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Abstract

When considering Electre�s valued outranking relations, aggregation/disaggregation methodologies have difficulties
in taking discordance (veto) into account. We present a partial inference procedure to compute the value of the veto-
related parameters that best restore a set of outranking statements (i.e., examples that an Electre model should restore)
provided by a decision maker, given fixed values for the remaining parameters of the model.

This paper complements previous work on the inference of other preference-related parameters (weights, cutting
level, category limits, . . .), advancing toward an integrated framework of inference problems in Electre III and Tri meth-
ods. We propose mathematical programs to infer veto-related parameters, first considering only one criterion, then all
criteria simultaneously, using the original version of Electre outranking relation and two variants. This paper shows
that these inference procedures lead to linear programming, 0–1 linear programming, or separable programming prob-
lems, depending on the case.
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1. Introduction

The use of multiple criteria evaluation methods is often hindered by the need to provide precise values
for many preference-related parameters whose role is not clear to the Decision Maker (DM). This paper
addresses the problem of supporting the elicitation of parameter values in Electre models (for an overview
of Electre methods see [13,14]) by a process of asking the DM to make holistic judgements concerning some
pairs of alternatives, which he or she finds easy to compare. From these judgements, if consistent, a com-
bination of parameter values may be inferred. The modest contribution of this paper concerns the inference
of Electre�s veto-related parameters, complementing (and contrasting with) previous work, which mostly
focuses on how to infer criteria weights and often does not consider veto phenomena.

Aggregation/disaggregation methodologies, which have received much attention lately (see [5]), allow
the inference of values for such parameters from holistic judgments (i.e., model results) that the DM is
able to provide. Usually, when the underlying evaluation model is of the Electre type (cf. [6,9]) or of the
value function type (cf. [4,18]), a mathematical programming problem is solved to find the combination
of parameter values that best restores the examples of results proposed by the DM according to some
error function to be minimized. This is particularly useful if the inference procedure is part of an inter-
active process, where the DM observes whether his/her result examples can be restored, and reacts
accordingly. If the examples indicated by the DM can be restored, he/she may explore the complete
set of results corresponding to the multiple combinations of parameter values that satisfy the imposed
conditions (robustness analysis), which may help him/her provide further information. If not, the DM
has to discover which of those examples are inconsistent, in order to withdraw some of them (inconsist-
ency analysis). In a previous work (see [2]), we have proposed this type of methodology, integrating
parameters inference, robustness analysis, and inconsistency analysis for decision aiding based on the
Electre Tri method.

Inferring all the parameters in Electre simultaneously requires solving non-linear programs with non-
convex constraints (see [9]), which is usually difficult. The current paper follows a different strategy, based
on inferring a subset of the parameter values at a time, while maintaining the remaining ones fixed. These
‘‘partial’’ inference problems, besides simplifying the mathematical programs to be solved, present impor-
tant advantages. First, they let the DM focus his/her attention on a subset of parameters at a time (e.g.,
concordance-related parameters, then discordance-related parameters, then returning to concordance,
etc.). Second, they allow the DM to control the interactive process in an easier way. Namely, when there
are many alternative combinations of parameter values that satisfy the requests of the DM, keeping a sub-
set of the parameters temporarily constant prevents the solutions from being too disparate (even among
alternative optima). Furthermore, the DM is less likely to encounter radically different solutions when pro-
gressing from one iteration to the next one, and is able to better understand the consequences of changing
the examples that he/she provided. Indeed, we believe that inference programs should not be considered as
a problem to be solved only once, but rather as problems to be solved several times in an interactive learn-
ing process, where the DM continuously revises the information he/she provides as he/she learns with the
results of the inference programs.

Complementing a previous paper [7], which considered that the concordance-related parameters were
the only variables, this paper now considers that all parameters are fixed except the discordance-related
ones (Electre�s veto thresholds). Both papers apply to the Electre methods that use valued outranking rela-
tions (Electre III and Tri), although this work has been motivated by the application to the Electre Tri
method. The holistic information provided by the DM consists of pairs of alternatives (a,b) such that,
to his/her opinion, ‘‘a outranks b’’ (i.e., a is at least as good as b, denoted aSb), or ‘‘a does not outrank
b’’ (i.e., a is worse than b, denoted �aSb). The DM should indicate aSb as an example only if he/she feels
confident about it. This confidence may stem from his/her knowledge of a and b, or from the fact that a
and b were chosen with the purpose of making the comparison easy (e.g., their evaluations only differ in
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a couple of criteria). If the DM is not sure, then he/she will not indicate aSb as an outranking example, or
will indicate it tentatively and later see what are the consequences.

This paper intends to present mathematical programs to infer Electre�s veto thresholds from a set of
‘‘crisp’’ outranking statements, and their role in the elicitation process. The following section presents
the original outranking relation of Electre III and Tri, as well as two variants [7]. Section 3 presents the
inference problem in a general format, discussing the role of methods that infer only a subset of the model�s
parameters. Section 4 considers the problem of inferring the veto parameters for one criterion at a time, as a
simplification of the more general problem. This simplification may nevertheless be useful in practice, since
the veto parameters are not inter-related among different criteria. Section 5 deals with the more general
problem of inferring the veto parameters for more than one criterion simultaneously. Finally, Section 6 pre-
sents illustrative examples, and a closing section offers a summary and some conclusions.
2. Valued outranking relations in Electre

In this section we recall how Electre III (see [12]) and Electre Tri (see [17,14]) build a valued outranking
relation on the set of alternatives. Let F = {1, . . .,n} denote the set of criteria indices. Let A denote a finite
set of alternatives characterized by their evaluations on criteria g1, . . .,gn; gj (a) denotes the evaluation of an
alternative a 2 A on criterion gj. Without loss of generality, we will assume that the evaluations are coded in
such a way that the higher the value, the better it is.

2.1. Outranking relations for a single criterion

Electre builds, for each criterion gj, a valued outranking relation Sj restricted to a single criterion. For
any ordered pair (a,b) 2 A2, Sj(a,b) is defined by (2) on the basis of gj (a), gj (b) and two thresholds: indif-
ference qj and preference pj (0 6 qj < pj; note we consider qj < pj, although Electre also allows qj = pj).
Sj(a,b) represents the degree to which alternative a outranks (is at least as good as) b. In this paper, we
consider the thresholds pj and qj as constant, although it is possible to consider them as affine functions
(see [1]). For a more compact notation, we will write:
Djðb; aÞ ¼ gjðbÞ � gjðaÞ; ð1Þ
which is a constant value for each pair (a,b) 2 A2.
Sjða; bÞ ¼

0; if Djðb; aÞ P pj;
pj�Djðb;aÞ

pj�qj
; if qj < Djðb; aÞ < pj;

1; if Djðb; aÞ 6 qj:

8>><
>>:

ð2Þ
2.2. Concordance relation

The valued concordance relation C(a,b) is grounded on the relations Sj (j 2 F) and represents the level of
majority among the criteria in favor of the assertion ‘‘a is at least as good as b’’. When computing this
majority level, each criterion gj has a weight wj P 0 representing its voting power. Without any loss of gen-
erality, we will consider

P
j2F wj ¼ 1. Therefore, C(a,b) can be written as follows:
Cða; bÞ ¼ 1P
j2F

wj

X
j2F

wjSjða; bÞ ¼
X
j2F

wjSjða; bÞ: ð3Þ



L.C. Dias, V. Mousseau / European Journal of Operational Research 170 (2006) 172–191 175
2.3. Non-discordance relations

Electre builds, for each criterion gj, a valued discordance relation dj restricted to that criterion. This rela-
tion dj (a,b) is defined by (4) on the basis of gj (a), gj (b), a veto threshold vj and a preference threshold pj
(pj < vj; note we consider pj < vj, although Electre also allows pj = vj) (see Fig. 1). In this paper, we consider
the thresholds vj (as we already did for pj and qj) as constant, although it is possible to consider them as
affine functions (see [1]).
djða; bÞ ¼

1; if Djðb; aÞ P vj;
Djðb; aÞ � pj

vj � pj
; if pj < Djðb; aÞ < vj;

0; if Djðb; aÞ 6 pj:

8>><
>>:

ð4Þ
An overall valued non-discordance relation ND(a,b) is grounded on C(a,b) and on the relations dj, j 2 F;
it represents the degree to which the minority criteria collectively oppose a veto to the assertion ‘‘a is at least
as good as b’’. A classical way of defining ND(a,b) is given in (5). ND(a,b) = 0 corresponds to a situation
where the minority criteria are totally opposed to aSb whereas ND(a,b) = 1 means that none of the criteria
oppose a veto to aSb.
NDða; bÞ ¼
Y
j2F

1� djða; bÞ
1� Cða; bÞ where F ¼ fj 2 F =djða; bÞ > Cða; bÞg: ð5Þ
This expression is equivalent to (6):
NDða; bÞ ¼
Y
j2F

NDjða; bÞ; ð6Þ
where � �

NDjða; bÞ ¼ Min 1;

1� djða; bÞ
1� Cða; bÞ : ð7Þ
Let us remark that we can state C(a,b) < 1, as the case C(a,b) = 1 corresponds to a situation where no
discordant criterion exists. As an alternative, Mousseau and Dias [7] have proposed the valued non-
discordance relation defined by (8) and (9), where uj 2 [pj,vj] is a new parameter for the jth criterion:
ND0ða; bÞ ¼
Y
j2F

ND0
jða; bÞ ¼

Y
j2F

ð1� d 0
jða; bÞÞ; ð8Þ

d 0
jða; bÞ ¼

1 if Djðb; aÞ P vj;
Djðb; aÞ � uj

vj � uj
if uj < Djðb; aÞ < vj;

0 if Djðb; aÞ 6 uj:

8>><
>>:

ð9Þ
Fig. 1. Partial valued discordance relation.
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The new threshold uj defines the difference of performances in favor of b where the discordance starts
weakening the outranking relation (see Fig. 2). It can be considered either:

• as an additional preference parameter to be elicited directly through an interaction with the DM, or indi-
rectly using a disaggregation procedure, or

• as a technical parameter (rather than a preference-related one) that defines the extent to which differences
of evaluation gj (b) � gj (a) < vj should (or should not) weaken the concordance C(a,b) in the definition of
S(a,b). This latter option should be used only when the DM does not wish to use the added flexibility
offered by uj, preferring to work with the thresholds vj only (in such cases, a reasonable ‘‘rule-of-thumb’’
is to set automatically uj = pj + 0.75(vj � pj) (see [7])).

A second alternative to define a valued non-discordance relation is the following (see [7]):
ND00ða; bÞ ¼ Min
j2F

ND0
jða; bÞ: ð10Þ
2.4. Valued outranking relations

Electre combines the concordance and non-discordance relations in order to define the outranking rela-
tion S as shown in (11):
Sða; bÞ ¼ Cða; bÞNDða; bÞ; ð11Þ
or, according to the two alternative definitions,
S0ða; bÞ ¼ Cða; bÞND0ða; bÞ; ð12Þ

S00ða; bÞ ¼ Cða; bÞND00ða; bÞ: ð13Þ
From the valued outranking relation S(a,b), it is possible to define a family of nested crisp outranking
relations Sk; these crisp relations correspond to k-cuts of S(a,b), where the cutting level k 2 [0.5,1] repre-
sents the minimum value for S(a,b) so that aSkb holds. The same applies when we consider S 0(a,b) or
S00(a,b) instead of S(a,b).
3. Inference of parameter values from crisp outranking statements

The construction of the relation S (or S 0, or S00) involves determining the evaluation vector of the alter-
natives, and setting many parameters: the criteria weights, the various thresholds, and the cutting level.
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DMs often find it difficult to provide precise values for all these preference parameters. Hence, ‘‘disaggre-
gation approaches’’ have been proposed to infer the parameter values from holistic judgments.

Let us consider a decision process in which the DM is not able (or not willing) to assign directly values
to the preference parameters involved in an outranking relation, but can state crisp statements about this
relation for some specific pairs of alternatives (a,b), either positive (aSb) or negative (�aSb). Let us denote
S+ = {(a,b) 2 A2 such that the DM stated aSb} and S� = {(a,b) 2 A2 such that the DM stated �aSb}.
Then, a combination of parameter values is able to restore the DM�s request iff S(a,b)P k,
"(a,b) 2 S+ and S(a,b) < k, "(a,b) 2 S�. The system of constraints below (14) has a solution if and only
if there exists a combination of parameter values that yields all the crisp outranking statements in S+ and
S�. Some additional constraints can be added to this system, in order to integrate explicit statements of
the DM concerning the values of some parameters (similar systems can be defined replacing S by S 0 or
S00).
Sða; bÞ P k; 8ða; bÞ 2 Sþ;

Sða; bÞ < k; 8ða; bÞ 2 S�;

k 2 ½0:5; 1�;
vj > pj > qj P 0; 8j 2 F ;Pn

j¼1wj ¼ 1; wj P 0; 8j 2 F :

8>>>>>>><
>>>>>>>:

ð14Þ
The idea of inferring all the parameters by maximizing the minimum slack for the above system of
constraints was proposed by Mousseau and Slowinski [9] in the context of the Electre Tri method. How-
ever, the resulting mathematical program is very complex (non-linear and non-convex constraints). A
solution to circumvent this difficulty is to formulate partial inference programs, where only a subset
of the parameters are considered as variables, while the remaining ones are fixed. In partial inference
problems, if no combination of values for the inferred parameters is able to restore the statements con-
tained in S+ and S�, then the DM should wonder why. Then, he/she may either revise his/her statements
or turn his/her attention to a different subset of parameters whose value may be inadequate. Instead of
being forced to assign directly precise values for the models parameters, the DM may be supported by
different partial inference tools for different subsets of parameters, although there is no guarantee that
such a collection of tools constitutes an easy method to ‘‘solve’’ (14). Furthermore, there are situations
where DMs need support concerning only a subset of the parameters: some parameters may have a nat-
ural definition that the DM does not want to change, or some parameter values may be imposed by some
higher authority or may have been fixed in advance (e.g., criteria weights in some public procurement
processes), and the DM may have more difficulties in setting some parameters than some others. Partial
inference tools should be seen as elicitation aids, allowing the DM to fix some parameters (perhaps ten-
tatively) with the purpose of focusing his/her attention on some others. Doumpos and Zopounidis [3]
also proposed a sequential methodology to set the parameters of the Electre Tri method from a set of
reference examples.

Among partial inference problems, previous research concerning Electre methods has focused mainly on
inferring the weights and the cutting level. The problems involving the relation S(a,b) can be solved using
linear programs (LPs), but only if discordance is ignored, i.e., no veto phenomena occur and ND(a,b) = 1
(e.g., see [2,8,10] in the context of Electre Tri). However, when considering S 0(a,b) or S00(a,b), the weights
and the cutting level can be inferred using LP, even in the presence of discordance (see [7]). In the context of
Electre Tri, a procedure exists to infer category limits, i.e., frontiers between categories and attached indif-
ference and preference thresholds (everything else being fixed) (see [11]) using linear programs with 0–1 var-
iables. In this paper, we are interested in the inference of veto thresholds, all other parameters being fixed
(see Fig. 3).



Fig. 3. Global vs. partial inference procedures.
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4. Inference of veto-related parameters for a single criterion

In this subsection, we consider that all the parameters are fixed, except the veto threshold of one criterion
(let i be its index). Indeed, contrary to the weights, which are interrelated in the coalitions entering the com-
putation of concordance, veto thresholds can be set by considering one criterion at the time and usually
refer to distinct units and distinct scales (e.g., a constraint like v1 6 v2 will probably not make much sense).
Hence, the DM may wish to focus on the veto power of criteria, one criterion at a time. Since vi is the only
variable, all the requests from the DM can be satisfied iff the system (15) has a solution:
Sða; bÞ P k; 8ða; bÞ 2 Sþ;

Sða; bÞ < k; 8ða; bÞ 2 S�;

vi > pi:

8><
>: ð15Þ
4.1. Inference of vi considering S(a,b)

In this subsection, we will show that inferring the value of a single veto threshold vi considering all other
parameters fixed and the use of relation S(a,b) is a very simple problem. First, simple tests may allow one to
find that some constraints are redundant or that the problem has no solution. Then, if the problem is not
found to be impossible, each constraint derived from S+ will be translated into a lower bound for vi,
whereas each constraint derived from S� will be translated into an upper bound.

From (6) and (11), when only vi is considered as variable, S(a,b) is equal to NDi (a,b) (which is a func-
tion of vi) multiplied by a constant value Ki (a,b) = C (a,b)�j2Fn{i}NDj (a,b). If this constant is lower than k,
then a will not outrank b, even if there is no discordance on the ith criterion, since S(a,b) 6 Ki (a,b). Let us
define a relation aS�ib, meaning ‘‘aSb when there is no discordance on the ith criterion’’, or ‘‘aSb is possible
for some values of vi’’:
aS�ib () ðNDiða; bÞ ¼ 1 ) aSbÞ
() Kiða; bÞ P k:
Since Ki(a,b), C(a,b), and k are fixed constants, it is easy to perform the following preprocessing:

• if $(a,b) 2 S+ : �aS�ib or $(a,b) 2 S� : C(a,b) = 1 (which implies S(a,b) = 1), then the system (15) has
no solution.

• all constraints associated with pairs (a,b) 2 S+ : C(a,b) = 1 or pairs (a,b) 2 S� : �aS�ib are redundant,
because they will be respected for any value of vi.

We now assume that this preprocessing has been performed. If the system was not found to be impos-
sible and if the redundant constraints have been removed, then from (6), (7) and (11), the system (15) may
be replaced by the following one (note that Ki (a,b)5 0 and C(a,b) < 1 for all the pairs considered):
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NDiða; bÞ ¼ Min 1; 1�diða;bÞ
1�Cða;bÞ

n o
P k

Kiða;bÞ ; 8ða; bÞ 2 Sþ : aS�ib;

NDiða; bÞ ¼ Min 1; 1�diða;bÞ
1�Cða;bÞ

n o
< k

Kiða;bÞ ; 8ða; bÞ 2 S�
i : aS�ib;

vi > pi:

8>><
>>:

ð16Þ
Noting that aS�ib ) k/Ki(a,b) 6 1, this system is equivalent to the following one:
1� diða; bÞ P ð1� Cða; bÞÞ k
Kiða;bÞ ; 8ða; bÞ 2 Sþ : aS�ib;

1� diða; bÞ < ð1� Cða; bÞÞ k
Kiða;bÞ ; 8ða; bÞ 2 S� : aS�ib;

vi > pi:

8><
>: ð17Þ
If we now define Biða; bÞ ¼ 1� ð1�Cða;bÞÞ�k
Kiða;bÞ , then the same system may be written as
diða; bÞ 6 Biða; bÞ; 8ða; bÞ 2 Sþ : aS�ib;

diða; bÞ > Biða; bÞ; 8ða; bÞ 2 S� : aS�ib;

vi > pi;

8><
>: ð18Þ
where each di (a,b) is a function of vi (recall that all other parameters are fixed) that yields a value in the
interval [0,1] (see (4) and Fig. 1).

Since k/Ki (a,b) 2 ]0,1] and 1 > C(a,b) P k P 0.5, we conclude that 1 > Bi(a,b) > 0. From (4), each con-
straint derived from a pair (a,b) 2 S+ : aS�ib can be translated into a lower bound for vi, and each con-
straint derived from a pair (a,b) 2 S� : aS�ib can be translated into an upper bound for vi. Therefore,
we may search for a solution to the system (19), knowing that di(a,b) 2 ]0, 1[ iff diða; bÞ ¼ Diðb;aÞ�pi

vi�pi
:

vi P pi þ Diðb;aÞ�pi
Biða;bÞ ; 8ða; bÞ 2 Sþ : aS�ib;

vi < pi þ Diðb;aÞ�pi
Biða;bÞ ; 8ða; bÞ 2 S� : aS�ib;

vi > pi:

8>><
>>:

ð19Þ
Let Li denote the greatest of the lower bounds derived from S+, and let Ui denote the lowest of the upper
bounds derived from S�. Then the system (19) has no solution if Ui 6 max{Li,pi}. Otherwise any value for
vi in [max{Li,pi},Ui] is acceptable, namely vi ¼ UiþmaxfLi ;pig

2
.

4.2. Inference of ui and vi considering S 0(a,b)

In the specific case of the outranking relation S 0(a,b) (see (12)), a new veto-related parameter ui has been
introduced (see (9) and Fig. 2). In this subsection we address the problem of inferring ui and vi simultane-
ously when both are considered as the only variables (if we considered that ui is fixed and vi is the only var-
iable, then the process would be similar to the one followed in Section 4.1). First, simple tests may allow one
to find that some constraints are redundant or that the problem has no solution. If the problem is not found
to be impossible, we reach a system of inequalities with two variables (ui and vi) that produces a linear pro-
gram whose solution (if it exists) solves this system. The notation hereafter is similar to Section 4.1:

• K 0
iða; bÞ ¼ Cða; bÞ

Q
j2F nfigND

0
jða; bÞ (the product of the factors that do not depend on ui and vi; this allows

to write S0ða; bÞ ¼ ND0
iða; bÞK 0

iða; bÞ);
• aS0

�ib () K 0
iða; bÞ P k (aS0

�ib iff aS 0b is possible for some values of ui and vi);
• B0

iða; bÞ ¼ 1� k=K 0
iða; bÞ.

Following the reasoning of Section 4.1, we may perform a similar preprocessing that may detect that
the problem is infeasible (if 9ða; bÞ 2 Sþ : :aS 0

�ib or $(a,b)2S� : C(a,b) = 1) and allows one to remove
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redundant constraints (those associated with pairs (a,b) 2 S+ : C(a,b) = 1 or pairs (a,b) 2 S� : �aS�ib).
After that, inferring ui and vi amounts at solving the following system of inequalities, where the variables
vi and ui affect d

0
iða; bÞ, whereas B0

iða; bÞ are constants:
d 0
iða; bÞ 6 B0

iða; bÞ; 8ða; bÞ 2 Sþ : aS 0
�ib;

d 0
iða; bÞ > B0

iða; bÞ; 8ða; bÞ 2 S� : aS 0
�ib;

vi > ui P pi:

8><
>: ð20Þ
Since k=K 0
iða; bÞ 2�0; 1�, we conclude that 1 > Bi(a,b) P 0. Let us define the auxiliary notation:

• Sþ
ðB>0Þi ¼ fða; bÞ 2 Sþ : aS 0

�ib ^ 1 > B0
iða; bÞ > 0g;

• Sþ
ðB¼0Þi ¼ fða; bÞ 2 Sþ : aS 0

�ib ^ B0
iða; bÞ ¼ 0g.

For each ða; bÞ 2 Sþ
ðB¼0Þi we have a constraint d 0

iða; bÞ ¼ 0 (note that d 0
iða; bÞ cannot be negative), which

from (9) is equivalent to Di (b,a) 6 ui. The remaining pairs ða; bÞ 2 Sþ
ðB>0Þi and ða; bÞ 2 S�

i : aS0
�ib constrain

d 0
iða; bÞ to be lower or higher (respectively) than a value in the interval ]0,1[. Since d 0

iða; bÞ2�0; 1½ iff
d 0
iða; bÞ ¼

Diðb;aÞ�ui
vi�ui

, the following system is equivalent to the previous one:
ui P Diðb; aÞ; 8ða; bÞ 2 Sþ
ðB¼0Þi;

vi P ui þ Diðb;aÞ�ui
B0
iða;bÞ

; 8ða; bÞ 2 Sþ
ðB>0Þi;

vi < ui þ Diðb;aÞ�ui
B0
iða;bÞ

; 8ða; bÞ 2 S� : aS 0
�ib;

vi > ui P pi:

8>>>><
>>>>:

ð21Þ
Any combination of values for ui and vi satisfying system (21) is acceptable. However, in order to find a
‘‘central’’ solution, we may solve the following LP, where e is an arbitrary near-zero constant (to account
for the strict inequalities) and the variables are vi, ui and r:
Max r

s:t: ui P Diðb; aÞ þ r; 8ða; bÞ 2 Sþ
ðB¼0Þi;

vi þ ui
1

B0
iða; bÞ

� 1

� �
P

Diðb; aÞ
B0
iða; bÞ

þ r; 8ða; bÞ 2 Sþ
ðB>0Þi;

vi þ ui
1

B0
iða; bÞ

� 1

� �
6

Diðb; aÞ
B0
iða; bÞ

� r� e; 8ða; bÞ 2 S� : aS 0
�ib;

vi � e P ui P pi:

ð22Þ
If the optimum value of the LP (22) is positive or null, then the system (20) has a solution, i.e., the opti-
mum solution yields a value for vi and ui that respect all the statements provided by the DM. Otherwise, the
system (20) has no solution.
4.3. Inference of ui and vi considering S00(a,b)

Finally, we consider the outranking relation S00(a,b). Let us defineMiða; bÞ ¼ minj2F nfigND0
jða; bÞ. We will

follow a reasoning similar to that of Section 4.2 and will reach a similar system of inequalities to be solved
in an identical manner.

As only vi and ui are considered as variables, Mi (a,b) is a constant value such that
S00ða; bÞ ¼ Cða; bÞ �minfMiða; bÞ; 1� d 0ða; bÞg 6 Cða; bÞMiða; bÞ: ð23Þ
i
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Following the reasoning of Section 4.1, we may define a relation analogous to S�i and S0
�i:
aS00
�ib () Cða; bÞMiða; bÞ P k ðaS00

�ib iff aS 00b is possible for some values ofui and viÞ: ð24Þ

We perform a similar preprocessing that may detect that the problem is infeasible (if 9ða; bÞ 2 Sþ : :aS 00

�ib
or $(a,b) 2 S�:C(a,b) = 1) and allows to remove redundant constraints (those associated with pairs
(a,b) 2 S+:C(a,b) = 1 or pairs ða; bÞ 2 S� : :aS 00

�ib). Hence, we consider the system
S00ða; bÞ P k; 8ða; bÞ 2 Sþ : aS 00
�ib;

S00ða; bÞ < k; 8ða; bÞ 2 S� : aS 00
�ib;

vi > ui P pi:

8><
>: ð25Þ
From (23), each constraint S00(a,b) P k holds iff Mi (a,b)P k/C (a,b) and 1� d 0
iða; bÞ P k=Cða; bÞ.

However, aS00
�ib ) Miða; bÞ P k=Cða; bÞ; hence, S00ða; bÞ P k () 1� d 0

iða; bÞ P k=Cða; bÞ; 8ða; bÞ : aS00
�ib.

Therefore, if we now define B00
i ða; bÞ ¼ 1� k=Cða; bÞ, then the system (25) can be written as
d 0
iða; bÞ 6 B00

i ða; bÞ; 8ða; bÞ 2 Sþ : aS 00
�ib;

d 0
iða; bÞ > B00

i ða; bÞ; 8ða; bÞ 2 S� : aS 00
�ib;

vi > ui P pi:

8><
>: ð26Þ
This system is similar to the system (20) that we found in Section 4.2, hence wemay proceed as proposed in
that section: the process is the same, with a different definition for the relation S0

�i, and the constants B0
iða; bÞ.
5. Inference of all veto-related parameters simultaneously

In this section we consider that all the parameters are fixed, except some of the veto thresholds, possibly
all of them. This situation will occur when the DM does not wish to focus on the veto power of one
criterion at a time. Let V � F be the set of indices of the criteria whose veto thresholds are not fixed.
The criteria whose indices are in F n V are either fixed or do not possess any veto power (vj =1).

Being vj, j 2 V the only variables, all the requests from the DM can be satisfied iff the system (27) has a
solution:
Sða; bÞ P k; 8ða; bÞ 2 Sþ;

Sða; bÞ < k; 8ða; bÞ 2 S�;

vj > pj; 8j 2 V :

8><
>: ð27Þ
5.1. Inference of vi considering S(a,b) or S 0(a,b)

In this subsection, we will propose a mathematical programming formulation to infer the value of several
veto thresholds vj : j 2 V considering all other parameters fixed and the use of relation S(a,b). First, simple
tests may allow one to find that some constraints are redundant or that the problem has no solution. If the
problem is not found to be impossible, each constraint derived from S+ will be translated into a lower
bound for a product of several non-discordance indices, whereas each constraint derived from S� will be
translated into an upper bound for a similar product. By taking logarithms we transform these products
into sums and reach a separable programming formulation to find values (if they exist) for the veto thresh-
olds that respect those bounds. If we consider the use of relation S 0(a,b), the reasoning is similar but there
are additional variables uj : j 2 V.

Let us consider the outranking S(a,b) (see (11)) and define KV (a,b) = C (a,b)�j2FnVNDj (a,b), which is a
constant value for (a,b). We can now write S (a,b) = KV (a,b)�j2VNDj (a,b) 6 KV (a,b). Let us define a rela-
tion aS�Vb, meaning ‘‘aSb is possible for some values of vj, j 2 V’’:
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aS�V b () KV ða; bÞ P k: ð28Þ

Since KV(a,b), C(a,b), and k are fixed constants, it is easy to perform the following preprocessing:

• if $(a,b) 2 S+ : �aS�Vb or $(a,b) 2 S� : C(a,b) = 1 (which implies S(a,b) = 1), then the system (27) has
no solution.

• all constraints associated with pairs (a,b) 2 S+ : C(a,b) = 1 or pairs (a,b) 2 S� : �aS�Vb are redundant,
because they will be respected for any value of vj, j 2 V.

We now assume that this preprocessing has been performed. If the system was not found to be impos-
sible and if the redundant constraints have been removed, then the system (27) may be replaced by the fol-
lowing one, with BV (a,b) = k/KV (a,b) (note that KV (a,b)50 and C (a,b) < 1 for all the pairs considered):
Q

j2V
NDjða; bÞ P BV ða; bÞ; 8ða; bÞ 2 Sþ : aS�V b;

Q
j2V

NDjða; bÞ < BV ða; bÞ; 8ða; bÞ 2 S� : aS�V b;

vj > pj; 8j 2 V :

8>>><
>>>:

ð29Þ
This is a non-linear system of inequalities, where the variables are vj, j 2 V, as arguments of NDj (a,b)
(see (7) and (4)). If Dj (b,a) 6 pj, then (by (4)) dj (a,b) = 0 and (by (7)) NDj (a,b) = 1, regardless of the value
of vj. Hence, if we denote Vab = {j 2 V:Dj (b,a) > pj}, we can write the system (29) above as
Q

j2V ab

NDjða; bÞ P BV ða; bÞ; 8ða; bÞ 2 Sþ : aS�V b;

Q
j2V ab

NDjða; bÞ < BV ða; bÞ; 8ða; bÞ 2 S� : aS�V b;

vj > pj; 8j 2 V :

8>>><
>>>:

ð30Þ
We will now transform this system using logarithms. Let us define:
fjða; b; vjÞ ¼ logmaxf0:1;NDjða; bÞg; 8j 2 V ab: ð31Þ

This definition considers that NDj (a,b) = 0.1, whenever its real value is below 0.1 (we need this to ensure

we are taking the logarithm of a positive quantity). However, this change has no impact in the results. In-
deed, if NDj (a,b) < 0.5, for some j2Vab, then S(a,b) < k, regardless of any other parameters, since k P 0.5.
The value 0.1 in the expression above is arbitrary: any value in ]0,0.5[ could replace it.

Now, the system (29) has a solution iff the following mathematical program has a non-negative optimal
value (e is an arbitrary near-zero constant to account for the strict inequalities):
Max r

s:t:
X
j2V ab

fjða; b; vjÞ P logBV ða; bÞ þ r; 8ða; bÞ 2 Sþ : aS�V b;

X
j2V ab

fj a; b; vj
� �

6 logBV ða; bÞ � r� e; 8ða; bÞ 2 S� : aS�V b;

vj P pj þ e; 8j 2 V :

ð32Þ
The advantage of using logarithms is that we obtain a separable non-linear program, which may be
solved by 0–1 linear programming techniques. In the separable program (32), each function fj(a,b,vj)
may be approximated by a piecewise linear function of vj. Since the feasible region is not convex, these
problems may be solved by either introducing some integer (0–1) variables or using a special branch and
bound technique for dealing with SOS2 (special ordered sets of variables where at most two consecutive
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ones are non-zero). For more details about separable programs, including how to formulate them and solve
them using piecewise linear approximations and either integer 0–1 programming or SOS2 branch and
bound, see [15] (Chapters 7 and 9) and [16] (Chapters 5 and 7). In [1], we provide specific details concerning
the resolution of such programs.

If we considered the outranking relation S 0(a,b) (see (12)) instead of S(a,b), the process would be anal-
ogous to the one described here, with the only difference being the use of ND0

jða; bÞ instead of NDj(a,b). The
only significant consequence is that ND0

jða; bÞ depends also on the variables uj (j 2 V) (besides vj), which in-
creases the number of binary variables in the 0–1 linear programs to solve.

5.2. Inference of ui and vi considering S00(a,b)

In this subsection, we will propose a mathematical programming formulation to infer the value of several
discordance-related thresholds vj,uj : j 2 V considering all other parameters fixed and the use of relation
S00(a,b). First, simple tests may allow to find that some constraints are redundant or that the problem
has no solution. If the problem is not found to be impossible, each constraint derived from S+ will be trans-
lated into a lower bound for the minimum non-discordance index among a set, whereas each constraint
derived from S� will be translated into an upper bound for a similar minimum. We present a 0–1 program-
ming formulation to find values (if they exist) for vj,uj : j 2 V that respect those bounds, where the binary
variables are used to cope with the upper bound constraints.

Considering the outranking relation S00(a,b) (see (13)) and the variables uj and vj (j 2 V), we will follow a
similar reasoning, as we did for S(a,b). The relation aS 00

�V b plays the same role as aS�Vb in Section 5.1, but
has a different definition:
aS 00
�V b () Cða; bÞ min

j2F nV
ND0

jða; bÞ P k: ð33Þ
We perform a similar preprocessing that may detect that the problem is infeasible (if
9ða; bÞ 2 Sþ : :aS 00

�V b or $(a,b) 2 S� : C(a,b) = 1) and allows to remove redundant constraints (those asso-
ciated with pairs (a,b) 2 S+ : C(a,b) = 1 or pairs ða; bÞ 2 S� : :aS 00

�V b). Hence, we consider the following
system, with B00(a,b) = k/C(a,b) (recall the definition of S00(a,b) (see (13)):
min
j2F

ND0
jða; bÞ P B00ða; bÞ; 8ða; bÞ 2 Sþ : aS 00

�V b;

min
j2F

ND0
jða; bÞ < B00ða; bÞ; 8ða; bÞ 2 S� : aS 00

�V b;

vj > uj P pj; 8j 2 V ;

8>><
>>:

ð34Þ
where the variables uj and vj (j 2 V) are arguments of ND0
jða; bÞ.

Noting that ND0
jða; bÞ ¼ minf1;maxf0; vj�Djðb;aÞ

vj�uj
gg (see (8) and (9)), and since aS 00

�V b ) B00ða; bÞ 2 �0; 1�,
the system (34) is equivalent to the following one:
min
j2F

vj�Djðb;aÞ
vj�uj

P B00ða; bÞ; 8ða; bÞ 2 Sþ : aS 00
�V b; ð35:aÞ

min
j2F

vj�Djðb;aÞ
vj�uj

< B00ða; bÞ; 8ða; bÞ 2 S� : aS 00
�V b; ð35:bÞ

vj > uj P pj; 8j 2 V :

8>>><
>>>:

ð35Þ
The values of
vj�Djðb;aÞ

vj�uj
are fixed for j 2 F n V and variable for j 2 V. Hence we may readily verify whether

any of the fixed values makes a constraint (35.a) impossible to respect (hence there would be no solution) or
makes a constraint (35.b) redundant (hence may be deleted).

We can now build a mathematical program to test if system (35) has a solution. Since vj > uj, each of the
constraints (35.a) may be rewritten as:
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min
j2F

vj � Djðb; aÞ
vj � uj

� B00ða; bÞ P 0

() vj � Djðb; aÞ
vj � uj

� B00ða; bÞ P 0; 8j 2 F ;

() ð1� B00ða; bÞÞ vj þ B00ða; bÞ uj P Djðb; aÞ; 8j 2 F :

ð36Þ
On the other hand, since vj > uj, each of the constraints (35.b) may be rewritten as:
min
j2F

vj � Djðb; aÞ
vj � uj

� B00ða; bÞ < 0

() 9j 2 F :
vj � Djðb; aÞ

vj � uj
� B00ða; bÞ < 0

() 9j 2 F : ð1� B00ða; bÞÞ vj þ B00ða; bÞ uj < Djðb; aÞ ð37Þ
ð1� B00ða; bÞÞ vj þ B00ða; bÞ uj þM djab < M þ Djðb; aÞ; 8j 2 F ;X
j2F

djab P 1;

djab 2 f0; 1g; 8j 2 F ; ð38Þ

()

8>>><
>>>:
where M is a large positive constant greater than vj�Djðb;aÞ
vj�uj

, 8j 2 F ; 8ða; bÞ 2 S� : aS 00
�V b. The system (38) uses

binary variables to account for the disjunctive nature of (37). Note that
P

j2F djab P 1 forces at least one of
the binary variables djab to be have the value 1, thus forcing (37). Considering these transformations, the
system (35) has a solution iff the following 0–1 linear program has a non-negative optimal value (e is an
arbitrary near-zero constant):
Max r

s:t: ð1� B00ða; bÞÞ vj þ B00ða; bÞ uj P Djðb; aÞ þ r; 8j 2 F ; ða; bÞ 2 Sþ : aS 00
�V b;

ð1� B00ða; bÞÞ vj þ B00ða; bÞ uj þM � djab 6 M þ Djðb; aÞ � r� e; 8j 2 F ; ða; bÞ 2 S� : aS 00
�V bX

j2F
djab P 1; 8ða; bÞ 2 S� : aS 00

�V b;

vj � e P uj P pj; 8j 2 V ;

djab 2 f0; 1g; 8j 2 F ; ða; bÞ 2 S� : aS 00
�V b; r free: ð39Þ
6. Illustrative example

In this section, we present an example that illustrates the procedures presented in Sections 4 and 5. This
example deals with a multiple criteria sorting problem using the pessimistic Electre Tri method (see [14] and
[17]). Let us note, however, that this problem amounts to inferring a relation S from outranking statements
(see Section 3), since a statement ‘‘a is assigned to Ck’’ is equivalent in the Electre Tri pessimistic procedure
to aSbk ^ �aSbk+1. Indeed, the methodology proposed in the previous sections applies when the DM
expresses statements which lead to outranking statements; regardless of the context, e.g., sorting, choice
or ranking of alternatives.

We consider a set of private companies (see Table 1) evaluated on the five following criteria. The eval-
uations on each criterion range on the interval [0,100], with an increasing direction of preference, i.e., the
more the better:



Table 1
Set of companies to be assigned a category

g1 g2 g3 g4 g5

a1 80 75 80 50 35
a2 85 31 45 95 6
a3 75 95 90 70 45
a4 90 55 80 80 34
a5 95 90 85 49 75
..
. ..

. ..
. ..

. ..
. ..

.
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g1: macroeconomic indicator,
g2: market position,
g3: financial indicator,
g4: management team,
g5: past credit history.

The decision problem is to analyze the credit risk associated to a company. This problem may be for-
mulated as a sorting problem which consists in assigning alternatives (corresponding to companies) to
one of the four categories (C1–C4) that represents a credit risk level. In this decision problem the DM will
be supported by the use of the Electre Tri method, considering the relation S00 (see (13)). The profiles
separating the categories are given in Table 2:

C1: very high risk (worst category),
C2: high risk,
C3: low risk,
C4: very low (best category).

The DM needs support to determine the values for discordance-related parameters. In particular, she
believes that criteria g1, g2 and g3 should not have any veto power (hence the DM and analyst agree to
set v1 = v2 = v3 = +1), whereas criterion g5 can have some veto power. She is unsure whether criterion
g4 should have any veto power or not. In terms of weights (wj) involved in the computations of concord-
ance, she wants to consider all criteria as equally important. She also wants to treat the criteria similarly in
what concerns the imprecision of evaluations, fixing the indifference thresholds (qj) and the preference
thresholds (pj) to the same values for the different criteria. Additionally, she considers that the thresholds
(including the discordance thresholds), are constant from profile to profile (i.e., they do not vary with the
performances of the alternatives being compared). This information is summarized in Table 3. Finally, she
considered a cutting level of 0.54. Note that k = 0.54 corresponds to a coalition of any of three criteria with
a discordance index ND00 (see (10)) equal to 0.9, or better.

Initially, the DM considers three companies she knows well as examples (a1, a2 and a3), stating that a1 is
a good example of C3 (low risk), a2 is a good example of C2 (high risk) and a3 is a good example of C4 (very
Table 2
Category limits

g1 g2 g3 g4 g5

Limit(C1–C2): gj (b1) 25 25 30 30 15
Limit(C2–C3): gj (b2) 50 50 55 55 55
Limit(C3–C4): gj (b3) 75 75 80 85 80



Table 3
Weights and discrimination thresholds

g1 g2 g3 g4 g5

wj 0.2 0.2 0.2 0.2 0.2
qj 10 10 10 10 10
pj 20 20 20 20 20
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low risk). Stating these assignment examples is equivalent (in the Electre Tri assignment procedure) to the
following outranking statements: a1Sb2 and �(a1Sb3); a2Sb1 and �(a2Sb2); a3Sb3. This leads to the follow-
ing sets S+ and S� (see Section 3):
Sþ ¼ fða1; b2Þ; ða2; b1Þ; ða3; b3Þg; S� ¼ fða1; b3Þ; ða2; b2Þg:
The following tables summarize the pairwise comparisons involved in S+ and S�:
;

;

;

;

:

The DM wants to know whether it is possible for S00 to reproduce the statements in S+ and S� by con-
sidering that only criterion g5 has some veto power (i.e., considering u5 and v5 as variables, and vj = +1,
j = 1, . . ., 4). Following section Section 4.3, we obtain the following system (after removing the constraint
concerning the pair (a2,b1), which is redundant because C(a2,b1) = 1):
d 0
5ða1; b2Þ 6 B00

i ða1; b2Þ ¼ 0:325;

d 0
5ða3; b3Þ 6 B00

i ða3; b3Þ ¼ 0:1;

d 0
5ða1; b3Þ > B00

i ða1; b3Þ ¼ 0:1;

d 0
5ða2; b2Þ > B00

i ða2; b2Þ ¼ 0:129;

u5 > p5;

v5 P u5:

8>>>>>>>>>>><
>>>>>>>>>>>:
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This system may then be written as
v5 � 2:0769u5 P 51:5385;

v5 � 9u5 P 350;

v5 � 2:0769u5 < 450;

v5 � 6:75u5 < 379:75;

u5 > p5;
v5 P u5:

8>>>>>>><
>>>>>>>:

ð40Þ
A solution to this system can be obtained by linear programming (we consider e = 0.0001):
Max r

s:t: v5 � 2:0769u5 � r P 51:5385;

v5 � 9u5 � r P 350;

v5 � 2:0769u5 þ r 6 450� e;

v5 � 6:75u5 þ r 6 379:75� e;

u5 P p5 þ e;

v5 P u5:

ð41Þ
This linear program yields as an optimal solution the following values: r = 50.00005, u5 = 40, and
v5 = 40.0001. Since r is not negative, the inferred values for u5 and v5 reproduce all of the DM�s requests.
The DM might also reduce the number of variables in the problem, albeit at the cost of losing flexibility, by
imposing u5 = (1�a5)p5 + a5v5 for a given value of a5. In this case, solving the linear program would no
longer be necessary, as each of the constraints would become an upper or lower bound on v5. For instance,
considering a5 = 0.75 yields the bounds v5 2 [39.3548,52.2581].

After a discussion with the DM, the analyst adds two other examples, stating that actions a4 and a5 are
also good examples of C4 (very low risk).
Sþ ¼ fða1; b2Þ; ða2; b1Þ; ða3; b3Þ; ða4; b3Þ; ða5; b3Þg; S� ¼ fða1; b3Þ; ða2; b2Þg:

The following tables summarize the new pairwise comparisons in S+:
;

:

These new statements in S+ lead to add two new constraints to the above system:
d 0
5ða4; b3Þ 6 B00

i ða4; b3Þ ¼ 0:1 () v5 � 9u5 P 460;

d 0
5ða5; b3Þ 6 B00

i ða5; b3Þ ¼ 0:325 () v5 � 2:0769u5 P 15:3842:

�

The introduction of these two constraints to the linear program (41) leads to a new optimal solution:
r = �5.00005. This negative value means that there are no values for the parameters u5 and v5 such that
all constraints are satisfied simultaneously.

Since considering u5 and v5 as the only variables does not allow the method to reproduce her requests,
the DM accepts that criterion g4 can also have veto power. Considering the variables are u4,v4,u5,v5, the
system can be written as follows (recall Section 5.2), after removing the constraint concerning the pair
(a2,b1), which is redundant because C(a2,b1) = 1:
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min
j2F

ND0
jða1; b2Þ P B00ða1; b2Þ ¼ 0:675;

min
j2F

ND0
jða3; b3Þ P B00ða3; b3Þ ¼ 0:9;

min
j2F

ND0
jða4; b3Þ P B00ða4; b3Þ ¼ 0:9;

min
j2F

ND0
jða5; b3Þ P B00ða5; b3Þ ¼ 0:675;

min
j2F

ND0
jða1; b3Þ < B00ða1; b3Þ ¼ 0:9;

min
j2F

ND0
jða2; b2Þ < B00ða2; b2Þ ¼ 0:871;

v5 P u5 > p5;

v4 P u4 > p4:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð42Þ
In this case, we may consider F = {4,5} instead of F = {1, . . ., 5}, since the criteria g1, g2, and g3 were not
granted veto power by the DM. As described in Section 5.2, a solution to this system can be found by solv-
ing the 0–1 program:
Max r

s:t:

ða1; b2Þ :
0:325v5 þ 0:675u5 � r P 20;

0:325v4 þ 0:675u4 � r P 5;

�

ða3; b3Þ :
0:1v5 þ 0:9u5 � r P 35;

0:1v4 þ 0:9u4 � r P 15;

�

ða4; b3Þ :
0:1v5 þ 0:9u5 � r P 46;

0:1v4 þ 0:9u4 � r P 5;

�

ða5; b3Þ :
0:325v5 þ 0:675u5 � r P 5;

0:325v4 þ 0:675u4 � r P 36;

�

ða1; b3Þ :

0:1v5 þ 0:9u5 �Md5a1b3 � r P �M � 45þ e;

0:1v4 þ 0:9u4 �Md4a1b3 � r P �M � 35þ e;

d5a1b3 þ d4a1b3 P 1;

d5a1b3 ; d4a1b3 2 f0; 1g;

8>>><
>>>:

ða2; b2Þ :

0:129v5 þ 0:871u5 �Md5a2b2 � r P �M � 49þ e;

0:129v4 þ 0:871u4 �Md4a2b2 � r P �M þ 40þ e;

d5a2b2 þ d4a2b2 P 1;

d5a2b2 ; d4a2b2 2 f0; 1g;

8>>><
>>>:

v5 P u5 P p5 þ e;

v4 P u4 P p4 þ e:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð43Þ
This 0–1 program yields as an optimal solution the following values: r = 1.4999, u4 = 31.7222,
v4 = 49.4999, u5 = 47.4999, and v5 = 47.5. Since r is not negative, the inferred values for u4,v4,u5,v5 repro-
duce all of the DM�s requests. The DM might also reduce the number of variables in the problem, albeit at
the cost of losing flexibility, by imposing uj = (1 � a j)pj + aj vj for a given values of aj. For instance, con-
sidering aj = 0.75, the optimal solution would become r = 0.0427 (the problem remains feasible, but there is
a reduction in r due to the loss of flexibility), u4 = 34.4747, v4 = 39.2995, u5 = 45.2027, and v5 = 53.6035.

During the course of the example, the DM has learned that she not only had to grant g4 some veto
power, but also that the veto threshold for that criterion needed to be relatively stringent (approximately
twice the preference threshold). Criterion g5 also needs to have some veto power, as the DM would discover
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if she tried to consider v5 = +1 and u4, v4 as the only variables. Contrary to her initial thoughts, it is the
performance of a1 on g4, and not on g5, that does not allow the alternative to outrank b3.
7. Conclusion

This paper presents a contribution to a methodology to infer the parameter values of an Electre model
from crisp outranking statements provided by the DM (statements that the model should restore). This is a
difficult problem when all parameters have to be inferred simultaneously, hence we limit ourselves to an
interactive process of partial inference problems. Partial inference problems are frequently a wise choice
when interacting with a DM, since they allow greater control and comprehension of the interactive process.

This paper focusses on the inference of the discordance-related parameters (veto thresholds), thus com-
plementing previous work on the inference of the concordance-related parameters (weights, cutting level
and limits of categories). In an earlier work [7] we proposed two variants of the original valued outranking
relation S (denoted S 0 and S00) to simplify inference problems. In this paper, we show that regarding the
inference of the veto thresholds, S (see (11)) and S 0 (see (12)) originate mathematical programs of similar
complexity, while S00 (see (13)) yields simpler versions. Table 4 summarizes the type of mathematical pro-
grams corresponding to each situation. It shows that, contrary to our initial thoughts, there are relatively
easy mathematical formulations for the non-convex problem of inferring multiple veto thresholds simulta-
neously. Such formulations may be solved by common solvers available nowadays, such as Microsoft
Excel�s solver. Although in this paper we have considered veto thresholds as independent from the perform-
ances, this table applies to the more general case where thresholds are affine functions of gj(Æ) (see details
in [1]).

It should be noted that the proposed inference procedures are not intended to be used as ‘‘machine learn-
ing’’ techniques providing ‘‘true parameter values’’, but rather as useful tools to propose possibly relevant
sets of parameter values to the DM. The inference procedure should guide the DM in learning not only
about the method itself (to avoid a ‘‘black box’’ effect), but particularly learning about his/her preferences.
In a given situation, a result stating that the veto threshold of a given criterion is close its preference thresh-
old may teach the DM that, contrary to her initial thoughts, the veto effect of that criterion should play an
important role. If the method yields the result that the last example added by the DM makes the inference
an infeasible problem, then she will learn that this example contradicts other constraints she had stated be-
fore. In another situation, the DM may learn that she must change more than one veto at the same time to
satisfy her requests. Illustrative examples provided in Section 6 show how the inference procedures can be
used as an elicitation aid in a sorting problem based on an Electre Tri model.

The examples did not illustrate how the inference tools proposed here can interact with other partial
inference tools proposed before ([7,11]), in situations where the DM has difficulties in setting all the para-
meters. This is an important subject for future research, although we regard these partial inference methods
Table 4
Mathematical programs corresponding to the different veto inference problems

S S 0 S00

Inference of weights and
cutting level

Global (non-convex)
programming

Linear programming Linear programming

Inference of veto
for a single
criterion

Linear programming Linear programming Linear programming

Inference of veto
for all the criteria

Separable non-linear
programming

Separable non-linear
programming

0–1 linear programming
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more like a set of tools to be used at the DM�s (or analyst�s) discretion than as a single integrated method.
The DM can use only some of tools or all of them, depending on the difficulties and resulting from the dia-
logue between DM and analyst. As general advice concerning the Electre Tri method, we deem that the DM
should provisionally fix the profiles according to his/her experience and/or the range of performances dis-
played by the alternatives. Then, he/she could fix the veto thresholds conservatively (i.e., setting relatively
high values) and try to infer the weights and cutting level. If the method is not able to match the require-
ments of the DM then some symptoms will become apparent. From these symptoms he/she may find that
the profiles or the veto thresholds need to be changed. For instance, if many negative outranking statements
are difficult to reconstitute, perhaps some veto threshold(s) should be lowered. The DM can study that
using the veto inference tools proposed in this paper, and then go back to the weights and cutting level
inference.

Empirical tests should be conducted in the context of real-world decision problems to find what are the
best strategies, paying particular attention to behavioral aspects. Indeed, future research should try to as-
sess how more comfortable DMs feel with these tools, as compared with direct elicitation of parameter val-
ues, rather than trying to prove that inference strategies converge to some elusive stable ‘‘true’’ parameter
values (which we do not believe are hidden inside any DM�s mind).

Another subject for future research is the development of a special-purpose solver to address the math-
ematical formulations in Table 4. Such a solver, in the particular case of relation S00, might then be incor-
porated in the commercial software IRIS (Reference: Documents of INESC Coimbra, No. 1/2002, also
Documents du LAMSADE, No. 127, 2002), an existing decision support tool for multicriteria sorting prob-
lems based on Electre Tri, which is already capable of inferring weights and the cutting level.
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[5] E. Jacquet-Lagrèze, Y. Siskos, Preference disaggregation: 20 years of MCDA experience, European Journal of Operational
Research 130 (2) (2001) 233–245.

[6] L. Kiss, J.M. Martel, R. Nadeau, ELECCALC—an interactive software for modelling the decision maker�s preferences, Decision
Support Systems 12 (4–5) (1994) 757–777.

[7] V. Mousseau, L.C. Bias, Valued outranking relations in ELECTRE providing manageable disaggregation procedures, European
Journal of Operational Research 156 (2) (2003) 467–482.

[8] V. Mousseau, J. Figueira, J.P. Naux, Using assignment examples to infer weights for ELECTRE TRI method: Some experimental
results, European Journal of Operational Research 130 (2) (2001) 263–275.

[9] V. Mousseau, R. Slowinski, Inferring an ELECTRE TRI model from assignment examples, Journal of Global Optimization 12 (2)
(1998) 157–174.



L.C. Dias, V. Mousseau / European Journal of Operational Research 170 (2006) 172–191 191
[10] V. Mousseau, R. Slowinski, P. Zielniewicz, A user-oriented implementation of the ELECTRE TRI method integrating preference
elicitation support, Computers and Operations Research 27 (7–8) (2000) 757–777.

[11] A. Ngo The, V. Mousseau, Using assignment examples to infer category limits for the ELECTRE TRI method, Journal of Multi-
Criteria Decision Analysis 11 (1) (2002) 29–43.
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