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Abstract

Fuzzy semantic model (FSM) is a data model that uses basic concepts of semantic modeling and supports handling
fuzziness, uncertainty and imprecision of real-world at the attribute, entity and class levels. The paper presents the prin-
ciples and constructs of the FSM. It proposes ways to define the membership functions within all the constructs of the
FSM. In addition, it provides a proposal for specifying FSM schema and introduce a query language adapted to FSM-
based databases.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In database research, there are several proposals to develop models that support handling fuzziness, uncer-
tainty and imprecision of real-world [24,2,4]. Most efforts have been oriented towards the extension of the con-
ventional relational database model [20,17,10] and towards the development of tools allowing flexible
querying, most often in relational database contexts [23,5,19]. We also enumerate some extensions of semantic
and object-oriented database models [21,3,8,16,14]. However, most of these extensions introduce fuzziness
only at the attribute level and consider that entities are fully ‘‘encapsulated’’ into their classes, which means
that they fully verify the properties of these classes. This is very restrictive in many data-intensive applications
0020-0255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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(e.g. geographical and environmental information systems, decision support systems) in which one may find it
difficult to assign an entity to a particular class, mainly when this entity partially verifies the class properties.

Several proposals for extending object-oriented and semantic database models to support the management
of fuzziness, uncertainty and imprecision of real-world at the class definition level have been recently proposed
[12,9,13,25,22,15]. In this respect, the authors have proposed a new data model, namely the fuzzy semantic
model (FSM) [6,7], that authorizes an entity to be, albeit partially, a member of its class according to a given
degree of membership. The latter reflects the level to which the entity verifies the properties of this class.

The basic constructs of FSM are extensions of the unifying semantic model (USM) [18]. USM is selected as
basis of FSM instead of other ER/EER models for two main reasons. First, USM draws upon constructs
found in several other semantic models and we believe that USM synthesizes and extends these constructs
in a coherent manner. Second, in addition to the traditionally used abstractions of classification, generaliza-
tion, aggregation and association, USM proposes concepts to represent constraints on relationships between
subclasses and also distinguishes between the concepts of composite and group/aggregate classes. We think
that these new concepts cope better with real-world semantics.

This paper reviews and refines FSM. More specifically, it presents ways to define membership functions
within all the constructs of FSM. In addition, it provides a proposal to specify FSM schema and introduces
a query language adapted to FSM-based databases. The paper includes several illustrative examples most of
them rely on the database example illustrated in Fig. 3. Readers are invited to refer frequently to this figure to
better appreciate these examples.

The rest of the paper is structured as follows. The next section presents the principles of FSM. Section 3
details the constructs of FSM. Section 4 provides a proposal to specify FSM schema. Section 5 presents an
ongoing conceptual query language for accessing FSM-based databases and illustrates some examples of data
retrieval operations. Section 6 compares our proposal to some other fuzzy semantic data models. Section 7
concludes the paper.

2. Basic elements of FSM

2.1. Basic idea

The space of entities E is the set of all entities of the interest domain. A fuzzy entity e in E is a natural
or artificial entity such that one or several of its properties are fuzzy. In other words, a fuzzy entity verifies
only partially some extent properties (see Section 2.2) of its class. A fuzzy class K in E is a collection of fuzzy
entities: K ¼ fðe; lKðeÞÞ : e 2 E ^ lKðeÞ > 0g. lK is a characteristic or membership function and lKðeÞ repre-
sents the degree of membership (d.o.m.) of fuzzy entity e in fuzzy class K. Membership function lK

maps the elements of E to the range ½0; 1� where 0 implies no-membership and 1 implies full membership.
A value between 0 and 1 indicates the extent to which fuzzy entity e can be considered as an element of fuzzy
class K.

FSM contains several basic and complex fuzzy classes that are illustrated in Fig. 2. They will be discussed in
Section 3. First, we show how the entity/class membership function is defined.

2.2. Entity/class membership function

A fuzzy class is a collection of fuzzy entities having some common properties. Fuzziness is thus induced
whenever an entity verifies only partially some of these properties. We denote by X K ¼ fp1; p2; . . . ; png (with
n P 1) the set of properties for a given fuzzy class K. XK is called the extent set of fuzzy class K and
pi 2 X Kði ¼ 1; . . . ; nÞ is an extent property associated with K. The extent properties may be derived from
the attributes of the class and/or from common semantics. For example, the fuzzy class STAR in Fig. 3
may have two extent properties based on luminosity and weight attributes. The degree to which each of the
extent properties determines fuzzy class K is not the same. Indeed, there are some properties that are more
discriminative than others. To ensure this, we associate to each extent property pi a non-negative weight wi

reflecting its importance in deciding whether or not an entity e is a member of a given fuzzy class K. We also
impose that

Pn
i¼1wi > 0.



Fig. 1. Fuzzy properties ‘‘being young’’ and ‘‘having an average height’’.
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An entity may verify fully or partially the extent properties of a given fuzzy class. Let Di be the basic
domain of extent property pi values and Pi is a subset of Di, which represents the set of possible values of prop-
erty pi. The partial membership function of an extent property value is qP i

K
which maps elements of Di into ½0; 1�.

For any attribute value vi 2 Di, qP i
K
ðviÞ ¼ 0 means that fuzzy entity e violates property pi and qP i

K
ðviÞ ¼ 1

means that this entity verifies fully the property. The number vi is the value of the attribute of entity e on which
the property pi is defined. For extent properties based on common semantics, vi is a semantic phrase and the
partial d.o.m. qP i

K
ðviÞ is supposed to be equal to 1 but the user may explicitly provide a value less than 1. More

generally, the value of qP i
K
ðviÞ represents the level to which entity e verifies property pi of fuzzy class K. Thus,

the global d.o.m. of fuzzy entity e in fuzzy class K is
lKðeÞ ¼
Pn

i¼1qP i
K
ðviÞ � wiPn

i¼1wi
: ð1Þ
Suppose that the fuzzy class YOUNG of young persons is defined through the attributes age and height.
Accordingly, the extent set of this class is X Young ¼ fp1; p2g, where p1 and p2 properties are defined respectively
on the age and height attributes. Clearly, the age attribute is more relevant in defining a young person. How-
ever, in many situations, it is not possible to determine the exact age of that person and the height attribute will
be a good indicator. To ensure this, we assign to p1 and p2 the weights of w1 = 0.8 and w2 = 0.3, respectively.
Now, suppose that we aim to calculate the global d.o.m. of a person e in the fuzzy class YOUNG. The two
fuzzy properties of ‘‘being young’’ and ‘‘having an average height’’ are shown in Fig. 1. The exact age and
height of e are not known but we suppose that they are as represented in Fig. 1. In this figure, it is easy to
see that qP 1

Young
ðe:ageÞ ¼ 0:53 and qP 2

Young
ðe:heightÞ ¼ 0:9. Thus by applying Eq. (1), we get: lYoungðeÞ ¼ 0:630.

To define the d.o.m. of an object in its class, the authors in [25] use a weighted sum of the inclusion degrees
of the attribute values in the attribute ranges as they are defined at the class level. They use the relevance of
attributes to classes as weights. In the proposal of [15], the authors use a weighted sum of the inclusion degrees
of the attribute values in the attribute domains. They use the importance of attributes to classes as weights.
The inclusion degrees are computed differently in these two proposals. In FSM, we use the partial d.o.m.
instead of the inclusion degrees. The weights in the three proposals have similar interpretations. However,
in [25,15] all the attributes of the class are used to compute the d.o.m. (although, one can give a weight of zero
to one or several attributes to eliminate them from consideration) but in FSM only a subset of the attributes
are used.

3. Constructs of FSM

3.1. Basic classes

A fuzzy class is a semantic collection of fuzzy entities. Each class has a list of characteristics or properties,
called attributes. Each of these attributes takes its values in a domain class (Fig. 2c). Some of these attributes
are used to construct the extent set XK defined earlier. To be a member of a fuzzy class K, a fuzzy entity e must
verify (fully or partially) at least one of the extent properties of K, i.e., lKðeÞ > 0.



Fig. 2. FSM class symbols.
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The classes in FSM may be simple (Fig. 2a) or complex (Fig. 2d). In addition, they are categorized as exact
or fuzzy. An exact class K is a class that all its members have a d.o.m. equal to 1. A fuzzy class K is a class such
that at least one of its members has a d.o.m. strictly inferior to 1. Furthermore, classes may also be categorized
as strong or weak. A strong fuzzy class (Fig. 2a) is a fuzzy class whose members can exist on their own, i.e.,
they are not depending on other classes. A weak fuzzy class (Fig. 2b) is a fuzzy class whose members depend on
the existence of other classes for their existence.

3.2. Members

The elements of a fuzzy class are called members. In FSM, a-MEMBERS denotes, for a given fuzzy class K,
the set fe : e 2 K ^ lKðeÞP ag where a 2 ½0; 1�. For instance, 0.17-MEMBERS of fuzzy class STAR is
fe : e 2 STAR ^ lStarðeÞP 0:17g. The 1-MEMBERS may also be referred to true or exact members. In turn,
a-MEMBERS with 0 < a < 1 are called fuzzy members. The concept of a-MEMBERS may be mapped to the
concept of a-cut associated with fuzzy sets and which is defined for a fuzzy subset F as the set
F a ¼ fx : lF ðxÞP ag with 0 6 a 6 1.

3.3. Relationships

3.3.1. Property relationships

A property relationship associates a fuzzy class with a domain class. Each property relationship defines an
attribute (see Section 3.4). We distinguish two types of attributes: (i) simple attributes, which are defined by
themselves (Fig. 4a), and (ii) derived attributes, which are obtained from other attributes (Fig. 4b). For exam-
ple, luminosity, weight and star-name are three simple attributes which we may associate with the fuzzy class
STAR in the database example of Fig. 3. We may also associate a derived attribute age with the class PER-
SON based on the date-of-birth attribute.

3.3.2. Decision rule relationships

To implement the extent sets associated with fuzzy classes, two new relationships are introduced in
FSM formalism. The first is an attribute-based decision rule relationship (Fig. 4c) used to decide (through
a binary comparison, for instance) whether or not a fuzzy entity is a member of a given class. The fuzzy
class STAR in Fig. 3 may, for instance, have two decision rule relationships based on luminosity and
weight attributes, respectively. The second is a semantic decision rule relationship (Fig. 4d), which is a
semantic phrase used to specify the members of a specific class. Semantic decision rule relationships are
mainly useful to define exact classes. For example, the class PERSON in Fig. 3 may be defined as ‘‘a set
of persons’’.

Any basic fuzzy class must have at least one decision rule. In turn, complex (or non-basic) fuzzy classes may
(e.g. attribute-defined fuzzy composite classes; see Section 3.7) or may not require (e.g. fuzzy interaction clas-
ses; see Section 3.3.4) decision rule relationships.

3.3.3. Membering relationships

The membering relationships relate fuzzy entities to fuzzy classes. Two types of membering relationships
are defined: true (or exact) (Fig. 4e) and fuzzy (Fig. 4f) membering relationships. All these relationships are
normally binary. However, in generalization/specialization relationships an entity may be—through the inher-
itance mechanism—a member of several fuzzy superclasses at the same time with different membership
degrees.



F
ig

.
3.

E
xa

m
p

le
o

f
a

F
S

M
-b

as
ed

m
o

d
el

.

4602 R. Bouaziz et al. / Information Sciences 177 (2007) 4598–4620



Fig. 4. FSM relationships.
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3.3.4. Interaction relationships

An interaction (or association) relationship relates members of one fuzzy class to other members of one or
many fuzzy classes. There are two types of interaction relationships: binary interaction relationship and n-ary

interaction relationship. The binary interaction relationship relates two fuzzy classes. In addition, in binary
interaction relationships two attributes are created, each one is the inverse of the other. For example, the bin-
ary interaction relationship relating SUPERNOVA and SCIENTIST classes in Fig. 3 requires the creation of
two attributes, namely discoverer from the point of view of SUPERNOVA and its inverse attribute discovers

from the point of view of SCIENTIST. The n-ary interaction relationship relates at least three members from
three fuzzy classes.

The interaction relationship may (Fig. 5b) or may not require (Fig. 5a) the creation of new attributes that
describe the interaction relationship. In the former case, a new (obligatory weak) fuzzy interaction class is gen-
erated. For instance, each member of the DISCOVERY fuzzy interaction class in Fig. 3 associates one mem-
ber (may be several members when the discovery is accomplished by several scientists) from SCIENTIST class
with one member from SUPERNOVA fuzzy class. This relationship may be further described with two attri-
butes, date-of-discovery and place-of-discovery, that permit to handle some information concerning the date
and the place of the discovery. An interaction relationship may also relate one member to other members
of the same fuzzy class and forms thus a reflexive (or recursive) interaction relationship (Fig. 5c).

The fuzzy interaction class should not have extent properties since its members are fully defined in terms of
the extent properties of the participant fuzzy classes. However, the d.o.m. of a member e of a fuzzy interaction
class I relating m members e1; e2; . . . ; em from m fuzzy classes K1;K2; . . . ;Km may be calculated as follows:
lIðeÞ ¼
Ym

i¼1

lKi
ðeiÞ: ð2Þ
Fig. 5. FSM interaction relationships.
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3.4. Attributes

Each property relationship relates a fuzzy class to a domain class. This relationship creates an attribute

associated with the members of the fuzzy class. Attributes may also be created through interaction, composi-
tion or grouping relationships. Attributes may be single or multi-valued. Values may be crisp or fuzzy.

In FSM, it is not necessary that a fuzzy subclass inherits all the attributes of its fuzzy superclass. Attributes
that are not obligatory are said to be non-relevant. The others are the relevant ones. In other terms, relevant
attributes are neither common to all the fuzzy subclasses to be included in their (common) fuzzy superclass
and inherited by all of them nor specific to only one of them to be included only in it.

Through the inheritance concept associated with subclass/superclass relationships, a class inherits all rele-
vant attributes of its superclass. These attributes are seen to be attributes of both the subclass and the super-
class. As in [11], an attribute is said to be an immediate attribute of the base class it is declared in. The authors
in [11] also distinguish two types of attributes: data-valued attributes and entity-valued attributes. The data-val-
ued attributes are equivalent to the attributes as presented above. The entity-valued attributes are specific,
non-printable, binary relationships that describe the properties of each entity of a class by relating it to an
entity (or entities) of another (or the same) class. In database literature, entity-valued attributes are also called
roles. For example, discoverer and discovers are two entity-valued attributes associated with the fuzzy interac-
tion relationship between SUPERNOVA and SCIENTIST. The concept of entity-valued attributes that is
adopted here is mainly useful for data manipulation and retrieval operations.

3.5. Fuzzy classes relationships

FSM also supports two types of inter-classes relationships: specialization and generalization. The special-

ization relationship relates a fuzzy superclass to one or several simple or complex fuzzy subclasses. Such a rela-
tion advocates that all the members of the fuzzy subclass are members of its fuzzy superclass. Any
specialization relationship creates implicitly a generalization relationship, which relates a fuzzy subclass to a
fuzzy superclass. The same superclass may have one, two or more subclasses (e.g. class PERSON in Fig. 3)
and the same fuzzy subclass may have more than one fuzzy superclass.

A fuzzy subclass may be attribute-defined, roster-defined or set-operation-defined. An attribute-defined
fuzzy subclass (Fig. 6a) has one or several attribute values that are in accordance with some discriminative
values which characterize perfectly its members. For instance, the fuzzy subclasses NOVA and SUPERNOVA
in Fig. 3 are specializations of the fuzzy class STAR based on the attribute type-of-star. The attribute-defined
fuzzy subclasses inherit all relevant attributes of their fuzzy superclasses.

A roster-defined fuzzy subclass is simply defined by an explicit enumeration of its members (Fig. 6b). These
subclasses inherit all relevant attributes of their superclasses. For instance, SCIENTIST, TECHNICIAN and
OFFICER in Fig. 3 are three roster-defined subclasses of PERSON.

A set-operation-defined fuzzy subclass may be defined as the set-difference (Fig. 6c) or the set-intersection
(Fig. 6d) of two or more fuzzy classes. Members of a difference fuzzy subclass of two fuzzy superclasses are the
fuzzy entities which are members of the first fuzzy superclass that are not members of the second one. The set-
difference fuzzy subclass inherits only relevant attributes of the first fuzzy superclass. Members of a set-inter-
Fig. 6. FSM class relationships.
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section fuzzy subclass of two or several fuzzy superclasses are members of each of these fuzzy superclasses. The
set-intersection fuzzy subclass inherits all relevant attributes of all the participant fuzzy superclasses.

Fuzzy subclasses as well as superclasses have their own extent properties and the d.o.m. of their members
may be calculated through Eq. (1). In [15], the authors distinguish two types of object/class relationships in
object-oriented databases. The first is a direct objet–class relationship which applies when the object and the
class have the same attributes. The second is an indirect objet–class relationship and is specific for subclass/
superclass relationships where an object belonging to the subclass must belong to the superclass since a sub-
class is a specialization of the superclass. The authors propose a formula to calculate the d.o.m. of a member
of the subclass in the superclass. The idea may be adapted to our FSM as follows. Let S1 be a subclass of S2.
The inheritance concept associated with subclass/superclass relationships advocates that S1 inherits some attri-
butes from S2, overrides some others, and adds some new ones. Then, let S2 has the extent properties set
X S2
¼ fp1; p2; . . . ; pk; . . . ; pkþ1; . . . ; pmg and S1 has the extent properties set X S1

¼ fp1; p2; . . . ; pk; . . . ;
p0kþ1; . . . ; p0m; pmþ1; . . . ; png where p0kþ1; . . . ; p0m are overridden from pkþ1; . . . ; pm (i.e. for all i ¼ k þ 1 to m, p0i
is based on the same attribute on which pi is based) and pmþ1; . . . ; pn are specific for S1. Thus, the d.o.m. of
an entity e from fuzzy subclass S1 in fuzzy superclass S2 of S1, written lS2

ðe=S1Þ, is
lS2
ðe=S1Þ ¼

Pk
i¼1qP iðviÞ � wi þ

Pm
j¼kþ1qP 0jðv0jÞ � w0jPk

i¼1wi þ
Pm

j¼kþ1w0j
; ð3Þ
where, for i = 1 to k, P i � Di represents the set of possible values of extent property pi, wi is the weight of pi

and vi is the value of the attribute of entity e on which property pi is based; and for j ¼ k þ 1 to m, P 0j � Dj

(note that pi and p0i should have the same domain) represents the set of possible values of extent property p0j, w0j
is the weight of p0j and v0i is the value of the attribute of fuzzy entity e on which property p0j is based.

For example, suppose that X Star ¼ fp1; p2g where extent properties p1 and p2 are based on luminosity and
weight attributes, respectively; and X Supernova ¼ fp01; p02; p3g where extent properties p01, p02 and p3 are based
on luminosity, weight and age attributes, respectively. Note that in the schema definition examples that will
be introduced in Section 4 and provided in Appendix A, SUPERNOVA has only two extent properties which
are based on luminosity and weight attributes. The age attribute is added here to illustrate how subclass/super-
class d.o.m. is computed. Let w1 ¼ w01 ¼ 0:7, w2 ¼ w02 ¼ 0:3 and w3 ¼ 0:2. Next, suppose that a member e

exists in SUPERNOVA for which qP 1
Star
ðe:luminosityÞ ¼ 0:56 and qP 2

Star
ðe:weightÞ ¼ 0:60; and

qP 01
Supernova

ðe:luminosityÞ ¼ 0:35, qP 02
Supernova

ðe:weightÞ ¼ 0:34 and qP 3
Supernova

ðe:ageÞ ¼ 0:12. Then, the d.o.m. of e in

STAR is
lStarðe=SupernovaÞ ¼ 0:347:
We notice that by applying Eq. (1), we get lSupernovaðeÞ ¼ 0:309 which is inferior to lStarðe=SupernovaÞ ¼ 0:347.
This is in accordance with the rule proposed by several authors (e.g. [14,15,13]) and which postulates the fact
that in fuzzy subclass/superclass relationships, the d.o.m. of an entity/object to a fuzzy subclass should be less
or equal to its d.o.m. to the fuzzy superclass of this subclass. More generally, any entity e member of a fuzzy
subclass S1 of a fuzzy superclass S2 should verify lS1

ðeÞ 6 lS2
ðeÞ.

3.6. Subclass/superclass membership function

In [15] the authors extend the notion of membership function to the subclass/superclass relationships in
object-oriented database models. To calculate the d.o.m. of a subclass in a superclass, they use a weighted
sum of the inclusion degrees of the attribute domains of the subclass in the attribute domains of the superclass.
In this paper, we adopt a similar way. The only difference is that we will use the d.o.m. of entities relatively to
their direct classes as weights. Formally, the d.o.m. of a fuzzy subclass Sj in its fuzzy superclass Si, written
lðSi; SjÞ, is equal to:
lðSi; SjÞ ¼
P

ea2Sj
lSi
ðea=SjÞ � lSj

ðeaÞP
ea2Sj

lSj
ðeaÞ

; ð4Þ
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where lSj
ðeaÞ is the d.o.m. of fuzzy entity ea in fuzzy class Sj calculated as in Eq. (1) and lSi

ðea=SjÞ represents
the d.o.m. of fuzzy entity ea from Sj in Si calculated as in Eq. (3).

For example, suppose that the fuzzy subclass SUPERNOVA contains three entities e1, e2 and e3 with
lSupernovaðe1Þ ¼ 0:55, lSupernovaðe2Þ ¼ 1:0 and lSupernovaðe3Þ ¼ 0:67. We suppose also that these entities verify
the following:

• lStarðe1=SupernovaÞ ¼ 0:37.
• lStarðe2=SupernovaÞ ¼ 0:15.
• lStarðe3=SupernovaÞ ¼ 0:90.

Then, Eq. (4) gives: lðStar; SupernovaÞ ¼ 0:430.
The d.o.m. in subclass/superclass relationships as calculated here differs from the one proposed in [15,25] in

the sense that it depends on the entities currently present in the database. This means that in FSM the value of
lðSi; SjÞ may evolve over time and it is not ‘‘static’’ as in [15] or [25].

3.7. Fuzzy composite classes

A fuzzy composite relationship defines a new fuzzy class that has other classes as its members. All such clas-
ses are strong. Specifically, a member of a fuzzy composite class is the set of members of some other fuzzy clas-
ses taken as a whole. The fuzzy classes that are members may be subclasses of a common fuzzy superclass, in
such a case they are said to be homogeneous, or they may not, in such a case they are said to be heterogeneous.
Each fuzzy composite class has a multi-valued attribute called contents, which permits to identify all of its
members.

Fuzzy composite classes are needed to define class attributes or properties that describe a whole class rather
than each individual entity in a class. To better appreciate the concept of composite class and its utility, con-
sider the example shown in Fig. 7. In this example, a fuzzy composite class PLANET-TYPES is defined on the
fuzzy class PLANET. PLANET-TYPES has three members: c1, c2 and c3. These members result from the
grouping of the members of PLANET according to the value of attribute density, called selection attribute
(see Section 3.7.1). Without fuzzy composite class PLANET-TYPES, there is no way to handle the class attri-
bute number-of-planets. In fact, it is not possible to include this attribute in fuzzy class PLANET. This example
will be continued below (in Section 3.7.1).

There are two types of fuzzy composite classes: attribute-defined (Fig. 8a) and enumerated (Fig. 8b). They
are discussed hereafter.

3.7.1. Attribute-defined fuzzy composite classes

Given a fuzzy class C with some attributes a1; a2; . . . ; an, we can define an attribute-defined fuzzy composite
class based on C as having as its members those subclasses of the fuzzy class C in which all members have
identical values for the attributes a1; a2; . . . ; an. That is, we can envision a set of attribute-defined fuzzy sub-
classes of C defined by the tuple of values (a1; a2; . . . ; an) and the fuzzy composite class has those fuzzy sub-
classes as its members. The attributes a1; a2; . . . ; an are called the selection attributes of the fuzzy composite
class. Attribute-defined fuzzy composite classes are necessarily homogeneous ones. In the example introduced
above, PLANET-TYPES is defined on the fuzzy class PLANET. This composition is based on density attri-
bute. The three members of PLANET-TYPES are denoted c1, c2 and c3, respectively. Each member of PLA-
NET-TYPES is itself a class. In Fig. 7, the classes associated with c1, c2 and c3 are called TERRESTRIAL,
PLANETOIDS and GAS-GIANTS, respectively. Each of these fuzzy classes consists of a number of mem-
bers, each of which is a member of the class PLANET. The composite class PLANET-TYPES really consists
of a number of classes each of which is a subclass of the class PLANET.

The d.o.m. in attribute-defined fuzzy composite classes is computed as follows. Let C be an attribute-
defined fuzzy composite class based on the selection attributes a1; a2; . . . ; an. The extent properties set of fuzzy
composite class C is based on all or a subset of the selection attributes: X C ¼ fp1; p2; . . . ; pqg with q 6 n and
p1; p2; . . . ; pq are based on attributes a1; a2; . . . ; aq, respectively. As mentioned earlier, members of an attribute-
defined fuzzy composite class C are themselves fuzzy classes K1;K2; . . . ;Kp that are subclasses of the same



Fig. 7. Example of fuzzy composite class definition.

Fig. 8. FSM composite classes.
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fuzzy superclass S. This means that each member ei of C is in relation with all the members of one class, say Ki.
Thus, since at least a subset of the selection attributes are common to the fuzzy composite class and to its
members, the d.o.m. of ei in C may be calculated as follows:
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lCðeiÞ ¼ lðC;KiÞ � lðS;KiÞ; ð5Þ
where lðC;KiÞ and lðS;KiÞ are the d.o.m. of the class Ki in fuzzy composite class C and in its fuzzy superclass
S, respectively. They may be computed in a similar way to Eq. (4), that is
lðC;KiÞ ¼
P

ea2Ki
lCðea=KiÞ � lKi

ðeaÞP
ea2Ki

lKi
ðeaÞ

; ð6Þ
and
lðS;KiÞ ¼
P

ea2Ki
lSðea=KiÞ � lKi

ðeaÞP
ea2Ki

lKi
ðeaÞ

: ð7Þ
Note that lCðea=KiÞ and lSðea=KiÞ are computed in a similar way to Eq. (3). Let first explain Eq. (5). The first
term in this equation ensures that all the members of the class Ki in relation with entity ei of C are included in
the computation of lCðeiÞ. The second term is used since members of Ki are initially members of S and then,
the d.o.m. of Ki in S should also be included. On the other hand, because all the members of a fuzzy subclass
of an attribute-defined fuzzy composite class share exactly the same values for the selection attributes on which
extent properties set is based, they belong to the fuzzy composite class with the same d.o.m. (this is explained
in the illustrative example that follows). This means that in Eq. (6) above, lCðea=KiÞ is the same for all ea in Ki.
Let for all ea in Ki, lCðea=KiÞ ¼ xi with xi 2 ½0; 1�. Then, Eq. (6) above will be as follows:
lðC;KiÞ ¼
xi �
P

ea2Ki
lKi
ðeaÞP

ea2Ki
lKi
ðeaÞ

¼ xi: ð8Þ
Consequently, Eq. (5) becomes
lCðeiÞ ¼ xi � lðS;KiÞ: ð9Þ
Illustrative example

Consider again the example of Fig. 7. First we comment the d.o.m. of the entities of the fuzzy class PLA-
NET. Planets Mercury, Venus, Earth and Mars, also known as rocky planets, are composed primarily of rock
and metal and have very high densities. They are also the closet to the Sun and are relatively well known. They
take a d.o.m. equal to 1.0. The planets Jupiter, Saturn, Uranus and Neptune, also known as gas giants, are
composed mainly of hydrogen and helium gases and have low densities. These four outer planets in our solar
system are less known than the four previous ones and they take a d.o.m. less than 1.0 (in function of their
distance from the Sun). The last two planets, Pluto and its moon Charon, are among thousands of objects
orbiting in the outer regions of our solar system. They are too large to be asteroids and too small to be planets.
They have an average density. The relatively small value of their d.o.m. is explained by (i) the importance of
their distance from the Sun and (ii) the fact that many astronomers believe that Pluto and Charon may actu-
ally be Kuiper Belt objects and not planets. Kuiper Belt is a disk-shaped region past the orbit of Neptune
extending roughly from 30 to 50 AU from the Sun containing many small icy bodies (AU is the abbreviation
of astronomical unit and is a unit of length, which is approximately equal to the mean distance between the
Earth and Sun). As mentioned above, the definition of fuzzy composite class PLANET-TYPES is based on
density attribute. Then, X PLANET-TYPES ¼ fpg where p is an extent property based on density attribute. Since
the possible values for density attribute are ‘‘high’’, ‘‘average’’ and ‘‘low’’, PLANET-TYPES has three mem-
bers c1, c2 and c3. Each of these entities is in fact a subset of the entities of PLANET. As shown in Fig. 7, the
classes corresponding to entities c1, c2 and c3 are called TERRESTRIAL, PLANETOIDS and GAS-GIANTS,
respectively. It is easy to see that all the members of each of these classes share the same value for the attribute
density.

For the sake of clarity, in the rest of this example, fuzzy classes PLANET and PLANET-TYPES are
denoted S and C, respectively. Equally, we denote the three subclasses TERRESTRIAL, PLANETOIDS
and GAS-GIANTS by K1, K2 and K3, respectively. These notations are also used in Fig. 7. Now, we show
how lCðc1Þ can be computed based on Eqs. (5)–(9). According to Eq. (5), we have:
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lCðc1Þ ¼ lðC;K1Þ � lðS;K1Þ:

By using Eq. (7) and the data of Fig. 7, we get: lðS;K1Þ ¼ 1 (explanation of this result is provided in the end of
this example). Consider now the computing of lðC;K1Þ. By using Eq. (6) we have:
lðC;K1Þ ¼
lCðe1=K1Þ � lK1

ðe1Þ þ lCðe3=K1Þ � lK1
ðe3Þ þ lCðe4=K1Þ � lK1

ðe4Þ þ lCðe7=K1Þ � lK1
ðe7Þ

lK1
ðe1Þ þ lK1

ðe3Þ þ lK1
ðe4Þ þ lK1

ðe7Þ
:

Next, it is easy to see that entities e1, e3, e4, and e7 of K1 have exactly the same value for the attribute density.
Then, basing on Eq. (3), it comes that lCðe1=K1Þ, lCðe3=K1Þ, lCðe4=K1Þ and lCðe7=K1Þ must have the same
value (which is equal to 0.75 in Fig. 7). This holds since the extent property set XC of composite fuzzy class
PLANET-TYPES is based on attribute density for which entities e1, e3, e4, and e7 of subclass K1 share the same
value (which is equal to High in Fig. 7). Accordingly, we get:
lðC;K1Þ ¼
0:75 � lK1

ðe1Þ þ 0:75 � lK1
ðe3Þ þ 0:75 � lK1

ðe4Þ þ 0:75 � lK1
ðe7Þ

lK1
ðe1Þ þ lK1

ðe3Þ þ lK1
ðe4Þ þ lK1

ðe7Þ

¼ 0:75 �
lK1
ðe1Þ þ lK1

ðe3Þ þ lK1
ðe4Þ þ lK1

ðe7Þ
lK1
ðe1Þ þ lK1

ðe3Þ þ lK1
ðe4Þ þ lK1

ðe7Þ
¼ 0:75:
Using similar reasoning, we obtain lCðc2Þ ¼ 0:5 and lCðc3Þ ¼ 0:65. To conclude this paragraph, we comment
some of the data provided in Fig. 7. First, we remark that for all ei 2 Kj, we have lSðeiÞ ¼ lKj

ðeiÞ
(i ¼ 1; . . . ; 10) (j ¼ 1; 2; 3). In general, this holds when:

• the set of selection attributes and the attributes used to define the extent set of the basic class (S in this
example) are exactly the same, and

• the extent set of the basic class and the subclasses (K1, K2 and K3 in this example) are the same.

Both conditions hold in our example. This means that the definition of the properties ‘‘have a high density’’,
‘‘have an average density’’ and ‘‘have a low density’’ associated with subclasses K1, K2 and K3, respectively, are
the same as the ones associated with S, i.e., X S ¼ X Kj (j ¼ 1; 2; 3). Second, it is easy to see that for ei 2 Kj, we
have lSðei=KjÞ ¼ 1 (i ¼ 1; . . . ; 10) ðj ¼ 1; 2; 3Þ. This holds since X S ¼ X Kj ðj ¼ 1; 2; 3Þ. This also explains why
lðS;K1Þ ¼ lðS;K2Þ ¼ lðS;K3Þ ¼ 1:0.

3.7.2. Enumerated fuzzy composite classes

An enumerated fuzzy composite class is defined by listing its members, that is, by naming as its members
other classes which appear in the model. These members may be homogeneous or heterogeneous. Each mem-
ber of an enumerated fuzzy composite class may have its own attributes in addition to the common ones, if
any.

Two cases hold for computing the d.o.m. of enumerated fuzzy composite class members, along with the fact
that they are homogeneous or heterogeneous:

• Homogeneous enumerated fuzzy composite class. The extent properties set of an enumerated fuzzy compos-
ite class C of s homogeneous fuzzy subclasses K1;K2; . . . ;Ks is X C ¼

Ts
i¼1X Ki . Then, the d.o.m. lCðeiÞ of an

entity ei in C is computed in similar way to the case of an attribute-defined fuzzy composite class (see Sec-
tion 3.7.1). This is because we are sure that in this case X C 6¼ ; and Eqs. (5)–(9) still apply.

• Heterogeneous enumerated fuzzy composite class. Let C be a fuzzy composite class of s heterogeneous fuzzy
subclasses K1;K2; . . . ;Ks. The d.o.m. of a member ei from C is computed as follows:
lCðeiÞ ¼ lðC;KiÞ � lðSi;KiÞ: ð10Þ

Note that Si is the fuzzy superclass of Ki and that lðSi;KiÞ and lðC;KiÞ are computed as in Eq. (4). Since
K1;K2; . . . ;Ks are heterogeneous fuzzy classes (they have different fuzzy superclasses), the composite fuzzy
class C has no extent properties set. Thus, it is not possible to use Eq. (3) to compute lCðej=KiÞ. In addition,
the definition of the extent set of C as X C ¼

Ts
i¼1X Ki may provide X C ¼ ;. To avoid these problems, we pro-

pose to use Eq. (11)—instead of Eq. (3)—to compute lCðej=KiÞ:
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lCðej=KiÞ ¼
lKi
ðejÞ � min

ea2Ki
lKi
ðeaÞ

max
ea2Ki

lKi
ðeaÞ �min

ea2Ki
lKi
ðeaÞ

; ð11Þ
where minea2KilKi
ðejÞ and maxea2KilKi

ðeaÞ are, respectively, the minimum and maximum values for lKi
ðejÞ.

This new formula works whether X C is empty or not. It gives 1 for entities ej having the maximum value
for lKi

ðejÞ and 0 for those having the minimum value for lKi
ðejÞ. The values for the other entities will be

in ]0,1[.

3.8. Fuzzy grouping classes

A fuzzy grouping class is a collection of members from other fuzzy classes. We may distinguish two types of
fuzzy grouping classes: aggregate or grouping. A member of a fuzzy aggregate class is a heterogeneous collec-
tion from different fuzzy classes in which each member (or aggregate) is composed of exactly one member from
each of the fuzzy classes that are called components (Fig. 9b). In other words, members of a fuzzy aggregate
class are (a subset of) the Cartesian product of the members of its components. A fuzzy grouping class is a
homogeneous collection of members (or groups) from the same fuzzy class that is called component

(Fig. 9a). In both cases, members of the fuzzy grouping or aggregate class are unique collections of the com-
ponent class(es). In other words, the addition or the elimination of one member from the collection creates a
new group or a new aggregate. For example, GALAXY is a fuzzy aggregate class whose members are unique
collections of members from COMETS, STARS and PLANETS fuzzy grouping classes. These last ones are
homogeneous collections of members from strong fuzzy classes COMET, STAR and PLANET, respectively.
Finally, we mention that each fuzzy grouping or aggregate class has a multi-valued attribute called contents

that refers to the members of each of its groups or aggregates.
The extent properties set of a fuzzy aggregate class is the union of the extent properties sets of its compo-

nents. Mathematically, X A ¼
Sm

i¼1X Ki ¼ fp1
1; . . . ; pn1

1 ; . . . ; p1
k ; . . . ; pnk

k ; . . . ; p1
m; . . . ; pnm

m g where A is an aggregation
of m fuzzy classes K1;K2; . . . ;Km and nk for k = 1 to m is the number of extent properties for fuzzy class Kk.
Then, the d.o.m. of an entity e of an aggregate fuzzy class A that maps to m entities e1; e2; . . . ; em of m fuzzy
classes K1;K2; . . . ;Km is calculated as follows:
lAðeÞ ¼
Pm

a¼1

Pna
s¼1qP s

Ka
ðva

s Þ � wa
sPm

a¼1

Pna
s¼1wa

s

; ð12Þ
where wa
s and va

s (with s ¼ 1; . . . ; na and a ¼ 1; . . . m) denote the weight of extent property number s, ps
a, of fuz-

zy class Ka and the value of the attribute on which extent property ps
a is based, respectively. The d.o.m. of an

entity ei from a fuzzy subclass Ki in the fuzzy aggregate class A, written lAðei=KiÞ, is computed in similar way
to Eq. (11), i.e.:
Fig. 9. FSM grouping classes.
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lAðei=KiÞ ¼
lKi
ðejÞ �minea2KilKi

ðeaÞ
maxea2KilKi

ðeaÞ �minea2KilKi
ðeaÞ

: ð13Þ
Then, the d.o.m. of fuzzy subclass Ki in the fuzzy aggregate class A is computed as follows:
lðA;KiÞ ¼
P

ea2Ki
lAðea=KiÞ � lKi

ðeaÞP
ea2Ki

lKi
ðeaÞ

: ð14Þ
A fuzzy grouping class is a homogeneous collection of members from the same fuzzy class. The extent prop-
erties set of a fuzzy grouping class G is equal to the one of the fuzzy subclass K on which G is based, i.e.,
X G ¼ X K . The d.o.m. of an entity e of a fuzzy grouping class G that groups m entities e1; e2; . . . ; em from fuzzy
class K is computed as follows:
lGðeÞ ¼
Pm

i¼1lKðeiÞ
m

: ð15Þ
Other formulae as lGðeÞ ¼ max16i6mlKðeiÞ or lGðeÞ ¼ min16i6mlKðeiÞ may also apply.
For each entity e in the component fuzzy class K that belongs to the fuzzy grouping class G, we have

lGðe=KÞ ¼ lKðeÞ. Then, the d.o.m. of fuzzy class K in G is lðG;KÞ ¼ 1.
4. Schema definition in FSM

This section provides a proposal for specifying schema of FSM-based databases. All examples of this sec-
tion rely on the database example of Fig. 3. In the example database, GALAXY is an aggregate fuzzy class
whose members are unique collections of members from COMETS, STARS and PLANETS fuzzy grouping
classes. The latter ones are homogeneous collections of members from strong fuzzy classes COMET, STAR
and PLANET, respectively. NOVA and SUPERNOVA are two attribute-defined fuzzy subclasses of STAR
based on type-of-star attribute. PLANET-TYPES is an attribute-defined fuzzy composite class. This compo-
sition is from PLANET fuzzy class based on the density attribute. PERSON is an exact class. It has three enu-
merated subclasses: SCIENTIST, TECHNICIAN and OFFICER. Each person is affiliated with at least one
LABORATORY. SCIENTIST is a collection of scientists and DISCOVERY is an interaction fuzzy class
between SUPERNOVA and SCIENTIST. SCIENTIST-TYPES is a fuzzy composite class from SCIENTIST
based on field-of-research attribute.

In the generic definitions below we adopt the following conventions:

• [ ]: optional parameter(s).
• {}: list of parameters or values.
• j: the equivalent of the binary operator ‘‘xor’’.
• hi: obligatory parameter(s).
• ( ): series of parameters connected with the ‘‘xor’’ operator.

The generic definition of a fuzzy class in FSM is as follows:

CLASShclass-namei WITH DOM OF hdomi
{
SUPERCLASS:
OF hclass-namei WITH DOM OF hdomi
� � �
INTERACTION CLASS OF hclass-listi

EXTENT:
hext-pri WITH WEIGHT OF hwi DECISION RULE IS ((hattr-nameihopi (hattr-namei jhvaluei))jhopi
hsphrasei)
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� � �
ATTRIBUTES:
hattr-namei: [FUZZY] DOMAIN hdomaini: TYPE OF htypei WITH DOM OF hdomi: [REQUIRED]
[UNIQUE] [MULTI-VALUED]
� � �
CONTENTS:
[ENUMERATED COMPOSITION FROM (hclass-name:members-listi)]
[SELECTED COMPOSITION ON ATTRIBUTES hattr-listi FROM hclass-listi]
[AGGREGATION OF (hclass-name:members-listi)]
[GROUPING FROM hclass-name:members-listi]

INTERACTION:
hinter-namei WITH (hclass-namei INVERSE IS hinv-inter-namei jhinter-class-listi) [CLASS IS hinter-class-

namei]
� � �
}

The SUPERCLASS component of the fuzzy class definition enumerates all the subclasses of the class
along with their d.o.m. relatively to this class. This component is omitted if the fuzzy class has no fuzzy
subclasses. The INTERACTION CLASS OF component is for fuzzy interaction classes only. It permits
to specify the list of the participant classes for which the interaction class is defined. One, two and at least
three class names are required for recursive, binary, and n-ary (n P 3) fuzzy interaction classes, respectively.
Next in the EXTENT part, we list all the extent properties of the class. For each extent property, we indi-
cate the name, the weight and the decision rule on which this extent property is based. As it is quoted ear-
lier, decision rules may be attribute-based or semantic phrase-based. The left-side of the attribute-based
decision rule indicates the attribute name on which the rule is based. The op operator may be a scalar
comparator or a set-operator. The right-side of the attribute-based decision rule may be a crisp (e.g.
age = 21) or fuzzy (e.g. age = young) value. For semantic phrase-based decision rules, the op is an ‘‘is-a’’
operator and the right-side is a semantic phrase (e.g. the decision rule ‘‘is-a person’’ may be associated with
the class PERSON in Fig. 3). The semantic phrase-based decision rules are optional—but recommended to
make the database schema more comprehensible. For instance, we may have the following extent properties
definitions:

p1 WITH WEIGHT OF 0.8 DECISION RULE IS luminosity = very high
p2 WITH WEIGHT OF 0.3 DECISION RULE IS weight in ½0:01W s � 1W s�
p3 WITH WEIGHT OF 0.5 DECISION RULE IS age = young
p03 WITH WEIGHT OF 0.5 DECISION RULE IS age in [17–21]
p4 WITH WEIGHT OF 1.0 DECISION RULE IS is-a galaxy
p5 WITH WEIGHT OF 1.0 DECISION RULE IS is-a person

The symbol ‘‘Ws’’ above is the weight of the Sun; it is often used as a measurement unit. The four first deci-
sion rules are attribute-based ones while decision rules p4 and p5 are semantic phrase-based ones. These two
last ones may be associated with classes GALAXY and PERSON, respectively.

In the ATTRIBUTES component, we specify the list of the attributes of the fuzzy class. We note that attri-
butes definition schema is partially inspired from [15]. This definition of attributes apply for both exact and
fuzzy ones. An exact attribute requires the definition of a datatype (e.g. integer, string) and a domain as a
range of possible values for the attribute. A fuzzy attribute requires the definition of a fuzzy type and a fuzzy
domain. The fuzzy types are based on simple (e.g. integer) or complex types (e.g. set-valued types, entity-val-
ued attributes) that allow the representation of imprecise information. Fuzzy domains may be represented
simply as a list of fuzzy linguistic terms (e.g. young, near). Other ways may also apply as for example possi-
bility theory (e.g. the age of a young person may be represented through a possibility distribution as



R. Bouaziz et al. / Information Sciences 177 (2007) 4598–4620 4613
age ¼ 0:1=17þ 1:0=18þ 0:2=19). In addition, attributes may be specified as required, unique or multi-valued.
All required and unique attributes may serve as identifiers. For example, we may have the following declara-
tions of attributes:

location: FUZZY DOMAIN {in, near, very near, distant, very distant}: TYPE OF real WITH DOM OF 1.0
age: FUZZY DOMAIN {very old, old, young, very young}: TYPE OF integer WITH DOM OF 1.0
star-name: TYPE OF string WITH DOM OF 1.0: REQUIRED UNIQUE
phone-numbers: TYPE OF string WITH DOM OF 1.0: MULTI-VALUED

According to these declarations, location and age attributes may have either exact values (e.g. loca-

tion = 12LY; age = 55) or fuzzy values (e.g. location = very distant; age = old). The ‘‘LY’’ symbol is the
abbreviation of light year. The star-name attribute may have only exact values (e.g. star-name= ‘‘Vega’’).
In addition, star-name attribute may be used as an identifier since it is required and unique. The phone-numbers

attribute is an exact and multi-valued one.
The next component of fuzzy class definition is specific for fuzzy composite and grouping classes. It is an

implementation of the contents attribute. For enumerated composition, we indicate the list of classes and for
each one we specify the entities that are member of the fuzzy composite class. For attribute-defined com-
position, we fix the list of the selection attributes and the list of the classes from which selection is accom-
plished. For fuzzy aggregated classes we indicate the list of the classes that are part of the aggregation and
for each one we specify the entities that are members of the fuzzy aggregate class. And finally for fuzzy
grouping classes, we indicate the name of the class from which grouping is realized along with the list of
members.

The last part of fuzzy class definition indicates the eventual interaction relationship(s) of the fuzzy class. As
mentioned earlier, interaction relationships may be binary or n-ary. In both cases a name should be provided.
Binary interaction relationships also require the name of the other participating fuzzy class and the name of
the inverse attribute. For n-ary interaction relationships, we need to mention the list of the classes that par-
ticipate in this interaction. In both cases and when it is necessary, the name of the fuzzy interaction class
can be specified with the CLASS IS clause.

Since subclasses may have their own subclasses, they have the same components as for fuzzy classes. In par-
ticular, they may have SUPERCLASS components that indicate the list of their own subclasses. In turn, sub-
classes have a specific component, called SPECIALIZATION, that is designed to indicate their fuzzy
superclasses. The generic definition of a fuzzy subclass in FSM is as follows (only the SPECIALIZATION
component is provided; the definitions of the other components are similar to the ones of the fuzzy class
and they are not reproduced):

SUBCLASS hclass-namei WITH DOM OF hdomi
{
SPECIALIZATION :
OF hclass-namei WITH DOM OF hdomi:
[BY ENUMERATION hmembers-listi]
[ON ATTRIBUTES hattr-listi]
[BY INTERSECTION WITH hclass-listi]
[BY DIFFERENCE WITH hclass-namei]
OF hclass-namei WITH DOM OF hdomi:
. . .
}

For each superclass of the subclass, we indicate the name of the superclass and the d.o.m. of the subclass in
this superclass. Enumerated fuzzy subclasses require the enumeration of the fuzzy classes that participate in
the generalization relationship along with the list of members. For attribute-defined subclasses, we should
indicate the list of the attributes on which the ISA relationship is defined. For set-intersection-defined sub-
classes, we simply indicate the list of the other superclasses that participate in the intersection. Finally for
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set-difference-defined subclasses, we mention the name of the other fuzzy class that participates in the differ-
ence operation.

Several illustrative examples (based on Fig. 3) showing FSM schema definition are provided in Appendix A.

5. An extended query language

In this section, we introduce an ongoing conceptual query language adapted for FSM-based databases.
First, we introduce the notions of perspective class and qualification, which are of great importance in
FSM query formulation.

5.1. Perspective class and qualification

The notion of perspective class is introduced in [11]. It is simply defined as the class in which the user is
primarily interested when formulating his/her query. It simplifies query formation and allows users with dif-
ferent interests to approach the database from points of view appropriate to their needs [11]. The perspective
class can be associated with an appropriate syntactic process, called qualification, allowing immediate attri-
butes of other classes to be treated as if they were attributes of the perspective class. This process may be
extended through the entity-valued attributes concept to the attributes related by more than one level of qual-
ification. These attributes are called extended attributes. For example, in Fig. 3, field-of-research is an imme-
diate attribute of SCIENTIST and name-of-person is an inherited attribute of SCIENTIST from PERSON. If
we suppose that classes SCIENTIST and TECHNICIAN in Fig. 3 are related and two entity-valued attributes
supervises (from the point of view of SCIENTIST) and supervisor (from the point of view of TECHNICIAN)
are defined for them, then with TECHNICIAN as perspective class, the name-of-person of supervisor refers to
the name of a technician’s supervisor(s) (i.e. a scientist entity). This last qualification is an extended attribute
of TECHNICIAN in this example.

Apart from that, the notion of perspective class can be combined with generalization hierarchies to simplify
query formation. For example, consider again the hypothetical binary relationship between SCIENTIST and
TECHNICIAN, henceforth the list of technicians and the name of their supervisors can simply be obtained as
follows (the syntax of a retrieve query in FSM is provided below):

FROM technician RETRIEVE name-of-person, name-of-person OF supervisor

In this example, TECHNICIAN is the perspective class. This query lists the name of all technicians and for
each one it provides the name of his/her supervisor. But if a technician has no supervisor, whose name should
be returned. In this case, the supervisor’s name will take a ‘‘null’’ value. In this example, the qualification
avoids the necessity to put the SCIENTIST class in the FROM clause since the entities of this class are
‘‘reached’’ through the entity-valued relationship.

The general syntax of qualification of an attribute is as follows [11]:

hattr-namei {OF hentity-valued-attribute-namei [AS hclass-namei]}
OF hperspective-class-namei [AS hclass-namei]

The attr-name is either a data-valued or an entity-valued attribute. The ‘‘AS’’ clause specifies subclass/
superclass role conversion (from a superclass to a subclass) in the same generalization hierarchy and may
be best thought of as ‘‘looking down’’ a generalization hierarchy [11]. The following are some examples of
qualification from Fig. 3:

name-of-person OF person AS officer

name-of-person OF discoverer OF supernova

laboratory-address OF works-at OF person

laboratory-name OF works-at OF person AS scientist
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In the second qualification, the perspective class is SUPERNOVA. All the other qualifications use PER-
SON as the perspective class. The first one returns the names of persons who are officers. The second one lists
for each supernova the name(s) of its discoverer(s). The third one returns for each person in the database the
address of the laboratories s/he works at. The fourth qualification is like the previous one but it returns the
working place name of persons who are scientists only, i.e., persons who are technicians or officers are not
considered. The second example of qualification is used in the third and sixth queries below. The fourth exam-
ple is used in the second query.

A last example of qualification is as follows. Suppose that a reflexive relationship called spouse is defined on
the class PERSON. Then, the qualification:
field-of -research OF spouse AS scientist OFscientist
returns the field of research of scientist’s spouse only if the spouse is also a scientist. Clearly, the perspective
class here is SCIENTIST. This example is used in the seventh query below.

Finally, it is important to mention that it may be necessary to use more than one perspective class (as in
queries 5 and 6 below) and that it is not necessary to qualify each attribute.

5.2. Syntax of retrieve queries

The generic syntax of a retrieve query in FSM is inspired from [11] and it makes use of the concept of per-
spective class:

[FROM {(hperspective-class-namei [WITH DOM hop1i hclass-leveli]j
ha-MEMBERS OF perspective-class-namei)}]

RETRIEVE htarget-listi
[ORDER BY horder-listi]
[WHERE hselection-expressioni [WITH DOM hop2ihattr-leveli]]

The argument of the FROM statement is a list of perspective class names (perspective-class-name) with their
respective levels of selection (class-level) or a specification of the a-MEMBERS to be considered. Only members
that have a global d.o.m. verifying the arithmetic comparison ensured by the operator op1 (when WITH DOM is
used) or have a d.o.m. greater or equal to a (when a-MEMBERS is used) are considered in the selection process.
We notice that the WITH DOM part in the FROM clause is facultative and when omitted, all the entities of
perspective-class-name that verify the condition(s) specified in the WHERE clause are returned. Thus, there is
no necessity to introduce the WITH DOM > 0 condition when no restriction is imposed on the global d.o.m.
of the entities as in queries 2, 5 and 6 hereafter. The target-list in the RETRIEVE statement is a list of expressions
made up of constants, immediate, inherited and extended attributes of the perspective class, and aggregate and
other functions applied on such attributes. The ORDER BY statement is used to choose the way the list of enti-
ties is ordered. The selection-expression in the WHERE statement is a set of symbolic, numerical or logical con-
ditions that should be verified by the attributes of all selected entities. When it is necessary, attribute-based
conditions may be combined with appropriate selection levels (attr-level) and only entities whose attributes val-
ues have a partial d.o.m. verifying the arithmetic comparison ensured by the operator op2 are selected.

The following are some illustrative examples of data retrieval operations.
Query 1. Retrieve the name and the type of supernova that have global d.o.m. equal to or greater than 0.7

and have luminosity greater than 15Ls with partial d.o.m. equal to or greater than 0.9. (Ls is the luminosity of
the Sun.)

FROM supernova WITH DOM P 0.7
RETRIEVE snova-name, type-of-snova

WHERE luminosity > 15Ls WITH DOM P 0.9

Query 2. Retrieve the name of laboratory of all scientists in the database.
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FROM person

RETRIEVE laboratory-name OF works-at OF person AS scientist

This query uses the fourth qualification cited above. Here, the perspective class is PERSON and it is not
necessary to add a WHERE clause (to ensure that only persons who are scientists are listed) since the qual-
ification permits to eliminate persons who are not scientists from the result.

Query 3. Retrieve the name of all true supernovae and the names of their discoverers.

FROM 1-MEMBERS OF supernova

RETRIEVE snova-name, name-of-person OF discoverer OF supernova

This query uses the second example of qualification cited earlier. Here, the qualification permits to avoid
the necessity of adding the class SCIENTIST in the FROM clause. In addition, it avoids the necessity of a
WHERE clause. Without qualification, a WHERE clause should be added and the response to query 3 will
be as follows (note that the same supernova may be discovered by several scientists and that the same scientist
may discover several supernovae):

FROM 1-MEMBERS OF supernova, scientist

RETRIEVE snova-name, name-of-person

WHERE supernova.discoverer in (

FORM scientist

RETRIEVE name-of-person

WHERE scientist.discovers=supernova.snova-name)

Query 4. Retrieve location, luminosity and weight of each supernova having a global d.o.m. greater than
0.75 and is of type II-P and of weight greater than 10Ws with partial d.o.m. greater than 0.5.

FROM 0.75-MEMBERS OF supernova
RETRIEVE location, luminosity, weight

WHERE type-of-snova=II-P and weight > 10Ws WITH DOM > 0.5

Query 5. Retrieve date of discovery and name of all supernovae of type Ia that are located in the milky-way
galaxy with a partial d.o.m. greater than 0.5 and having high luminosity with d.o.m. less than 0.7.

FROM discovery, supernova, galaxy

RETRIEVE snova-name, date-of-discovery
WHERE type-of-snova = Ia and (galaxy-name = milky-way and
galaxy.location = supernova.location WITH DOM > 0.5) and
luminosity = high WITH DOM < 0.7
In this query example as in the next one, several perspective classes are used. In addition, the WITH DOM
part is omitted from the FROM clause and so the conditions of the WHERE clause will be verified for all the
entities.

Query 6. Retrieve the name, the date of discovery and the discoverer of all supernovae which are not
located in the milky-way galaxy with d.o.m. not less than 0.5.

FROM supernova, discovery

RETRIEVE snova-name, date-of-discovery, name-of-person OF discoverer OF supernova

WHERE supernova.location not in (

FROM galaxy

RETRIEVE location

WHERE galaxy-name = milky-way) WITH DOM P 0.5
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This example illustrates an imbricated query in FSM. It shows again (in the outer block of the query) how
the second example of qualification may be used.

Query 7. Retrieve all the scientists who are married and who have the same field of research as their spouses
(we suppose that the spouse relationship defined on the PERSON class exists).

FROM scientist

RETRIEVE name-of-person

WHERE field-of-research OF spouse AS scientist OF scientist = field-of-research

This last query uses the fifth example of qualification cited earlier.

6. Related work

In this section, we compare FSM with some recent proposals for extending semantic data models.
Based on fuzzy set and possibility distribution, the author in [14] introduces fuzziness in the different con-

structs of the semantic IFO data model, including printable type, abstract type, free type, grouping, aggrega-
tion, fragment and ISA relationship. The obtained system, denoted IF2O, is mapped to a fuzzy relational
database model. It is fruitful to remark that several fuzzy constructs of IF2O (e.g. abstract types with the fuzz-
iness at the schema level) can not be mapped into the fuzzy relational database model. In addition, the author
does not provide the ways in which the different d.o.m. are computed; thus, an effective comparison with FSM
is not possible.

The authors in [16] use fuzzy set theory and possibility distribution to extend the EER model into a fuzzy
EER (denoted FEER) one to cope with imperfect as well as complex objects. FEER supports fuzziness at
model/type (i.e. class), type values (i.e. instances) and attribute levels. In addition, the authors distinguish
two interpretations of fuzzy sets for modeling incomplete information within multi-valued attributes: distinc-
tive fuzzy sets and conjunctive fuzzy sets. Furthermore, a formal design methodology for fuzzy object-oriented
databases (FOODB) from a FEER model is detailed. But the ways in which the different d.o.m. are computed
are not provided and several constructs of semantic modeling (e.g. grouping and composition) are not
extended to cope with imperfect information.

Another proposal for extending the well-known ER database model to support fuzziness is reported in [8].
The possibility-based Fuzzy ER data model supports fuzziness and uncertainty at attribute, entity, relation-
ships and instance/entity relationships. However, the Fuzzy ER described in [8] does not support fuzziness at
subclass/superclass level. The paper does not present the ways in which the different d.o.m. are computed. In
turn, it includes a fuzzy entity-relationship methodology (FERM) for the design and development of fuzzy
relational databases.

In [22] and based on similarity relations, the IFO model is extended to the ExIFO (Extended IFO) to rep-
resent uncertainty as well as precise information. ExIFO supports uncertainty at the attribute, entity, and
instance/class levels. The authors also provide an algorithm for mapping the schema of the ExIFO model to
an extended NF2 database model. The paper also includes some extended algebra operators along with an
extended SQL-like query language. However, the ways in which the different d.o.m. are computed are not men-
tioned in the present paper. Moreover, it does not discuss the support of imperfect information within several
constructs of semantic modeling including grouping, aggregation and subclass/superclass relationships.

On the basis of fuzzy set and possibility distribution, extension of the major constructs of the well-known
ER/EER models to support uncertainty and imprecision of real-world at model/type, type/value and attribute
values levels is introduced in [9]. The paper also discusses the attribute inheritance concept within fuzzy con-
text. It deals especially with derived attribute inheritance, multiple inheritance associated with superclass/sub-
class relationships and selective inheritance of attributes associated with categories. The support of fuzziness
at relationship constraints (inheritance constraint, participation constraint and cardinality constraint) is also
investigated.

Finally, an extension of the graph-based IFO database model is provided in [21]. The paper first discusses
the problem of vagueness, imprecision and uncertainty representation within fuzzy databases. Basing on
IFO, the paper then proposes solutions for handling ill-defined values including values with semantic
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representation, values with semantic representation and disjunctive meaning and values with semantic repre-
sentation and conjunctive meaning. The uncertainty is supported at attribute, object and class levels. The
paper includes a graphical representation of some constructs of IFO. However, the paper lacks a discussion
of several important concepts in semantic modeling such as entity/class and subclass/superclass relationships.

In comparison with the above-cited proposals, FSM has several merits:

• FSM is semantically richer since it is based on the USM model [18] that coherently synthesizes and extends
constructs found in several other conventional semantic models.

• FSM introduces fuzziness within all the constructs of semantic modeling: attribute, entity, composition,
aggregation, and grouping semantics as well as entity/class, subclass/superclass and more generally
class/class relationship levels.

• FSM supports almost all kinds of imperfect information: vague, imprecise, uncertain and incomplete (i.e
null, undefined and unknown) (see [1]). This ensures the high flexibility of FSM. Furthermore, all these
types are uniformly represented through possibility distribution, which facilitates data manipulation and
computing while giving the maximum flexibility to the users.

7. Conclusion

In database research, there are several proposals to develop database models that support the management
of fuzziness, uncertainty and imprecision of real-world. In this paper, we have reviewed and refined the FSM,
a fuzzy semantic model recently proposed by the authors. In addition, we have provided a proposal for spec-
ifying FSM schema and introduced a query language adapted to FSM-based databases. Furthermore, we have
discussed/compared FSM with several recent fuzzy semantic data models.

In FSM, we need to compute and handle both d.o.m. of entity/class and subclass/superclass relationships.
This will complicate DBMS design process. Another drawback of FSM (and nearly all other proposals) is
related to compensatory nature of the weighted sum technique used to define and calculate global membership
functions. Indeed, the low values of one or many partial membership functions may be compensated with high
values of one or many other partial membership functions. Thus, other, non-compensatory, aggregation oper-
ators are required.

Currently, we are concerned with several topics related to the enhancement of the developed prototype.
Further attentions are devoted to enrich FSM with other tools that may be used to represent integrity con-
straints as well to extend conventional data manipulation operators (e.g. product, union, etc.) with fuzzy
concepts.
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Appendix A

This Appendix contains the definition of several classes taken from Fig. 3.

CLASS star WITH DOM OF dom

{
SUPERCLASS:
OF supernova WITH DOM OF dom

OF nova WITH DOM dom

EXTENT:
sp1 WITH WEIGHT OF 0.8 DECISION RULE IS luminosity P 0:005Ls
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sp2 WITH WEIGHT OF 0.3 DECISION RULE IS weight P 0:05W s

ATTRIBUTES:
star-name: TYPE OF string WITH DOM OF 1.0: REQUIRED UNIQUE
type-of-star: TYPE OF symbolic(nova, supernova) WITH DOM OF 1.0: REQUIRED
age: FUZZY DOMAIN {very young, young, old, very old}: TYPE OF integer WITH DOM OF 1.0:
REQUIRED
location: FUZZY DOMAIN {in, near, very near, distant, very distant}: TYPE OF real WITH DOM OF
1.0: REQUIRED
luminosity: FUZZY DOMAIN {very low, low, medium, high, very high}: TYPE OF real WITH DOM OF
1.0: REQUIRED
weight: FUZZY DOMAIN ½0:01Ws� 100W s�: TYPE OF real WITH DOM OF 1.0: REQUIRED
}
SUBCLASS supernova WITH DOM OF dom

{
SPECIALIZATION :
OF star WITH DOM OF dom:
ON ATTRIBUTES type-of-star

EXTENT:
snp1 WITH WEIGHT OF 0.6 DECISION RULE IS luminosity P high
snp2 WITH WEIGHT OF 0.5 DECISION RULE IS weight P 1Ws

ATTRIBUTES:
snova-name: TYPE OF string WITH DOM OF 1.0: REQUIRED UNIQUE
type-of-snova: TYPE OF symbolic (Ia, Ib, Ic, Ib/c, Ic/b, II-P, II-L) WITH DOM OF 1.0: REQUIRED
luminosity: FUZZY DOMAIN {high, very high}: TYPE OF real WITH DOM OF 1.0: REQUIRED
weight: FUZZY DOMAIN ½1W s � 100W s�: TYPE OF real WITH DOM OF 1.0: REQUIRED
INTERACTION:
discoverer WITH scientist INVERSE IS discovers CLASS IS discovery

}
CLASS person WITH DOM OF 1.0
{
SUPERCLASS:
OF scientist WITH DOM OF 1.0
OF technician WITH DOM OF 1.0
OF officer WITH DOM OF 1.0
EXTENT:
pp1 WITH WEIGHT OF 1.0 DECISION RULE IS set of persons
ATTRIBUTES:
name-of-person: TYPE OF string WITH DOM OF 1.0: REQUIRED
age: FUZZY DOMAIN {very young, young, old, very old}: TYPE OF integer WITH DOM OF 1.0:
REQUIRED
address: TYPE OF string WITH DOM OF 1.0: REQUIRED
phone-numbers: TYPE OF string WITH DOM OF 1.0: MULTI-VALUED
INTERACTION:
works-at WITH laboratory INVERSE IS working-place-of
}
CLASS discovery WITH DOM OF dom

{
INTERACTION CLASS OF supernova, scientist

ATTRIBUTES:
date-of-discovery: TYPE OF datetime WITH DOM OF 1.0
place-of-discovery: TYPE OF string WITH DOM OF 1.0
}
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SUBCLASS scientist WITH DOM OF 1.0
{
SPECIALIZATION:
OF person WITH DOM OF 1.0:
BY ENUMERATION name-of-person-1,. . .,name-of-person-n

EXTENT:
scp1 WITH WEIGHT OF 1.0 DECISION RULE IS set of scientists
ATTRIBUTES:
field-of-research: TYPE OF string WITH DOM OF 1.0: REQUIRED
INTERACTION:
discovers WITH supernova INVERSE IS discoverer CLASS IS discovery

}
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