
Nondominated Set for Multiobjective Discrete Optimization

Multiobjective optimization is one of the historical field of expertise of LAMSADE. This
paper addresses multiobjective problems where the set of solutions is defined combinatorially.
Indeed, many combinatorial optimization problems require taking into account multiple cri-
teria. In this context, an important issue is to determine the set of efficient solutions (also
called Pareto-optimal solutions) or more precisely the set of nondominated points, which cor-
responds to the images of these solutions in the objective space. A main challenge, both from
the decision making and computational viewpoints, is the potentially huge size of the non-
dominated set which can grow exponentially with the size of the instances for multiobjective
combinatorial optimization problems. Many generic algorithms were proposed in the literature
to address this challenge. Most of these algorithms probe the search space by making iterative
calls to a MIP solver in order to find new nondominated points, or prove that some parts of
the search space do not contain any new nondominated point. The computational efficiency
of such algorithms critically depends on the following factors: (1) limiting the number of calls
to the solver while guaranteeing exactness and completeness of the generated nondominated
set (2) easing the task of the solver, by providing a feasible solution (warm start) whenever
possible and avoiding calls to infeasible instances, which usually require a larger exploration
for the solver.

Our algorithm is based on our previous formalization and study of the concept of search
region which characterizes the part of the objective space where new non-dominated points
may lie [1]. For this purpose, our algorithm splits the search region into zones which can be
investigated separately by solving an integer program. We also propose refinements, which
provide extra information on several zones, allowing us to detect, and discard, empty parts
of the search region without checking them by solving the associated integer programs. This
results in a limited number of calls to the solver. Moreover, we can provide a feasible starting
solution before solving every program, which significantly reduces the time spent for each
resolution. Finally we are able to guarantee that none of the calls is infeasible. The resulting
algorithm is fast and simple to implement. It is compared with previous state-of-the-art
algorithms on various types of instances and is shown to outperform them significantly on
the experimented problem instances. An implementation of the algorithm is available at the
following address: https://www.lamsade.dauphine.fr/ vdp/tv19/

References

[1] K. Dächert, K. Klamroth, R. Lacour, and Daniel Vanderpooten. Efficient computation
of the search region in multi-objective optimization. European Journal of Operational
Research, 260(3), 2017.

1

This article was downloaded by: [129.100.58.76] On: 15 June 2020, At: 03:50
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Enumeration of the Nondominated Set of Multiobjective
Discrete Optimization Problems
Satya Tamby, Daniel Vanderpooten

To cite this article:
Satya Tamby, Daniel Vanderpooten (2020) Enumeration of the Nondominated Set of Multiobjective Discrete Optimization
Problems. INFORMS Journal on Computing

Published online in Articles in Advance 04 Jun 2020

. https://doi.org/10.1287/ijoc.2020.0953

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2020, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoc.2020.0953
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

INFORMS JOURNAL ON COMPUTING
Articles in Advance, pp. 1–14

http://pubsonline.informs.org/journal/ijoc ISSN 1091-9856 (print), ISSN 1526-5528 (online)

Enumeration of the Nondominated Set of Multiobjective Discrete
Optimization Problems
Satya Tamby,a Daniel Vanderpootena

aUniversité Paris Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, 75016 Paris, France
Contact: satya.tamby@dauphine.fr, https://orcid.org/0000-0002-3310-272X (ST); daniel.vanderpooten@lamsade.dauphine.fr,

https://orcid.org/0000-0002-5934-0603 (DV)

Received: November 5, 2018
Revised: May 20, 2019; November 9, 2019;
December 2, 2019
Accepted: December 4, 2019
Published Online in Articles in Advance:
June 4, 2020

https://doi.org/10.1287/ijoc.2020.0953

Copyright: © 2020 INFORMS

Abstract. In this paper, we propose a generic algorithm to compute exactly the set of
nondominated points for multiobjective discrete optimization problems. Our algorithm
extends the ε-constraint method, originally designed for the biobjective case only, to solve
problems with two or more objectives. For this purpose, our algorithm splits the search
space into zones that can be investigated separately by solving an integer program.We also
propose refinements, which provide extra information on several zones, allowing us to
detect, and discard, empty parts of the search space without checking them by solving the
associated integer programs. This results in a limited number of calls to the integer solver.
Moreover, we can provide a feasible starting solution before solving every program, which
significantly reduces the time spent for each resolution. The resulting algorithm is fast and
simple to implement. It is comparedwith previous state-of-the-art algorithms and is seen to
outperform them significantly on the experimented problem instances.

History: Accepted by David Woodruff, (former) Area Editor for Software Tools.

Keywords: multiobjective optimization • combinatorial optimization • nondominated points • ε-constraint

1. Introduction
Real-world problems often involve several conflict-
ing criteria. In this case, solutions of interest are ef-
ficient solutions, which have the property that any
improvement on one criterion leads to a decay on at
least another one (Pareto optimality). The images of
such solutions in the objective space are referred to
as nondominated points. A standard goal in multi-
objective optimization consists of generating the set
of nondominated points and providing for each point
a corresponding efficient solution. Because of the size
of the final nondominated set, which can be huge,
multiobjective optimization problems are significantly
harder to solve than their single-objective version.

In this paper, we focus on multiobjective combinato-
rial optimization problems and more generally on mul-
tiobjective discrete problems. Several algorithms have
been designed to solvemultiobjective variants of specific
problems—for example, the shortest path problem
(see Martins 1984) or the knapsack problem (see
Bazgan et al. 2009). However, these algorithms rely on
specific properties of the problem, and it is not pos-
sible to extend them to other problems.

Other approaches are multiobjective extensions of
implicit enumeration methods (branch and bound
and dynamic programming). These methods operate
in the decision space, completing progressively par-
tial solutions by setting iteratively the decision var-
iables (through branching) and trying to restrict the

enumeration by pruning partial solutions whose exten-
sions can beprovednot to give rise tonewnondominated
points (usually through bounding). Although these
enumeration schemes are general, the definition of
branching strategies and the determination of tight
bounds depend on the specific problem to be solved.
We refer the interested reader to the recent survey
about multiobjective branch and bound (Przybylski
and Gandibleux 2017), and the previously mentioned
papers about the multiobjective shortest path and
knapsack can be seen as applications of multiobjective
dynamic programming.
In this paper we consider generic algorithms that do

not depend in their description on the specific problem
tobe solved (they only need to call as a black box a solver
able to solve a single-objective version of the specific
problem usually augmented with some constraints).
Such algorithms operate in the criterion space.
Generic algorithms usually resort to integer pro-

gramming solvers to be suitable for multiobjective
discrete optimization problems because most of them
involve linear constraints and objectives. They iter-
atively solve single-objective programs over the
search region (i.e., the subset of the objective space that
potentially contains the remaining nondominated
points). When a new point is found, the search region
is updated by eliminating the part of this region
dominated by this point, and the procedure is re-
peated until the search region becomes empty.

1

http://pubsonline.informs.org/journal/ijoc
mailto:satya.tamby@dauphine.fr
https://orcid.org/0000-0002-3310-272X
https://orcid.org/0000-0002-3310-272X
mailto:daniel.vanderpooten@lamsade.dauphine.fr
https://orcid.org/0000-0002-5934-0603
https://orcid.org/0000-0002-5934-0603
https://doi.org/10.1287/ijoc.2020.0953

In the biobjective case, the ε-constraint method
(Chankong and Haimes 1983) works well in practice.
This method iteratively generates nondominated
points by optimizing the first objective, whereas the
second objective is constrained to be better than the
nondominated point found at the previous iteration.
Thus, each step yields a new nondominated point
except for the last one, which leads to an infeasible
program, showing that all points have been found.
Generalizing the ε-constraint method to more than
two objectives is a challenging issue for which several
algorithms have been proposed. In the following, we
first give the intuition behind the different algorith-
mic strategies, and then we describe more precisely
some representative algorithms.

In the first type of approach (Klein and Hannan
1982, Sylva and Crema 2004), the original integer
program is iteratively augmented by disjunctive con-
straints that impose that the next solution must im-
prove at least one objective with respect to all pre-
viously obtained points. Thus, as in the ε-constraint
method, each optimization yields a new nondominated
point except for the last one. However, because the
number of constraints and variables grows each time a
new point is found, the program gets harder to solve
over the iterations, and the algorithm becomes quickly
impractical when solving even rather small instances.

In order to circumvent these difficulties, other
approaches split the search region into a union of
zones, each one being delimited by a local upper
bound on the objectives (assuming they are to be
minimized). Each zone can then be explored using a
budget-constrained program where one constraint
per objective is added to the original problem. Empty
zones are discarded, and if a new point is found, then
the zones containing this point are subdivided in
order to avoid finding the same point again. Explo-
rations are performed until all the remaining zones
are empty. The main advantage of such approaches is
that the size of the budget-constrained programs
remains constant, which does not alter the resolution
over the iterations. However, unlike in the first type of
approach, the number of programs to be solved is
substantially larger than the number of nondominated
points. Indeed, many zones to be explored are actually
empty, which is checked when the corresponding
program is infeasible.

The main challenge for these methods is to minimize
the total number of programs to be solved. Moreover,
in order to get a practically efficient method, two im-
portant issues must be taken into account. First, in-
feasible programs should be avoided because integer
programming solvers usually require more time to
prove infeasibility than to find an optimal solution
(because of the ability to cut the search tree as soon as a
feasible solution is found). Therefore, even if the zone to

be explored is empty, it is practically more efficient to
find a way to prove this by solving some feasible
program. Second, for feasible programs, providing a
feasible solution to the solver also speeds up the res-
olution. The practical impact of these two issues is also
pointed out in Boland et al. (2016).
Algorithms differ in theway local upper bounds are

computed and used. We can distinguish two main
strategies depending on whether the bounds con-
strain all of the p objectives (full-dimensional bounds)
or only a subset (projected bounds), usually on p − 1
objectives. Strategies relying on full-dimensional bounds
investigate, at each iteration, one search zone precisely
delimited on each objective. When a zone is empty, this
results in an infeasible program. This case may occur
quite frequently. In such approaches, once a non-
dominated point is generated, it will not be returned at
a later iteration because of the exact definition of the
search region with full-dimensional bounds. By con-
trast, strategies using projected bounds may return
a point that does not belong to the explored zone,
allowing us to explore several zones simultaneously.
However, as a negative consequence, the same point
may be generated several times at different iterations.
Indeed, because the search zone that is explored is not
bounded on the omitted objective, the enumerated
point may not belong to the search region. As a con-
sequence, an additional test is required to detect po-
tential duplicates in the final nondominated set.
Algorithms also differ on the way the zones are

explored or, more precisely, in the type of objective
function used when solving the budget-constrained
programs. A main distinction is between algorithms
optimizing a linear combination of the objectives,
with strictly positive weights, and algorithms fa-
voring one objective (i.e., performing a lexicographic
optimization). Optimizing a linear combination can
directly be performed using a single program that
returns an arbitrary nondominated point in the zone
when it exists. Lexicographic optimization needs an
additional effort: it commonly involves two succes-
sive programs optimizing the favored objective first
and, in a second stage, a combination of the other
objectives to ensure that the final point is non-
dominated. However, the returned point is not ar-
bitrary anymore because it guarantees there is no
point being better on the favored objective over the
explored zone. This extra information can be used to
prove the emptiness of other zones that do not need to
be explored. This can significantly reduce the number
of iterations needed to compute the set of non-
dominated points. We now briefly present some al-
gorithms relying on budget-constrained programs.
Sylva and Crema (2008) propose an improve-

ment of their previous algorithm described in Sylva
and Crema (2004). Instead of using a single integer

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
2 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS

program that performs the exploration over the
whole search region, they use two programs: a master
budget-constrained program and an auxiliary integer
program that aims at defining the full-dimensional
bounds to be used by the master program. However,
the auxiliary program grows at each iteration, when
new points are discovered or when zones are shown to
be empty, and becomes huge and hard to solve. Instead
of using an auxiliary program, Lokman and Köksalan
(2013) propose to decompose the large program used
in Sylva and Crema (2004) into several constant-size
programs. However, the number of programs needed
to be solved to obtain a new point increases along the
iterations. For these reasons, solving large instances
seems to be difficult with these approaches.

Mavrotas (2009) propose to characterize the search
region as a p − 1-dimensional hypergrid. The ap-
proach computes first the ranges of the values taken
by p − 1 objectives and then splits the search space
into equal cells of unit size in each dimension. Then,
each cell is explored independently, which amounts
to considering all possible combinations of bounds on
each objective. Several improvements of this ap-
proach have been proposed (seeMavrotas and Florios
2013 and Zhang and Reimann 2014) to detect cells
that are empty or contain a redundant point with-
out solving an integer program. Nevertheless, the
approach remains quite enumerative.

Instead of defining the cells prior to the enumeration,
the approach proposed by Özlen and Azizoğlu (2009)
dynamically adapts it depending on the components
of the points founds. However, even if a significant
improvement has been proposed in Özlen et al. (2014)
in order to avoid some redundant problems to be
solved, a lot of points are generated several times.
Moreover, in order to ensure that the generated points
are nondominated, the authors optimize a weighted
sum of the objectives involving very small weights
on all but one objective, which can induce numeri-
cal instability.

Dhaenens et al. (2010) propose an iterative algo-
rithm relying on the observation that some of the
nondominated points in the global problemmust also
be nondominated in subproblems involving only a
subset of the objectives. After these points have been
computed, the remaining search region is split into
zones that are explored separately. Specific attention
has been paid for parallelism, but the number of
multiobjective integer problems required to be solved
grows exponentially with the number of objectives.
Moreover, some points can be enumerated several times
if they are nondominated in several subproblems.

Kirlik and Sayin (2014) propose an algorithm that
stores the search region as an explicit list of boxes
(instead of zones) defined using both upper and lower
projected bounds on p − 1 objectives (based on the

characterization initially proposed by Laumanns et al.
2005). With this explicit characterization as a list, the
search region can be incrementally updated when a
new point is found: this is achieved by browsing the
list and splitting each box the new point belongs to,
without having to recompute the entire list. However,
even if this method solves triobjective problems rel-
atively fast, it struggles when the number of objec-
tives grows. Indeed, because each box is both upper
and lower bounded, splitting it when a point is found
in this box induces a huge number of new boxes, and
storing them leads to memory space problems when
solving large instances.
Klamroth et al. (2015) precisely define the concept

of search region as an explicit covering of the search
space, which relies on full-dimensional zones, re-
ferred to as search zones. It is then still possible to
perform an incremental update on this list. Moreover,
the characterization of the search region is exact: each
nondominated point is enumerated exactly once, and
it is not necessary to filter the duplicates in the final set.
This results in a simple generic algorithmic scheme,
presented in Klamroth et al. (2015), consisting of ex-
ploring iteratively the search zones and updating the
search region depending onwhether or not the explored
search zone contains a point. Although the number of
search zones is significantly smaller than the number of
boxes in Kirlik and Sayin (2014), the number of in-
feasible problems to be solved can be substantial.
Boland et al. (2017) propose to explore several zones

simultaneously using a single program. The exploration
of such shapes is performed by introducing p disjunc-
tive constraints to the program. However, even if the
global number of iterations is reduced, such programs
involving disjunctive constraints are harder to solve
than standard budget-constrained programs without
disjunctive constraints.
Ourgoal in thispaper consists of reducingnotonly the

total number of budget-constrained programs needed
to be solved but also the number of infeasible programs.
To do so, we propose an algorithm relying on full-
dimensional search zones to maintain an exact charac-
terization of the search region as in the algorithmic
schemeofKlamroth et al. (2015). However, the integer
programs to be solved are budget-constrained pro-
grams using projections of these bounds, allowing us
to guarantee that all the programs are feasible and to
derive information on several search zones simulta-
neously. For this purpose, we propose conditions
under which some search zones can be proved to be
empty without checking them by solving an integer
program. Moreover, by dynamically changing the
omitted objective depending on the explored zone,
we can provide, in constant time, a feasible solution
for each exploration. To the best of our knowledge,
this is the first algorithm using simultaneously full-

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS 3

dimensional and projected search zones, exploiting
the advantages of each strategy. The resulting algo-
rithm, experimented on instances of multiobjective
knapsack and assignment problems, clearly out-
performs other state-of-the-art algorithms.

The rest of this paper is structured as follows.
Section 2 introduces basic concepts and notations and
focuses on the central concept of search region. Then,
in Section 3, the core of our algorithm is presented,
followed by several technical improvements. Com-
putational experiments are reported in Section 4.
Conclusions are provided in a final section. The
progression of our algorithm on an illustrative ex-
ample is described in the appendix.

2. Background
2.1. Basic Concepts and Notations
We consider multiobjective optimization problems
with p objective functions to be minimized over a
discrete, nonempty, set X of feasible solutions:

min f1 x(), . . . , fp x()
s.t. x ∈ X.

{
(1)

An element of x ∈ X is called a feasible solution, and the
corresponding performance vector, y� (f1(x),. . .,fp(x)),
is called a feasible point. Therefore, the objective space
is Rp, and Y � f (X) ⊂ Rp is the set of the images of all
feasible solutions in the objective space. We assume
that Y is bounded. Problem (1) can be restated in the
objective space as

min y1, . . . , yp
()

s.t. y ∈ Y.

{
(2)

In the following, we will state all our problems in the
objective space, for the sake of conciseness.

Given a point y ∈ Rp, we denote by y−k its or-
thogonal projection on the subspace Rp−1 (i.e., the
p − 1-dimensional vectorwhere the kth component has
been omitted):

y−k � y1, . . . , yk−1, yk+1, . . . , yp
()

.

Several partial orders can be defined on Rp. Let y and
y′ in Rp. We have

y } y′ ⇔ yi ≤ y′i , ∀i ∈ 1, . . . , p
{ }

,

y 	 y′ ⇔ y } y′ and y
� y′,
y ≺ y′ ⇔ yi < y′i , ∀i ∈ 1, . . . , p

{ }
.

We refer to these relations as weak dominance, (Pareto)
dominance, and strict dominance, respectively.Asolution
is called efficient (respectively, weakly efficient) if its
image is not dominated (respectively, not strictly
dominated). Let YND be the set of points that are non-
dominated. In this work, we propose an algorithm to

generate YND and provide one of the corresponding
efficient solutions for each point of this set.
We denote by z(y) (respectively, d(y)) the set of

points strictly dominating y(respectively, dominated
by y):

z y
() � y′ ∈ Rp, y′ ≺y

{ }
,

d y
() � y′ ∈ Rp, y } y′

{ }
.

Let yI be the ideal point ofY, defined by yIi �miny∈Y{yi},
i ∈ {1, . . . , p}. Note that yI provides a lower bound on
each criterion and can be obtained by solving p pro-
gramsminimizing each of the p criteria. Moreover, let
M be an upper bound on each criterion; M can be the
largest value it is possible to represent on a computer
or determinedusing pmaximization problems over the
feasible set.
Finding a nondominated point in a zone is per-

formed by optimizing a strongly monotone function.

Definition 1. A function φ : Y → R is strongly monotone
if and only if for all (y,y′) ∈Y2, y	 y′ impliesφ(y)<φ(y′).
Standard strongly monotone functions are as

follows:
• The weighted sum: φ(y) � ∑p

i�1 λiyi with, λi > 0,
∀i ∈ {1, . . . , p}.
• Lexicographic: φ(y) � lexmin{yk,∑p

i�1
i
�k

λiyi}, λi > 0,
∀i ∈ {1, . . . , p}, i
� k.
The following integer program generates a non-

dominated point strictly dominating the bound u
when a feasible point exists in zone z(u).
Proposition 1. Let u ∈ Rp and φ : Y → R be a strongly
monotone function. Consider the following program:

P u()
min φ y

() � φ y1, . . . , yp
()

s.t. y ∈ Y,
yi < ui i ∈ 1, . . . , p

{ }
.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Let y∗ be an optimal solution of program P(u), if it exists.
Then, we have y∗ ∈ YND ∩ z(u).
Proof. Assuming by contradiction that y∗ is domi-
nated, there exists y′ ∈ Y such that y′ 	 y∗. Because we
have y∗ ≺ u, we get y′ ≺ u. Thus, y′ is feasible for
program P(u). Moreover, we have φ(y′) < φ(y∗) be-
cause φ is strongly monotone, contradicting the opti-
mality of y∗. □

Note that the p constraints yi < ui for i ∈ {1, . . . , p}
cannot be written in a linear program because they
involve strict inequalities. We use yi ≤ ui − εi instead,
with εi smaller than the smallest difference between
the performance of two different points on criterion i.
When instances involve integer values only (which
is a common assumption in multiobjective discrete
optimization), we can choose, for example, εi � 0.5,
i ∈ {1, . . . , p}.

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
4 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS

Finally, given a program P to be solved, we denote
by F(P) its associated feasible domain.

2.2. Search Region
2.2.1. Definition. Following Klamroth et al. (2015) and
Dächert et al. (2017), we first provide a formal defi-
nition of the search region that corresponds to the part
of the objective space thatmay contain nondominated
points that have not been generated so far.

Definition 2. Given a set N of points, the search region
associated with N, referred to as S(N), is defined by

S N() � Rp \ ⋃
y∈N

d y
() � y ∈ Rp : ∀y′ ∈ N, y′}/ y

{ }
.

Although N usually consists of nondominated points
previously generated, it might include any point not
even feasible. Observe also that for any point y ∈ N,
we have y /∈ S(N). Thus, by definition, the search re-
gion excludes points already generated.

Generic algorithms iteratively explore the search
region, or a superset of this region, using the integer
program described in Proposition 1; then they update
it by removing the part dominated by the optimal
solution when it exists or by removing the part that is
explored when no feasible solution exists. These two
steps are repeated until the search region does not
contain feasible points anymore.

Our algorithm uses the characterization formalized
by Klamroth et al. (2015), which describes the search
region using p-dimensional subregions called search
zones, each zone being described using local upper
bounds on each objective. Therefore, the search region
can be defined as a union of zones:

S N() � ⋃
u∈U N()

z u(), (3)

where U(N) denotes the set of the upper bounds
delimiting the search region induced by N.

When a new nondominated point y ∈ S(N) ∩ YND is
found, it is necessary to update the search region by
removing the points dominated by y. For this pur-
pose, each search zone z(u) ⊆ S(N) containing y—such
that y ≺ u—must be subdivided into p new search
zones described by the p following local upper bound:
u1 � (y1, u2, . . . ,up), u2 � (u1, y2,u3, . . . , up), and . . ., up �
(u1, . . . ,up−1, yp). Bound uk is called the kth child of
u, k ∈ {1, . . . , p}.

2.2.2. Properties. Updating the search region can,
however, lead to redundancies by creating search
zones that are contained in others. Formally, given
two upper bounds u and u′ inU(N), u′ or its associated
search zone z(u′) is redundant if u′}u. Indeed, only
maximal search zones are needed to characterize S(N)

in (3). Therefore, we assume in the following that
U(N) contains only maximal local upper bounds. The
following result, initially introduced in Klamroth
et al. (2015, proposition 4.1), presents an interesting
relation between N and U(N), leading to the concept
of defining points.

Proposition 2. Bound u belongs to U(N) if and only if, for
any of its bounded component uk
� M, there exists y ∈ N
such that yk � uk and y−k ≺ u−k.

Proof. Let u ∈ U(N) be a bound such that uk
� M and
û � (u1, . . . ,uk + ε, . . . ,up) for any ε > 0. Because u is
maximal, this is equivalent to saying that z(û) contains
a point ŷ that is dominated by a point y ∈ N, whereas
z(u) does not. Thus, we have y−k 	 ŷ−k ≺ u−k and uk ≤
yk ≤ ŷk < uk + ε. Considering that this observation is
true for any ε > 0, we get yk � uk. Hence, there exists a
point y ∈ N, with yk � uk and y−k ≺ u−k. □

Definition 3. Let u ∈ U(N). Points y ∈ N satisfying
Proposition 2 on a given objective k such that

yk � uk,
y−k ≺ u−k,

{
(4)

are referred to as the kth defining points of bound u.

Because several points may define the same com-
ponent of a bound, we denote by Nk(u) the set of kth

defining points of bound u in N.
Using this result, Klamroth et al. (2015) propose an

algorithm to update the search region efficiently. For
each bound u, it is enough to keep track of the defining
points of each bounded component. Then, when we
consider a new nondominated point y ≺ u, before
creating ul, the lth child of u, we check whether at least
one defining point of u still satisfies (4) for each
bounded component k, k
� l. Otherwise, ul is re-
dundant and can be discarded. See Algorithm 1 for
implementation details.

3. A New Enumeration Algorithm
We propose a new enumeration algorithm that con-
sists of iteratively exploring the search zones until all
of these are proved to be empty, as in the generic
algorithmic scheme of Klamroth et al. (2015). As in
any enumeration algorithm, most of the computation
time is spent solving the integer programs that ex-
plore the search zones. For this reason, we focus here
on reducing the number and difficulty of the integer
programs to be solved.
Three critical steps must be designed carefully so as

to produce an efficient algorithm:
• exploration of a search zone
• update of the search region
• selection of the search zone to be explored

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS 5

Obviously, these three steps are interrelated. The
following three subsections describe in details each of
these steps.

Algorithm 1 (Updating the search region using defining
points as in Klamroth et al. (2015))

Input : U(N): set of local upper bounds.
y∗: a new nondominated point.

Output: U(N ∪ {y∗}): updated set of local upper
bounds.

1 U(N ∪ {y∗}) ← U(N)
2 foreach u ∈ U(N) do
3 if y∗ ≺ u then
4 U(N ∪ {y∗}) ← U(N ∪ {y∗}) \ {u}
5 foreach � ∈ {1, . . . , p} do

/* Before computing the �th child, check

if at least one defining point is still

valid for each bounded component. */
6 u� ← (u1, . . . ,u�−1, y∗� , u�+1, . . . , up)
7 foreach k ∈ {1, . . . , p}, k
� � do
8 Nk(u�) ← {y ∈ Nk(u), y� < y∗� }

/* y∗ obviously defines component � of

child u� */
9 N�(u�) ← {y∗}
10 if Nk(u�)
� ∅ for all k ∈ {1, . . . , p} \ {�} such

that u�k
� M then
/* At least onedefiningpointis still

valid for each bounded component, u�

is then maximal and must be added

to the new search region */
11 U(N ∪ {y∗}) ← U(N ∪ {y∗}) ∪ {u�}
12 else if y∗k � uk and y∗−k ≺ uk for some k ∈ {1, . . . , p}

then
/* Update the kth list of defining points

for bound u */
13 Nk(u) ← Nk(u) ∪ {y∗}

3.1. Exploration Phase
Exploring a search zone z(u) is performed using the
following program, where objective k is minimized in
priority and not constrained:

Π k,u()
lexmin yk,

∑p
i�1
i
�k

yi

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

s.t. y ∈ Y,
yi < ui ∀i ∈ 1, . . . , p

{ }
, i
� k.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
We first present some important properties regarding
the feasibility and the optimal solution of problem
Π(k, u). Then,we show twoways of solving this program.

Proposition 3. If problem Π(k, u) is feasible, a nondomi-
nated point minimizing objective k over the zone delimited
by the projected bound u−k is returned.

Proof. Direct consequence of Proposition 1. □

Observe that any optimal solution y∗ ofΠ(k, u) does
not necessarily belong to the search region because
the bound on objective k has been omitted. In other
words, this means that y∗ may have already been
enumerated. Approaches relying only on projected
bounds have to check this by browsing the entire list
of enumerated points. However, because in our case the
search region is precisely characterized, we can use the
following results, which provide an efficient way to
check whether y∗ is a new nondominated point.

Proposition 4. Let u ∈ U(N), and let y∗ be an optimal
solution of program Π(k,u). Then, we have y∗k ≤ uk.

Proof. If uk � M, the result is trivial. Otherwise, uk is
bounded. BecauseU(N) only contains maximal bounds,
we have Nk(u)
� ∅. Let y ∈ Nk(u). From (4), we have
y−k ≺ u−k and yk � uk. Therefore y is feasible for Π(k, u),
and we have y∗k ≤ yk � uk. □

We now clarify the condition under which y∗ is a
new nondominated point.

Corollary 1. Let y∗ be an optimal solution of program
Π(k,u). Point y∗ ∈ S(N) if and only if y∗ /∈ Nk(u).
Proof.
⇒: If y∗ ∈ S(N), by definition of the search region,

we have y∗ /∈ N, and because Nk(u) ⊂ N, we have
y∗ /∈ Nk(u).
⇐: From Proposition 4, we have y∗k ≤ uk. If y∗k < uk,

then y∗ ≺ u; thus y∗ ∈ S(N). Otherwise, if y∗k �uk, y∗ is a
kth defining point of bound u because it satisfies (4).
Therefore, if y∗ /∈ Nk(u), y∗ is a new nondomin-
ated point. □

Contrary to the approaches that use projected bounds
to characterize the search region, we can detect new
nondominated points without checking the whole setN.
In practice, if Π(k, u) yields a point y∗, we check
whether y∗k < uk. If so, y∗ belongs to z(u) and is thus a
new nondominated point. Otherwise, we have y∗k � uk
with two possible subcases. Either y∗ does not belong
toNk(u), in which case y∗ is also a new nondominated
point that actually belongs to another zone than z(u),
or it belongs to Nk(u) and thus has been already
enumerated. Because Nk(u) is usually a very small
subset of N, checking whether y∗ is new or not is
performed very quickly in practice.
The following result, which also derives from Prop-

osition 2, allows us to guarantee thatΠ(k,u) is feasible
when uk is bounded. Moreover, it is possible to
provide a feasible starting solution, which signifi-
cantly decreases the time spent on the resolution.

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
6 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS

Proposition 5. Let u ∈ U(N). If uk
� M, program Π(k,u)
is feasible, and there exists a point y ∈ N ∩ F(Π(k, u)).
Proof. From Proposition 2, because u is a maximal
local upper bound such that uk
� M, Nk(u) is non-
empty. Then, any point y ∈ Nk(u) satisfies, by defi-
nition, y−k ≺ u−k and is thus feasible for Π(k, u). □

Therefore, keeping track of the sets of defining
points Nk(u) for each bound u ∈ U(N) allows us to
provide, in constant time, a feasible starting solu-
tion of program Π(k,u) when uk
� M. Note that, ex-
cept at the first iteration, it is always possible to se-
lect k such that uk is bounded. It is then possible
to guarantee that every subsequent program will
be feasible.

The lexicographic program Π(k,u) can be solved in
two main ways: either by solving two consecutive
programs (two-stage approach) or by solving a unique
weighted sum problem (direct approach).

• Two-Stage Approach. We can obtain a nondomi-
nated point minimizing criterion k in the search zone
z(u) by solving consecutively two programs. First, we
solve the following program:

Π1 k,u()
min yk
s.t. y ∈ Y,

yi < ui ∀i ∈ 1, . . . , p
{ }

, i
� k,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
which minimizes only objective k.

The optimal point y∗ of Π1(k,u) is guaranteed only
to be weakly nondominated because it could be
dominated by another point reaching the same per-
formance on the kth criterion but better values on other
criteria. It is then necessary to solve another program
to obtain a nondominated point:

Π2 k, u()
min

∑p
i�1

yi

s.t. y ∈ Y,
yk � y∗k ,
yi ≤ y∗k ∀i ∈ 1, . . . , p

{ }
, i
� k.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Because y∗ is feasible forΠ2(k, u), using it as a starting
feasible solution can improve the resolution.

• Direct Approach. It is theoretically possible to
merge both previous programs in order to obtain
directly a nondominated point having the best per-
formance on the kth criterion. This can be done by
solving a single programwhere the objective function
involves all the remaining criteria: the main criterion
has to be weighted using a sufficiently large co-
efficient in order to ensure that it is impossible to
compensate any of its degradation with good values
on the others. The following result provides a bound
on this weight when the objective functions take in-
teger values.

Proposition 6. Assuming that all objective functions take
integer values, the following program leads to a nondomin-
ated point reaching the lowest performance on the kth criterion
over zone z(u−k), if feasible:

Π′ k,u()
min Δyk +

∑p
i�1
i
�k

yi

s.t. y ∈ Y,
yi < ui ∀i ∈ 1, . . . , p

{ }
, i
� k,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
with Δ >

∑p
i�1
i
�k

(Ui − Li), where Ui and Li are the respective

upper and lower bounds of any value reached by criterion fi
over zone z(u−k).
Proof. By Proposition 3, Π′(k,u) provides a nondomi-
nated point. Let y∗k be the optimal value on criterion k
over the zone delimited by the projected bound u−k. For
a sufficiently large Δ value, problem Π′(k,u) yields a
solution with value y∗k on objective k. We look for the
smallest value of Δ for which this remains true. The
worst possible situation is the existence of the two fol-
lowing feasible points belonging to F(Π(k,u)):

y1 � U1, . . . ,Uk−1, y∗k ,Uk+1, . . . ,Up

()
,

y2 � L1, . . . , Lk−1, y∗k + 1, Lk+1, . . . ,Lp
()

.

Then Δ must be selected such that y1 is still chosen;
that is, Δy∗k +∑p

i�1
i
�k

Ui <Δ(y∗k + 1) +∑p
i�1
i
�k

Li, which yields

Δ>
∑p

i�1
i
�k

(Ui−Li). □

Because any search zone is defined using a local
upper bound, we can adapt the previous result.

Corollary 2. Program Π′(k, u) with Δ � 1 +∑p
i�1
i
�k

(ui − yIi)
provides a nondominated point in the zone delimited by the
projected bound u−k minimizing the kth criterion, if feasible.

Proof. By definition of Π(k, u), we have ui > Ui and
yIi ≤ Li. The result follows. □

The direct approach, which solves only one pro-
gram instead of two at each iteration, is potentially
faster. However, if coefficient Δ on objective fk is
too large when compared with coefficient 1 on the
other objectives, this only means that we just opti-
mize objective fk without considering the other ob-
jectives, because of the lack of numerical precision.
Then, we are guaranteed to yield at least a weakly
nondominated point, which might be dominated
on the p − 1 remaining objectives. Therefore, the
final returned set might include a few weakly non-
dominated points that are dominated but will certainly
contain all nondominated points. It should be noted,
however, that the use of a local upper bound u in the
definition of Δ, instead of a global upper bound U
over the whole set of feasible points, limits this risk.
Nevertheless, when using the direct approach, an

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS 7

additional procedure is required to filter out the weakly
nondominated points that are dominated. Observe,
however, that it is onlynecessary to compare theoptimal
point of Π′(k,u) with the points having the same
performance on objective k instead of browsing the
whole set to detect weak dominance, which drasti-
cally reduces the number of needed comparisons.

3.2. Reduction Rules
Even if U(N) contains only maximal bounds, some of
them can be discarded by proving that the corre-
sponding search zones do not contain feasible points,
without testing them by solving a program Π.

A first trivial case occurs when a bound u reaches
the performance of the ideal point on at least one
objective (i.e., when ui � yIi for some i ∈ {1, . . . , p}).
Then, search zone z(u) cannot contain any feasi-
ble point and can be discarded because, by definition,
no point can strictly improve the ideal point on
any objective.

A second simple case is outlined in the next result,
showing that one child can be discarded each time a
new point is generated.

Proposition 7. Let u ∈ U(N), and let y∗ be an optimal
point ofΠ(k,u) with y∗ ≺ u. Then, uk, the kth child of u, can
be discarded.

Proof. Because uk � (u1, . . . , uk−1, y∗k ,uk+1, . . . , up), we
have F(Π(k, uk)) � F(Π(k,u)). Therefore, y∗k is also the
optimal value of Π(k, uk). It follows that z(uk) does not
contain any feasible point. □

These first two cases are very simple to check.
Proposition 7 can be generalized in order to detect
other empty zones. This generalization will allow us
to discard some zones by checking the results of
programs Π previously solved. Owing to some spe-
cific properties, we show that we do not need to check
all previously solved programs but only a small
fraction of them.

Proposition 8. Let u ∈ U(N), and let y∗k be the optimal
value of Π(k,u). Then, any bound u′ such that

u′−k}u−k,
u′k ≤ y∗k ,

{
(5)

can be discarded.

Proof. Because F(Π(k, u′)) ⊂ F(Π(k,u)), y∗k is a lower
bound on objective k for any feasible point in F(Π(k,u′)).
Then, if u′k ≤ y∗k , zone z(u′) does not contain any fea-
sible point. □

Proposition 7 is clearly a particular case of Prop-
osition 8, with u′ � uk. Observe that, by construction,
bound uk is generated after bound u—that is, when

u ∈ U(N), uk /∈ U(N). Moreover, insteadofhavingu′k ≤ y∗k ,
we have more particularly, by construction, ukk � y∗k .
We show that these two properties are actually also
true for any bound u′ that satisfies (5).

Proposition 9. Let u ∈ U(N), and let y∗k be the optimal
value of Π(k, u). Any maximal bound u′ that satisfies (5) is
such that u′ /∈ U(N) and u′k � y∗k .
Proof. Using (5) and Proposition 4 we get u′k ≤ y∗k ≤ uk.
Because u′−k}u−k, we have u′}u. Owing to the max-
imality of bounds in U(N), we have u′ /∈ U(N), and it
can thus appear at a subsequent iteration, which proves
the first part of the result.
Let y ∈ Nk(u′) be a kth defining point of u′. From (4),

we have y ∈ F(Π(k, u′)) and yk � u′k. Because F(Π(k,u′)) ⊂
F(Π(k, u)), we have y∗k ≤ yk � u′k. Therefore, if u

′ sat-
isfies (5), we have u′k � y∗k . □

Combining Propositions 8 and 9, we deduce that
we can discard a bound u′ if we already solved (at a
previous iteration) a program Π(k, u) with optimal
value y∗ such that u′−k}u−k and u′k � y∗k . For this pur-
pose, we maintain p lists V(k), k ∈ {1, . . . , p}, each one
keeping track of the already solved feasible programs
Π(k,u) with optimal value y∗k , where each program is
represented by the pair (u, y∗k). These lists are sorted
according to values y∗k . Detecting the existence of a
pair such that y∗k � u′k (and u′−k}u−k) can be performed
efficiently using a dichotomic search, instead of brows-
ing the whole list.

3.3. Selection of Search Zones
An important issue is the selection of the search zone
z(u) to be explored as well as the criterion k to be
optimized over this search zone. This defines the
program Π(k,u) to be solved at the next iteration. We
now describe a heuristic to guide the selection of a
search zone.
First of all, as outlined in Section 3.1, we want to

select k such that uk is bounded because this allows us
both to guarantee that program Π(k,u) is feasible
and to provide a feasible starting solution in con-
stant time.
The heuristic aims at satisfying two other natural

goals. First, we would like to favor zones that are
more liable to contain a new nondominated point.
Because we do not have any prior information, it
seems reasonable to favor zones delimiting the larg-
est unexplored part of the objective space. Second,
we would like to select zones that have a larger
chance to trigger the application of the reduction
rules presented in Section 3.2 (i.e., zones with the
largest projection).
In order to perform the selection of both the local

upper bound and the objective to be optimized, we

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
8 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS

propose the following priority index, which might be
seen as the hypervolume of the projection u−k:

h k,u() � ∏
i
�k

ui − yIi
()

,

where yI is the global ideal point. At each iteration,
bound u∗ and the objective k∗ are selected according
to (6) in order to maximize the hypervolume:

k∗,u∗() �
1, M, . . . ,M()() if N � ∅,

argmax
u∈U N()

k∈ 1,...,p{ }
uk
�M

h k,u(){ } otherwise.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (6)

Note that except at the first iteration, all of the search
zones have at least one bounded component, allow-
ing us to compute the index h.

The two following results support the choice of our
heuristic index.

Proposition 10. Except at the first iteration, program
Π(k∗,u∗) is necessarily feasible.

Proof. Except at the first iteration, we have uk∗
� M by
construction. Then, the result is a direct consequence of
Proposition 5. □

The following result proves that the projection of
bound u∗ according to objective k∗ is not included in
any other projection in the same direction.

Proposition 11. There is no bound u ∈ U(N) such that
u∗−k∗ 	 u−k∗ .
Proof. Suppose there exists u ∈ U(N) such that
u∗−k∗ 	 u−k∗ . This implies that u∗i ≤ ui, i ∈ {1, . . . , p} \ {k},
with u∗i < ui for some i, leading to h(k∗,u∗) < h(k∗,u),
contradicting (6). □

Therefore, the projection of the bound with the
largest hypervolume will not be included in another
one, increasing the chance to trigger the reduction
rule presented in the previous section.

Our algorithm including the refinements presented
in the three previous subsections is described as
Algorithm 2.

Algorithm 2 (Determination of the set of nondominated
points)

Input: Y, image of the feasible set X
Output: YND, the nondominated set of Y
/* Initialize the set of nondominated points,
the list of upper bounds, and the set of solved
models */

1 N← ∅ U(N) ← {(M, . . . ,M)} V(k) ← ∅, k ∈ {1, . . . , p}
2 compute the ideal point yI

3 while U(N)
� ∅do
/* Select the search zone and the criterion

maximizing the score */
4 select (k∗, u∗) according to (6)
5 y∗ ← solveΠ(k∗, u∗) /* using any

y ∈ Nk∗(u∗) as a starting solution */
/* Add the model to the archive of solved models

*/
6 V(k∗) ← V(k∗) ∪ {(u∗, y∗k)}
7 if y∗ /∈ Nk∗(u∗) then

/* y∗ is a new nondominated point. The

search region is updated

as described in Algorithm 1 */
8 U(N ∪ {y∗}) ← updateSearchRegion (U(N), y∗)
9 N ← N ∪ {y∗}

/* Clean the search region using the reduction

rules */
10 foreach u′ ∈ U(N) do
11 foreach k ∈ {1, . . . , p} do
12 if u′k � yIk then
13 U(N) ← U(N) \ {u′}
14 else
15 foreach (u, yk) ∈ V(k) do
16 if u′−k}u−k and yk � u′k then
17 U(N) ← U(N) \ {u′}

/* All the nondominated points are in N. */
18 YND ← N

4. Computational Results
Our algorithm has been implemented using the
Haskell programming language, which calls the
IBM ILOG CPLEX Concert Technology 12.9� on an
Intel i9 9900K 4.7 GHz CPU with 7.8 GB of memory.
Because Kirlik and Sayin (2014) have already shown
that their approach outperformed the other state-of-
the-art algorithms at this date, we compare our al-
gorithm to theirs, referred to as KS2014. We also
compare our algorithm to the recent approach pro-
posed by Boland et al. (2017), referred to as BCS2017.
We used, on the same computer, the implementations
provided by the authors (at http://home.ku.edu.tr/
~moolibrary/ and https://ogma.newcastle.edu.au/
vital/access/manager/Repository/uon:17056, respec-
tively). Comparisons have been made on the multi-
objective knapsack problem (MOKP) and multiob-
jective assignment problem (MOAP), which are
described in the next section. Our implementation
and the set of instances can be found at https://www
.lamsade.dauphine.fr/~vdp/tv19.

4.1. Instances
4.1.1. Multiobjective Knapsack Problem. Consider a
set of n items. Each item i has p values vki , k ∈ {1, . . . , p},
and a weight ωi, i ∈ {1, . . . ,n}. Given a capacity ω, we

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS 9

http://home.ku.edu.tr/%7Emoolibrary/
http://home.ku.edu.tr/%7Emoolibrary/
https://ogma.newcastle.edu.au/vital/access/manager/Repository/uon:17056
https://ogma.newcastle.edu.au/vital/access/manager/Repository/uon:17056
https://www.lamsade.dauphine.fr/%7Evdp/tv19
https://www.lamsade.dauphine.fr/%7Evdp/tv19
https://www.lamsade.dauphine.fr/%7Evdp/tv19

want to select a subset of items that maximizes the
values of the knapsack while respecting capacity ω:

MOKP()
max

∑n
i�1

vki xi k ∈ 1, . . . , p
{ }

s.t.
∑n
i�1

ωixi ≤ ω,

xi ∈ 0, 1{ } i ∈ 1, . . . ,n{ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
All values and weights are randomly generated in the

interval [1, 100], and we set ω � �
∑n

i�1 vi
2 �.

4.1.2. Multiobjective Assignment Problem. Consider a
set I of agents and a set J of tasks with |I| � |J| � n. Each
pair (i, j) ∈ I × J is valued by p costs ckij to beminimized,
k ∈ {1, . . . , p}. The goal is to assign each agent to ex-
actly one machine:

MOAP()

min
∑n
i�1

ckijxij k ∈ 1, . . . , p
{ }

s.t.
∑n
i�1

xij � 1 j ∈ 1, . . . , n{ },
∑n
j�1

xij � 1 i ∈ 1, . . . ,n{ },
xij ∈ 0, 1{ } i, j

() ∈ 1, . . . ,n{ }2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Each cost is randomly generated in the interval [1, 15].
4.2. Analysis
For each type of instance, comparisons have been
performed on a set of 10 instances. Results are re-
ported in tables that indicate the average size of the
final set (|YND|), the computation times (CPU, in
seconds), the number of iterations (#Iterations), the

Table 1. Comparison of the Different Approaches on MOKP Instances

p n Name |YND | (mean) CPU (mean) #Iterations (mean) #Infeasible (mean) |U|max (mean) |U|avg (mean)

2 200 BCS2017 405.4 36.683 716.8 311.4
KS2014 405.4 13.461 405.4 0.0 2.0 1.997
Direct 405.4 9.336 406.4 0.0 1.0 1.000
TwoStage 405.4 12.292 406.4 0.0 1.0 1.000

3 100 BCS2017 4,090.0 1,206.036 9,324.9 5,234.9
KS2014 4,090.0 427.681 7,306.5 125.4 110,919.9 91,571.580
Direct 4,090.0 227.261 7,358.8 0.0 403.9 198.971
TwoStage 4,090.0 273.524 7,446.9 0.0 377.9 190.969

4 50 BCS2017 2,240.1 816.821 9,734.0 7,493.9
KS2014 — — — — — —
Direct 2,240.1 184.471 10,280.7 0.0 3,396.6 1,828.558
TwoStage 2,240.1 210.661 10,333.2 0.0 3,348.4 1,806.205

5 50 BCS2017 — — — — — —
KS2014 — — — — — —
Direct 8,788.3 4,221.594 121,795.4 0.0 54,501.2 32,833.959
TwoStage 8,788.3 4,298.001 122,051.8 0.0 54,101.0 32,540.438

6 30 BCS2017 — — — — — —
KS2014 — — — — — —
Direct 1,710.4 1,434.566 61,075.1 0.0 39,030.9 23,450.765
TwoStage 1,710.4 1,380.299 61,103.0 0.0 38,909.5 23,395.098

Table 2. Comparison of the Different Approaches on MOAP Instances

p n × n Name |YND | (mean) CPU (mean) #Iterations (mean) #Infeasible (mean) |U|max (mean) |U|avg (mean)

2 100 × 100 BCS2017 202.8 217.41 391.2 188.4
KS2014 202.8 66.23 202.8 0.0 2.0 1.995
Direct 202.8 131.64 203.8 0.0 1.0 1.000
TwoStage 202.8 62.54 203.8 0.0 1.0 1.000

3 50 × 50 BCS2017 — — — — — —
KS2014 16,867.2 4,756.93 20,558.7 114.7 39,924.0 38,896.590
Direct 16,867.2 4,212.61 23,538.1 0.0 524.3 318.472
TwoStage 16,867.2 4,246.24 25,305.2 0.0 375.9 262.773

4 20 × 20 BCS2017 — — — — — —
KS2014 — — — — — —
Direct 24,750.0 4,134.80 62,027.1 0.0 9,331.4 5,510.141
TwoStage 24,750.0 4,789.83 64,406.3 0.0 7,999.6 4,897.204

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
10 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS

number of infeasible models (#Infeasible), and the
maximal and average number of elements describing
the search region (|U|max and |U|avg, respectively)—
that is, the number of local upper bounds for our
approaches and the number of boxes for KS2014.
Because the search region of BCS2017 involves more
complex objects, we omit these two last fields for this

method. Results on MOKP and MOAP instances are
synthesized in Tables 1 and 2, respectively. If at least
one instance cannot be solved (either if the memory is
saturated or if it is still unsolved after two hours), we
report that the considered algorithm fails to solve
the set. As a consequence, CPU time and the other
measures are not computedwhen at least one instance

Figure 1. (Color online) Performance Profiles on MOKP (Logarithmic Scales), Where Higher Is Better

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS 11

is not solved.We also provide performance profiles that
describe the percentage of problems solved by each
algorithm in terms of the time ratio relative to the
fastest algorithm (Dolan and Moré 2002). Besides
showing the algorithms’ performance in relative
terms, these profiles show the number of instances
solved for each type of instance. Performance profiles
for MOKP and MOAP instances are presented in
Figures 1 and 2, respectively.

We first observe that the direct approach is gen-
erally faster than the two-stage approach, as expected.
However, as pointed out in Section 3.1, using the direct
approach may enumerate additional weakly non-
dominated points for numerical reasons.We observe,
however, that this never occurs in our experiments,
even when the size of the nondominated set is huge
(see column “|YND|,” which is always identical for
the two variants). Indeed, in practice, the largest
weight on the optimized objective remains rela-
tively small.

Comparisons with two state-of-the-art algorithms
are also presented. Our experiments show that our
algorithms outperform them. Both are clearly slower

to compute the final set, which is probably due to
the infeasible programs they need to solve and our
ability to provide a feasible starting solution at
each iteration.
Even if KS2014 needs slightly fewer iterations than

our algorithm to compute the final set, KS2014 is
clearly slower because of the huge amount of boxes,
particularly for problems with more than three ob-
jectives: for example, in MOKP with three objectives
and 100 items, both variants of our algorithm store at
most 400 upper bounds in U(N), whereas KS2014
requires storingmore than 110, 000 boxes. Thus,much
more time is needed to update the search region.
Moreover, the list of boxes saturates the memory
when the number of objective grows, and KS2014 is
not able to solve instances with four or more objec-
tives, even when the size of the final set is small (see
MOKP instances with six objectives and 30 items
where |YND| is only about 1,710 in average). Figure 1
shows that KS2014 does not solve any instance of
MOKP with more than three objectives, and Figure 2
shows that only two instances of MOAP with four
objectives are solved. In conclusion, KS2014 seems

Figure 2. (Color online) Performance Profiles on MOAP (Logarithmic Scales), Where Higher Is Better

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
12 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS

to be faster than BCS2017 for instances with at
most three objectives, but it is outperformed for
more than three objectives owing to the huge
number of boxes, which causes either prohibitive
computation times (see, e.g., MOAP instances with
four objectives and 20 items in Figure 2) or mem-
ory issues.

By contrast, BCS2017 ismore stable thanKS2014 in the
sense that it is not affected by memory issues. The al-
gorithm requires, however, relatively large computa-
tion times: see MOKP and MOAP instances with
two or three objectives, where this algorithm is clearly
outperformed. This can be explained both by the fact
that each integer program is harder to solve because
of the disjunctive constraints and by the large num-
ber of infeasible programs among these (see, e.g.,
column “#Infeasible” in Table 1). Note that for MOAP
instances with four objectives, BCS2017 outperforms
KS2014 as a result of the very large number of boxes to
be handled by KS2014. Finally, when the number of
objectives and the size of the nondominated set grow
(see, e.g., MOKP instances with six objectives and 30
items), both KS2014 and BCS2017 fail but for differ-
ent reasons: there is an explosion in the number of
boxes for KS2014 and huge computation times for
BCS2017.

All these algorithms were specifically designed for
multiobjective problemswith at least three objectives.
It is interesting, however, to analyse their behavior in
the biobjective case. Our approach presents a lot of
similarities with the classic ε-constraint method. We
need exactly |YND| + 1 iterations to compute the final
set, and the search region contains exactly one search
zone at each iteration. The only difference lies in
the choice of the objective to be optimized: in the
ε-constraint approach, the optimized objective is al-
ways the same; however, it may alternate in our
approach, allowing us to provide a feasible starting
solution as described previously. From these obser-
vations, we can see our approach as a generalization
of the traditional ε-constraint method. KS2014 can
also be interpreted as an extension of the ε-constraint
method and is even more similar to this method
because the optimized objective is always the
same. As a consequence, both KS2014 and our ap-
proaches perform similarly in the biobjective case.
BCS2017, which cannot be interpreted as an ex-
tension of the ε-constraint method, is slower in the
biobjective case.

5. Conclusions and Perspectives
We present in this paper a new algorithm for com-
puting the set of nondominated points. Our com-
parisons with two state-of-the-art algorithms show
significantly better results on the experimentedproblem

instances. Its main distinguishing features are (i) a
guarantee that no infeasible program has to be solved
during the exploration, (ii) that each program will be
provided with a starting feasible solution (warm start),
and (iii) an exact characterization of the search region
using full-dimensional search zones. As a consequence,
this algorithm benefits from the use of both the extra
knowledge given by exploring the projection of each
search region and the exact characterization of the
search region using full-dimensional search zones,
which provides stability when the number of objec-
tives grows. Further works could concern the adap-
tation of this procedure to other related questions,
such as the computation of the nadir point or the
approximation of the nondominated points with an a
priori guarantee on the quality of the returned set.

Acknowledgments
The authors are grateful to Kathrin Klamroth and Kerstin
Dächert for their heplful discussions and comments.

Appendix. Comprehensive Running Example
Consider the following triobjective knapsack instance (cor-
responding to instance KP_p-3_n-10_ins-1.dat provided with
the implementation of Kirlik and Sayin (2014)):

min 5,000 − 566x1 − 611x2 − 506x3 − 180x4 − 817x5
− 184x6 − 585x7 − 423x8 − 26x9 − 317x10

min 5,000 − 62x1 − 84x2 − 977x3 − 979x4 − 874x5
− 54x6 − 269x7 − 93x8 − 881x9 − 563x10

min 5,000 − 664x1 − 982x2 − 962x3 − 140x4 − 224x5
− 215x6 − 12x7 − 869x8 − 332x9 − 537x10

s.t. 557x1 + 898x2 + 148x3 + 63x4 + 78x5
+ 964x6 + 246x7 + 662x8 + 386x9
+ 272x10 ≤ 2,137,

xi ∈ 0, 1{ }, i ∈ 1, . . . , 10{ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
For each iteration, we specify the current search region.

The selected zone u∗ is in bold, and the objective k∗ to be
optimized in Π(k∗, u∗) is underlined.

1. Current search region: [M, M, M]
• New point: [1,606, 1,183, 1,592]
• New local upper bounds: [M, 1,183, M] [M, M, 1,592]

2. Current search region: [M, 1183, M] [M, M, 1,592]
• Starting from [1,606, 1,183, 1,592]
• New point: [2,146, 1,430, 1,286]
• New local upper bounds: [2,146, M, 1,592] [M, 1,430,

1,592]
3. Current search region: [M, 1,183, M] [2,146, M, 1,592]

[M, 1,430, 1,592]
• Starting from [1,606, 1,183, 1,592]
• New point: [2,146, 364, 1,924]
• New local upper bounds: [2,146, 1,183, M] [M, 1,183,

1,924]
4. Current search region: [2,146, M, 1,592] [M, 1,430, 1,592]

[2,146, 1,183, M] [M, 1,183, 1,924]
• Starting from [1,606, 1,183, 1,592]
• Point [1,606, 1,183, 1,592] is dominated by defining

point [1,606, 1,183, 1,592]

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS 13

5. Current search region: [2,146, 1,183, M] [M, 1,183, 1,924]
[2,146, M, 1,592]

• Starting from [2,146, 364, 1,924]
• New point: [1,958, 373, 1,811]
• New local upper bounds: [1,958, 1,183, M] [2,146, 373,

M] [M, 373, 1,924] [M, 1,183, 1,811]
• Reduction rule triggered on zones: [1,958, 1,183, M]

6. Current search region: [2,146, M, 1,592] [2,146, 373, M]
[M, 373, 1,924] [M, 1,183, 1,811]

• Starting from [1,958, 373, 1,811]
• New point: [2,294, 1,143, 1,696]
• New local upper bounds: [2,294, 1,183, 1,811] [M,

1,143, 1,811] [M, 1,183, 1,696]
• Reduction rule triggered on zones: [M, 1,183, 1,696]

7. Current search region: [2,146, 373, M] [M, 373, 1,924]
[2,146, M, 1,592] [2,294, 1,183, 1,811] [M, 1,143, 1,811]

• Starting from [1,958, 373, 1,811]
• New point: [2,482, 1,134, 1,809]
• New local upper bounds: [2,482, 1,143, 1,811] [M,

1,134, 1,811] [M, 1,143, 1,809]
• Reduction rule triggered on zones: [M, 1,143, 1,809]

8. Current search region: [M, 373, 1,924] [2,146, M, 1,592]
[2,294, 1,183, 1,811] [2,146, 373, M] [2,482, 1,143, 1,811] [M,
1,134, 1,811]

• Starting from [1,958, 373, 1,811]
• Point [1,958, 373, 1,811] is dominated by defining

point [1,958, 373, 1,811]
9. Current search region: [2,146, M, 1,592] [2,294, 1,183,

1,811] [2,146, 373, M] [2,482, 1,143, 1,811] [M, 373, 1,924]
• Starting from [1,606, 1,183, 1,592]
• New point: [2,003, 1,461, 1,491]
• New local upper bounds: [2,003, M, 1,592] [2,146,

1,461, 1,592] [2,146, M, 1,491]
• Reduction rule triggered on zones: [2,146, M, 1,491]

10. Current search region: [2,294, 1,183, 1,811] [2,146, 373,
M] [2,482, 1,143, 1,811] [M, 373, 1,924] [2,003, M, 1,592] [2,146,
1,461, 1,592]

• Starting from [1,958, 373, 1,811]
• Point [1,958, 373, 1,811] is dominated by defining

point [1,958, 373, 1,811]
11. Current search region: [2,146, 373, M] [2,482, 1,143,

1,811] [2,003, M, 1,592] [2,146, 1,461, 1,592] [2,294, 1,183,
1,811]

• Starting from [1,958, 373, 1,811]
• Point [1,958, 373, 1,811] is dominated by defining

point [1,958, 373, 1,811]
12. Current search region: [2,482, 1,143, 1,811] [2,003, M,

1,592] [2,146, 1,461, 1,592] [2,294, 1,183, 1,811]
• Starting from [1,606, 1,183, 1,592]
• Point [1,606, 1,183, 1,592] is dominated by defining

point [1,606, 1,183, 1,592]
13. Current search region: [2,482, 1,143, 1,811] [2,146,

1,461, 1,592] [2,294, 1,183, 1,811]
• Starting from [1,958, 373, 1,811]
• Point [1,958, 373, 1,811] is dominated by defining

point [1,958, 373, 1,811]
14. Current search region: [2,146, 1,461, 1,592] [2,294,

1,183, 1,811]
• Starting from [1,606, 1,183, 1,592]
• Point [1,606, 1,183, 1,592] is dominated by defining

point [1,606, 1,183, 1,592]

15. Current search region: [2,294, 1,183, 1,811]
• Starting from [1,958, 373, 1,811]
• Point [1,958, 373, 1,811] is dominated by defining

point [1,958, 373, 1,811]

References
Bazgan C, Hugot H, Vanderpooten D (2009) Solving efficiently the

0–1 multi-objective knapsack problem. Comput. Oper. Res. 36(1):
260–279.

Boland N, Charkhgard H, Savelsbergh M (2017) A new method for
optimizing a linear function over the efficient set of a multi-
objective integer program. Eur. J. Oper. Res. 260(3):904–919.

Boland N, Charkhgard H, Savelsbergh MWP (2016) The L-shape
search method for triobjective integer programming. Math.
Programming Comput. 8(2):217–251.

Chankong V, Haimes YY (1983)Multiobjective DecisionMaking: Theory
and Methodology (North Holland, New York).

Dächert K, Klamroth K, Lacour R, Vanderpooten D (2017) Efficient
computation of the search region inmulti-objective optimization.
Eur. J. Oper. Res. 260(3):841–855.

Dhaenens C, Lemesre J, Talbi E (2010) K-PPM: A new exact method to
solve multi-objective combinatorial optimization problems. Eur. J.
Oper. Res. 200(1):45–53.

Dolan ED, Moré JJ (2002) Benchmarking optimization software with
performance profiles. Math. Programming 91(2):201–213.

Kirlik G, Sayin S (2014) A new algorithm for generating all non-
dominated solutions of multiobjective discrete optimization
problems. Eur. J. Oper. Res. 232(3):479–488.

Klamroth K, Lacour R, Vanderpooten D (2015) On the representation
of the search region in multi-objective optimization. Eur. J. Oper.
Res. 245(3):767–778.

Klein D, Hannan EL (1982) An algorithm for the multiple objective
integer linear programming problem. Eur. J. Oper. Res. 9(4):378–385.

Laumanns M, Thiele L, Zitzler E (2005) An adaptive scheme to
generate the Pareto front based on the epsilon-constraint method.
Branke J, DebK,MiettinenK, Steuer RE, eds.Dagstuhl Seminar Proc.
(Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Saarbrücken,
Germany).

Lokman B, Köksalan M (2013) Finding all nondominated points of
multi-objective integer programs. J. Global Optim. 57(2):347–365.

Martins EQV (1984) On a multicriteria shortest path problem.
Eur. J. Oper. Res. 16(2):236–245.

Mavrotas G (2009) Effective implementation of the ε-constraint
method in multi-objective mathematical programming prob-
lems. Appl. Math. Comput. 213(2):455–465.

Mavrotas G, Florios K (2013) An improved version of the augmented
ε-constraint method (augmecon2) for finding the exact Pareto set
in multi-objective integer programming problems. Appl. Math.
Comput. 219(18):9652–9669.

Özlen M, Azizoğlu M (2009) Multi-objective integer programming:
A general approach for generating all non-dominated solutions.
Eur. J. Oper. Res. 199(1):25–35.

Özlen M, Burton BA, MacRae CA (2014) Multi-objective integer
programming: An improved recursive algorithm. J. Optim.
Theory Appl. 160(2):470–482.

Przybylski A, Gandibleux X (2017) Multi-objective branch and
bound. Eur. J. Oper. Res. 260(3):856–872.

Sylva J, Crema A (2004) A method for finding the set of non-
dominated vectors for multiple objective integer linear pro-
grams. Eur. J. Oper. Res. 158(1):46–55.

Sylva J, Crema A (2008) Enumerating the set of non-dominated vec-
tors in multiple objective integer linear programming. RAIRO
Oper. Res. 42(3):371–387.

Zhang W, Reimann M (2014) A simple augmented ε-constraint
method for multi-objective mathematical integer programming
problems. Eur. J. Oper. Res. 234(1):15–24.

Tamby and Vanderpooten: Enumeration of the Nondominated Set in Multiobjective Discrete Optimization
14 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2020 INFORMS

	Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems
	Introduction
	Background
	A New Enumeration Algorithm
	Computational Results
	Conclusions and Perspectives

