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Abstract

We present a new method, called UTAGMS, for multiple criteria ranking of alternatives from set A using a set of addi-
tive value functions which result from an ordinal regression. The preference information provided by the decision maker is
a set of pairwise comparisons on a subset of alternatives AR � A, called reference alternatives. The preference model built
via ordinal regression is the set of all additive value functions compatible with the preference information. Using this
model, one can define two relations in the set A: the necessary weak preference relation which holds for any two alterna-
tives a, b from set A if and only if for all compatible value functions a is preferred to b, and the possible weak preference
relation which holds for this pair if and only if for at least one compatible value function a is preferred to b. These relations
establish a necessary and a possible ranking of alternatives from A, being, respectively, a partial preorder and a strongly
complete relation. The UTAGMS method is intended to be used interactively, with an increasing subset AR and a progres-
sive statement of pairwise comparisons. When no preference information is provided, the necessary weak preference rela-
tion is a weak dominance relation, and the possible weak preference relation is a complete relation. Every new pairwise
comparison of reference alternatives, for which the dominance relation does not hold, is enriching the necessary relation
and it is impoverishing the possible relation, so that they converge with the growth of the preference information. Distin-
guishing necessary and possible consequences of preference information on the complete set of actions, UTAGMS answers
questions of robustness analysis. Moreover, the method can support the decision maker when his/her preference state-
ments cannot be represented in terms of an additive value function. The method is illustrated by an example solved using
the UTAGMS software. Some extensions of the method are also presented.
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mailto:salgreco@unict.it
mailto:mousseau@lamsade.dauphine.fr
mailto:roman.slowinski@cs.put.poznan.pl


416 S. Greco et al. / European Journal of Operational Research 191 (2008) 415–435
1. Introduction

We are considering a decision situation in which a finite and non-empty set of alternatives (actions)
A = {a,b,c,d, . . .} is evaluated on a family of n criteria g1, . . . ,gi, . . . ,gn, with gi : A! R for all
i 2 G = {1, . . . ,n}. We assume, without loss of generality, that the greater gi(a), a 2 A, the better alternative
a on criterion gi, for all i 2 G. A decision maker (DM) is willing to rank the alternatives in A from the best
to the worst, according to his/her preferences. The ranking can be complete or partial, depending on the pref-
erence information supplied by the DM and on the way of using this information. The family of criteria G is
supposed to satisfy the following consistency conditions (see [25]):

• exhaustivity – any two alternatives having the same evaluations on all criteria from G should be considered
indifferent,

• monotonicity – when comparing two alternatives, an improvement of one of them on at least one criterion
from G should not deteriorate its comparison to the other alternative,

• non-redundancy – deletion of any criterion from G will contradict one of the two above conditions.
Such a decision problem is called multiple criteria ranking problem. It is known that the only information
coming out from the formulation of this problem is the weak dominance relation. Let us recall that the weak
dominance relation is a partial preorder, i.e. it is a reflexive and transitive binary relation. According to the
weak dominance relation, alternative a 2 A is preferred to alternative b 2 A if and only if gi(a) P gi(b) for
all i 2 G, with at least one strict inequality; moreover, a is indifferent to b if and only if gi(a) = gi(b) for all
i 2 G; finally, a is incomparable with b otherwise, i.e. if gi(a) > gi(b) for at least one criterion i 2 G and
gj(a) < gj(b) for at least another criterion j 2 G. Since incomparability is very often the most frequent situation,
the weak dominance relation is usually very poor.

In order to enrich the weak dominance relation, multiple criteria decision aiding (MCDA) helps in con-
struction of an aggregation model on the base of preference information provided by the DM. Such an aggre-
gation model is called preference model – it induces a preference structure in set A whose proper exploitation
permits to work out a ranking proposed to the DM.

The preference information may be either direct or indirect, depending if it specifies directly values of some
parameters used in the preference model (e.g. trade-off weights, aspiration levels, discrimination thresholds,
etc.), or if it specifies some examples of holistic judgments from which compatible values of the preference
model parameters are induced. Direct preference information is used in the traditional aggregation paradigm,
according to which the aggregation model is first constructed and then applied on set A to rank the alternatives.

Indirect preference information is used in the disaggregation (or regression) paradigm, according to which
the holistic preferences on a subset of alternatives AR � A are known first, and then a consistent aggregation
model is inferred from this information to be applied on set A in order to rank the alternatives.

Presently, MCDA methods based on indirect preference information and the disaggregation paradigm are
of increasing interest for they require relatively less cognitive effort from the DM. Indeed, the disaggregation
paradigm is consistent with the ‘‘posterior rationality’’ postulated by March [19] and with the inductive learn-
ing used in artificial intelligence approaches (see [20]). Typical applications of this paradigm in MCDA are
presented in [30,23,10,13,1,22,7–9].

Let Xi denote the evaluation scale of criterion gi, i 2 G. Consequently, X ¼
Qn

i¼1X i is the evaluation space,
and x = [x1, . . . ,xn] 2 X denotes a profile in the evaluation space.

From a pragmatic point of view, it is reasonable to assume that Xi = [ai,bi], i.e. the evaluation scale on each
criterion gi is bounded, such that ai < bi are the worst and the best (finite) evaluations, respectively. Thus,
gi : A! Xi, i 2 G, therefore, each alternative a 2 A is associated with the profile [g1(a), . . . ,gn(a)] in the eval-
uation space X. In consequence, A is obviously associated with a finite subset of X.

In this paper, we are considering the aggregation model in form of an additive value function U : X ! R,
such that, for each x 2 X,
UðxÞ ¼
Xn

i¼1

uiðxiÞ; ð1Þ
where ui are non-decreasing marginal value functions, ui : X i ! R; i ¼ 1; . . . ; n.
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To simplify notation, when considering any alternative a 2 A, we shall write U(a) instead of
U(g1(a), . . . ,gn(a)), and ui(a) instead of ui(gi(a)), even if U : X ! R and gi : A! Xi, i 2 G.

While the additive value function involves compensation between criteria and requires a rather strong
assumption about their independence in the sense of preference [11], it is often used for its intuitive inter-
pretation and relatively easy computation. The weighted-sum aggregation model, which is a particular case
of the additive value function, is used even more frequently, in spite of its simplistic form (see e.g.
[1,26]).

We are using the additive aggregation model in the settings of the disaggregation paradigm, as it has been
proposed in the UTA method (see [10]). In fact, our method generalizes the UTA method in three aspects:

• it takes into account all additive value functions (1) compatible with indirect preference information, while
UTA is using only one such function,

• the marginal value functions of (1) are general non-decreasing functions, and not piecewise linear, as in
UTA,

• the DM’s ranking of reference alternatives does not need to be complete.

The preference information used by our method is provided in the form of a set of pairwise comparisons of
some alternatives from a subset AR � A, called reference alternatives. The method is producing two rankings
in the set of alternatives A, such that for any pair of alternatives a, b 2 A:

• in the necessary ranking, a is ranked at least as good as b if and only if, U(a) P U(b) for all value functions
compatible with the preference information,

• in the possible ranking, a is ranked at least as good as b if and only if, U(a) P U(b) for at least one value
function compatible with the preference information.

The necessary ranking can be considered as robust with respect to the indirect preference information.
Such robustness of the necessary ranking refers to the fact that any pair of alternatives compares in the
same way whatever the additive value function compatible with the indirect preference information.
Indeed, when no indirect preference information is given, the necessary ranking boils down to the weak
dominance relation, and the possible ranking is a complete relation. Every new pairwise comparison of
reference alternatives, for which the dominance relation does not hold, is enriching the necessary ranking
and it is impoverishing the possible ranking, so that they converge with the growth of the preference
information.

Another appeal of such an approach stems from the fact that it gives space for interactivity with the DM.
Presentation of the necessary ranking, resulting from an indirect preference information provided by the DM,
is a good support for generating reactions from the DM. Namely, (s)he could wish to enrich the ranking or to
contradict a part of it. This reaction can be integrated in the indirect preference information in the next
iteration.

The organization of the paper is the following. In the next section, we will outline the principle of the ordi-
nal regression via linear programming, as proposed in the original UTA method (see [10]). In Section 3, we
give a brief overview of existing approaches to multiple criteria ranking using a set of additive value functions,
and we provide motivations for our approach. The new UTAGMS method is presented in Section 4. Some
extensions are considered in Section 5. Section 6 provides an illustrative example showing how the method
can be applied in practice. The last section includes conclusions.
2. Ordinal regression via linear programming – principle of the UTA method

In the following, we recall the principle of the UTA method as presented recently in [29]. The indirect pref-
erence information is given in the form of a complete preorder % on a subset of reference alternatives AR � A,
called reference preorder, such that, for all a, b 2 AR:
a%b() \a is at least as good as b":
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This weak preference relation can be decomposed into its asymmetric and symmetric parts, as follows:

• a � b() ½a%b and notðb%aÞ� () ‘‘a is preferred to b’’,
• a � b() ½a%b and b%a� () ‘‘a is indifferent to b’’.

The reference alternatives are those alternatives in set A for which the DM is ready to express holistic
preferences. Let the set of reference alternatives AR = {a1, . . . ,am} be rearranged such that ak%akþ1;
k ¼ 1; . . . ;m� 1, where m = jARj. The disaggregation paradigm consists here in inferring an additive value
function (1) ranking the reference alternatives in exactly the same way as it was done by the DM. Such a value
function U is called compatible. A compatible value function U is supposed to represent DM’s preferences on
the whole evaluation space X. In other words, for all profiles x, y 2 X, x is considered at least as good as y

according to compatible value function U, if U(x) P U(y).
Let us remark that the transition from the preorder % provided by the DM on AR to the compatible mar-

ginal value functions exploits the ordinal character of the criterion scale Xi. Note, however, that for the con-
sidered additive representation of preferences on X, the scale of the marginal value functions is a conjoint
interval scale (see e.g. Theorem 13 in Chapter 6 of [16] or Theorem III.4.1 in [31]). More precisely, the admis-
sible transformations on the marginal value functions ui (xi) have the form u�i ðxiÞ ¼ k � uiðxiÞ þ hi, hi 2 R;
i ¼ 1; . . . ; n, k > 0, such that for all ½x1; . . . ; xn�; ½y1; . . . ; yn� 2

Qn
i¼1X i
Xn

i¼1

uiðxiÞP
Xn

i¼1

uiðyiÞ ()
Xn

i¼1

u�i ðxiÞP
Xn

i¼1

u�i ðyiÞ:
An alternative way of representing the same preference model is
UðaÞ ¼
Xn

i¼1

wiûiðaÞ; where ûiðaiÞ ¼ 0; ûiðbiÞ ¼ 1;wi P 0 for all i 2 G; and
Xn

i¼1

wi ¼ 1: ð2Þ
Note that the correspondence between (2) and (1) is such that wi = ui (bi), for all i 2 G. Due to the cardinal
character of the marginal value function scale, the parameters wi can be interpreted as tradeoff weights of mar-
ginal value functions ûi (a). We will use, however, the preference model (1) with normalization constraints
bounding U(a) to the interval [0, 1].

The ordinal regression consists in the inference of a compatible value function restoring the reference pre-
order. The transition from a reference preorder to a value function is done according to the following
equivalence:
UðakÞ > Uðakþ1Þ () ak � akþ1;

UðakÞ ¼ Uðakþ1Þ () ak � akþ1

ð3Þ
for k = 1, . . . ,m � 1.
In the UTA method, the marginal value functions ui are assumed to be piecewise linear, so that the intervals

[ai,bi] are divided into ci P 1 equal sub-intervals: ½x0
i ; x

1
i �; ½x1

i ; x
2
i �; . . . ; ½xci�1

i ; xci
i �, where xj

i ¼
ai þ jðbi�aiÞ

ci
; j ¼ 0; . . . ; ci; i ¼ 1; . . . ; n. The marginal value (see Fig. 1) of an alternative a 2 A is approximated

by linear interpolation
uiðaÞ ¼ uiðxj
iÞ þ

giðaÞ � xj
i

xjþ1
i � xj

i

ðuiðxjþ1
i Þ � uiðxj

iÞÞ; for giðaÞ 2 ½xj
i ; x

jþ1
i �: ð4Þ
According to (4), the piecewise linear additive model is completely defined by the marginal values at the char-
acteristic points, i.e. uiðx0

i Þ ¼ uiðaiÞ; uiðx1
i Þ; uiðx2

i Þ; . . . ; uiðxci
i Þ ¼ uiðbiÞ.

It is also usual to suppose a kind of normalization, such as, ui(ai) = 0, "i 2 G, and
Pn

i¼1uiðbiÞ ¼ 1. This
will bound the value function U(a) in the interval [0, 1].



Fig. 1. Piecewise linear marginal value function.
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Therefore, a value function UðaÞ ¼
Pn

i¼1uiðaÞ is compatible if it satisfies the following set of constraints
UðakÞ > Uðakþ1Þ () ak � akþ1;

UðakÞ ¼ Uðakþ1Þ () ak � akþ1;

�
k ¼ 1; . . . ;m� 1;

uiðxjþ1
i Þ � uiðxj

iÞP 0; i ¼ 1; . . . ; n; j ¼ 1; . . . ; ci � 1;

uiðaiÞ ¼ 0; i ¼ 1; . . . ; n;
Xn

i¼1

uiðbiÞ ¼ 1:

ð5Þ
To verify if a compatible value function UðaÞ ¼
Pn

i¼1uiðaÞ restoring the reference preorder % on AR exists, one
can solve the following linear programming problem, where uiðxj

iÞ; i ¼ 1; . . . ; n; j ¼ 1; . . . ; ci, are unknown, and
r+(a), r�(a),a 2 AR are auxiliary variables:
Min! F ¼
Xm

k¼1

ðrþðakÞ þ r�ðakÞÞ

s:t:

UðakÞ þ rþðakÞ � r�ðakÞ
P Uðakþ1Þ þ rþðakþ1Þ � r�ðakþ1Þ þ e() ak � akþ1;

UðakÞ þ rþðakÞ � r�ðakÞ
¼ Uðakþ1Þ þ rþðakþ1Þ � r�ðakþ1Þ () ak � akþ1;

9>>>>=
>>>>;

k ¼ 1; . . . ;m� 1;

uiðxjþ1
i Þ � uiðxj

iÞP 0; i ¼ 1; . . . ; n; j ¼ 1; . . . ; ci � 1;

uiðaiÞ ¼ 0; i ¼ 1; . . . ; n;

Xn

i¼1

uiðbiÞ ¼ 1;

rþðakÞ; r�ðakÞP 0; k ¼ 1; . . . ;m;

ð6Þ
where e is an arbitrarily small positive value so that U(ak) + r+(ak) � r�(ak) > U(ak+1) + r+(ak+1) � r�(ak+1)
in case of ak � ak+1.

If the optimal value of the objective function of the program (6) is equal to zero (F* = 0), then there exists
at least one value function UðaÞ ¼

Pn
i¼1uiðaÞ satisfying (5), i.e. compatible with the reference preorder on AR.

In other words, this means that the corresponding polyhedron (5) of feasible solutions for uiðxj
iÞ;

i ¼ 1; . . . ; n; j ¼ 1; . . . ; ci, is not empty.
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When the optimal value of the objective function of the program (6) is greater than zero (F* > 0), then there
is no value function UðaÞ ¼

Pn
i¼1uiðaÞ compatible with the reference preorder on AR. In such a case, three pos-

sible moves can be considered:

• increasing the number of linear pieces ci for one or several marginal value function ui could make it possible
to find an additive value function compatible with the reference preorder on AR,

• revising the reference preorder on AR could lead to find an additive value function compatible with the new
preorder,

• searching over the relaxed domain F 6 F* + g could lead to an additive value function giving a preorder on
AR sufficiently close to the reference preorder (in the sense of Kendall’s s).
3. Existing approaches and motivations for a new method

Our work aims at generalizing the UTA method in order to consider the set of all value functions compat-
ible with the indirect preference information rather than choosing a single value function within the set of
compatible ones. The literature concerning MCDA methods involving a set of additive value functions can
be viewed from three points of view:

• The methods are designed for different problem statements (problematics, see [24]):
– choice of the best alternative (e.g. [2,14,17,5,27]),
– sorting alternatives into predefined categories (e.g. [15,4]),
– ranking of alternatives from the best to the worst (e.g. [10,12]).
• The methods also differ with respect to the kind of the set of value functions and the characteristics of these
functions: linear (e.g. [14,12]) or piecewise linear (e.g. [3,10,4]) or monotone (e.g. [1]) value functions.

• The sets of value functions can be:
– explicitly listed (e.g. [28]),
– defined from stated constraints on the functions (e.g. [2,18]),
– induced from holistic preference statements concerning alternatives (e.g. [15,32,1]).
A review of the literature and, particularly, of the methods based on the ordinal regression approach, shows
that these methods fail to consider some important issues:

• If the polyhedron of value functions compatible with the stated preference information is not empty, then
the choice of a single or few representative value functions is either arbitrary or left to the DM. In the latter
case, the DM is supposed to know how to interpret the form of the marginal value functions in order to
choose among them, which is not easy for most DMs. Therefore, it seems reasonable to accept existence
of all value functions compatible with the preference information provided by the DM and to assess a pref-
erence relation in the set of alternatives A with respect to all these functions.

• In most methods, the class of value functions is limited to linear or piecewise linear marginal value func-
tions. To specify the number of characteristic points (breakpoints) is arbitrary and restrictive. It is desirable
to consider just monotone marginal value functions which do not involve any parametrization.

• Most methods require that the DM provides constraints on the range of weights of linear marginal value
functions, or on the range of variation of piecewise linear marginal value functions. The DM may have,
however, difficulties to analyze the link between a specific value function and the resulting ranking. This
is why we believe that the DM should be allowed to express preference information in terms of pairwise
comparisons of alternatives rather than fixing the above constraints. Providing preference information in
this way is consistent with intuitive reasoning of DMs.

• The methods based on ordinal regression are usually considering the preference information provided by
the DM as a whole. As a consequence, it is difficult for the DM to associate a piece of his/her preference
information with the result and, therefore, to control the impact of each piece of information (s)he provides
on the result. As such a control is desirable for a truly interactive process, ordinal regression methods
should allow the DM to provide incrementally the preference information by possibly small pieces.
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In this paper, we intend to present a new ordinal regression method that accounts for all shortcomings
listed above.

4. UTAGMS – a new UTA-like method

4.1. Presentation of the method

The new UTAGMS method is an ordinal regression method using a set of additive value functions
UðaÞ ¼

Pn
i¼1uiðaÞ as a preference model. One of its characteristic features is that it takes into account the

set of all value functions compatible with the preference information provided by the DM. Moreover, it con-
siders general non-decreasing marginal value functions instead of piecewise linear only.

We suppose that the DM provides preference information in form of pairwise comparisons of reference
alternatives from AR � A. This preference information is a partial preorder on AR, denoted by %. A value
function is called compatible if it is able to restore the partial preorder %. Moreover, each compatible value
function induces a ranking on the whole set A.

In particular, for any two alternatives a, b 2 A, a compatible value function U ranks a and b in one of the
following ways:

• a is preferred to b because U(a) > U(b),
• b is preferred to a because U(a) < U(b),
• a is indifferent to b because U(a) = U(b).

With respect to a, b 2 A, it is thus reasonable to ask the following two questions:

• are a and b ranked in the same way by all compatible value functions?
• is there at least one compatible value function ranking a at least as good as b (or b at least as good as a)?

Having answers to these questions for all pairs of alternatives (a,b) 2 A · A, one gets a necessary weak pref-
erence relation %N , in case U(a) P U(b) for all compatible value functions, and a possible weak preference rela-
tion %P in A, in case U(a) P U(b) for at least one compatible value function.

Let us remark that preference relations %N and %P are meaningful only if there exists at least one compat-
ible value function. Therefore, wherever the contrary is not explicitly stated, we suppose that there exists at
least one compatible value function. Observe also that in this case, for any a, b 2 AR,
a%b) a%N b
and
a � b) notðb%P aÞ:

In fact, if a%b, then for any compatible value function, U(a) P U(b) and, therefore, a%N b. Moreover, if a � b,
then for any compatible value function, U(a) > U(b) and, consequently, there is no compatible value function
such that U(b) P U(a), which means that notðb%P aÞ.

Formally, a general additive compatible value function is an additive value function UðaÞ ¼
Pn

i¼1uiðaÞ sat-
isfying the following set of constraints:
UðcÞ > UðdÞ () c � d;

UðcÞ ¼ UðdÞ () c � d;

�
for all c; d 2 AR;

uiðgiðasiðjÞÞÞ � uiðgiðasiðj�1ÞÞÞP 0; i ¼ 1; . . . ; n; j ¼ 2; . . . ;m;

uiðgiðasið1ÞÞÞP 0; uiðgiðasiðmÞÞÞ 6 uiðbiÞ; i ¼ 1; . . . ; n;

uiðaiÞ ¼ 0; i ¼ 1; . . . ; n;
Pn
i¼1

uiðbiÞ ¼ 1;

9>>>>>>>>>>=
>>>>>>>>>>;

ðEARÞ;
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where si is the permutation on the set of indices of alternatives from AR that reorders them according to the
increasing evaluation on criterion gi, i.e.
giðasið1ÞÞ 6 giðasið2ÞÞ 6 	 	 	 6 giðasiðm�1ÞÞ 6 giðasiðmÞÞ
Remark that, due to this formulation of the ordinal regression problem, no linear interpolation is required to
express the marginal value of any reference alternative. Thus, one cannot expect that increasing the number of
characteristic points will bring some ‘‘new’’ compatible additive value functions. In consequence, UTAGMS

considers all compatible additive value functions while classical UTA ordinal regression (6) deals with a subset
of the whole set of compatible additive value functions, more precisely the subset of piecewise linear additive
value functions relative to the considered characteristic points.

4.2. Properties of the relations %N and %P

Binary relations %N and %P satisfy the following interesting properties.

Proposition 4.1. %P 
 %N .
Proof. If U(a) P U(b) for all compatible value functions U, i.e. a%N b, then there is at least one compatible
value function U 0 such that U 0(a) P U 0(b), i.e. a%P b. h

Proposition 4.2. For all a, b 2 A, a%N b or b%P a.

Proof. Let us denote by U the set of value functions compatible with %. For all a, b 2 A,
UðaÞP UðbÞ for all U 2 U or 9U 2 U such that UðbÞ > UðaÞ ) a%N b or b%P a: �
Let us observe that from Proposition 4.2, we can get the following interesting corollary.

Corollary 4.1. For all a, b 2 A,

(1) notða%N bÞ ) b%P a,

(2) notða%P bÞ ) b%N a.
Proof

(1) Since a%N b or b%P a, if not ða%N bÞ, then b%P a.
(2) Since a%P b or b%N a, if not ða%P bÞ, then b%N a. h
Proposition 4.3. %N is a partial preorder (i.e. reflexive and transitive).

Proof. For all a 2 A, U(a) = U(a). This is true also for all U being compatible value functions, such that a%N a.
Let us suppose that for a,b,c 2 A, we have a%N b and b%N c. This means that for all compatible value functions
U we have U(a) P U(b) and U(b) P U(c), which implies that for all compatible value functions U we have
U(a) P U(c), i.e. a%N c. h

Proposition 4.4. %P is strongly complete, i.e. for all a; b 2 A; a%P b or b%P a, and negatively transitive, i.e. for all

a; b; c 2 A; notða%P bÞ and notðb%P cÞ ) notða%P cÞ.

Proof. Consider any compatible value function U. For all a, b 2 A, it holds U(a) P U(b) or U(b) P U(a), i.e.
a%P b or b%P a; therefore %P is strongly complete.

notða%P bÞ means that there does not exist any compatible value function U such that U(a) P U(b).
notðb%P cÞ means that there does not exist any compatible value function U such that U(b) P U(c). Therefore,
there does not exist any compatible value function U such that U(a) P U(c), which means that notða%P cÞ. h
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Observe that while %P is negatively transitive, it is not necessarily transitive, i.e. it is possible that for
a,b,c 2 A, a%P b, b%P c but not ða%P cÞ. This can happen because there could exist one compatible value func-
tion U such that U(a) P U(b) and one compatible value function U 0 such that U 0(b) P U 0(c), however, there
could be no compatible value function U00 such that U00(a) P U00(c).

Notice that it is impossible to infer %N from %
P or vice versa, since %N and %P are not dual, i.e.

a%N b() notðb%P aÞ does not hold. In fact, in case for a, b 2 A, U(a) = U(b) for all compatible value func-
tions U, we have a%N b and b%P a.

From the two weak preference relations %N and %P , one can get preference, indifference and incompara-
bility, in a usual way, i.e.

(1) from the necessary weak preference relation %N one obtains:

• preference: a�N b() a%N b and notðb%N aÞ
• indifference: a�N b() a%N b and b%N a
• incomparability: a?N b() notða%N bÞ and notðb%N aÞ
(2) from the possible weak preference relation %P one obtains:

• preference: a�P b() a%P b and not ðb%P aÞ
• indifference: a�P b() a%P b and b%P a
Observe that in case of %P , incomparability is not considered because, for Proposition 4.3, %P is strongly
complete.

The preference relations obtained from %N constitute the necessary ranking, and the preference relations
obtained from %P constitute the possible ranking; they are presented to the DM as end results of the UTAGMS

method at the current stage of interaction.

4.3. Computation of the relations %N and %P

In order to compute binary relations %P and %N we can proceed as follows. For all alternatives a, b 2 A, let
pi be a permutation of the indices of alternatives from set AR [ {a,b} that reorders them according to increas-
ing evaluation on criterion gi, i.e.
giðapið1ÞÞ 6 giðapið2ÞÞ 6 	 	 	 6 giðapiðx�1ÞÞ 6 giðapiðxÞÞ
where

• if AR \ {a,b} = ;, then x = m + 2
• if AR \ {a,b} = {a} or AR \ {a,b} = {b}, then x = m + 1
• if AR \ {a,b} = {a,b}, then x = m.

Then, we can fix the characteristic points of ui, i = 1, . . . ,n, in
g0
i ¼ ai; gj

i ¼ giðapiðjÞÞ for j ¼ 1; . . . ;x; gxþ1
i ¼ bi
Let us consider the following set E(a,b) of ordinal regression constraints, with i = 1, . . . ,n, j = 1, . . . ,x + 1, as
variables:
UðcÞP UðdÞ þ e() c � d;

UðcÞ ¼ UðdÞ () c � d;

�
for all c; d 2 AR

uiðgj
iÞ � uiðgj�1

i ÞP 0; i ¼ 1; . . . ; n; j ¼ 1; . . . ;xþ 1;

uiðg0
i Þ ¼ 0; i ¼ 1; . . . ; n;

Pn
i¼1

uiðgxþ1
i Þ ¼ 1;

9>>>>>>>>=
>>>>>>>>;
ðEða; bÞÞ;
where e is an arbitrarily small positive value, as in (6).
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The above set of constraints depends on the pair of alternatives a, b 2 A because their evaluations gi(a) and
gi(b) give coordinates for two of (x + 1) characteristic points of marginal value function ui, for each
i = 1, . . . ,n. Note that for all a, b 2 A, E(a,b) = E(b,a).

Let us suppose that the polyhedron defined by the set of constraints E(a,b) is not empty. In this case we
have that:
a%N b() dða; bÞP 0;
where
dða; bÞ ¼MinfUðaÞ � UðbÞg
s:t: set Eða; bÞ of constraints

ð7Þ
and
a%P b() Dða; bÞP 0;
where
Dða; bÞ ¼MaxfUðaÞ � UðbÞg
s:t: set Eða; bÞ of constraints:

ð8Þ
What are the relations between %P and %N with respect to computation? In other words, is it necessary to
calculate d(a,b) and D(a,b) for all a, b 2 A? Proposition 4.5 gives a technical result useful for answering this
question.

Proposition 4.5. For all a, b 2 A, the following equivalences hold:
dða; bÞP 0() Dðb; aÞ 6 0;

Dða; bÞP 0() dðb; aÞ 6 0;

dða; bÞ ¼ 0() Dðb; aÞ ¼ 0:
Proof. The proof results from the following equalities:
dða; bÞ ¼Mins:t: Eða;bÞfUðaÞ � UðbÞg ¼ �Maxs:t: Eðb;aÞfUðbÞ � UðaÞg ¼ �Dðb; aÞ: �
According to Proposition 4.5, the relation %N can be computed using either d(a,b) or D(a,b), as shown in
Tables 1 and 2. A similar remark concerns the relation %P which can be computed using either d(a,b) or
D(a,b), as shown in Tables 3 and 4.

Remark 4.1. In the absence of any pairwise comparison of reference alternatives, the necessary weak
preference relation %N boils down to the weak dominance relation D in A (aDb iff gi (a) P gi (b), i = 1, . . . ,n).
Each pairwise comparison provided by the DM, for which the dominance relation does not hold, contributes
to enrich %N , i.e. it makes the relation %N true for at least one more pair of alternatives.

Remark 4.2. In the absence of any pairwise comparison of reference alternatives, the possible weak preference
relation %P is a complete relation such that for any pair (a,b) 2 A · A:

• [a �P b (i.e. a%P b and b%P aÞ� () [(not(aDb) and not(bDa)) or (aDb and bDa)],
• [a �P b (i.e. a%P b and notðb%P aÞÞ� () ½aDb and not(bDa)].

Each pairwise comparison provided by the DM, for which the dominance relation does not hold, contributes
to impoverish %P , i.e., it makes the relation %P false for at least one more pair of alternatives.



Table 2
Necessary ranking computed in terms of D(a,b)

Table 3
Possible ranking computed in terms of d(a,b)

Table 4
Possible ranking computed in terms of D(a,b)

Table 1
Necessary ranking computed in terms of d(a,b)
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4.4. Analysis of incompatibility

Let us consider now the case where there is no value function compatible with the preference information.
We say, this is the case of incompatibility. In such a case, the polyhedron generated by constraints EAR

is
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empty. Therefore, the polyhedrons generated by constraints E(a,b), for all a, b 2 A, are also empty in this
case. Such a case may occur in one of the following situations:

• the preferences of the DM do not match the additive model,
• the DM may have made an error in his/her statements; for example stating that a � b while bDa,
• the statements provided by the DM are contradictory because his/her preferences are unstable, some hid-

den criteria are taken into account, etc.

In such a case, the DM may want either to pursue the analysis with such an incompatibility or to identify its
reasons in order to remove it and, therefore, to define a new partial preorder on AR whose corresponding con-
straints generate a non-empty polyhedron. Let us consider below the two possible solutions.

4.4.1. Situation where incompatibility is accepted

If the DM wants to pursue the analysis with the incompatibility, he/she has to accept that some of his/her
pairwise comparisons of reference alternatives will not be reproduced by any value function. Note that, from a
formal viewpoint, if the polyhedron generated by EAR

is empty, then %N and %P are meaningless. Thus, the
acceptance of the inconsistency means that the DM does not change the preference information represented
by % and computes d(a,b) and D(a,b) on a new set of constraints E0A

R
differing from the original set EAR

by an
additional constraint on the acceptable total error:
UðcÞ þ rþðcÞ � r�ðcÞ > UðdÞ þ rþðdÞ � r�ðdÞ () c � d;
UðcÞ þ rþðcÞ � r�ðcÞ ¼ UðdÞ þ rþðdÞ � r�ðdÞ () c � d;

�
for all c; d 2 AR;

uiðgiðasiðjÞÞÞ � uiðgiðasiðj�1ÞÞÞP 0; i ¼ 1; . . . ; n; j ¼ 2; . . . ;m;
uiðgiðasið1ÞÞÞP 0; uiðgiðasiðmÞÞÞ 6 uiðbiÞ; i ¼ 1; . . . ; n;
uiðaiÞ ¼ 0; i ¼ 1; . . . ; n;Pn
i¼1

uiðbiÞ ¼ 1;

rþðcÞP 0; r�ðcÞP 0; for all c 2 AR;P
c2AR

ðrþðcÞ þ r�ðcÞÞ 6 d;

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðE0ARÞ;
where d > F*, with F � ¼ min
P

c2ARðrþðcÞ þ r�ðcÞÞ subject to EAR
, such that the resulting new set of constraints

E0A
R

is not empty.
On the basis of E0A

R
, for any pair (a,b) 2 A, the set of constraints E 0(a,b) can be built as the union of the

constraints E0A
R

and the constraints relative to the breakpoints introduced by those alternatives a,b that do not
belong to AR. Then, preference relations %0N and %0P can be computed by minimizing and maximizing
U(a) � U(b) subject to E 0(a,b), rather than to E(a,b), respectively. In other words, in this case, d(a,b) and
D(a,b) are computed considering E 0(a,b) rather than E(a,b).

Obviously, the necessary and possible rankings resulting from these computations will not fully restore the
provided pairwise comparisons, i.e. there is at least one couple a, b 2 AR such that

• a%b, but it is false that for all the compatible value functions U(a) P U(b) (in other words, there exists a
compatible value function such that U(a) < U(b) and thus notða%0N bÞÞ, or

• a � b, but it is false that for all the compatible value functions U(a) > U(b) (in other words, there exists also
a value function such that U(b) P U(a) and thus b%0P a).

Next result will state that %0N and %0P maintain all the main properties of preference relations %N and %P .

Proposition 4.6

• %0N � %0P ,
• %0N is a complete preorder (i.e. transitive and strongly complete),

• %0P is strongly complete and negatively transitive.
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Proof. %0N and %0P are built using the value functions satisfying constraints E0A
R
, in the same way as %N and

%
P are built using the value functions satisfying constraints EAR

. Thus, the proof is analogous to the proof of
Propositions 4.1, 4.3 and 4.4. h
4.4.2. Situation where incompatibility is not accepted

If the DM does not want to pursue the analysis with the incompatibility, it is necessary to identify the trou-
blesome pairwise comparisons responsible for this incompatibility, so as to remove some of them. Remark
that there may exist several sets of pairwise comparisons which, once removed, make set EAR

of constraints
non-empty. Hereafter, we outline the main steps of a procedure which identifies these sets.

Recall that the pairwise comparisons of reference alternatives are represented in the ordinal regression
constraints EAR

by linear constraints. Hence, identifying the troublesome pairwise comparisons of refer-
ence alternatives amounts at finding a minimal subset of constraints that, once removed from EAR

, leads
to a set of constraints generating a non-empty polyhedron of compatible value functions. The identifi-
cation procedure is to be performed iteratively since there may exist several minimal subsets of this
kind.

Let associate with each pairwise comparison of reference alternatives a and b a new binary variable va,b.
Using these binary variables, we rewrite the first two constraints of set EAR

as follows:
a � b() UðaÞ � UðbÞ þMva;b > 0;

a � b()
UðaÞ � UðbÞ þMva;b P 0;

UðbÞ � UðaÞ þMva;b P 0;

� ð9Þ
where M > 1. Remark that if va,b = 1, then the corresponding constraint is satisfied whatever the value
function is, which is equivalent to elimination of this constraint. Therefore, identifying a minimal subset
of troublesome pairwise comparisons can be performed by solving the following mixed 0–1 linear
program:
Min! f ¼
X

a;b2AR:a%b

va;b

s:t:

a � b() UðaÞ � UðbÞ þMva;b P e;

a � b()
UðaÞ � UðbÞ þMva;b P 0;

UðbÞ � UðaÞ þMva;b P 0;

�
9>=
>; for all a; b 2 AR

uiðgiðasiðjÞÞÞ � uiðgiðasiðj�1ÞÞÞP 0; i ¼ 1; . . . ; n; j ¼ 2; . . . ;m;

uiðgiðasið1ÞÞÞP 0; uiðgiðasiðmÞÞÞ 6 uiðbiÞ; i ¼ 1; . . . ; n;

uiðaiÞ ¼ 0; i ¼ 1; . . . ; n;
Xn

i¼1

uiðbiÞ ¼ 1;

va;b 2 f0; 1g:

ð10Þ
The optimal solution of (10) indicates one of the subsets of smallest cardinality being the cause of incompat-
ibility. Alternative subsets of this kind can be found by solving (10) with an additional constraint that forbids
finding again the same solution. Let f* be the optimal value of the objective function of (10) and v�a;b the values
of the binary variables at the optimum. Let also S1 ¼ fða; bÞ 2 AR � AR : a%b and v�a;b ¼ 1g. The additional
constraint has then the form
X

ða;bÞ2S1

va;b 6 f � � 1: ð11Þ
Continuing in this way, we can identify other subsets, possibly all of them. These subsets of pairwise compar-
isons are to be presented to the DM as alternative solutions for removing incompatibility. Such a procedure
has been described in [21].
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5. Extensions

5.1. Specification of pairwise comparisons with gradual confidence levels

The UTAGMS method presented in the previous section is intended to support the DM in an interactive
process. Indeed, defining a large set of pairwise comparisons of reference alternatives at once can be difficult
for the DM. Therefore, one way to reduce the difficulty of this task would be to permit the DM an incremental
specification of pairwise comparisons. This way of proceeding allows the DM to control the evolution of the
necessary and possible weak preference relations.

Another way of reducing the difficulty of the task is to extend the UTAGMS method so as to account for
different confidence levels assigned to pairwise comparisons. Let %1 � %2 � 	 	 	 � %s be embedded sets of
DM’s partial preorders of reference alternatives. To each set of partial preorders %t; t ¼ 1; . . . ; s, corresponds
a set of constraints EAR

t generating a polyhedron of compatible value functions P AR

t . Polyhedrons P AR

t ,
t = 1, . . . , s, are embedded in the inverse order of the related partial preorders %t, i.e. P AR

1 

P AR

2 
 	 	 	 
 P AR

s . We suppose that P AR

s 6¼ ; and, therefore, due to the fact that partial preorders %t are embed-
ded, P AR

t 6¼ ;, for all t = 1, . . . , s. If P AR

s ¼ ; we consider only embedded partial preorders until %p with
p ¼ maxft : P AR

t 6¼ ;g and relabel p by s. For all a, b 2 A, we say that there is a necessary weak preference rela-
tion of level t, denoted by a%N

t b (t = 1, . . . , s), if for all value functions U compatible with the partial preorder
%t, we have U(a) P U(b). Analogously, for all a, b 2 A, we say that there is a possible weak preference relation
of level t, denoted by a%P

t b (t = 1, . . . , s), if for at least one value function U compatible with the partial pre-
order %t, we have U(a) P U(b).

In order to compute possible and necessary weak preference relations %P
t and %N

t , we can proceed as fol-

lows. For all a, b 2 A, set of constraints Et(a,b) can be obtained from set EAR

t by adjoining the constraints rel-
ative to the breakpoints introduced by those alternatives a,b that do not belong to AR. For each t = 1, . . . , s,
and binary preference relations %N

t and %P
t , we have
a%N
t b() dtða; bÞP 0;
where
dtða; bÞ ¼MinfUðaÞ � UðbÞg
s:t: set Etða; bÞ of constraints

ð12Þ
and
a%P
t b() Dtða; bÞP 0;
where
Dtða; bÞ ¼MaxfUðaÞ � UðbÞg
s:t: set Etða; bÞ of constraints:

ð13Þ
Each time we pass from %t�1 to %t, t = 2, . . . , s, we add to EAR

t�1 and, consequently, to Et�1(a,b), new constraints

concerning pairs (c,d) 2 AR · AR, such that c%td but notðc%t�1dÞ, thus the computations of dt(a,b) and
Dt(a,b), for all a, b 2 A · A proceed iteratively.

The following result states that binary preference relations %N
t and %P

t , t = 1, . . . , s, inherit properties of %N

and %P .

Proposition 5.1

• %N
t � %

P
t ,

• %N
t is a complete preorder (i.e. transitive and strongly complete),

• %P
t is strongly complete and negatively transitive.
Proof. Analogous to the proof of Propositions 4.1, 4.3 and 4.4. h
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An important property of preference relations %N
t and %P

t , t = 1, . . . , s, is stated by the following
proposition.

Proposition 5.2. %N
t and %P

t ; t ¼ 1; . . . ; s, are nested partial preorders: %N
t�1 � %

N
t and %P

t�1 
 %
P
t ; t ¼ 2; . . . ; s.
Proof. a%N
t�1b; a; b 2 A, means that U(a) P U(b) for all value functions U satisfying EAR

t�1. Since each value
function U satisfying EAR

t satisfies also EAR

t�1, we have that U(a) P U(b) for all value functions U satisfying

EAR

t , from which we get a%N
t b. Thus a%N

t�1b) a%N
t b, i.e. %N

t�1 � %
N
t . a%P

t b, a, b 2 A, means that there exists

at least one value function U satisfying EAR

t such that U(a) P U(b). Let us denote one of these value functions

by U*. Since each value function U satisfying EA
t

R
satisfies also EAR

t�1, we have that U* satisfies EAR

t�1. Therefore,

from U*(a) P U*(b), we get a%P
t�1b. Thus, a%P

t b) a%P
t�1b, i.e. %P

t�1 
 %
P
t . h

Let kt be the confidence level assigned to pairwise comparisons concerning pairs (c,d) 2 AR · AR, such that
c%td but notðc%t�1dÞ, %0 ¼ ;, t = 1, . . . , s, 1 = k1 > k2 > 	 	 	 > ks > 0. Using partial preorders %1 	 	 	%s and
corresponding k1,k2, . . . ,ks, a valued necessary preference relation RN : A · A! [0,1] or, more precisely,
RN : A · A! {k1,k2, . . . ,ks, 0}, can be built as follows: for all a, b 2 A

• if there exists one t (t = 1, . . . , s) such that a%N
t b, then RN ða; bÞ ¼ maxfkt; t ¼ 1; . . . ; s; such that a%N

t bg,
• if there exists no t (t = 1, . . . , s) for which a%N

t b, then RN(a,b) = 0.

Analogously, a valued possible preference relation RP : A · A! [0,1] or, more precisely,
RP : A · A! {1 � k1,1 � k2, . . . , 1 � ks,1}, can be built as follows: for all a, b 2 A

• if there exists one t (t = 1, . . . , s) such that a%P
t b, then RP ða; bÞ ¼ minf1� kt; t ¼ 1; . . . ; s;

such that notða%P
t bÞg,

• if a%P
t b for all t (t = 1, . . . , s), then RP(a,b) = 1.
Proposition 5.3. For all a, b 2 A
RN ða; bÞ ¼ kt� () a%N
r b for all r P t� and notða%N

r bÞ for all r < t�;

RP ða; bÞ ¼ 1� kt� () a%P
r b for all r < t� and notða%P

r bÞ for all r P t�:
Proof. Since RNða; bÞ ¼ maxfkt; t ¼ 1; . . . ; s; such that a%N
t bg, then RN ða; bÞ ¼ kt� implies a%N

t�b. Taking into
account that, for Proposition 5.2, a%N

t�1b) a%N
t b, we have a%N

r b for all r P t*. Moreover, RN ða; bÞ ¼ kt�

implies notða%N
r bÞ for all r such that kr > kt� . Taking into account that kt > kt+1 (t = 1, . . . , s � 1), we get that

RN ða; bÞ ¼ kt� implies notða%N
r bÞ for all r < t*. Thus, we proved that
RN ða; bÞ ¼ kt� ) a%N
r b for all r P t� and notða%N

r bÞ for all r < t�:
For all a, b 2 A,
a%N
r b for all r P t� and notða%N

r bÞ for all r < t� ) t� ¼ minft; t ¼ 1; . . . ; s; such that a%N
t bg: ðiÞ
Remembering that kt > kt+1 (t = 1, . . . , s � 1), from (i) we get
kt� ¼ maxfkt; t ¼ 1; . . . ; s; such that a%N
t bg;
and for the definition of RN(a,b), RN ða; bÞ ¼ kt� . Thus, we proved that
a%N
r b for all r P t� and notða%N

r bÞ for all r < t� ) RNða; bÞ ¼ kt� ;
which concludes the proof of
RN ða; bÞ ¼ kt� () a%N
r b for all r P t� and notða%N

r bÞ for all r < t�:
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Analogous proof holds for

RP ða; bÞ ¼ 1� kt� () a%P

r b for all r < t� and notða%P
r bÞ for all r P t�: �
Proposition 5.3 states that RN(a,b) = kt means that a%N
r b holds only for r P t, while, for the definition,

RN(a,b) = 0 means that a%N
t b does not hold for any t (t = 1, . . . , s). Proposition 5.3 also expresses that

RP(a,b) = 1 � kt means that a%P
r b holds only for r < t, while, for the definition, RP(a,b) = 1 means that

a%P
t b for all t (t = 1, . . . , s).

It is interesting to investigate the properties of valued binary relations RN and RP (for an introduction to
valued binary relations and their properties see [6]). Let us remind that a valued binary relation R defined on a
set Y, i.e. R : Y · Y! [0, 1], is

• reflexive, if for all a 2 Y, R(a,a) = 1,
• min-transitive, if for all a,b,c 2 Y, min(R(a,b),R(b,c)) 6 R(a,c),
• strongly complete, if for all a,b 2 Y, max(R(a,b),R(b,a)) = 1,
• negatively transitive, if for all a,b,c 2 Y, min((1 � R(a,b)),(1 � R(b,c))) 6 (1 � R(a,c)).

A valued binary relation which is reflexive and min-transitive is called fuzzy partial preorder.

Proposition 5.4. Valued binary relation RN is reflexive and min-transitive and, therefore, it is a fuzzy partial

preorder. Valued binary relation RP is strongly complete and negatively transitive.

Proof. For all a 2 A, for all value functions U compatible with the partial preorder %s, we have U(a) = U(a),
which implies a%N

s a and RN(a,a) = 1, i.e. RN is reflexive.
For all a,b,c 2 A, two cases are possible:

(a) min(RN(a,b), RN(b,c)) = 0,
(b) min(RN(a,b), RN(b,c)) > 0.

Considering that always RN(a,c) P 0, in case (a) we have
RN ða; cÞP minðRN ða; bÞ;RN ðb; cÞÞ: ðiÞ

In case (b), for the definition of RN, we have
minðRN ða; bÞ;RN ðb; cÞÞ ¼ min max kt; t ¼ 1; . . . ; s; such that a%N
t b

� �
;

�
max kt; t ¼ 1; . . . ; s; such that b%N

t c
� ��

¼ max kt; t ¼ 1; . . . ; s; such that a%N
t b and b%N

t c
� �

:

Thus, if min(RN(a,b),RN(b,c)) = kr, then U(a) P U(b) and U(b) P U(c) for all value functions U compatible
with %r. This means that, for all value functions U compatible with %r we have U(a) P U(c) and, conse-
quently, a%N

r c. This implies that
RN ða; cÞ ¼ max kt; t ¼ 1; . . . ; s; such that a%N
t c

� �
P kr ¼ minðRN ða; bÞ;RN ðb; cÞÞ: ðiiÞ
For (i) and (ii), valued binary relation RN is min-transitive.
Let us suppose that a%P

s b, a, b 2 A. In this case, for Proposition 5.2, a%P
t b for all t (t = 1, . . . , s) and,

therefore, RP(a,b) = 1. If, instead, not(a%P
s b), then for Proposition 4.2, b%N

s a and, therefore, for Proposition
4.1, b%P

s a. In consequence, for Proposition 5.2, b%P
t a for all t (t = 1, . . . , s) and, thus, RP(b,a) = 1. This proves

completeness of valued binary relation RP.
For all a,b,c 2 A, two cases are possible:

(a) max(RP(a,b), RP(b,c)) = 1,
(b) max(RP(a,b), RP(b,c)) < 1.

In case (a), we have RP(a,b) = 1 or RP(b,c) = 1, and thus 1 � RP(a,b) = 0 or 1 � RP(b,c) = 0, such that
min((1 � RP(a,b)), (1 � RP(b,c))) = 0 and considering that always 1 � RP(a,c) P 0, we get
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minðð1� RP ða; bÞÞ; ð1� RP ðb; cÞÞÞ 6 1� RP ða; cÞ:
In case (b), RP(a,b) < 1 and RP(b,c) < 1, thus, for definition of RP, we have
1� RP ða; bÞ ¼ 1�minf1� kt; t ¼ 1; . . . ; s; such that notða%P
t bÞg

¼ maxfkt; t ¼ 1; . . . ; s; such that notða%P
t bÞg
as well as
1� RP ðb; cÞ ¼ 1�minf1� kt; t ¼ 1; . . . ; s; such that notðb%P
t cÞg

¼ maxfkt; t ¼ 1; . . . ; s; such that notðb%P
t cÞg:
Thus,
minðð1� RP ða; bÞÞ; ð1� RP ðb; cÞÞÞ
¼ min max kt; t ¼ 1; . . . ; s; such that notða%P

t bÞ
� �

;max kt; t ¼ 1; . . . ; s; such that notðb%P
t cÞ

� �� �
¼ max kt; t ¼ 1; . . . ; s; such that notða%P

t bÞ and notðb%P
t cÞ

� �
¼ maxfkt; t ¼ 1; . . . ; s; such that; UðbÞ > UðaÞ and UðcÞ > UðbÞ

for all value functions U compatible with %tg:
If min((1 � RP(a,b)), (1 � RP(b,c))) = kr, then U(a) < U(c) for all value functions compatible with %r, which
means that there does not exist any value function U compatible with %r such that U(a) P U(c). Thus,
minft; t ¼ 1; . . . ; s; such that notða%P

t cÞg 6 r and, therefore,
maxfkt; t ¼ 1; . . . ; s; such that notða%P
t cÞgP kr:
Since
maxfkt; t ¼ 1; . . . ; s; such that notða%P
t cÞg ¼ 1�minf1� kt; t ¼ 1; . . . ; s; such that notða%P

t cÞg
¼ 1� RP ða; cÞ;
we conclude that (1 � RP(a,c)) P kr = min((1 � RP(a,b)),(1 � RP(b,c))). h
5.2. Accounting for intensity of preference

Another preference information that can be provided by the DM concerns the intensity of preference
among two pairs of reference alternatives. Given two pairs of reference alternatives (c, d), (c 0, d 0), such that
c � d and c 0 � d 0, the DM can state: ‘‘c is preferred to d at least as much as c 0 is preferred to d 0’’. Such
statement means that for all compatible value functions U:
UðcÞ � UðdÞ > Uðc0Þ � Uðd 0Þ: ð14Þ
To account for the above preference information, it is sufficient to include condition (14) in set EAR
of con-

straints. Of course, consequently, condition (14) will be included in constraints E(a,b) for all a, b 2 A.
Conversely, for all a,b,a 0,b 0 2 A, it is possible to check whether or not condition
UðaÞ � UðbÞ > Uða0Þ � Uðb0Þ ð15Þ
holds for all compatible value functions U (necessity) or for at least one compatible value function U

(possibility).
Such information may enrich the DM’s knowledge of his/her preferences.

6. Illustrative example

In this section, we illustrate how a decision aiding process can be supported by the UTAGMS method. We
consider the following hypothetical decision problem. AGRITEC is a medium size firm (350 persons approx.)



Table 5
Evaluation table

Criterion 1 Criterion 2 Criterion 3

Alexievich 4 16 63
Bassama 28 18 28
Calvet 26 40 44
Dubois 2 2 68
El Mrabat 18 17 14
Ferret 35 62 25
Fleichman 7 55 12
Fourny 25 30 12
Frechet 9 62 88
Martin 0 24 73
Petron 6 15 100
Psorgos 16 9 0
Smith 26 17 17
Varlot 62 43 0
Yu 1 32 64
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producing some tools for agriculture. The CEO, Mr Becault, intends to double the production and multiply
exports by 4 within 5 years. Therefore, he wants to hire a new international sales manager. A recruitment
agency has interviewed 17 potential candidates which have been evaluated on 3 criteria (sales management
experience, international experience, human qualities) evaluated on a [0, 100] scale. The evaluations of candi-
dates are provided in Table 5. Without any further information, the computed partial preorder %N

0 corre-
sponds to the weak dominance relation D on the set of alternatives (see Fig. 2).

The CEO has attended 4 interviews and can express a confident judgement about theses candidates: Ferret
and Frechet are equally good, Fourny is less acceptable than Ferret and Frechet, and Fleichman is even less
acceptable than Fourny. This means that the initial reference ranking is the following: Ferret � Fre-
chet � Fourny � Fleichman. For this initial preference information, the partial preorder %N

1 has been com-
puted using UTAGMS (see Fig. 3).
Fig. 2. Partial preorder %N
0 corresponding to the weak dominance relation D.



Fig. 3. Partial preorder %N
1 .

Fig. 4. Nested partial preorders %N
2 (bold) and %N

3 (dashed).
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Considering this first result, Mr Becault is willing to add further preference information. This results in the
following new reference ranking: Ferret � Frechet �Martin � Fourny � El Mrabat � Fleichman. However,
as he did not attend the interview of El Mrabat and Martin, his opinion about the relative ranking of these
candidates is not as certain as the initial preference information.
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It appears that for the provided information, no additive value function fits the last reference ranking. The
analysis of this incompatibility reveals that the statement Ferret � Frechet cannot be represented together
with the statement Fourny � El Mrabat by an additive value function. In other words, it is necessary for
Mr Becault to revise one of these statements. As he did not interview El Mrabat, he decides to remove him
from the reference ranking which becomes Ferret � Frechet �Martin � Fourny � Fleichman. This reference
ranking is compatible with a representation by an additive value function. Fig. 4 represents two nested partial
preorders:

• bold arrows represent partial preorder %N
2 obtained for the most certain preference information only, i.e.,

Ferret � Frechet � Fourny � Fleichman,
• dashed arrows represent partial preorder %N

3 obtained for the consistent preference information composed
of the most certain preference information and the less confident preference information about Martin, i.e.,
Ferret � Frechet �Martin � Fourny � Fleichman.

The interactive process can be pursued, Mr Becault adding in iteration t some new pairwise comparisons of
reference alternatives, thus enriching the resulting partial preorder %N

t , until it is decisive enough for the CEO
to make his choice.

7. Conclusion

The new UTAGMS method presented in this paper is an ordinal regression method supporting multiple cri-
teria ranking of alternatives; it is distinguished from previous methods of this kind by the following new
features:

• the method considers general additive value functions rather than piecewise linear ones,
• the final rankings are defined using all value functions compatible with the provided preference

information,
• the method provides two final rankings: the necessary ranking identifies ‘‘sure’’ preference statements while

the possible ranking identifies ‘‘possible’’ preference statements,
• distinguishing necessary and possible consequences of using all value functions compatible with preference

information, UTAGMS includes a kind of robustness analysis instead of using a single ‘‘best-fit’’ value
function,

• the necessary and possible preference relations considered in UTAGMS have several properties of general
interest for MCDA,

• when the DM provides preference information that cannot be represented by an additive model, the
method identifies which pieces of the information underly this impossibility,

• the method does not require the DM to interpret (and even look at) the marginal value functions,
• the DM can assign confidence levels to pieces of preference information, which yields a valued necessary

preference relation (proved to be a fuzzy partial preorder) and a valued possible preference relation (proved
to be a strongly complete and negatively transitive valued binary relation).

We envisage the following future developments of the presented methodology:

• application to multicriteria sorting problems,
• application to group decision problems,
• application to interactive multiobjective optimization.
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