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Abstract

This paper proposes a new framework for evaluating capability sets by incorporating in-
dividual preferences over the diversity of accessible options. Building on the Capability Ap-
proach, we introduce a compromise method that balances between the notions of negative and
positive freedom, effectively capturing the intrinsic and instrumental values of diverse choices
within capability sets.



1 Introduction

The Capability Approach, introduced by Amartya Sen (1980, 1985, 1993, 1999, 2009), pro-
vides a framework for evaluating individual well-being and social justice by shifting the focus
from material resources to the real freedoms people have to achieve the lives they value. Central
to this approach is the concept of capability set, which represents the set of achievable func-
tionings (seen as beings and doings) that individuals can choose from, given their resources,
personal characteristics, and the surrounding environment. This perspective ties freedom di-
rectly to the availability and quality of opportunities, emphasizing that freedom of choice is not
only about the range of options but also about their ability to make individuals lead meaningful
lives.

The link between opportunity set theory and the Capability Approach lies in their shared
focus on freedom as a central metric for well-being. Opportunity set theory provides a formal
framework for comparing sets of choices available to individuals, capturing the idea that free-
dom can be understood as a range of opportunities. This aligns directly with the Capability
Approach, which interprets these sets as reflecting the real opportunities individuals have to
achieve valued outcomes. By analyzing the structure, size, and relevance of opportunity sets,
one can formalize and measure the extent of freedom in a way that resonates with the norma-
tive goals of the Capability Approach (Pattanaik and Xu, 1990; Xu, 2003a; Kreps, 1979; Carter,
1995).

In the Capability Approach, the emphasis is not on the range of nominal alternatives, but on
the real opportunities to achieve valuable states of being. Each option is conceived as a vector
of functionings across several welfare dimensions, and a capability set gathers the attainable
vectors. From this perspective, adding a dominated element does not enlarge what a person
can truly achieve, which makes it natural to focus on the set of undominated elements (the
Pareto frontier). This stance is normatively stronger than in some opportunity set models (Pat-
tanaik and Xu, 1990; Gaertner and Xu, 2008), where dominated options may still be considered
relevant. For this reason, we will use the term capability sets rather than opportunity sets.

Within the broader discussion of freedom, scholars have highlighted two interconnected
aspects: interpretations of freedom and methods to measure it. The interpretations, such as
negative freedom, positive freedom, and preference for flexibility (see below for explanations
and references), offer conceptual foundations for understanding the value of capability sets.
These perspectives emphasize distinct but overlapping ways in which freedom manifests in ca-
pability sets. Meanwhile, the development of measurement approaches aims to operationalize
these interpretations by providing quantitative tools to evaluate the extent and quality of free-
dom. Together, these two aspects form the backbone of opportunity set theory and its practical
applications.

Freedom interpretations have been categorized into three main perspectives. Negative free-
dom, rooted in the absence of external constraints, views freedom as the ability to act without
interference, focusing on the size of opportunity sets (Berlin, 1969; Pattanaik and Xu, 2002; Op-
penheim, 1981). Negative freedom is closely linked to the intrinsic value of freedom, as it em-
phasizes the existence of options and the autonomy they represent, regardless of whether these
options are utilized. Positive freedom emphasizes the availability and conversion of meaningful
opportunities, highlighting the quality of options (Sen, 1985; Carter, 2004). Positive freedom
is inherently tied to the instrumental value of freedom, as it focuses on how opportunities en-



able individuals to achieve valuable outcomes and lead fulfilling lives. Finally, preference for
flexibility, introduced by Kreps (1979), stresses the adaptability provided by larger sets in the
face of future preference uncertainty (Carter, 1995; van Hees, 2000).

The methods for measuring those sets of options have evolved to capture these varying in-
terpretations. Quantity based methods (Pattanaik and Xu, 1990, 2000b), with the simplest ap-
proach, counts the number of options in a set, aligning closely with negative freedom. Weighted
cardinality refines this by assigning value to each option based on its significance, connecting
with positive freedom (Xu, 2003a; Carter, 2004; Pattanaik and Xu, 1998; Xu, 2003a,b). Utility-
based measures evaluate sets by considering the maximum utility achievable, often linked to
both positive freedom and preference for flexibility (Kreps, 1979; Pattanaik and Xu, 2015). Fi-
nally, measures of diversity focus on the range and variation of choices, addressing elements of
all three interpretations by highlighting the richness and adaptability of the set (Carter, 1995;
Xu, 2003a).

In this paper, we position our work in between negative and positive freedom. Our proposed
measure is situated between utility-based approaches and diversity-based approaches. To the
authors’ knowledge, the only works that have attempted to measure freedom as conjointly
reflecting the diversity and the valuation of options are Gaertner (2012); Gaertner and Xu (2006,
2008, 2011). However, a key limitation of their methods is that they do not satisfy the Strong
Monotonicity Property, meaning that adding an alternative that appears relevant to an individual
does not necessarily increase their freedom.

Section 2 introduces the mathematical setting and the notation. Section 3 delves into the
necessity of developing a function to assess capabilities, focusing on the role of freedom of
choice and exploring the Gaertner and Xu methods and the volume based method proposed
by Xu (2004). Section 4 defines desirable properties of methods for assessing capability sets.
Section 5 presents our approach, the compromise approach, which respects those properties.
Our approach will be compared to two methods that represent opposing perspectives on the
value of diversity in capability sets. The instrumental extreme evaluates an opportunity set only
by its best-valued option, reflecting a purely outcome-oriented view of freedom. In contrast, the
intrinsic extreme values freedom through the availability of all equally desirable alternatives,
emphasizing the richness of choice. These two serve as normative extremes between which our
proposed compromise approach can be flexibly parameterized. Proofs of the main results are
provided in the appendix.

2 A formal framework for Capability sets

An individual’s being is represented by a vector @ = (a1,...,ap,...,apx) € ngo ={¥ ¢
R" |2, > 0,Yh = 1,...h*}, where the coordinates aj, assess the performance levels attained
on a set of h* welfare dimensions (or functionings), such as life expectancy, level of nourish-
ment, mobility, etc. It is assumed that the evaluations on the h* dimensions of the space R’;*O
provide a complete description of the welfare aspects that are relevant for the individual. We
also assume, w.l.o.g., that, for all welfare dimensions, the larger the evaluation the better.

We recall the definition of the weak (resp. strict) dominance relation on R’;*O. For a, b e
R’;*O, we have that @ weakly dominates b (denoted @ > l_;) if ap, > by, forallh = 1,...,~h".

We say that @ strictly dominates b (denoted @ > b) if @ weakly dominates b and aj, > by, for



some h € {1,...,h*}!. We also use the notation < and < in an obvious way. Under the above
made assumption, i.e., that larger evaluations are better than smaller for all welfare dimensions,
a being that dominates another is necessarily preferred to the latter.

In practice, a capability set can take different forms depending on the problem under study.
It may be a finite collection of attainable beings, for example when an empirical dataset enu-
merates distinct combinations of functionings that a person can realistically achieve (Fayard,
2024). In other contexts, it may be an infinite set defined implicitly by constraints, such as
the individual’s limited resources, together with a model describing how these resources can
be transformed into feasible beings (Fayard et al., 2022). In a spatial accessibility setting, for
instance, the capability set could be the set of all functionings reachable within a given travel
budget. This flexibility allows the framework to encompass both discrete choice situations and
continuous opportunity spaces.

Let C be a compact subset of IR’;*O, called the capability space. We denote by boldface letters
such as A, B, C subsets of C. When these subsets are nonempty and compact, we call them
capability sets. Compactness expresses that feasible beings are both limited and well-defined:
boundedness reflects the finiteness of available resources, and closure the idea that opportunity
structures include all their attainable limits. Individuals are assumed to reason over attainable
beings rather than over sequences that merely approach them. We exclude the empty set, which
would correspond to the absence of any viable being, in the Capability Approach, a situation
equivalent to the loss of all functionings, i.e., death. In some cases, it will be convenient to
consider subsets of the larger space R’;*O, whenever we do so, we will make this explicit, and
such sets are not referred to as capability sets.

For any subset A C C, we define its Positive Domination Closure (PDC) as

AP = {# e RY, | 3G € A such that @ > &} (1)

That is, AP consists of all beings that are weakly dominated by at least one element of A..

We now extend the weak and strict dominance relations to subsets of R’;*O.

Definition 2.1 Let A and B be subsets of R}go.

We say that A weakly dominates B, denoted A > B, if for every being b € B, there exists
a being a € A such that a > b.

We say that A strictly dominates B, denoted A > B, if A > B and there exists at least
one being d € A such that no being beB satisfies b>a

We say that A strongly dominates B, denoted A > B, if A > B and there exist a being
a € A and £ > 0 such that the hyper-rectangle [d — € - 1,d] is contained in ]RI;*O and does not
intersect the dominated region of B, that is,

[@—e-1,a)nBP =0,

where 1 = (1,...,1) denotes the unit vector in R"2.

'We abuse notation by using the same symbol > for denoting the usual order relation on the real numbers set R and
the weak dominance relation on R%. A similar remark holds for the symbol >.

2The notation [@—¢- T, d| refers to the closed hyper-rectangle generated by the componentwise intervals [ay, —e, ap,]
for each dimension h.
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Figure 1: Three Capability sets and their PDC

If A and B are capability sets (i.e., nonempty compact subsets of C), then A > B means
that B is contained in the dominated region of A, that is, B C AP. Similarly, A > B means
that B C AP.

The distinction between strict and strong dominance lies in the notion of a perceptible
expansion of freedom. While strict dominance (A > B) only requires that A includes at
least one being not dominated by any element of B, strong dominance (A > B) additionally
requires that this advantage be measurable: A must open a non-negligible region of feasible
beings that remains out of reach for B. The existence of an e-gap ensures that the improvement
is not merely theoretical (for instance, adding an isolated irrational point among rationals) but
corresponds to an actual, perceivable enlargement of the capability space. This interpretation is
consistent with the Capability Approach, where differences in freedom should reflect tangible
opportunities that agents can realistically experience or value.

Example 1 Figure 1 depicts three capability sets in the case h* = 2. Two of the capability
sets, denoted A and B, are finite, while the third one, denoted C, contains an infinite number
of solutions. Areas in the plot represent the spaces dominated by A, B, and C, specifically
AP, BP, and CP.

In this example, A should be preferred over B because BP is entirely contained within AP.
On the other hand, when comparing C to A (and B) using this simple method, no comparison

can be made in principle. This is because neither C is a subset of AP, nor is A a subset of
CP. A

If A is a capability set, the set of its non-strictly dominated points plays an important role
in the sequel.

Definition 2.2 Let A C R’go and @ € A. The point @ is non-strictly dominated in A if there is

no point b € A such that b > @. The set of all non-strictly dominated points of A, also called
the Pareto frontier of A, is denoted P(A).



In general, if we do not assume that A is compact, its Pareto frontier P(A) may be empty.
If A is a capability set (i.e., a nonempty compact subset of C), then every point of A is weakly
dominated by a point in P(A).

Proposition 1 If A C ngo is compact, then for all @ € A, there exists beP (A) such that
b>a.

Proof. Forany & € A, let ©= denote the set of points in R};*O that weakly dominate &, i.e.,
> = {y € R%,|§ > &}. Consider the set A N #=. It is a bounded and closed subset of RZ,
since A is bounded and closed, and #= is closed. Let §* € arg max{zzl vi, 7 € ANT=}. We
have i* € AN 2= since the continuous function Ziil y; on the compact set A N ZZ reaches
its maximum in this set. The point §* weakly dominates & and is non-strictly dominated in
A N #Z. To prove the latter, assume by contradiction that there is 7 € A N #= with 7 # ¢/
and Z > ¢*. This would imply ZZLZI z > Z?Zl y; , a contradiction. We just showed that ™ is
non-strictly dominated in A N#=. Itis not either in A because no point in A Nz~ is dominated
by a point in A \ #=. [
An immediate consequence of this result is the following.

Corollary 1 If A is a capability set, we have that AP = P(A)P.

Proof. By Proposition 1 and the transitivity of the weak dominance relation, any point
weakly dominated by a point of A is weakly dominated by a point in P(A). |

Note that the Pareto frontier P(A) of a capability set A is not always a capability set. This
is because the set P(A) may fail to be closed.

We consider a set of valuation functions v € V such that each v : C — R>o maps the capa-
bility space C to non-negative real numbers. The considered functions v(-) are both increasing
and continuous, the former meaning that:

Yo e V,Y(E &) e C?, ifé> &, thenv(é) > v(&).

The requirement for v being defined on C is strong because it requires the ability to compare
all the options in C, which may not always be possible. Nonetheless, the monotonicity of v is a
reasonable demand, given the objective of maximizing welfare across all dimensions.

3 Freedom of choice

As highlighted in the introduction, we want to consider two crucial aspects when comparing
capability sets: their overall level of welfare (valuation of beings) and their distribution across
different dimensions (diversity).

One important aspect that is often overlooked in the measurement of capability sets is the
value assigned to the freedom of choosing an option valued at a certain level of well-being. In
the example given by Sen (1985), it may be reasonable to argue that a person who assigns no
value to choice would be indifferent between a capability set where only @ is achievable and
a capability set where @ is achievable along with another option o’ such that v(a’) < v(@).



However, it can also be argued that a person who values choice would prefer the second capa-
bility set over the first. This consideration highlights the importance of incorporating individual
preferences over freedom and values over beings within the measurement framework.

The assessment of capability sets is a complex task that requires careful consideration. One
way to do so is to count the number of options in the capability set, as proposed by Pattanaik
and Xu (1990) in an axiomatic characterization. However, it should be noted that the value
of choice cannot be reduced to the cardinality of the capability set due to several important
reasons:

* First, the existence of capability sets with an infinite number of beings. We need to be
able to discern between different infinite sets in order to effectively evaluate their relative
goodness. For instance, in Figure 2, capability sets A and B are both infinite, yet it is
evident that A dominates B in terms of the ordering of capabilities. See Pattanaik and
Xu (2000b) for a quantity-based axiomatic work on infinite capability sets.

8! A ]| ZA
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Figure 2: Comparison of Capability Sets A Figure 3: Comparison of Capability Sets A
and B with infinite beings (A dominates B) and B. B has more potential beings, but A is

more diverse

* The second reason is linked to the notion of diversity (Pattanaik and Xu, 2000a) of options
(or their range, Klemisch-Ahlert 1993). Let a capability set B represent ten possible ways
of walking to work, while a capability set A represents one way of walking and one way
of cycling to work. In this case, although B offers a higher number of possible beings, it
can be argued that the diversity of beings in A is greater in terms of freedom of choice,
as Figure 3 illustrates.

* Thirdly, we need to take into account the value of the offered choices according to indi-
vidual preferences (Sen, 1990, 1991). An individual may possess a capability set B that
contains numerous options, including diverse but low-valued ones, and may perceive as
having fewer capabilities compared to a capability set A that offers fewer options but of
higher value. For instance in Figure 4, B has more options and is “more diverse” than A,
but every being of B is dominated by a being in A.
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Figure 4: Comparison of Capability Sets A Figure 5: Two equivalent sets A, B according
and B. B offers more options and is more di- to Axiom 1

verse compared to A, but every being of B is
dominated by a being in A

Following these remarks, we assume that including dominated or redundant beings in the
capability space does not enhance individual freedom. For instance, adding the option to “go to
work using only one leg” when “going to work on foot” is already available does not improve
an individual’s freedom. Similarly, duplicating an existing opportunity, such as adding to A =
{@} an identical element b = @, does not expand the space of attainable beings. In both cases,
the set of feasible functionings remains unchanged, as these additions do not modify the Pareto
frontier. Hence, a capability set can be reduced to its Pareto frontier without any loss of relevant
information (see Figure 5).

We now introduce a function ¢ that evaluates capability sets. Formally, for a capability
set A C C, a value function v € V, and a freedom-sensitivity function ¢ : R>g — R>q,
assumed to be continuous and strictly positive except perhaps in 0, we denote by 9 (A) the
value assigned to A according to v, once transformed by ¢. We denote by 9 (A) the value

assigned to A according to v, after transforming v by ¢. This evaluation takes a non-negative
real value: ®%(A) € R>o.

Intuitively, the freedom-sensitivity function ¢ determines how the individual values differ-
ences in attainable well-being levels. It transforms the valuation v (&) of each attainable being
d € A into a modified contribution ¢(v(a)), thereby shaping how freedom responds to the
distribution of values within the capability set. A convex ¢ amplifies higher valuations of v,
approximating an instrumental view of freedom where the best options dominate the assess-
ment. Conversely, a concave ¢ gives relatively greater importance to lower-valued beings,
capturing an intrinsic or egalitarian view of freedom.

In view of the above discussion, we assume that ¢ satisfies the following property.

Axiom 1 (Indifference of insignificant beings) For all value function v € V, all freedom-
sensitivity function ¢ and all capability sets A, B such that A > B, we have <I>§f(A) = @f(AU
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B).
Axiom 1 entails the following.

Proposition 2 If A is a capability set, AP is also a capability set. Under Axiom 1, ¢ (A) =
®%(AD). In case P(A) is a capability set, we also have ®L(A) = Y (P(A)).

Proof.  Although it seems intuitively clear that A is compact as soon as A is compact, we
could not find a proof of this result in literature. We thus provide a — not straightforward —
proof in Appendix A (Lemma 1).

Assuming that A is a capability set, we have A? > A and A > AP. Applying Axiom 1,
we get B (A) = OY(A U AD) = 5(4D).

Similarly, if P(A) is closed, hence a capability set, we have ®(P(A)) = ®3(AP) =
®Y(A), since P(A)D = AP, [

Foster (2011) argues that a measure of freedom depends on the quantity and quality of
available beings. However, we contend that the notion of diversity, rather than quantity, is a
more appropriate indicator of freedom. Specifically, we propose that freedom would emerge
from a conjoint measure of diversity and valuation of options. Hence, the concept of a Pareto
dominant set, which focuses on the set of solutions that are not dominated by any other solution
in the space, is perceived more suitable in this context.

For instance, consider options from sets A and B, where A may have an infinite number
of solutions while B has only three, as depicted in Figure 5. Despite this difference, these
solutions can be considered equivalent under certain circumstances (i.e., Axiom 1). This is
because, if all relevant dimensions are accounted for, a rational individual endowed with the
capability set A would invariably opt for a solution from B. Therefore, a measure of freedom
based on diversity, rather than quantity or quality alone, is more appropriate for capturing the
essence of freedom in the capability approach.

3.1 Gaertner and Xu method

To the authors’ knowledge, the only works that have tried to measure freedom as jointly involv-
ing the diversity and the valuation of options are Gaertner (2012); Gaertner and Xu (2006, 2008,
2011). It is worth noting that these methods have been primarily proposed for assessing human
development, whereas the current study addresses capabilities of all types. The fundamental
principles of their model are the following (with adaptations made to facilitate understanding
in the context of our problem):

First, a reference beings vector %0 in the capability space C is defined, which represents the
direction of societal development. Typically, this vector indicates a boundary of deprivation
below which an individual is considered poor. Alternatively, it can be the existing average level
of development.

Next, a distance function d(x,y) between two points z and y is defined.? For instance, the
Euclidean distance can be used, given by

d(x7 y) =

3The distance function need to respect some properties (see Gaertner and Xu 2006).
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Figure 6: An example of the determination of scores for some capability sets using Gaertner-Xu
like method

where h* denotes the number of dimensions in the capability space.
Then, in an adapted version of the Gaertner-Xu method, a capability set A is assessed as
follows:

1. if k0 ¢ AP, the assessment is a negative number; it is equal to minus the radius of the
smallest sphere centered in kO that intersects the set AP in a point @ dominated by £Y;

2. if k9 € AP, the assessment is a positive number; it is equal to the radius of the largest
sphere centered in k0 satisfying the following condition: the part of this sphere contained
in the positive orthant centered in k9 is included in AP.

Mathematically, the assessment r(A, d) of A is computed as follows:
(A.d) —min{t € Ry : {@ € RE, : @ < kO, d(a@,k0) <t} N AP # (0} if k0 ¢ AP,
T , = P — - L=
max {t € Ry : {@d € RY;:a@ > kY, d(a, k%) <t} C AP}if k0 € AP,

Example 2 Figure 6 displays an example of the determination of the score of four
capability sets using the adapted Gaertner-Xu method with k° = (4,4). We would
obtain the order r(A,d) < r(B,d) < r(C,d) < r(D,d) with r(A,d) = —2.5,
r(B,d) = —15r(C,d) =1, r(D,d) = 2 A

Several generalizations of the method have been proposed in Gaertner and Xu
(2008, 2011) and Gaertner (2012). However, for the purpose of understanding the

10
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Figure 7: An example of the determination of scores for some capability sets using optimistic and
pessimistic Gaertner-Xu like methods

main idea, the simple unique point (@°) formulation suffices. It is important to high-
hght that the Gaertner-Xu method can be perceived as a pessimistic approach when
k0 is in the capablhty set (ko € AP), and an optimistic approach when it is located
“above” it (k0 € C \AP). Specifically, if k0 is “above” the capability set, its score is
determined by the closest point weakly dominated by A from kY, while other points
weakly dominated by both A and kY would have a lower score. Conversely, if k0 is
contained within AP, the score is equal to the closest point on the frontier of weakly
dominated solutions by A, but it is possible for solutions that dominate k0 to exist at a
greater distance.

It is worth mentioning that other rules can be formulated, although they may not
necessarily satisfy all the axioms proposed by Gaertner and Xu. For instance, an opti-
mistic version of the procedure would be:

— ming{t € Rxg : {aeR;O @< k0:d(@ ko) <t}nAP £0} ifk0 ¢ AP,
max,{t € Rsg: {@ € RY, : @ > k0, d(@, k0) < t} N AP # ¢} if k0 € AP,
whereas a pessimistic approach would be:

—min{t € Rso: {@ € Ry : @ < k0,d(d@, k0) = t} C AP} ifk0 ¢ AP,
max,{t € Rsg: {@ € RY, : @ > k0, d(a, k0) < t} C AP}ifk0 € AP,

r(A,d) =

r(A,d) =

Example 3 Using the same capability sets A, B, C, D and reference point a° as in Ex-
ample 2, we obtain different rankings under the optimistic and pessimistic procedures,

11



as illustrated in Figure 7.
Under the optimistic procedure, the resulting order is:

r(C,d) > r(D,d) > r(B,d) > r(A,d),
with corresponding scores:
r(A,d)=-25, r(B,d) =-150, r(C,d)=4.03, r(D,d) =2.83.
Under the pessimistic procedure, the order is reversed:
r(D,d) > r(C,d) > r(A,d) > r(B,d),
with scores:
r(A,d) =-3.20, r(B,d)=-380, r(C,d)=1.00, r(D,d) =2.00.
A

Importantly, note that in all cases, the entire distribution of the capabilities is not
taken into account. Indeed, we only look at the extreme solutions; those closest or
farthest from £©.

3.2 On ranking linear budget sets in terms of freedom of choice

Another interesting approach for assessing opportunity sets is the method proposed by
Xu (2004). Their idea is to measure the volume of the set AP, denoted vol(AP). It is
important to note that the framework in Xu (2004) respects strict monotonicity over the
volume (in contrast to the approach of Gartner and Xu), and its volume-based concept
is closely related to the method we propose in Section 5.

However, this method does not account for differences in the relative importance of
welfare dimensions among citizens. This limitation becomes apparent through the fact
that it satisfies the Symmetry Axiom, which states that for all A, BP, CP ¢ C, if AP
and BP are symmetric, then

vol(AP) > vol(CP) = vol(BP) > vol(CP).

While this axiom ensures that permutations of functiongs do not affect the ranking,
it may be overly restrictive when individuals assign different importance to the func-
tiongs. For instance, as illustrated in Figure 8, if a person places greater value on
functioning 1 relative to functioning 2, they would typically prefer set A over B rather
than considering them equally desirable. By treating all welfare dimensions as equally
important, the symmetry axiom overlooks such preference asymmetries, which can
lead to less accurate rankings in contexts where the importance of functionings varies.

12



10 B A
e B
8 ----- ® =3 AP
N \ —BP
=
g=
g
3
=)
=]
=
10

Functioning 1

Figure 8: Two symmetric capability sets

4 Extremes of freedom valuation and desirable proper-
ties

We begin by presenting two conceptual extremes in the evaluation of freedom. The
first, which we refer to as the instrumental extreme (Xu, 2003a,b), assesses a capabil-
ity set only based on its best-valued element, reflecting a view of freedom grounded
in outcomes. In contrast, the intrinsic extreme values freedom for its own sake, and
considers that all equally desirable beings be accessible to achieve a given level of
well-being. These two extremes define the normative upper and lower bounds within
which our proposed compromise measure of freedom is situated (see Section 5).

4.1 Instrumental extreme

When individuals view freedom as having a purely instrumental value, their concern
is limited to the most favorable achievable outcome. In this perspective, the individual
evaluates a capability set A solely based on the best element it contains. Consequently,
they are indifferent between a set that contains only the best-valued solution and one
that contains that solution along with additional, less desirable beings. The diversity or
variety of options in the set does not matter; only the top performer does.

This behavior is captured by the following valuation function:

O (A) = max v(a).

acAD

We can associate to each capability set A a corresponding level set of the valuation
function v, which collects all elements in the capability space C that achieve the same

13



value as the best element of A:
Anax = {C€ C | v(0) = 2™ (A)}.

This level set captures the frontier of best-valued beings, according to the max crite-
rion. It can be interpreted as a capability threshold: any capability set B such that
Pmax(B) < max(A . ) will be contained in AP

max*

Example 4 Consider the following capability sets:

A ={(10,3)},

B = {(17 8)7 (27 7)7 (3’ 6)7 (47 5)7 (57 4)? (67 3)7 (7v 2)7 (8’ 1)}’

C= {(2’ 10)7 (57 5)}’

together with the valuation function v(¢) = ¢, + ¢, defined over C = ((10,10)P)NRZ,,.

This setup is illustrated in Figure 9. -
In this case, v(C) is a linear function, and the indifference curves are straight lines.

Using the max approach, we obtain:

O (A) =13, ¢7(B) =9, P;(C)=12.

Each set is thus evaluated based solely on its best element under the valuation function.
The corresponding level sets A .y, Bmax, and C.,., representing the sets of all beings
in C that share the same maximal value as each set, are also depicted in Figure 9. /\

Finally, the instrumental extreme approach can be seen as an “optimistic” interpre-
tation of the Gaertner—Xu method. Specifically, when we take £° = 0 and define the
distance function as d(0, @) = v(a@), we recover the max-based valuation.

4.2 Intrinsic extreme

An individual who values diversity as an essential aspect of freedom may adopt a differ-
ent perspective. From this point of view, a person considers themselves free to achieve
a well-being level y only if they can access all beings ¢ € C such that v(¢) = y, or
beings that are objectively better in the sense that ¢ > ¢ and v(C) = y.

In other words, they do not consider themselves free to reach level y unless their
capability set includes all relevant solutions that attain (or surpass) that value.

This behavior is captured by the following valuation function:

q)v (A) - EE%ZI%AE;D U(aa

which corresponds to the lowest well-being level that cannot be achieved by the capa-
bility set A.

As with the extreme instrumental approach, we can define a level set representing
all beings in C that attain the boundary value of ®™"(A):

Amin = {€€C | 0(&) = 2™ (A)} .
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Figure 9: Example ??: Instrumental extreme approach

This set captures the threshold beyond which the individual no longer considers them-
selves free to attain that level of well-being. For all capability sets B, if we have
Pmin(A ) < ®Min(B), then Ay, is a set contained in BP.

Example 4 (Cont.) Continuing from Example 4, and using the same valuation func-
tion v(€) = ¢ + co, we now apply the intrinsic extreme approach. As shown in Fig-
ure 10, we obtain:

OUR(A) =3, BIU(B) =T, ON(C)=5

This reflects the idea that A, while offering a high-value option, does not allow access
to many other beings at similar or slightly lower levels of well-being. In contrast, B
offers a more uniform spread, covering a broader band of high-valued beings. The
level sets A in, Bumin, Cin are illustrated in Figure 10. A

Finally, the intrinsic extreme approach corresponds to the “pessimistic” interpreta-
tion of the Gaertner—Xu method. This interpretation arises when we set a@° = 0 and
define the distance function as d(0, ) = v(b), reflecting the minimal level not guaran-
teed by the capability set.
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Figure 10: Example 4: Intrinsic extreme approach

4.3 Desirable properties

To ensure that our proposed freedom measure P is both theoretically sound and aligned
with our intuitive understanding of freedom, it must satisfy a number of desirable prop-
erties. In the following, we outline a set of axioms that formalize these requirements
over the capability sets and the valuation functions in V.

Axiom 2 (Strong Monotonicity) For all v € V, all freedom-sensitivity function ¢,
and capability sets A, B, if A > B then ®¢(A) > ®%(B), and if A > B then
PY(A) > 7(B).

Axiom 3 (Continuity) For all v € Vall freedom-sensitivity function ¢, and capability
sets A, C, such that ®*(A) > ®¢(C), for all A € [®¢(C), d¢(A)], there exists a
capability set B such that A” N CP C BP? C AP U C? and ®¢(B) = \.

Axiom 4 (Invariance of Scaling Effects) For all v € V, all freedom-sensitivity func-
tion ¢, and capability sets A, B, if ®¢(A) > ®(B) then, for any a € R, letting
A’'=d-A B =d- B, and defining v'(d - @) = v(d), we have

@0(A") > 7 (B)).

Axiom 5 (Bounded Freedom Principle) For all v € V, all freedom-sensitivity func-
tion ¢, and for any capability set A,

q)f(Amin) < (I)f(A) < ®$(AmaX>-
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The Strong Monotonicity axiom requires that the valuation function @, respects
the dominance relationships between capability sets in a way that reflects meaning-
ful expansions of freedom. If one set A weakly dominates another set B (A > B),
then its valuation should not be lower. If A strongly dominates B (A >> B), then its
valuation must be strictly higher. This axiom captures the fundamental intuition that
freedom should increase whenever a capability set expands in a tangible and measur-
able manner, rather than by the mere addition of limit or redundant options. Variations
of this principle, such as strict monotonicity (Xu, 2004) and other forms of monotonic-
ity (Kreps, 1979; Puppe, 1996; Carter, 1995), are common in the literature.

Variations of this principle, such as strict monotonicity (Xu, 2004) and other forms
of monotonicity (Kreps, 1979; Puppe, 1996; Carter, 1995), are common in the litera-
ture.

It is worth noting that the volume-based method of Xu (2004) is defined for lin-
ear budget sets, where the dominance relation A > B directly implies A > B. In
the more general non-linear setting considered here, this implication no longer holds:
A > B does not necessarily entail that vol(AP) > vol(BP). For instance, consider
A = {(1,1)} and B = {(1,1),(2,0)}. Here, A < B in the dominance sense, yet
vol(AP) = vol(BP).

The Continuity axiom ensures that the valuation function ®, behaves in a smooth
and predictable manner when capability sets are modified. It reflects the intuition that
freedom assessment should not change in a discontinuous or abrupt manner when ca-
pability sets evolve gradually. In particular, this condition implies a stronger version of
the Solvability property, a standard requirement in Decision Analysis and measurement
theory (Krantz et al., 1971). A weaker variant of this axiom appears in Gaertner and
Xu (2008) under the name Betweenness.

The Invariance of Scaling Effects axiom guarantees that the ordering of capability
sets is invariant under uniform scaling of the underlying dimensions. That is, if every
welfare dimension measure of a capability set is multiplied by a positive factor, the
relative ranking of the freedom measures remains unchanged. This property is adapted
from Xu (2004) and is vital because the absolute levels of capabilities can depend
on the units of measurement; however, the perceived degree of freedom should be
independent of such scaling. Without this invariance, the freedom measure could be
unduly influenced by arbitrary choices of scale, detracting from its consistency and
applicability.

Finally, the Bounded Freedom Principle establishes that the freedom measure
(Df(A) is confined between two extremes: an intrinsic (min) and an instrumental (max)
view of freedom. Specifically, it requires that

q)f(Amin> < (I)f(A> < (I)f(AmaX)

for every capability set A, every v € V and every ¢. The intrinsic extreme represents
the lower bound, reflecting a perspective that values beings for their inherent worth,
while the instrumental extreme represents the upper bound, reducing the set to its best
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option. This axiom ensures that our measure of freedom remains within an interval
that is rationally motivated .

Together, these axioms form the core properties that any reasonable measure of
freedom should satisfy, thereby ensuring both theoretical rigor and practical relevance.

5 Compromise approach

In the previous approaches (instrumental and intrinsic), the evaluation of a capability
set A did not account for the contribution of all efficient solutions in its Pareto frontier.
To overcome this limitation, we introduce a compromise approach that integrates the
contribution of every point in the Pareto frontier, ensuring that any addition of a non-
dominated option expanding the measurable domain of attainable beings has a strictly
positive impact on ®?(A). This approach satisfies the previously stated axioms, re-
mains sensitive to the chosen value function v, accommodates different perspectives
on freedom, and offers a balanced and reasonable way to capture the value of capabil-
ity sets.

5.1 Definition

We define the compromise method as follows:

where ¢ is a continuous function ¢ : [0, maxzec v(@)] — Rx¢, with ¢ strictly positive
except perhaps in 0.

Proofs that ®¢ satisfies the desirable properties listed in Section 4.3 are presented
in Appendix B.

Proposition 3 Let ¢ : [0, maxzec v(a@)] — R be a constant function, i.e., p(v(@)) =
cforalla € A. Then:

PO(A) = / o ¢(v(@)) dd = c - vol(AP).

See proof in Appendix C.

Several functions ¢ can be chosen to represent different behaviors towards freedom.
Let us give three examples that represent different behaviors.

First, the individual considers the simple case where ¢(v(d@)) = v(a@). By applying
this function to Example 4, we obtain the integration on the capability sets as in Figure
11. We obtain ®¢(A) = 195, ®¢(B) = 204 and ®¢(C) = 210. For instance to
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H(X) =x1+ x2

Figure 11: Example 4: ®¢ using the compromise approach with ¢(v(a@)) = v(@)

compute ®?(A), we have to calculate the double integral over (a1, az) € AP, being
a; € [0,10] and ay € [0, 3]:

P?(A) =//=¢(v(a1,a2))da1da2 =/010 /03(a1+a2)da2 da,

acAD
= / {alaz + —ag] da; = / <3a1 + —> daq
0 2 0 0 2
3 9 1" 3 9
— — 2 — = — 1 2 — 1 = ]_ 4 :1 .
{2a1+ 2a1]0 2( 0)* + 2( 0) 50 + 45 95

Secondly, the individual chooses a function ¢(v(@)) = v(a)?, which amplifies the
contribution of higher-valued options. In other words, beings associated with greater
well-being receive disproportionately higher weight in the evaluation. Continuing
with Example 4, a new freedom valued capability set is displayed in Figure 12, and
P?(A) = 1,540, ®¢(B) = 1,302 and ®¢(C) = 1,475.8. To compute ®¢(A), for
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Figure 12: Example 4: ®¢ using the compromise approach with ¢(v(a@)) = v(a@)?

instance, we do as follows:

BO(A) — / / b(v(ay, az)) day dag — /0 ! /O (a1 + a2)? day dan

acAP

10 1 3 10 1 1
= / {—(al + a2)3] day = / (—(al +3)% — —ai’) day
.13 . . \3 3

1 9 .1 1 9
= |—at+ a3+ Za?2| = —(10)* + (10)® + =(10)% = 1540.
Lzal aq 2“1]0 12( 0) ( 0) 2( 0) 540

Thirdly, the individual’s perspective prioritizes more balanced capability sets by
assigning greater weight to lower-valued beings. An illustrative approach to achieve
this balance is by applying the function ¢(v(a@)) = \/v(a@). Applying this method to our
example, we compute the values ®?(A), ®¢(B), and ®¢(C) as depicted in Figure 13.
The resulting calculations yield ®¢(A) ~ 74.03, ®¢(B) ~ 83.95, and ¢ (C) ~ 83.55.
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Figure 13: Example 4: ®¢ using the compromise approach with ¢(v(a@)) = /v(a)

The computation of ®?(A) is obtained as the following:

DP(A) ://¢(U(a1,a2))da1 dangolo/og\/Mdagdal

aeAD
2 3
— gaf) da1

— /010 E(al +a2)3]z da, = /010 (;(al +3)

5 5 10 5 5
4((a1+3)2 —af) 4(135—105 —35)
= = ~ 74.03.
15 15

0

[SI[oV

We note that by altering the function ¢, we can emphasize different aspects of
freedom. For example, choosing ¢(v(d@)) = v(@)?* accentuates the instrumental value
of freedom, while adopting ¢(v(a@)) = +/v(@) shifts the focus toward its intrinsic value.

Furthermore, the compromise approach remains bounded by the two normative ex-
tremes introduced in Section 4. For any capability set A, the instrumental extreme
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associates to A the level set A,,.., which contains all beings in C that achieve the
same value as the best element of A. Conversely, the intrinsic extreme associates to A
the level set A .;,,, which collects all beings that attain the lowest well-being level not
dominated by AP.

Together, these two level sets represent the optimistic and pessimistic interpreta-
tions of freedom. Formally, for any A € C, we have

O (Amin) < PU(A) < PP (Amax),

which guarantees that the proposed valuation ®, remains bounded between the intrin-
sic and instrumental extremes.

This property is illustrated in Table 1. For each specification of the weighting func-
tion ¢, the integrated values obtained under the compromise evaluation lie between
those generated by the intrinsic and instrumental approaches. Moreover, the values
associated with set B, which represents the most balanced capability set with respect
to the valuation function v, are consistently closer to the bounding cases. In contrast,
the more uneven set A produces values that diverge more markedly from these limits.

¢(v(a@)) = Input set type )(A) | 9(B) | 27(C)
v(a) Intrinsic version (myi,) 9 170.67 | 41.67
Compromise set () 195 204 210
Instrumental version (- pay) | 772.33 243 576
v (d)2 Intrinsic version (- pin) 20.25 1024 156.25
Compromise set () 1540 1302 1475.8
Instrumental version (-,.y) | 7140.25 | 1640.25 | 5184
v(a@) Intrinsic version (pyin) 6.24 72.41 22.36
Compromise set () 74.3 83.95 83.55
Instrumental version (-p,,,) | 243.73 97.20 | 199.48

Table 1: Values of the compromise measure ®¢(-) for capability sets A, B, and C, under different
specifications of the interpretation of freedom ¢. Each row corresponds to a different input set type:
the intrinsic version (-, ), the compromise set (-), and the instrumental version (:yax)

5.2 Algorithms and complexity

From a computational point of view, calculating ®¢(A) presents a complex challenge
that is beyond the scope of this paper. Nevertheless, we introduce Algorithm 1 as a the-
oretical method to compute ®?(A) when P(A) is known and finite, despite practical
limitations in its application.

Considering A” = P(A)P, we can express ®?(A) as



Applying the Principle of Inclusion-Exclusion further refines this expression to

oo |Ja)l= > (-pFt.oeg (ﬂa”).

GcP(A) ZCP(P(A)\{0} acz

This equation underpins the generation of all subsets of the power set of the Pareto
frontier of A (line 3 of Algorithm 1).

We note that for any set Z within the power set P(P(A)), the expression (., @”
is equivalent to (mingez ay |Vh € {1,...,h*})P. This equivalence forms the basis
for deriving lines 4-6 of Algorithm 1. Furthermore, line 7 is developed based on the
Principle of Inclusion-Exclusion. A crucial observation is that we transform P(A) into
P(A)NRY (line 1) so that for any function v € V/, the function ¢(v()) maintains strict
positivity over C. Consequently, ®9((,., @”) always has a non-null value.

To compute the integral indicated in line 6, we can utilize numerical methods, fa-
cilitated by the SciPy 1.0 Python package (Virtanen et al., 2020). While this approach
is computationally intensive, it offers a viable solution for performing the required cal-
culations in the algorithm. It is important to note that the complexity of the integration
methods in SciPy 1.0, especially the ‘dblquad® function, is variable and cannot be ex-
pressed using a standard fixed-complexity notation. Consequently, it is advisable to
be aware that complex functions, precise requirements, and larger ranges are computa-
tionally demanding.

Furthermore, the practical feasibility of the algorithm is limited due to the expo-
nential complexity involved in generating the power set P(P(A)), which scales as
O(2P®)1), This exponential growth in complexity renders the algorithm impractical
for large Pareto sets.

Algorithm 1: Finding ®¢(A) for the compromise approach using the Inclusion-Exclusion
Principle

Input: P(A)
Output: Value of ®¢(A) calculated using the compromise approach
P(A) + P(A)NRE,
Output < 0
forall Z € P(P(A))\ {0} do

for h <+ 1to h* do

‘ Tp 4 Mingcz ap,

end

Output — Output + (—1)/ZFL. ([ [ ¢(v(ay, -, ap-)) day - - - day+)
end

X [ A AW N =

To effectively implement this technique in scenarios where |P(A)| is more than
a few, the development of feasible approximation methods is crucial. However, in
the simple case where h* = 2, Algorithm 2 provides an exact method with complexity
O(]P(A)NR"|) integration method calls. By ordering the beings on the Pareto frontier
and updating the integration limits during each iteration, the algorithm partitions A?
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in |[P(A) NRY | subsets, meaning that it creates | P(A) NR"’| non empty subsets, such
that each element dominated by the capability set is included in one and only one of
these subsets.

Algorithm 2: Algorithm for Calculating ®¢(A.) via Ordered Integration when h* = 2

Input: P(A)
Output: Value of ®?(A) using the compromise approach
P(A) + P(A)NRY,
L < Sort P(A) in lexical order prioritizing h;
Output < 0
a0
for b € L do
Output +— Output + [ [** ¢(v(a1, az)) day day
T < Q9
end

6 Conclusion

This study proposed a new approach to evaluating capability sets by integrating in-
dividual preferences over diverse options, thereby bridging the gap between negative
and positive freedom within the Capability Approach. Our methodological contri-
bution lies in the introduction of the compromise approach, which preserves several
desirable properties of volume-based measures (Xu, 2004) while relaxing their sym-
metry requirement, thus allowing individual values and perspectives on freedom to be
explicitly incorporated. Compared to the framework of Gaertner and Xu (2008), our
approach additionally satisfies strong monotonicity, ensuring that every addition of a
non-dominated strictly positive being is valued. Future work will focus on the elicita-
tion of the function ¢, its operationalization in empirical contexts, and the development
of more efficient algorithms for computing these valuations.
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Appendix

A Proof of Proposition 2

The following lemma is the missing part in the proof of Proposition 2.
Lemma 1 If A is bounded and closed, then A" is bounded and closed.

Proof. If A is empty, the proposition is trivially true. We assume from now on that
A is not empty. Clearly, A is bounded entails that AP is bounded. In order to show
that AP is a closed set, we will show that the complement (AP)¢ of A% in R% is open
because it is the union of open sets. We will show that -

(AD)C — U Z>>, (2)

ZGR};*O:Z>> NAP=()

where 2> denotes the set {x € RY : ), > 2, forallh = 1,...,h*}. Clearly, (AP)°
contains this union. It remains to be proven that, for all z € (AP)¢ C R’go, there is z
such that 2> N AP = and x € 2.

Case 1: thereisy € A withy, > Oforallh = 1,...,h*. Let z be any point of (AP)c,
Consider the straight line {\z, A\ € R>(}. Since there is a point y € A with all strictly
positive coordinates, we have Az < vy, for sufficiently small values of \. Therefore,
the intersection {\z, A € Rso} N AP # (). Since this intersection is a bounded set,
sup{ Az, A € Rsg, Az € AP} < oo, Let A = sup{\, A € Rsp, Az € AP} If A < 1,
for any \ such that A\ < A < 1, Az ¢ AP and = € (Az)>. We thus have z € 2>, with
Z = AT.

We now prove that it is not possible that A = 1 because it would imply that z € AP,
a contradiction. Let \,,,n € N be an increasing sequence whose limit is 1. For all n,
consider the set (A\,x)= N A of points in A that dominate \,x. This is a non-empty
closed set. Let y* € argmax{>_'_ y»,y € (\,@)> N A}. Such a point exists since
ZZ:1 yp, is a continuous function on the compact set (\,z)= N A. By the Bolzano-
Weierstrass theorem, there is a subsequence of the sequence y; that converges in the
compact set A. Abusing notation, we consider that y; denotes such a subsequence and
that \,, are the corresponding values of . Let y* denote the limit of the subsequence
Yn-

We claim that y* € (), (M\,z)= N A. We already know that y* € A because A is
compact. We have y; € (\,z)= N A, for all £ > n, because (A\yz)= C (\,x)=, for all
k > n. Since (A\,x)= N A is a closed set, the sequence y; converges in (\,x)= N A,
and we know that it converges to y*. Hence y* € (\,z)= N A, for all n, and y* €

N,,(Axz)= N A. This proves the claim.

It remains to be proven that (), (A,2z)= = x=. Itis clear that the former contains the

latter. Now, let ¢/ € (\,z)=, for all n. We have that y}, > \,x,, forallh =1,... h*.
Taking the limit for n tending to oo, we get yj, > y, for all h. Hence, 3’ € z=.
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So, assuming that A\ = 1 leads to the existence of a point y* € A that is also in 2=,
implying that € AP, a contradiction.

Case 2: there is no y € A with all positive coordinates. If A = {0}, the lemma is
trivially true. Otherwise, let z € (AP)¢and I C {1,...,h*} be such that z;, > 0 for
h € I and z;, = 0 for h ¢ I. We distinguish two subcases:

* There is no y € A such that y;, > 0 for all A € I. In this case, let z = Ax for any
A such that 0 < A < 1. We have x € 2™ and 2> N AP = ().

e Ifthereis y € A such thaty, > 0 for all h € I, then for a sufficiently small value
of A\, with 0 < A < 1, we have Az < y and we may apply the reasoning made in
Case 1 to prove Equation (2).

B Proof of axioms for the compromise approach

B.1 Strict monotonicity

First, assume that A > B. By definition of weak set dominance, for every solution in
B there is a solution in A that weakly dominates it. This implies that the PDC of B is
a subset of the PDC of A, i.e.,

B? C AP,

Since the integral used to define ®¢ is monotonic with respect to set inclusion, it fol-
lows that

DO(A) = /aeAD gzﬁ(v((i')) di > /ger ¢(v(5)> db = ¥%(B).

Now assume that A > B. By definition of strong set dominance (Definition 2.1),
there exist a being @y € A and ¢ > 0 such that the hyper-rectangle [dy — ¢ - 1, dp] is
contained in ]ngo and does not intersect B?, i.e.,

[60—5-T,JO]OBD:@.

Hence, this e-cube is a measurable subset of AP \ B with strictly positive Lebesgue
measure.

We can thus decompose the integral as follows:
AP =BP U (AP \ BP),

and by the additivity of the integral we obtain

PO(A) = v(b)) db v(@)) da.
v( ) /E\EBD¢( ( )) +/EGAD\BD¢( ( )>
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Since ¢(v(a)) is strictly positive on its domain and the set A” \ B has positive
measure (because it contains the nonempty cube [dy — ¢ - 1, @p)), the second integral is

strictly positive:
/ ¢(v(@)) da > 0.
acAP\BP

®(A) > D7(B).

Therefore,

B.2 Invariance of Scaling Effects

When we scale the set A by @, each vector @ in A is mapped to @’ = @ - d. A standard
property of Lebesgue measure in R is that scaling every coordinate by a positive
factor multiplies the measure of any measurable set by a constant. In particular, there
exists a constant

Cc= a1y ape > 0,

such that for any integrable function f and measurable set A” we have

/ f(c_i/) da' = C/ f(a)da.
@’ €&-AD GeAD

In our setting, the definition of v’ ensures that

o(v'(@-a)) = o(v(@),
so that the evaluation function for the scaled set becomes
®%(A') = cD(A),

and similarly,
@%,(B') = c0%(B),

Since ¢ is a positive constant and by hypothesis ®?(A) > ®?(B), it follows immedi-
ately that
@%,(A) > 0(B).

B.3 Continuity

By monotonicity of the integral, we have

P?(AP N CP) < d¢(C) < P¢(A) < d?(AP U CP).
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For t in the interval

0 max vf}
[ " ZeAPUCP ()],

define the function
Gt = /fEA‘DmcD gb(v(x))dx + /:fe(ADucD)\(ADncD) ¢(U(I))dx‘
v(Z)<t

Because ¢ is strictly positive, ¢ and v are continuous, and the integral is monotone
w.r.t. the integration domain, G(¢) is continuous and non decreasing with respect to t.
In particular, when ¢ is minimal (i.e., ¢ = 0) we have

6O0)= [ o(u(@)dr = 8(A" N C?),
TeAPNCP
and when ¢ is maximal (i.e., t = maxzcsp cp V(T))

G( max v(f)) - /KADUCD 6(v(#))dE = D(AUC),

e APUCP

Since
PY(ANC) < BY(C) < A < BY(A) < DY(AUC),

the Intermediate Value Theorem guarantees that there exists a t* in

0, max v(7)
ZeAPUCP

such that
G(t") = \.

Now, define the set
B:{feADUCD: 7e AP NCP or u(7) gt*}.

Clearly, AP " CP C B C AP U CP. By construction, the evaluation of B is given by

This completes the proof. ]

B.4 Bounded Freedom Principle

Proof by monotonicity since we have AP, C AP C AP |

max
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C Proof of Proposition 3

If ¢ is constant with value c, then for all @ € AP, ¢(v(a@)) = c. Substituting this into
the definition of ®¢, we have

@ff(A):/ ¢>(U(a))da:/ cda:c/ 1da.
acAD acAD aeAD

By definition, fae Ap 1dd = vol(AP). Therefore,

®P(A) = c-vol(AP).
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