mentioned earlier, all of these classes, with the only exception of glove
games, are cost games. For such cost games, we will make use of the corresponding cost saving and dual games,
which are interpreted as profit games.

First, note that all the definitions provided in Section 2 apply to TU games where v(S), for any coalition
S ∈ 2N , represents a profit, whereas some of the inequality signs should be reversed when v(S) represents a cost. So
reversing the inequalities in relations (1) and (2) (or in (3)) we obtain, respectively, the conditions of subadditivity
and submodularity (or concavity) for game v and, reversing the inequalities in the definition of core and PMAS
previously introduced, we obtain the corresponding definitions of core and PMAS for cost games.

Given a cost game (N, c), with cost function c : 2N → IR, one can also consider the corresponding cost saving
game (N, vc) such that

vc(S) =
∑
i∈S

c({i})− c(S),

for each coalition S ∈ 2N , where the difference vc(S) between the total cost in the situation where all members of
S work alone and the cost in the situation where all members of S cooperate is interpreted as a profit of coalition
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S. In alternative, one can also define the corresponding dual game (N, c∗) such that

c∗(S) = c(N)− c(N \ S),

for each coalition S ∈ 2N , where the rest c∗(S) obtained from the cost of the grand coalition N after the complement
of coalition S pays its entire cost in the original game is also interpreted as a profit of coalition S.
We now introduce some useful properties for cost games and the corresponding cost saving games.

Proposition 4.1 Let (N, c) be a cost game and let (N, vc) be the corresponding cost saving game. Then the following
statements hold true:

(i) c is submodular iff vc is supermodular;

(ii) c is subadditive iff vc is superadditive;

(iii) c is (totally) balanced iff vc is (totally) balanced;

(iv) c admits a PMAS iff vc admits a PMAS.

Proof Proof of statement (i):
We have that for all S, T ∈ 2N

vc(S) + vc(T ) ≤ vc(S ∪ T ) + vc(S ∩ T ) ⇔∑
i∈S c({i})− c(S) +

∑
i∈T c({i})− c(T )

≤
∑

i∈S∪T c({i})− c(S ∪ T ) +
∑

i∈S∩T c({i})− c(S ∩ T ) ⇔
c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T )

(9)

where the second equivalence relation follows from the fact that
∑

i∈S c({i}) +
∑

i∈T c({i}) =
∑

i∈S∩T c({i})+∑
i∈S∪T c({i}), and where the first and the last inequality are the definition of supermodularity for vc and of

submodularity for c, respectively.
Proof of statement (ii):
It follows from statement (i), considering coalitions S, T ∈ 2N such that S ∩ T = ∅.
Proof of statement (iii):
Consider the allocations x, y ∈ IRN such that yi = c({i})− xi for each i ∈ N . We have that∑

i∈N yi = vc(N) =
∑

i∈N c({i})− c(N) ⇔∑
i∈N

(
c({i})− xi

)
=
∑

i∈N c({i})− c(N) ⇔∑
i∈N xi = c(N),

(10)

and ∑
i∈S yi ≥ vc(S) =

∑
i∈S c({i})− c(S) ⇔∑

i∈S
(
c({i})− xi

)
≥
∑

i∈S c({i})− c(S) ⇔∑
i∈S xi ≤ c(S),

(11)

for each S ∈ 2N with S 6= ∅. So, by relations (10) and (11), we have proved that x is efficient and stable for c
(equivalently, c is balanced) iff y is efficient and stable for vc (equivalently, vc is balanced).

Moreover, for each S ∈ 2N , S 6= ∅, we have vc|S = vc|S , i.e. the subgame of vc restricted to S coincides with the

cost saving game vc|S corresponding to c|S (which is the subgame of c restricted to S). Then, again from relations
(10) and (11), we have that c|S is balanced iff vc|S is balanced, for each S ∈ 2N , S 6= ∅ (equivalently, c is totally
balanced iff vc is totally balanced).
Proof of statement (iv):
Consider the schemes {xS,i}S∈2N\{∅},i∈S and {yS,i}S∈2N\{∅},i∈S such that yS,i = c({i})−xS,i for all S ∈ 2N\{∅} and

i ∈ S. Similar to relation (10), it is easy to verify that
∑

i∈S xS,i = c(S) iff
∑

i∈S yS,i = vc(S) for all S ∈ 2N\{∅}.
To prove the monotonicity condition for the definition of PMAS, notice that

yS,i ≤ yT,i ⇔
c({i})− xS,i ≤ c({i})− xT,i ⇔
xS,i ≥ xT,i,

(12)
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for all S, T ∈ 2N\{∅} and i ∈ N with i ∈ S ⊂ T . So, we have proved that {xS,i}S∈2N\{∅},i∈S is a PMAS of c iff
{yS,i}S∈2N\{∅},i∈S is a PMAS of vc. �

Well-known results for dual games are stated in the following proposition.

Proposition 4.2 Let (N, c) be a cost (profit) game and let its dual (N, c∗) be a profit (cost) game. Then the following
statements hold true:

i) c is monotonic iff c∗ is monotonic;

ii) C(c) = C(c∗) (c and c∗ have the same core);

iii) c is submodular iff c∗ is supermodular.

Proof A proof of these statements can be found in the literature, for instance, in the book [3]. �

The remaining of the paper is devoted to the analysis of several classes of TU games from the literature in view
of the characterizations provided in the previous section.

4.1 Weighted glove games

Given a partition {L,R} of the set of players N and a weight vector w ∈ IRN
+ (each player i in L owns wi left

gloves, each player j in R owns wj right ones), we define a weighted glove game as the TU game (N, v) such that
v(S) = min{

∑
i∈S∩L wi,

∑
j∈S∩R wj}, representing the profit obtained by members in S selling their pairs of gloves

(sold at selling price of 1). Note that players are allowed to have a non-integer number of gloves. If wi = 1 for every
i ∈ N the game is a standard glove game [23]. Standard glove games are known to be totally balanced. Generalizing
the proof in an obvious way shows that weighted glove games are totally balanced as well: for every S ∈ 2N\{∅}
allocate wi to every i ∈ S ∩ L and 0 to every j ∈ S ∩ R if

∑
i∈S∩L wi ≤

∑
j∈S∩R wj , otherwise allocate 0 to every

i ∈ S ∩ L and wj to every j ∈ S ∩ R. (Weighted) glove games do not have to be PMAS-admissible: in [24] it is
shown that the standard glove game with two players owning a left glove and two players owning a right glove does
not have a PMAS.

As suggested in [9], a weighted glove game (N, v) can be described as a GAG using the coalitional mapM defined
by

M(S) =

{
S ∩ L if

∑
S∩L wi ≤

∑
S∩R wi

S ∩R otherwise,
(13)

for all S ∈ 2N . Note that this coalitional map actually depends on the weight vector w. It is not possible to construct
a ‘universal’ map M that generates all weighted glove games for all possible weight vectors. Such an M would be,
according to Theorem 3.6, veto-rich and monotonic and hence, according to the same theorem, all weighted glove
games would admit a PMAS. However, we can use the results of Section 3 in order to characterize the subclass of
supermodular weighted glove games. We need the following theorem.

Theorem 4.3 Let (N, v) be a weighted glove game with positive weight vector w (so wi > 0 for every i ∈ N) and
let {L,R} be the partition of N in ‘left glove’ and ‘right glove’ players. Then (N, v) is supermodular if and only if
L contains precisely one player l∗ and wl∗ ≥

∑
j∈R wj or R contains precisely one player r∗ and wr∗ ≥

∑
i∈L wi.

Proof ”⇐”. Suppose L contains precisely one player l∗ and wl∗ ≥
∑

j∈R wj . Let i ∈ N and S ⊂ T ⊆ N\{i}. If i = l∗

then v(S∪{i})−v(S) =
∑

j∈S wj−0 =
∑

j∈S wj ≤
∑

j∈T wj =
∑

j∈T wj−0 = v(T ∪{i})−v(T ). Now assume i 6= l∗.
If l∗ /∈ S then v(S∪{i})−v(S) = 0 ≤ v(T∪{i})−v(T ). If l∗ ∈ S(⊂ T ) then v(S∪{i})−v(S) = wi = v(T∪{i})−v(T ).
In case R contains precisely one player r∗ and wr∗ ≥

∑
i∈L wi the argument is similar.

”⇒”. Suppose (N, v) is supermodular. First, assume that both L and R have at least two players. Choose
a, b ∈ L, a 6= b, and c, d ∈ R, c 6= d. We have v({a, c, d}) − v({a, d}) ≥ v({a, c}) − v({a}) so min{wa, wc + wd} −
min{wa, wd} ≥ min{wa, wc}− 0, so min{wa, wc +wd} ≥ min{wa, wc}+ min{wa, wd}. So wa ≥ min{wa, wc +wd} ≥
min{wa, wc}+ min{wa, wd} > min{wa, wc}. Hence min{wa, wc} = wc. In a similar way we find min{wa, wd} = wd.
Now wa ≥ min{wa, wc + wd} ≥ min{wa, wc} + min{wa, wd} = wc + wd. Using a symmetry argument we get
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wb ≥ wc +wd, wc ≥ wa +wb and wd ≥ wa +wb as well. Hence wa ≥ wc +wd > wc ≥ wa +wb > wa. A contradiction.
So |L| = 1 or |R| = 1. Without loss of generality assume that |L| = 1. If |R| = 1 we are done so assume
that |R| ≥ 2. Let L = {l∗} and let r∗ ∈ R be such that wr∗ = minj∈R wj . We have v(N) − v(N\{r∗}) ≥
v({l∗, r∗})−v({l∗}) so min{wl∗ ,

∑
j∈R wj}−min{wl∗ ,

∑
j∈R\{r∗} wj} ≥ min{wl∗ , wr∗}−0, so min{wl∗ ,

∑
j∈R wj} ≥

min{wl∗ ,
∑

j∈R\{r∗}wj
} + min{wl∗ , wr∗}. Repeating the arguments above we get wl∗ ≥ min{wl∗ ,

∑
j∈R wj} ≥

min{wl∗ ,
∑

j∈R\{r∗} wj}+ min{wl∗ , wr∗} > min{wl∗ ,
∑

j∈R\{r∗} wj}. So, min{wl∗ ,
∑

j∈R\{r∗} wj} =
∑

j∈R\{r∗} wj .

In a similar way we find min{wl∗ , wr∗} = wr∗ . So wl∗ ≥ min{wl∗ ,
∑

j∈R wj} ≥ min{wl∗ ,
∑

j∈R\{r∗} wj} +

min{wl∗ , wr∗} =
∑

j∈R\{r∗} wj + wr∗ =
∑

j∈R wj . �

The if-part of Theorem 4.3 can be shown by using Theorem 3.7 as well. Suppose {L,R} is a partition of the
player set N with |L| = 1. Let l∗ be the unique element of L. Define the coalitional map M : 2N → 2N by
M(S) = S ∩ R if l∗ ∈ S and M(S) = ∅ otherwise. It is straightforward to check that M is supermodular. So for
every w ∈ IRN

+ the game vM,w is supermodular, according to Theorem 3.7. The game vM,w is the weighted glove
game with weight vector w if wl∗ ≥

∑
j∈R wj , where l∗ is the unique element of L.

4.2 Generalized airport games

We recall the definition of airport games [15].

Definition 4.4 Consider a finite set N = {1, . . . , n} of players and a vector w ∈ IRN
+ with w1 ≤ w2 ≤ · · · ≤ wn.

The airport game associated with N and w is the cost game (N, c) defined by

c(S) = wj(S) (14)

for every S ∈ 2N , where j(S) = max{j : j ∈ S}.

Given an airport game (N, c) associated with N and w the associated cost saving game (N, vc) is given by

vc(S) =
∑
i∈S

c({i})− c(S) =
∑
i∈S

wi − wj(S), (15)

for every S ∈ 2N . Note that this cost saving game in fact is a GAG (N, vM,w) with coalitional map M defined by

M(S) = S\{j(S)}, (16)

for every S ∈ 2N .

Proposition 4.5 Let M be the coalitional map as defined in (16). Then M is monotonic, proper and veto-rich.

Proof Let S, T ∈ 2N with S ⊆ T . Let i ∈ M(S). Then i ∈ S ⊆ T and i < j(S) ≤ j(T ), so i ∈ M(T ). This shows
that M is monotonic.
Properness of M follows from the fact that M(S) ⊆ S for every S ∈ 2N (we refer to Remark 3.2).
Veto-richness follows from monotonicity and also from the fact that M(S) ⊆ S for every S ∈ 2N : if i ∈ M(S) for
some S we have, using monotonicity, that i ∈M(N) and i ∈ ∩{T : i ∈M(T )}.

The following example illustrates the fact that the coalitional mapM as defined in (16) is not supermodular in case
n ≥ 3.

Example 4.6 Let N = {1, . . . , n} with n ≥ 3. Consider the two-person coalitions S = {1, n − 1} and T = {1, n}.
Then M(S) = {1}, M(T ) = {1} so 1 ∈ M(S) ∩M(T ). However, S ∩ T = {1} and M(S ∩ T ) = ∅, so M is not
supermodular.

The following proposition is a direct consequence of Theorems 3.3, 3.4, 3.5, 3.6 and Proposition 4.5.

Proposition 4.7 Let M be the coalitional map as defined in (16). Then (N, vM,w) is monotonic, superadditive,
(totally) balanced and PMAS-admissible for every w ∈ IRN

+ .
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In case the weight vector w belongs to the cone K1 ⊂ IRN
+ defined by K1 = {w ∈ IRN

+ : w1 ≤ w2 ≤ · · · ≤ wn} then,
as remarked before, (N, vM,w) is the cost saving game corresponding to an airport game and hence Proposition
4.7 provides well-known results concerning airport games. On the somewhat larger cone K2 = {w ∈ IRN

+ : wi ≤
wn for every i ∈ {1, . . . , n − 1}} the games (N, vM,w) coincide with the generalized airport games as introduced in
[19].

Proposition 4.8 Cost saving games associated with (generalized) airport games are monotonic, superadditive, (to-
tally) balanced and PMAS-admissible.

Proposition 4.9 (Generalized) airport games are subadditive, (totally) balanced and PMAS-admissible.

Proof The proof follows directly from the properties of cost saving games for (generalized) airport games and
Proposition 4.1. �

Airport games are also known to be submodular (equivalently, by Proposition 4.1, the associated cost saving games
are supermodular). However, we are not able to show this result using Theorem 3.7 as M is not supermodular in
case n ≥ 3. So, according to Theorem 3.7, we can conclude that not for every w ∈ IRN

+ the corresponding generalized
additive game (N, vM,w) is convex. This observation was already made in [19] where an example of a generalized
airport game was given which is not concave (and hence the corresponding cost saving game is not convex). A
natural question now is the following: is it possible to formulate conditions onM such that (N, vM,w) is convex for
every w ∈ K1? The answer is yes. Using (4) and the fact that the cone K1 is generated by the vectors (1, 1, . . . , 1, 1),
(0, 1, . . . , 1, 1), (0, 0, 1, . . . , 1, 1), . . ., (0, . . . , 0, 1, 1) and (0, . . . , 0, 1) we get that (N, vM,w) is convex for every w ∈ K1

if and only if the following condition holds:

the sum
n∑

i=j

vM,i is convex for every j ∈ {1, . . . , n}. (17)

In case M is defined by (16) we get that vM,n is the zero game and for every i ∈ {1, . . . , n− 1} we have

vM,i(S) =

{
1 if i ∈ S and i 6= j(S)
0 otherwise

(18)

One readily verifies that condition (17) is fulfilled here. In fact, it is enough to notice that by relation (18), for each
S ∈ 2N and j ∈ {1, . . . , n},

∑n
i=j vM,i(S) = |

(
{j, . . . , j(S)} ∩ S

)
\ {j(S)}| (with the usual convention that |∅| = 0).

Then, for each k ∈ N and all S, T ∈ 2N with k ∈ S ⊆ T , it immediately follows that

n∑
i=j

vM,i(S ∪ {k})−
n∑

i=j

vM,i(S) ≤
n∑

i=j

vM,i(T ∪ {k})−
n∑

i=j

vM,i(T ),

where the inequality is tight if and only if k = j(S) and k 6= j(T ).
An alternative way to prove submodularity (as well as monotonicity and balancedness) of airport games, is using

the coalitional map for dual fixed tree games as introduced in the next section (see in particular Remark 4.14).

4.3 Fixed tree games

A fixed tree situation or maintenance situation [4] is a tuple (N, (V,E), t), where N is a finite set of players;
Γ = (N ′, E) is a rooted tree with N ′ = N ∪ {0} and 0 is the root of the tree; t ∈ IRE

+ is the cost function.
Since nodes in N are connected to the root 0 by exactly one path, a natural orientation of edges is defined by

the partial preorder on the vertices such that i � j for each i, j ∈ V if and only if the unique path from i to 0 passes
through j (with i � i). For each i ∈ N we define the set of predecessors of i in Γ as the set PΓ

i = {j ∈ N : i � j},
and the set of edges among the vertices in PΓ

i is denoted by EΓ
i = {{j, k} ∈ E : j, k ∈ PΓ

i }.
The fixed tree game, associated with a fixed tree situation (N, (N ′, E), t), is the cost game (N, c), where each

coalition S ∈ 2N must support the (minimal) cost of maintaining all paths from players in S to 0, precisely:

c(S) =
∑

e∈∪i∈SEΓ
i

te.
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Given a fixed tree game (N, c) associated with (N, (N ′, E), t), the corresponding dual game (N, c∗) is defined as:

c∗(S) = c(N)− c(N \ S) =
∑
e∈E

te −
∑

e∈∪i∈N\SEΓ
i

te, (19)

for every S ∈ 2N .
In this case, the dual game c∗ coincides with the GAG (N, vM,w) with wi = t{i,p(i)}, where p(i), for each i ∈ N ,

is the immediate predecessor of i on the unique path from i to 0 (i.e., {i, p(i)} ∈ EΓ
i ) and the coalitional map M is

defined as follows:
M(S) = N \ ∪i∈N\SPΓ

i , (20)

for every S ∈ 2N .

Proposition 4.10 Let Γ = (N ′, E) be a rooted tree and let M be the coalitional map as defined in (20). Then M
is monotonic, proper, veto-rich and supermodular.

Proof In order to prove that M is monotonic, consider any two coalitions S, T ∈ 2E with S ⊆ T . Then, N \ S ⊇
N \T , implying that the set of predecessors of members in N \T are included in the set of predecessors of members
in N \ S, i.e. ∪i∈N\SPΓ

i ⊇ ∪i∈N\TPΓ
i . So, M(S) = N \ ∪i∈N\SPΓ

i ⊆ N \ ∪i∈N\TPΓ
i =M(T ).

Properness of M follows from the fact that M(S) ⊆ S for every S ∈ 2N (see also Remark 3.2). In fact, let
S ∈ 2N and let j /∈ S. Then j ∈ N \ S, so j ∈ ∪i∈N\SPΓ

i , and j /∈
(
N \ ∪i∈N\SPΓ

i

)
= M(S). This means that if

j ∈M(S), then j ∈ S, and we have proved that M(S) ⊆ S for every S ∈ 2N .
Veto-richness follows from monotonicity and also from the fact thatM(S) ⊆ S for every S ∈ 2N : if i ∈M(S) for

some S we have, using monotonicity, that i ∈M(N) and, from the fact thatM(S) ⊆ S, that i ∈ ∩{T : i ∈M(T )}.
We now prove supermodularity of M. From the fact that M(S ∩ T ) ⊆M(S) and M(S ∩ T ) ⊆M(T ) we have

immediately that M(S ∩ T ) ⊆M(S) ∩M(T ). In order to show that it also holds M(S) ∩M(T ) ⊆M(S ∩ T ), we
first notice that if i ∈M(S) ∩M(T ), then it means that there is no j ∈ N with either j ∈ N \ S or j ∈ N \ T such
that i ∈ PΓ

j . Equivalently, there is no j ∈ N \ (S ∩ T ) such that i ∈ PΓ
j . Then, it follows that i ∈ M(S ∩ T ) too,

which concludes the proof.

The following proposition is a direct consequence of Theorems 3.3, 3.4, 3.5, 3.6, 3.7 and Proposition 4.10.

Proposition 4.11 Let Γ = (N ′, E) be a rooted tree and let M be the coalitional map as defined in (20). Then
(N, vM,w) is monotonic, superadditive, (totally) balanced, PMAS-admissible and convex for every w ∈ IRE

+.

As a direct consequence of relations (19) and (20) we can state the following.

Proposition 4.12 Dual games associated to fixed tree games are monotonic, superadditive, (totally) balanced,
PMAS-admissible and supermodular.

Proposition 4.13 Fixed tree games are monotonic, balanced and submodular.

Proof The proof follows directly from the properties of dual games of fixed tree games and Proposition 4.2. �

Remark 4.14 Notice that if (N ′, E) is a line graph then (N, c) is an airport game. Then, by Proposition 4.13, it
immediately follows that also airport games are monotonic, balanced and submodular.

Remark 4.15 As we already noticed, a submodular game is also totally balanced and PMAS-admissible. However,
in Proposition 4.13, we only show the direct consequences of Proposition 4.2 on dual games of fixed tree games.
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4.4 Link connection games

We recall the definition of link connection games, as introduced in [16] and, as a special case of a broader class of
games on matroids in [18]. Let (V,E) be an undirected graph with vertex set V and edge set E and let w ∈ IRE

+.
The link connection game associated with (V,E) and w is the cost game (E, c), where the set of edges is the set of
players, and the cost of a coalition S ∈ 2E is the minimal cost of a set of edges T ⊆ S such that (V, T ) and (V, S)
have the same connected components.

Definition 4.16 Let (V,E) be an undirected graph and let w ∈ IRE
+. The link connection game associated with

(V,E) and w is the cost game (E, c), such that

c(S) = min{W (T ) | T ⊆ S and PT = PS} (21)

for every S ⊆ E, where W (T ) =
∑

e∈T we and PT denotes the set of all connected components in graph (VS , T ) for
any T ⊆ S (here, VS is the set of all nodes of edges in S).

In other words, c(S) is the cost of a graph of minimum cost (VS , T ), T ⊆ S, such that the set of connected components
in (VS , T ) coincides with the set of connected components in (S,ES). Given a link connection game (E, c) associated
with (V,E) and w, the corresponding cost saving game (E, vc) is defined as follows:

vc(S) =
∑
e∈S

we − c(S), (22)

for every S ⊆ E. We will show that this cost saving game is in fact also a GAG (N, vM,w).
First, we construct the coalitional map M : 2E → 2E for some undirected graph (V,E). We start with listing

the edges in E in some order E = {e1, e2, e3, . . . , e|E|} (not yet having a cost vector w ∈ IRE
+ in mind). For every

S ⊆ E an edge ek ∈ S, (k ∈ {1, . . . , |E|}) is called superfluous in S if it forms a cycle with its predecessors in S,
more precisely, if (V, {e1, . . . , ek−1} ∩ S) and (V, {e1, . . . , ek} ∩ S) have the same connected components. Now M
selects the collection of superfluous edges in any coalition:

M(S) = {e ∈ S : e is superfluous in S}, (23)

for every S ⊆ E.

Proposition 4.17 Let M be the coalitional map as defined in (23). Then M is monotonic, proper and veto-rich.

Proof Let S, T ∈ 2E with S ⊆ T . Let e ∈M(S). Then e forms a cycle with his predecessors in S, so definitely also
a cycle with his predecessors in T . Therefore e ∈M(T ) which shows that M is monotonic.
Properness of M follows from the fact that M(S) ⊆ S for every S ∈ 2E (see Remark 3.2).
Veto-richness follows from monotonicity and also from the fact that M(S) ⊆ S for every S ∈ 2E : if e ∈ M(S) for
some S we have, using monotonicity, that e ∈M(N) and e ∈ ∩{T : e ∈M(T )}.

In the following example we will show that it is possible that the coalitional mapM as defined in (23) is supermodular,
but that this is not necessarily true.

Example 4.18 Consider the graph (V1, E1) with V1 = {1, 2, 3, 4} and E1 = {12, 14, 23, 34} (in order to avoid
cumbersome notations, we write ij instead of {i, j}). Choose the ordering of the edges in E1 such that e1 = 12,
e2 = 23, e3 = 34 and e4 = 14. Now the corresponding coalitional map M1 is such that M1(E1) = {e4} and
M1(S) = ∅ for all S ⊆ E1, S 6= E1. It is straightforward to see that M1 is supermodular.
Now consider the graph (V2, E2) with V2 = {1, 2, 3, 4} and E2 = {12, 13, 14, 23, 34}. Choose the ordering of the edges
in E1 such that e1 = 12, e2 = 23, e3 = 34, e4 = 14 and e5 = 13. Now the corresponding coalitional map M2 is
such that M2(E2) = {e4, e5}, M2({e1, e2, e5}) = M2({e3, e4, e5}) = M2({e1, e2, e3, e5}) = M2({e1, e2, e4, e5}) =
M2({e1, e3, e4, e5}) =M2({e2, e3, e4, e5}) = {e5}, M2({e1, e2, e3, e4}) = {e4} and M2(S) = ∅ for all other S. Now
with S = {e3, e4, e5} and T = {e1, e2, e5} we have M2(S ∩ T ) = M2({e5}) = ∅, whereas M2(S) ∩M2(T ) = {e5}.
So M2 is not supermodular.

14



The following proposition is a direct consequence of Theorems 3.3, 3.4, 3.5, 3.6 and Proposition 4.17.

Proposition 4.19 Let (V,E) be an undirected graph andM the coalitional map as defined in (23). Then (E, vM,w)
is monotonic, superadditive, (totally) balanced and PMAS-admissible for every w ∈ IRE

+.

Now, we will show that the cost saving games (E, vc) as defined in (22) and corresponding to link connection games
as defined in (21), form a subset of GAGs (E, vM,w) with M specified by (23). Let (E, c) be the link connection
game associated with undirected graph (V,E) and cost vector w ∈ IRE

+. Choose the ordering of the edges in E
according to increasing costs, i.e. E = {e1, e2, e3, . . . , e|E|} such that we1

≤ we2
≤ · · · ≤ we|E| , and let M be the

corresponding coalitional map. Let S ⊆ E. The graph (V, S) partitions the vertex set V into components. Some
components may be singletons, some may be trees and the other components are connected components containing
cycles. In order to find a subset T ⊆ S of minimal cost that results in the same partition of V into components
we can use the well-known algorithm of Prim: reduce any component in (V, S) with a cycle to a tree by removing
edges that form a cycle with the cheaper edges in S. Since we have chosen the order of E with respect to increasing
costs this process boils down to removing the superfluous edges in S, i.e. removing the edges in M(S). So an
optimal network for coalition S is (V, S\M(S)) and the cost saving, going from (V, S) to (V, S\M(S)), is equal
to
∑

e∈M(S) we = vM,w(S). As this is true for every S ⊆ E we get (E, vc) = (E, vM,w). As a consequence of
Proposition 4.19 we obtain the following one.

Proposition 4.20 Cost saving games corresponding to link connection games are monotonic, superadditive, (totally)
balanced and PMAS-admissible.

Proposition 4.21 Link connection games are subadditive, (totally) balanced and PMAS-admissible.

Proof The proof follows directly from the properties of cost saving games corresponding to link connection games
and by Proposition 4.1. �

Cost saving games corresponding to link connection games are generalized additive games with coalitional map
M specified by (23) and cost vectors w in the cone K ⊂ IRE

+ specified by 0 ≤ we1 ≤ we2 ≤ · · · ≤ we|E| . This cone
is generated by the vectors (1, 1, . . . , 1, 1), (0, 1, . . . , 1, 1), (0, 0, 1, . . . , 1, 1), . . ., (0, . . . , 0, 1, 1) and (0, . . . , 0, 1) and
this enables us, like in the example of airport games, to formulate necessary and sufficient conditions on M (and
hence on the undirected graph (V,E)), for getting convex cost saving games for every w ∈ K. We have (E, vM,w)
is convex for every w ∈ K if and only if the sum

|E|∑
i=j

vM,ei (24)

is convex for every j ∈ {1, . . . , |E|}. Here the games (E, vM,ei) are monotonic simple games with as minimal winning
coalitions the simple cycles in (V,E) that contain ei but no edge with an higher index.

Example 4.22 Reconsider the two undirected graphs (V1, E1) and (V2, E2) of Example 4.18. We have vM1,ei is the

zero game for i ∈ {1, 2, 3} and vM1,e4 = uE1 . So
∑4

i=j vM,ei is convex for every j ∈ {1, 2, 3, 4}, hence (E, vM1,w) is
convex for every w ∈ K.
For graph (V2, E2) we have that vM2,ei is the zero game for i ∈ {1, 2, 3}, vM2,e4

= u{e1,e2,e3,e4} and vM2,e5
=

u{e1,e2,e5},{e3,e4,e5}. As vM2,e5
is not convex (it is a monotonic simple game that is not a unanimity game) we

conclude that it is not true that (E, vM2,w) is convex for every w ∈ K.

4.5 Simple MCST games

We recall the definition of minimum cost spanning tree (MCST) game, as introduced in [19, 26]. First, we need to
introduce some graph notions specific for this section. Given a finite set N = {1, . . . , n} and a source denoted by 0,

let (N ′, EN ′) be an undirected complete graph with vertex set N ′ = N ∪{0} and edge set EN ′ and, let z ∈ IR
EN′
+ be

a vector of nonnegative weights on the edges in EN ′ . An undirected graph (S′, T ), T ⊆ ES′ , is a spanning network
on S′ = S ∪ {0}, S ∈ 2N , if for every i ∈ S there is a path in (S′, T ) from i to the source. For any S ∈ 2N , it is
possible to determine at least one spanning tree on S′ for z, i.e. a spanning network (S′, T ) (without cycles) on S′,
of minimum cost z(T ) =

∑
e∈T ze, which is called an MCST on S′ for z.
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Definition 4.23 The MCST game associated with (N ′, EN ′) and z is the cooperative cost game (N, cz) defined by

cz(S) = min{z(T )|(S′, T ) is a spanning network on S′} (25)

for every S ∈ 2N .

A simple MCST game is an MCST game (N, cz) such that z ∈ {0, 1}EN′ (i.e., the weights of edges are 0 or 1). Now,
let S ∈ 2N\{∅}. Two nodes i and j in S′ are (z, S′)-connected if there exists a sequence of nodes i = i0, . . . , ik = j
in S ∪ {0} with z({is, is+1}) = 0 for every s ∈ {0, . . . , k− 1}. A (z, S′)-component of S ∪ {0} is a maximal subset of
S∪{0} with the property that any two nodes in this subset are (z, S′)-connected. The number of (z, S′)-components
is denoted by n(z, S′). Clearly, the collection of (z, S′)-components forms a partition of S′ which is denoted byW|S′ .
As shown in [8, 20, 26] we have that

cz(S) = n(z, S′)− 1

for every S ∈ 2N\{∅}.
Given a simple MCST game (N, cz) associated with (N ′, EN ′) and z ∈ {0, 1}EN′ , the corresponding cost saving

game (N, vcz ) is given by

vcz (S) =
∑
i∈S

z{i,0} − cz(S), (26)

for every S ∈ 2N . Note that this cost saving game (N, vcz ) is in fact a GAG (N, vM,w) with wi = 1 for each i ∈ N
and with coalitional map M defined by

M(S) = IS\
⋃

T∈W|S′ :0/∈T

{j(T )}, (27)

where, for every S ∈ 2N , IS is the set of nodes in S such that z({i, 0}) = 1, and j(T ) = max{j : j ∈ T} for all
T ∈ W|S′ . In fact, it is sufficient to notice that

∑
i∈S z{i,0} = |IS | (by definition of IS), and that all the elements

in the (z, S′)-connected components not including 0 belong to IS , and then we can obtain vcz (S) just counting
the element in IS minus exactly one element of each (z, S′)-connected component T ∈ W|S′ not containing 0 (for
instance, the one with largest index j(T )).

Proposition 4.24 Let M be the coalitional map as defined in (27). Then M is monotonic, proper and veto-rich.

Proof Let S, T ∈ 2N with S ⊆ T . Let i ∈ M(S). Then i ∈ IS ⊆ S and i ∈ IT ⊆ T . This means that there exists
C ∈ W|S′ such that i ∈ C and K ∈ W|T ′ such that i ∈ K. Note that C ⊆ K. If 0 ∈ K, then i ∈ M(T ). Now,
suppose that 0 /∈ K (so 0 /∈ C). Then i < j(C) ≤ j(K) and it again follows that i ∈M(T ), and we have shown that
M is monotonic.
Properness of M follows from the fact that M(S) ⊆ S for every S ∈ 2N .
Veto-richness follows from monotonicity and also from the fact that M(S) ⊆ S for every S ∈ 2N : if i ∈ M(S) for
some S we have, using monotonicity, that i ∈M(N) and i ∈ ∩{T : i ∈M(T )}.

The following proposition is a direct consequence of Theorems 3.3, 3.4, 3.5, 3.6 and Proposition 4.24.

Proposition 4.25 Let (N ′, EN ′) be an undirected complete graph and let M be the coalitional map as defined in
(27). Then (N, vM,w) is monotonic, superadditive, (totally) balanced and PMAS-admissible for every w ∈ IRN

+ .

Proposition 4.25 holds in particular for the case wi = 1 for all i ∈ N . Then, by relation (27) we have the following.

Proposition 4.26 Cost saving games corresponding to simple MCST games are monotonic, superadditive, (totally)
balanced and PMAS-admissible.

Proposition 4.27 Simple MCST games are subadditive, (totally) balanced and PMAS-admissible.

Proof The proof follows directly from the properties of cost saving games corresponding to simple MCST games
and by Proposition 4.1. �

In [8, 20, 26] it has been shown that every MCST is a nonnegative combination of simple MCST games. Then,
by Proposition 4.27 it immediately follows that also MCST games are subadditive, (totally) balanced and PMAS-
admissible, as already noticed in [20].
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4.6 (Weighted) coloring games

Let Γ = (N,E) be an undirected graph and w ∈ INN a nonnegative integer weight vector. A clique is a set S ∈ 2N

such that {i, j} ∈ E for every i, j ∈ S, i 6= j. The weight of this clique is
∑

i∈S wi. A clique with maximum weight is
called a maximum weighted clique and the corresponding weight the weighted clique number of G. This number is
denoted by ωw(Γ). For k ∈ IN a k-coloring of graph Γ with respect to weight vector w is a function h that assigns a
set of wi different colors to every vertex i ∈ N such that adjacent vertices receive disjoint sets of colors and at most
k colors are used. Formally, such a coloring is a map h : N → 2{1,...,k} such that |h(i)| = wi for every i ∈ N and
h(i) ∩ h(j) = ∅ for every {i, j} ∈ E. The minimum number k such that a k-coloring of Γ with respect to w exists
is called the weighted chromatic number of Γ with respect to w and denoted as χw(Γ). The weighted minimum
coloring game [12] associates with every coalition the weighted chromatic number of Γ|S with respect to wS .

Definition 4.28 The weighted minimum coloring game [12] on Γ = (N,E) with weight vector w ∈ INN is the cost
game (N, cΓ,w) defined by

cΓ,w(S) = χwS
(Γ|S)

for every S ∈ 2N .

In case wi = 1 for every i ∈ N then ωw(Γ) = ω(Γ) and χw(Γ) = χ(Γ) where ω(Γ) and χ(Γ) are the well known
clique and chromatic numbers of Γ. Moreover (N, cΓ,w) = (N, cΓ), where (N, cΓ) is the minimum coloring game of
Γ ([10, 11]).

A graph Γ = (N,E) is called perfect if ω(Γ|S) = χ(Γ|S) for every S ∈ 2N , i.e. the clique and chromatic numbers
are the same for the full graph and every induced subgraph. Perfect graphs are known to be weighted perfect as well
(see, for example [22]): for every weight vector the weighted clique and weighted chromatic numbers are the same
for the full graph and every induced subgraph. A graph Γ = (N,E) is called (2K2, P4)-free if there is no S ∈ 2N ,
|S| = 4 such that Γ|S is a graph with two edges that have no vertex in common (2K2) or Γ|S is a line graph with
three edges (P4). A graph Γ = (N,E) is called complete multipartite if there is a partition {P1, P2, . . . , Pr} of the
vertex set N such that for any two vertices i ∈ Pk, j ∈ Pl we have {i, j} ∈ E if and only if k 6= l.

From the literature we know the following results relating properties of graphs to properties of the related
(weighted) minimum coloring games: Γ is perfect if and only if cΓ is totally balanced [10], Γ is perfect if and only if
cΓ,w is totally balanced for every w ∈ INN [12], Γ is (2K2, P4)-free if and only if cΓ has a PMAS [11], Γ is (2K2, P4)-
free if and only if cΓ,w has a PMAS for every w ∈ INN [12], Γ is complete multipartite if and only if cΓ is concave
[21] and Γ is complete multipartite if and only if cΓ,w is concave for every w ∈ INN [12].

Again, we will illustrate that some of these results can be ‘reproduced’ by considering some classes of (weighted)
minimum coloring games as generalized additive games with coalitional maps M satisfying nice properties. First,
consider the following example.

Example 4.29 Consider the graph Γ = (N,E) with N = {1, 2, 3, 4} and E = {{1, 2}, {3, 4}} (so Γ is isomorphic
to 2K2) and let w ∈ INN be such that wi = 1 for every i ∈ N . As Γ is perfect but not (2K2, P4)-free we know that

cΓ is totally balanced but that it does not have a PMAS. Let vc
Γ

be the cost savings game, corresponding to cΓ. It
is readily verified that vc

Γ

(N) = 2, vc
Γ

(S) = 0 if S ∈ {{1}, {2}, {3}, {4}, {1, 2}, {3, 4}} and vc
Γ

(S) = 1 otherwise (in

fact vc
Γ

is a glove game with two left and two right gloves). With M defined by M(N) = {1, 2}, M(S) = {1} if
S ∈ {{1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}}, M(S) = {2} if S ∈ {{2, 3}, {2, 4}, {2, 3, 4}} and M(S) = ∅ otherwise

one easily finds that vc
Γ

= vM,w. Now M is proper and veto-rich but not monotonic. From Theorem 3.5 we derive

that vc
Γ

is balanced and hence from Proposition 4.1 that cΓ is balanced. Although there is freedom in choosing M
that generates the cost savings game vc

Γ

, no coalitional map M can be both monotonic and veto-rich. Otherwise,
according to Theorem 3.6, the game cΓ would have a PMAS as well.

Let Γ = (N,E) be a complete multipartite graph and let {P1, P2, . . . , Pr} be the corresponding partition of the
vertex set N . We list the nodes in N in some order N = {v1, v2, v3, . . . , vn}, with n = |N | (not yet having a cost
vector w ∈ IRN

+ in mind).
Let [n] = {1, . . . , n}. For every vi ∈ N , with i ∈ [n], let k(vi) ∈ {1, . . . , r} be such that vi ∈ Pk(vi). Define the

map M by
M(S) = {vi ∈ S|there is a vj ∈ S ∩ Pk(vi) with i, j ∈ [n] and j > i} (28)
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for every S ∈ 2N . In other words, M(S) is formed by members of S that precede in the order another member of
S in the same partition element. One easily verifies the following statement.

Proposition 4.30 Let Γ = (N,E) be a complete multipartite graph and let M be the coalitional map as defined in
(28). Then M is monotonic, proper and veto-rich but not necessarily supermodular (this is only true if all partition
elements have at most two elements, see Remark 4.31).

Remark 4.31 Let Γ = (N,E) be a complete multipartite graph and let {P1, P2, . . . , Pr} be the corresponding par-
tition of the vertex set N such that |Pl| ≤ 2 for l = 1, . . . , r. We want to show that the coalitional map M defined
by (28) on Γ is supermodular. First, consider two coalitions S, T ∈ 2N such that vi ∈ M(S) ∩M(T ), i ∈ [n]. To
be selected by both M(S) and M(T ), vi must be in both S and T , and in both S and T there must be a vj ∈ Pk(vi)

with j ∈ [n] and j > i. So, vi, vj ∈ S ∩ T and it follows that vi ∈M(S ∩ T ). Now, take vi ∈M(S ∩ T ) with i ∈ [n].
This means that vi ∈ S ∩ T and there is a vj ∈ S ∩ T ∩ Pk(vi) with j ∈ [n] and j > i. So, vi ∈ M(S) ∩M(T ) and
we can conclude that M(S) ∩M(T ) =M(S ∩ T ), i.e. M is supermodular.

On the other hand it is easy to check that if Γ = (N,E) is a complete multipartite graph with some partition
element Pk such that |Pk| > 2, then M is not necessarily supermodular. For instance, take Pk = {vh, vi, vj} with
h, i, j ∈ [n] and h < i < j, and let S = {vh, vj} and T = {vh, vi}. Then M(S) = {vh} and M(T ) = {vh}, but
M(S ∩ T ) =M({vh}) = ∅.

The following proposition is a direct consequence of Theorems 3.3, 3.4, 3.5, 3.6 and Proposition 4.30.

Proposition 4.32 Let Γ = (N,E) be a complete multipartite graph and let M be the coalitional map as defined in
(28). Then (N, vM,w) is monotonic, superadditive, (totally) balanced and PMAS-admissible for every w ∈ IRN

+ .

Now, we will show that the cost savings games vc
Γ,w

, corresponding to the weighted minimum coloring games
cΓ,w on complete multipartite graphs, form a subset of GAGs (N, vM,w) with M specified by (28). Let (N, cΓ,w)
be the weighted minimum coloring game associated with a complete multipartite graph and cost vector w ∈ IRN

+ .
Choose the ordering of the vertices in N according to increasing costs, i.e. N = {v1, v2, v3, . . . , vn} such that
wv1
≤ wv2

≤ · · · ≤ wvn
, and let M be the corresponding coalitional map according to (28). Define the set K(S) =

S\M(S) for every S ∈ 2N . The set K(S) is a maximum weighted clique in Γ|S with weight
∑

i∈[n]:vi∈K(S) wvi
,

with [n] = {1, . . . , n}, and this is also the weighted chromatic number of Γ|S with respect to w|S since Γ is perfect.
Therefore cΓ,w(S) =

∑
i∈[n]:vi∈K(S) wvi

for every S ∈ 2N . So indeed we have

vc
Γ,w

(S) =
∑

i∈[n]:vi∈S

cΓ,w({vi})− cΓ,w(S) =
∑

i∈[n]:vi∈S

wvi
−

∑
i∈[n]:vi∈K(S)

wvi
=

∑
i∈[n]:vi∈M(S)

wvi
= vM,w(S)

for every S ∈ 2N .
As a consequence of Proposition 4.32 we obtain the following.

Proposition 4.33 Cost saving games corresponding to weighted minimum coloring games on complete multipartite
graphs are monotonic, superadditive, (totally) balanced and PMAS-admissible.

Proposition 4.34 Weighted minimum coloring games on complete multipartite graphs are subadditive, (totally)
balanced and PMAS-admissible.

Proof The proof follows directly from the properties of cost saving games corresponding to weighted minimum
coloring games on complete multipartite graphs and by Proposition 4.1. �

Weighted minimum coloring games corresponding to complete multipartite graphs are known to be concave as
well. In case all permutation elements have at most two elements, from Remarks 4.31 and Theorem 3.7 it follows
that cost saving games corresponding to weighted minimum coloring games are submodular or concave, but this not
sufficient to prove that the corresponding weighted minimum coloring games are supermodular or convex.
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Instead, for the unweighted case (wi = 1 for every i ∈ N) we can also prove that minimum coloring games
are concave as follows. For every k ∈ {1, . . . , r} let pk be the element of Pk with the smallest index. Define the
coalitional map M by

M(S) = {pk|k ∈ {1, . . . , r}, Pk ⊆ S} (29)

for every S ∈ 2N . One can easily verify the following proposition.

Proposition 4.35 Let Γ = (N,E) be a complete multipartite graph and let M be the coalitional map as defined in
(29). Then M is supermodular.

The following proposition is a direct consequence of Theorem 3.7 and Proposition 4.35.

Proposition 4.36 Let Γ = (N,E) be a complete multipartite graph and let M be the coalitional map as defined in
(29). Then (N, vM,w) is convex for every w ∈ IRN

+ .

For every S ∈ 2N and w ∈ IRN
+ we have cΓ(S) = |{k ∈ {1, . . . , r}|Pk ∩ S 6= ∅}|. For the dual game cΓ∗ we have

cΓ∗(S) = cΓ(N) − cΓ(N\S) = r − |{k ∈ {1, . . . , r}|Pk ∩ (N\S) 6= ∅}| = |{k ∈ {1, . . . , r}|Pk ⊆ S}| =
∑

i∈M(S) wi =

vM,w(S) for every S ∈ 2N . As a consequence, we obtain the following.

Proposition 4.37 Cost saving games corresponding to minimum coloring games on complete multipartite graphs
are convex.

Proof It follows from the fact that cΓ∗ = vM,w for every w ∈ IRN
+ , and in particular for the vector w such that

wi = 1 for every i ∈ N . �

Proposition 4.38 Minimum coloring games corresponding to complete multipartite graphs are concave.

Proof The proof follows directly from the properties of convexity of dual games corresponding to minimum coloring
games on complete multipartite graphs and by Proposition 4.2. �

Finally, let us consider a graph Γ = (N,E) that is (2K2, P4)-free. Moreover, let w ∈ INN be such that wi = 1 for
every i ∈ N . From [28] and [29] we know that Γ has a rooted forest representation: there is a rooted forest (N,F )
such that for every i, j ∈ N, i 6= j we have {i, j} /∈ E if and only if i ∈ D(j) or j ∈ D(i). Here for every i ∈ N the
set D(i) denotes the unique path in (N,F ) from i to the root of its tree (including i and the root of the tree). Now
define the map M by

M(S) = {i ∈ S|there is a j ∈ S, j 6= i with i ∈ D(j)} (30)

for every S ∈ 2N . One easily verifies the following proposition.

Proposition 4.39 Let Γ = (N,E) be a (2K2, P4)-free graph and let M be the coalitional map as defined in (30).
Then M is monotonic, proper and veto-rich.

The following proposition is a direct consequence of Theorems 3.3, 3.4, 3.5, 3.6 and Proposition 4.39.

Proposition 4.40 Let Γ = (N,E) be a (2K2, P4)-free graph and let M be the coalitional map as defined in (30).
Then (N, vM,w) is monotonic, superadditive, (totally) balanced and PMAS-admissible for every w ∈ IRN

+ .

It is straightforward to check that cΓ(S) = |S\M(S)| for every S ∈ 2N . Now, for the cost savings game vc
Γ

corresponding to cΓ we have vc
Γ

(S) =
∑

i∈S c
Γ({i})− cΓ(S) =

∑
i∈S wi −

∑
i∈S\M(S) wi =

∑
i∈M(S) wi = vM,w(S)

for every S ∈ 2N . As a consequence of Proposition 4.40 we obtain the following.

Proposition 4.41 Cost saving games corresponding to weighted minimum coloring games on (2K2, P4)-free graphs
are monotonic, superadditive, (totally) balanced and PMAS-admissible.

Proposition 4.42 Weighted minimum coloring games on (2K2, P4)-free graphs are subadditive, (totally) balanced
and PMAS-admissible.

Proof The proof follows directly from the properties of cost saving games corresponding to weighted minimum
coloring games on complete multipartite graphs and by Proposition 4.1. �
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5 Conclusions

In this paper we have introduced some characterizations for large families of GAGs [9], and we have shown how these
results can be used to analyze common features among distinct classes of TU games (in particular, within the family
of OR games [6]). The results for GAGs provided in Section 3 apply to all vectors of nonnegative contributions. As
a consequence, in some cases, the generality of coalitional maps prevent an exhaustive search of properties of the
associated games. In this case, as shown for generalized airport games and also for link connection games, conditions
for GAGs over subsets of contribution vectors (in particular, convex cones) are more effective, and deserve a deeper
understanding.
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