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Foreword

This is the second volume of the Annals of the LAMSADE. As the former one, it is
multi-thematic. Accepted papers are a sample of either the research works performed in
the laboratory, or of the advances in its research domains.

We publish here two contributions of researchers who, even if they are not part of the
LAMSADE’s staff, are close collaborators for many years. The first paper is a survey
on the complexity and the efficiency of local search methods. The second one, presents
a new database management algorithm and studies its complexity. We hope that in the
volumes to come, we will be able to publish more contributions issued from our exter-
nal partners.

For this volume, the editorial board has encouraged papers co-authored by PhD stu-
dents of the laboratory. This is the case of seven among the eleven papers accepted.

Vangelis Th. PASCHOS
Editor-in-Chief

Editorial

Ce deuxieme numéro des Annales du LAMSADE est, comme le précédent,
pluri-thématique. Les articles publiés reflétent soit les travaux de recherche effectués
dans le laboratoire, soit des avancées dans les domaines de recherche du laboratoire.

Par ailleurs, nous accueillons deux articles de chercheurs qui, méme s’ils ne
sont pas des membres permanents du LAMSADE, travaillent étroitement avec nous
depuis longtemps. Le premier est un tour d’horizon sur la complexité et I’efficience des
méthodes de la recherche locale. Le deuxiéme propose un nouvel algorithme de gestion
des bases de données et analyse sa complexité. Nous espérons que dans 1’avenir, nous
allons accueillir plus d’articles issus de nos partenaires externes.

Pour ce deuxiéme numéro des Annales, le comité de rédaction a suscité des
articles co-écrits par des étudiants en thése au LAMSADE. Une large place leur a été
consacrée, sept d’entre eux figurent au sommaire des onze articles présentés dans ce
volume.

Vangelis Th. PASCHOS
Rédacteur en chef
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PTAS-completeness in standard and differential
approximation

Cristina Bazgan®, Bruno Escoffier*, Vangelis Th. Paschos*

Résumé

Nous nous placons dans le cadre de I’ approximation polynomial e des problémes
d optimisation. Les réductions préservant |’ approximabilité ont permis de structu-
rer les classes d’ approximation classiques (APX, PTAS,...) en introduisant des no-
tions de complétude. Par exemple, des problémes naturels ont éé montrés APX-
ou DAPX-complets (pour le paradigme de I’ approximation différentielle), sous des
réductions préservant I’ existence de schémas d’ approximation polynomiaux. Nous
introduisons ici une notion de PTAS-complétude pour laquelle des problémes na-
turels sont PTAS-complets. Nous définissons également une notion analogue de
DPTAS-complétude pour I’ approximation différentielle, et montrons I’ existence de
problémes DPTAS-complets naturels. Ensuite, nous étudions I’ existence de pro-
blemes intermédiaires (sous nos réductions) et répondons partiellement alaquestion
en montrant que |’ existence de probléme NPO-intermediaires sous la réduction de
Turing est une condition suffisante. Enfin, nous montrons que MIN COLORING est
DAPX-complet sous la DPTAS-réduction (définie dans “G. Ausiello, C. Bazgan,
M. Demange, et V. Th. Paschos, Completeness in differential approximation classes,
MFCS 03").

Mots-clefs : Algorithme approché, complétude, complexité, optimisation combina-
toire, schéma d’ approximation, réduction.

Abstract

Thisarticle focuses on polynomial approximation of optimization problems. The
classical approximation classes (APX, PTAS,...) have been structured by the intro-
duction of approximation-preserving reductions and notions of completeness. For
instance, natural problems are known to be APX- or DAPX-complete (under the

* LAMSADE, Université Paris-Dauphine, 75775 Paris cedex 16, France. {baz-
gan, escoffi er, paschos} @ ansade. dauphi ne. fr



PTAS-completeness in standard and differential approximation

differential approximation paradigm), under suitably defined reductions preserving
polynomial time approximation schemata. We introduce here a notion of PTAS-
completeness for which natura problems are shown to be PTAS-complete. We also
define an analogous notion of DPTAS-completeness for the differential approxima-
tion, and show the existence of natural DPTAS-complete problems. Next, we deal
with the existence of intermediate problems, under our reductions and we partially
answer this question showing that the existence of NPO-intermediate problems un-
der Turing-reduction is a sufficient condition. Finally, we show that MIN COLOR-
ING is DAPX-complete under DPTAS-reduction (defined in “G. Ausiello, C. Baz-
gan, M. Demange, and V. Th. Paschos, Completeness in differential approximation
classes, MFCS 03).

Key words : Approximation algorithm, approximation schema, combinatorial opti-
mization, completeness, complexity, reduction.

1 Introduction

Many NP-complete problems are decision versions of natural optimization problems.
Since, unless P = NP, such problems cannot be solved in polynomial time, amajor ques-
tionisto find polynomial algorithms producing solutions “close to the optimum” (in some
prespecified sense). Here, we dea with polynomia approximation of NPO problems,
i.e., for optimization problems the decision versions of which are in NP. A polynomial
approximation agorithm A for an optimization problem IT isapolynomial time algorithm
that produces, for any instance x of II, a feasible solution y = A(z). The quality of y
is estimated by computing the so-called approximation ratio. Two approximation ratios
are commonly used in order to evaluate the approximation capacity of an algorithm: the
standard ratio and the differential ratio.

By means of these ratios, NPO problems are then classified with respect to their ap-
proximability properties. Particularly interesting approximation classes are, for the stan-
dard approximation paradigm, class APX (the class of constant-approximable problems),
PTAS (the class of problems admitting polynomial time approximation schemata) and
FPTAS (the class of problems admitting fully polynomial time approximation schemata).
Analogous classes can be defined under the differential approximation paradigm: DAPX,
DPTAS and DFPTAS (see section 2 for formal definitions), are the differential counter-
parts of APX, PTAS and FPTAS, respectively. Note that FPTAS ¢ PTAS ¢ APX, and
DFPTAS ¢ DPTAS ¢ DAPX; these inclusions are strict unless P = NP.

During last two decades, several approximation-preserving reductions have been in-
troduced. Viathem, hardness results in several approximability classes have been stud-
ied. Consider two classes C; and C, with C; C C,, and assume areduction preserving
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Annalesdu LAMSADE n° 2

membership in Cy (i.e., if IT reducesto IT" and II' € Cy, then IT € C;). A problem C,-
complete under thisreduction isin C; iff C; = C; (asin the case of NP-completeness).

Consider, for instance, the P-reduction in [5]; this reduction, extended in [3, 6]
(and renamed PTAS-reduction), preserves membership in PTAS. Natural problems, such
as MAX INDEPENDENT SET IN BOUNDED DEGREE GRAPHS ([13]) or MIN METRIC
TSP ([14]), are APX-complete under the PTAS-reduction. This implies that such prob-
lems are not in PTAS unless P = NP (since, as we have previously mentioned, provided
that P # NP, then PTAS ¢ APX).

In differential approximation, analogous results have been obtained in [1] for differ-
ential approximation; there, a DPTAS-reduction, preserving membership in DPTAS, is
defined and natural problems such as MAX INDEPENDENT SET IN BOUNDED DEGREE
GRAPHS are shown to be DAPX-complete.

In the same way, the F-reduction of [5], preserves membership in FPTAS. Under this
reduction, only one (not very natural) problem (derived from MAX VARIABLE-WEIGHTED
SAT) is known to be PTAS-compl ete (see Appendix A). Despite some restrictive notions
of DPTAS-hardness presented in [1], no systematic study of DPTAS-completeness has
been performed until now.

Reductions provide astructure in approximation classes, and are very useful in obtain-
ing hardness approximability results. Asin the case of NP-completeness with the result
of [12], one can try to refine the study of this structure by determining if there exist inter-
mediate problems. For two complexity classesC and C’, C' C C, and areduction R pre-
serving membership in C’, aproblem is called C-intermediate, if it is neither C-complete
under R, nor in C’. In[5] is proved the existence of APX- and PTAS-intermediate prob-
lems under P- and F-reductions, respectively.

We propose here a reduction preserving membership in FPTAS, weaker than the F-
reduction of [5], for which natural problems are shown PTAS-complete. We also propose
areduction preserving membership in DFPTAS and show that, under it, natural problems
aSMIN VERTEX COVER, Of MAX INDEPENDENT SET, both in planar graphs, are DPTAS-
complete. Indeed, we show that, under our reduction, any polynomially bounded NP-hard
problem of PTAS is PTAS-complete. Using another notion of polynomia boundness, di-
ameter polynomial boundness, we show that any diameter polynomially bounded NP-hard
problem of DPTAS is DPTAS-complete. Finaly, we try to apprehend if our reductions
allow existence of intermediate problems. We partially answer this question by proving
that such problems do exist provided that there exist intermediate problemsin NPO under
the seminal Turing-reduction.

The paper is organized as follows. in Section 2, we recall some basic definitions
and present our two reductions. In Sections 3 and 4, we present our completeness re-
sultsin PTAS and DPTAS. The results on intermediate problems are given in Section 5.
Finally, in Section 6, it is proved that MIN COLORING is DAPX-complete under DP-
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TAS-reduction. Thisisthe first problem that is DAPX-complete but not APX-complete.
Definitions of problems used and/or discussed in the paper, together with specifications
of their worst solutions are given in Appendix A.

2 Preliminaries

2.1 Polynomial approximation

We firstly recall some useful definitions about basic concepts of polynomial approxi-
mation.

Definition 1. A problem IT in NPO isaquadruple (Z, Sol, m, opt) where:

e 7 isthe set of instances (and can be recognized in polynomial time);

e givenz € Z, Sol(z) isthe set of feasible solutions of z; the size of afeasible solu-
tion of z ispolynomial in the size || of the instance; moreover, one can determine
in polynomial time if asolution isfeasible or not;

e Givenz € Z and y € Sol(x), m(x,y) denotes the value of the solution y of the
instance z; m is caled the objective function, and is computable in polynomial
time; we suppose herethat m(z,y) € N;

e opt € {min, max}.1

Given a problem IT in NPO, we distinguish the following three different versions of

¢ the constructive version denoted also by I1, where the goal isto determine asolution
y* € Sol(x) satisfying m(z, y*) = opt{v(z,y),y € Sol(x)};

¢ the evaluation problem II., where we are only interested in determining the value
of an optimal solution;

e the decision version I1,; of IT where, given an instance x of II and an integer k£, we
wish to answer the following question: “does there exist a feasible solution y of x
such that m(x,y) > k if opt = max, or m(x,y) < kif opt = min?.

Given an instance = of an optimization problem II, let opt(x) be the value of an
optimal solution, and w(x) bethe value of aworst feasible solution. In other terms, w(z) is
the optimal value of the same optimization problem with the opposite objective (minimize
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instead of maximize, and vice-versa) with respect to I1. We now define the two ratios the
most commonly used for the analysis of approximation algorithms, called standard and
differential in the sequel.

Definition 2. Let x be an instance of a problem IT and y € Sol(z). The standard
approximation ratio of y isr(z,y) = m(x,y)/opt(z). The differential approximation
ratio of y is§(z,y) = |m(z,y) — w(z)|/|opt(z) — w(z)].1

Following Definition 2, standard approximation ratios for minimization problems are
greater than, or equal to, 1, whilefor maximization problemsthese ratios are smaller than,
or equal to 1. On the other hand, differential approximation ratio is always at most 1 for
any problem.

Let ¢ be afunction mapping the instances of aproblem IT to [0, 1], or to [1, +00). An
algorithm A guarantees standard (resp., differential) ratio g iff, for any instance x of II,
r(z, A(z)) = g(z), or r(z, A(x)) < g(z), depending whether II is a maximization or a
minimization problem (resp., §(z, A(x)) > g(x)). A problem II is standard (resp., dif-
ferential) g-approximable iff there exists a polynomial algorithm that guarantees standard
(resp., the differential) ratio g.

We can now formally define the approximation classes APX, PTAS and FPTAS.
An NPO problem IT isin the class:

e APX, iff it is constant-approximable, i.e., iff there exists a polynomial algorithm
which guarantees ¢ where g does not depend on the instance;

e PTAS, iff it admits a polynomial time approximation schema; such a schemais a
family of polynomial algorithms A., € €]0, 1], any of them guaranteeing approxi-
mationratiol — e, or 1 + ¢;

e FPTAS, iff it admitsafully polynomial time approximation schema; such aschema
is a polynomial time approximation schema (A.).cjo,1, Where the complexity of
any A. ispolynomia in both the size of theinstanceandin 1/«.

Classes DAPX, DPTAS and DFPTAS for the differential approximation paradigm
can be defined analogousdlys.

An NPO problem II is polynomially bounded iff there exists a polynomial ¢ such
that, for any instance = and for any feasible solution y € Sol(x), m(z,y) < q(|z|).
It is diameter polynomially bounded iff there exists a polynomial ¢ such that, for any
instance z, | opt(z) —w(z)| < ¢(]z|). The class of polynomially bounded NPO problems
will be denoted by NPO-PB, while the class of diameter polynomially bounded NPO
problems will be denoted by NPO-DPB.
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2.2 Reductions

First, let usrecall that, given areduction R and aset C of problems, aproblemII € C
is C-complete under R iff any problem in C R-reducesto II. If R preserves membership
in C’' C C, Il is C-intermediate under R iff it is neither C-complete nor in C’ (provided
that P # NP). Moreover, we will say that a problem in NPO is NP-hard if its decision
version is NP-complete.

In this paper, we will use three reductions. The first one is the seminal Turing-
reduction between optimization problems as it appearsin [9]. Turing-reduction only pre-
serves optimality of solutions (and hence membership in PO C NPO of polynomial time
solvable problems).

Definition 3. Let IT and I’ be two problems in NPO. Then, II reduces to IT" under
Turing-reduction (denoted by IT <t II') iff, given an oracle (I optimally solving I, we
can devise an algorithm optimally solving I1, in polynomial timeif [J is polynomial. i

The other two reductions, denoted by FT and DFT, respectively, have mainly the
property of preserving membership in FPTAS and DFPTAS, respectively. Let IT and IT'
be two NP maximization problems. Let (I be an oracle for IT" producing, for any o €
10,1] and for any instance 2’ of II’, afeasible solution O (') of 2/ that isan (1 — a)-
approximation for the standard ratio.

Definition 4. II FT-reduces to IT' (denoted by IT <gt IT') iff, for any € > 0, there
exists an algorithm A, (z, O such that:

e for any instance z of II, A. returns a feasible solution which isa (1 — ¢)-standard
approximation;

e if O (2') works in time polynomial in both |2’| and 1/a, then A, is polynomial in
both |z| and 1/=. 1

For the case where at least one among IT and IT" is a minimization problem it suffices
toreplacel —eor/fand 1 — a by 1 + ¢ or/fand 1 + «, respectively.

Clearly, reduction of Definition 4 transforms a fully polynomial time approximation
schemafor IT’" into afully polynomial time approximation schemafor I1. Reduction DFT,
dealing with differential approximation, can be defined analogously.

Proposition 1. <g1 (resp., <prr) isreflexive, transitive, and preserves membership
in FPTAS (resp., DFPTAS).
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We recall now the DPTAS-reduction by means of which, the existence of DAPX-
complete problems has been proved in [1]. It will be useful in Section 6. Consider two
NPO problems II and IT". Then, IT <pptas II’ if there exist three functions f, g and ¢,
computable in polynomial time, such that:

o Vx € Iy, Ve €]0,1[NQ, f(x,¢€) € Zry; f ispossibly multi-valued;
e Vx € Iy, Ve €]0,1[NQ, Yy € soli (f(x,€)), g(x,y,€) € soly(x);
e ¢:]0,1[NQ —]0, 1[NQ;

o Vx € Iy, Ve €]0,1NQ, Yy € soly(f(x,€)), o (f(x,€),y) = 1 — c(e) =
on(z,g(z,y,€)) = 1 — ¢ if fismulti-valued, i.e, f = (fi,..., f;), for somei
polynomial in |z|, then, the former implication becomes. Va € 7y, Ve €]0, 1]NQ,
Vy € soli((f1,..., fi)(z,€)), 37 < i such that o (f;(z,€),y) = 1 — c(e) =
on(z,g(z,y,€)) =1 —e.l

It can be easily shown that given two NPO problems IT and IT', if IT <pptas II’ and
II" € DPTAS, then IT € DPTAS. One of the basic features of differential approxima-
tion ratio isthat it is stable under affine transformations of the objective functions of the
problems dealt. In this sense, problems for which the objective functions of the ones are
affine transformations of the objective functions of the others, are approximate equivalent
for the differential approximation paradigm (this is absolutely not the case for standard
paradigm). The most notorious case of such problems is the pair MAX INDEPENDENT
SET and MIN VERTEX COVER. Affine transformation is nothing else than a kind of re-
duction, denoted by AF, in what follows. Two problems IT and IT" are affine equivalent
if II <ar II" and IT" <af II. Obvioudly affine transformation is both an DFT- and a
DPTAS-reduction.

We finally recall the F-reduction introduced in [5]. Consider two NPO problems 11
and IT', IT F-reduces to IT" if and only if there exist three polynomially computable func-
tions f, ¢ and ¢ such that:

o Vx €Iy, f(2) € Iiy;
o VI € Iy, Vy € Solw (f(x)), g(w,y) € Soln(w);

e ¢ : I x (]0,1[NnQ) —]0,1]NQ; there exists a polynomial p such that c(z,¢) =
1/p(|z|,1/€); moreover, Vo € Iy, Ve €]0,1[NQ, Vy € Solw (f(x)), e(f(x),y) <
c(x,e) = e(z,g(x,y)) < ¢, where, for an instance x of a problem in NPO and for
asolutiony € Sol(z), e(z,y) = |opt(xz) — m(z,y)|/ opt(x).
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Obviously, F-reduction preserves membership in FPTAS,; furthermore it is a special
case of FT-reduction sincethislatter one explicitely allows multiple callsto oracle [ (this
fact is not explicit in F-reduction; in other words, it is not clearly mentioned if f and ¢
are dlowed to be multivalued). Also, FT-reduction seems allowing more freedom in the
way II istransformed to IT’; for instance, in F-reduction, function ¢ transforms an optimal
solution for IT" into an optimal solution for 11, i.e., F-reduction preserves optimality; this
isnot the casefor FT-reduction. Thisfreedom will allow usin reducing non polynomially
bounded NPO problems to NPO-PB ones. It seems so that the latter reduction is larger
than the former one but this fact remains to be confirmed and such proof does not seem to
be trivial and is not considered in this paper.

In what follows, given a class C € NPO and a reduction R, we denote by C~ the
closure of C under R, i.e., the set of problems in NPO that R-reduce to some problem
inC.

3 PTAS-completeness

We now study PTAS-completeness under FT-reduction. The following theorem in-
troduces the main result of this section.

Theorem 1. Let I’ be an NP-hard a problem of NPO. If [" € NPO-PB, then any
NPO problem FT-reducesto IT'.

The proof of Theorem 1 immediately follows from Lemmata 1 and 2. The first one
introduces a property of Turing-reduction (Definition 3) for NP-hard problems. In the sec-
ond one, we transform (under certain conditions) a Turing-reduction into a FT-reduction.
Proofs of the two lemmata are given for maximization problems. The case of minimiza-
tion is completely analogous.

Lemma 1 If an NPO problemIT’ is NP-hard, then any NPO problem Turing-reduces
toIT'.

Proof. Let IT be a NPO problem and ¢ be a polynomial such that |y| < q¢(|z|) for
any instance = of 11 and for any feasible solution y of x. Assume that encoding n(y)
of y is binary. Then 0 < n(y) < 2400 — 1. We consider the following prob-
lem IT (see [3]) which is the same as II up to its objective function that is defined by
mg(z,y) = 290 mp (2, y) + n(y).

Clearly, if mgy(x,y1) = mg(z, y2), thenmp(z, y1) = mn(z, y2). So, if y isan optimal
solution for the instance = of II, then it is also an optimal solution for the instance z of II.

8
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Remark now that for II, the evaluation problem II. and the constructive problem II
are equivalent. Indeed, given the value of an optimal solution y, one can determine n(y)
(hence y) by computing the remainder of the division of this value by 2¢(2D+1,

Since I’ is NP-hard, we can solve the evaluation problem II. if we can solve the
(constructive) problem IT'. Indeed,

e we can solvell, using an oracle solving the decision version I1, of II, by dichotomy;

e 11, reduces to the decision version 1T, of II' by a Karp-reduction (see [2, 9] for a
formal definition of this reduction);

e finally, one can solve IT/, using an oracle for the constructive problem IT'.

So, with a polynomial number of queries to an oracle solving IT, one can solve I1,., I1
and the proof of the lemmais complete. i

We now show how, starting from a Turing-reduction (that only preserves optimality)
between two NPO problemsII and IT" where IT’ is polynomially bounded, one can obtain
an FT-reduction transforming a fully polynomial time approximation schema for IT" into
afully polynomial time approximation schemafor II.

Lemma 2 LetII' € NPO-PB. Then, any NPO problemthat is Turing-reducibleto IT’
isalso FT-reducibleto IT'.

Proof. Let IT be an NPO problem and suppose that there exists a Turing-reduction be-
tween IT and II'. Let OO be an oracle computing, for any instance =’ of II’ and for
any o > 0, afeasible solution 3/ of =’ such that r(2’,y') > 1 — . Moreover, let p be
a polynomia such that for any instance «’ of II' and for any feasible solution ¢’ of 2/,
m(z',y') < p(|a']).

Let z be an instance of II. The Turing-reduction claimed gives an algorithm solv-
ing IT using an oracle for II'. Consider now this algorithm where we use, for any
query to the oracle with the instance »’ of IT, the approximate oracle O (2'), with
a = 1/(p(J2'|) + 1). This agorithm produces an optimal solution, since a solution 3’
being an (1 — (1/(p(|2’]) + 1)))-approximation for 2’ is an optimal one (recall that we
deal with problems having integer-valued objective functions, cf., Definition 1). Really,

mm (l",y,) 1 ’oor /
ot () ' Qe r1 o M ey) > optn (£) — 1
= my (¢, y) = opt (z')

It's easy to see that this algorithm is polynomial when O (') is polynomial in |2/| and
inl/a.



PTAS-completeness in standard and differential approximation

Obviously, any exact algorithm for IT can be a posteriori seen as a fully polynomial
time approximation schema; so, I1 <g+ IT’ and the proof of the lemmais now complete. i

From Theorem 1, one can immediately deduce the two following corollaries.
=—=aFT
Corollary 1. PTAS = NPO.

Corollary 2. Any polynomially bounded problemin PTAS is PTAS-complete under
FT-reduction.

For instance, MAX PLANAR INDEPENDENT SET and MIN PLANAR VERTEX COVER
arein PTAS ([4]). What has been discussed in this section concludes then the following
result.

Theorem 2. MAX PLANAR INDEPENDENT SET and MIN PLANAR VERTEX COVER
are PTAS-complete under FT-reduction.

Remark that the results of Theorem 2 cannot be trivialy obtained using the F-
reduction of [5].

4 DPTAS-completeness

We study in this section DPTAS-completeness under DFT-reduction. The results we
shall obtain are analogous to the case of the DPTAS-completeness: we show that any
NPO-DPB NP-hard problem in DPTAS is DPTAS-complete.

Theorem 3. Let II' be an NPO-DPB NP-hard problem. Then any problemin NPO
isDFT-reducibleto IT'.

Theorem 3 is an immediate consequence of Lemma 1 and of the following lemma,
differential counterpart of Lemma 2.

Lemma 3. If II"” € NPO-DPB, then any NPO problem that is Turing-reducible to IT'
isalso DFT-reducibleto IT'.

Proof. Let IT be an NPO problem, and suppose that IT <t II'. Let O be an oracle
computing, for any instance =’ of II" and for every o > 0, a feasible solution 3/ such
that 6(«',y') > (1 — a). Let p be a polynomia such that for any instance z’ of IT',
| opt(z’) — w(z)] < p(l2')).

10
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In the same way as in Lemma 2, we modify the algorithm of the Turing-reduction
between IT and IT" using the approximate oracle (1) with o = 1/(p(]2’]) + 1). Thisalgo-
rithm computes, asin Lemma 2, an optimal solution and it is polynomial if the oracle is
polynomial in |2/| andin 1/«. Thisalgorithm is obviously a differential fully polynomial
time approximation schema, and hence, IT <pgr IT'. 1

Corollary 3. DPTAS ' = NPO.

Corollary 4. Any NPO-DPB problem in DPTAS is DPTAS-complete under DFT-
reductions.

Thefollowing concluding theorem deal swith the existence of DPTAS-compl ete prob-
lems.

Theorem 4. Problems MAX PLANAR INDEPENDENT SET, MIN PLANAR VERTEX
COVER and BIN PACKING are DPTAS-complete under DFT-reduction.

Proof. For the DPTAS-completenes of MAX PLANAR INDEPENDENT SET, just ob-
serve that for any instance G, w(G) = 0. So, standard and differential approxi-
mation ratios coincide for this problem; moreover, it is in both NPO-PB and NPO-
DPB. Then, inclusion MAX PLANAR INDEPENDENT SET € PTAS suffices to conclude
MAX PLANAR INDEPENDENT SET € DPTAS and, by Corollary 4, that it is DPTAS-
complete.

MAX PLANAR INDEPENDENT SET and MIN PLANAR VERTEX CO-
VER are affine equivadent; hence MAX PLANAR INDEPENDENT SET <afr
MIN PLANAR VERTEX COVER. Since AF-reduction is a particular kind of DFT-
reduction, the DPTAS-completeness of MIN PLANAR VERTEX COVER is immediately
concluded.

Finally, the DPTAS-completeness of BIN PACKING is concluded from the facts:
(i) BIN PACKING € DPTAS ([7]) and (ii) BIN PACKING € NPO-DPB (since, for any
instance L of sizen, w(L) = nand opt(L) > 0.1

5 Looking for intermediate problems

FT-reduction isweaker than the F-reduction of [5] and, as we mentioned before, there
exist PTAS-intermediate problems under this latter reduction. The question of existence
of such problemsis posed for our reduction too. In this section, we partially answer this
guestion via the following theorem.

11
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Theorem 5. If there exists an NPO-intermediate problem for the Turing-reduction,
then there exists a problem PTAS-intermediate for FT-reductions.

Proof. Let IT be an NPO problem, intermediate for the Turing-reduction. Suppose that 11
is a maximization problem (the minimization case is completely similar). Let p be a
polynomial such that, for any instance = and any feasible solution y of z, m(z, y) < 22(=D,
Consider the following maximization problem II where:

e instances are the pairs (x,k) with z an instance of II and k£ an integer
in {0,...240=0};

e for an instance (z, k) of I, its feasible solutions are the feasible solutions of the
instance z of II;

e the objective function of II is:

mﬂ@xxm:{“%@| ifv(z,y) >k

|(z, k)| —1 otherwise
We will now show the three following properties:

1. 11 € PTAS;
2. If Il were in FPTAS, then IT would be polynomial;

3. if II were PTAS-complete, then II would be NPO-complete under Turing-
reductions.

If Properties 1, 2 and 3 hold, then since 11 is supposed to be intermediate, one can
conclude that IT is PTAS-intermediate, under FT.

Proof of Property 1. Remark that II is clearly in NPO-PB. Consider £ €]0,1] and the
algorithm A, which, on the instance (z, k) of II, solves exactly (z, k), if |(z, k)| < 1/e;
otherwise, it produces some solution. Algorithm A, ispolynomial and guarantees standard
approximation ratio, 1 — . Therefore, [T isin PTAS.

Proof of Property 2. Remark that 1T <+ II. Indeed, let = be an instance of IT. We can find
an optimal solution of = solving log(2°(#)) = p(|z|) instances (z, k) of II (by dichotomy).
Note that if IT were in FPTAS, it would be polynomial since the fully polynomial time
approximation schema A, applied on instance (z, k) withe = 1/(|(z, k)| + 1) isan exact
and polynomial algorithm. The fact that IT <t IT would imply in this case that IT is
polynomial.

12
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Proof of Property 3. Assume that Il is PTAS-complete (under FT-reductions). Then,
MAX PLANAR INDEPENDENT SET FT-reducesto II. Let [] be an oracle solving I1. Then,
we immediately obtain an exact algorithm for II, polynomial if [J is so. Clearly, this
algorithm can be considered as a fully polynomial time approximation schema for I1.
Reduction MAX PLANAR INDEPENDENT SET <gt II provides afully polynomia time
approximation schemafor MAX PLANAR INDEPENDENT SET and, sinceitisin NPO-PB,
we get an exact (and polynomial if (Jis so) algorithm for it. In other words, if IT iSPTAS-
complete, then MAX PLANAR INDEPENDENT SET <t II. To conclude, MAX PLANAR
INDEPENDENT SET is NPO-complete under Turing-reduction, since it is NP-hard (cf.,
Lemma 1). Therefore, if II were PTAS-complete, 1T would be NPO-complete (under
Turing-reductions). The proof of Property 3 and of the theorem are now completed. i

We now state an analogous result about the existence of DPTAS-intermediate prob-
lems (under DFT-reductions).

Theorem 6. If there exists an NPO-intermediate problem under Turing-reductions,
then there exists a problem DPTAS-intermediate, under DFT-reductions.

Proof. The proof is analogous to one of Theorem 5, up to modification of definition of L.
Indeed, if we don’'t modify it, then IT is not in DPTAS, because the value of the worst
solution of an instance (z, k) is |(z, k)| — 1. We only have to change this definition in
order to have w((z, k)) = 0 for any instance (x, k). For instance, we can define II as
follows:

e instances of II are, as previously, the pairs (z, k) where = isan instance of 11 and &
is an integer between 0 and 29(1#D;

e for an instance (z, k) of II, its feasible solutions are the feasible solutions of the
instance x of 11, plus asolution 3°;

¢ the objective function of Iis:

0 ify =y,
my((z,k),y) = (@, k)] ifv(z,y) >k
|(z, k)| —1 otherwise

Then, the result claimed is get in exactly the same way asin the proof of Theorem 5.1

6 A new DAPX-complete problem

All DAPX-complete problems given in [1] are also APX-complete under E-
reduction ([11]), a generalization of the L-reduction of [13]. An interesting question is if

13
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there exist DAPX-complete problems that are not also APX-complete for some standard
approximation-preserving reduction. In this section, we positively answer this question
by the following theorem.

Theorem 7. MIN COLORING is DAPX-complete under DPTAS-reductions.

Proof. Consider problem MAX UNUSED COLORS and remark that standard ratio for it
coincides with differential ratio of MIN COLORING. In fact, these problems are affine
eguivalent; so, a posteriori

MAX UNUSED COLORS <ar MIN COLORING D

MAX UNUSED COLORS has been proved MAX-SNP-hard under L-reduction ([10]).

Moreover, as it is shown in [11], MAX-SNP- = APX-PB (the set NPO-PB N
APX). Since MAX INDEPENDENT SET-B € APX-PB, MAX INDEPENDENT SET-B <g
MAX UNUSED COLORS. Onthe other hand, E-reduction being aparticular kind of PTAS-
reduction, MAX INDEPENDENT SET-B <ptas MAX UNUSED COLORS. Note now that
thisPTAS-reduction issimultaneously aDPTAS-reduction between MAX INDEPENDENT
SET-B and MIN COLORING. In fact, standard and differential approximation ratios for
MAX INDEPENDENT SET-B, on the one hand, standard and differential approximation
ratios for MAX UNUSED COLORS and differential ratio of MIN COLORING, on the other
hand, coincide. So,

MAX INDEPENDENT SET-B <pptas MAX UNUSED COLORS )

Reductions (1) and (2), together with the fact that the composition DPTAS o AF is obvi-
ously a DPTAS-reduction, establish immediately the DAPX-completeness of MIN COL-
ORING and the proof of the theorem is now complete. i

Aswe have already mentioned, MIN COLORING is, until now, the only problem known
to be DAPX-complete but not APX-complete. In fact, in standard approximation, it be-
longs to the class Poly-APX (of problems for which the best standard ratio known is a
polynomial on the size of their instances) and is inapproximable, in a graph of order n,
within n'=¢, Ve > 0, unless NP coincides with the class of problems that could be opti-
mally solved by dlightly super-polynomial algorithms ([8]).

7 Conclusion

We have defined suitable reductions and obtained natural complete problems for
classes PTAS and DPTAS of problems admitting a polynomial time approximation
schema, in standard and differential approximation. This work extends the one in [1];
both aim in studying a structure of differential approximation classes.
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However, the fact that problems proved complete here do not admit a standard or

differential fully polynomial time approximation schema is already known. It would be
interesting to use reductions proposed in order to get new inapproximability results. This
isin fact a mgjor computational impact of structuring approximation classes. Another
interesting open question concerns relationships between F and FT-reductions; for exam-
ple, isthe latter strictly weaker than the former? Finally, the existence of natural PTAS-,
or DPTAS-intermediate problems (as BIN PACKING for APX under AP-reduction) for F-,
FT and DFT-reductions remains open.
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A Alist of NPO problems

We present the list of NPO problems mentioned and/or discussed in the paper, to-
gether with a characterization of their worst-value solutions. For most of these problems,
comments about their approximability in standard approximation can be found in [2].

Maximum variable-weighted satisfiability.
Given a boolean formula ¢ with non-negative integer weights w(z) on any vari-
able x appearing in ¢, maximum variable-weighted satisfiability consists of com-
puting a truth assignment to the variables of ¢ that both satisfies ¢ and maximizes
the sum of the weights of the variables set to 1. We consider that the assignment
setting all the variables to O, even if it does not satisfy ¢, is feasible and repre-
sents the worst-value solution for the problem. Maximum linear variable-weighted
satisfiability- B denotes the version of Maximum linear variable-weighted satisfia-
bility where the variable-weights are polynomially bounded and their sum liesin
the interval [B, (n/(n — 1))B]. For this problem, it is assumed that the assign-
ment setting all variables to O is feasible and that its value is B. Obvioudly, this
assignment represents the worst feasible value.

Maximum independent set MAX INDEPENDENT SET).
Given agraph G(V, E), an independent set isasubset V' C V' such that whenever
{vi,v;} € V', vu; ¢ E, and MAX INDEPENDENT SET consists in finding an
independent set of maximum size. By MAX INDEPENDENT SET-B, we denote
MAX INDEPENDENT SET in bounded-degree graphs. Finally, by MAX PLANAR
INDEPENDENT SET, we denote MAX INDEPENDENT SET in planar graphs. Worst-
value solution: the empty set.
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Minimum coloring ( MIN COLORING ) and maximum color saving (MAX UN -
USED COLORS).
Given agraph G(V, E'), we wish to color V' with as few colors as possible so that
no two adjacent vertices receive the same color. Worst-value solution: V. MAX
UNUSED COLORS is the problem consisting, given a a graph G(V, E) and a set
of |V colors, of coloring G using colors from the set given, in such a way that
the number of unused colorsis maximized. Clearly, since theinitial set isfeasible,
worst solution for this problem is exactly this set. It can be immediately seen that
the complement of a legal coloring with respect to the vertex-set V' is a feasible
solution for MAX UNUSED COLORS; on the other hand, the complement of a fea-
sible solution with respect to the set of initial colors, is afeasible solution for MIN
COLORING. In other words, MIN COLORING and MAX UNUSED COLORS are affine
equivalent.

Minimum vertex-covering (MIN VERTEX COVER ).
Given a graph G(V, E), a vertex cover isasubset V' C V such that, Yuv € E,
either u € V’, or v € V’, and MIN VERTEX COVER consists of determining a
minimum-size vertex cover. By MIN PLANAR VERTEX COVER, we denote MIN
VERTEX COVER in planar graphs. Worst-value solution: V.

Bin packing (BIN PACKING ).
Given afiniteset L = {1, ..., z,} of n rationa numbers and an unbounded num-
ber of bins, each bin having a capacity equal to 1; we wish to arrange al these
numbers in the least possible bins in such a way that the sum of the numbers in
each bin does not violate its capacity. Worst solution: L.

Minimum traveling salesman problem (MIN TSP).
Given acomplete graph on n vertices, denoted by K, with positive distances on its
edges, MIN TSP consists of minimizing the cost of a Hamiltonian cycle (an ordering
(v1,v9,...,v,) Of V such that v,v; € E and, for 1 < i < n, vv;41 € E), the
cost of such a cycle being the sum of the distances of its edges. We denote by
MIN METRIC TSP the version of MIN TSP where edge distances satisfy triangle
inequalities. Worst-value solution: the total distance of the longest Hamiltonian

cycle.
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Un mécanisme de neégociation multicritere pour
le commerce électronique
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Résumé

Dans cet article nous présentons un mécanisme de négociation multicritére pour
le commerce électronique fondé sur un modele multicritére utilisant des points de
référence. Selon ce modele, I'acheteur doit spécifier un point d’'aspiration qui ex-
prime les valeurs souhaitées sur chaque attribut décrivant le produit & acheter et un
point d'exigence qui représente les valeurs minimales acceptables sur chaque critére.
Le mécanisme de négociation utilise un protocole d’enchéres anglaises inversées et
conduit la négociation vers le point d'aspiration de I'acheteur en assurant un contréle
direct sur le processus d’échanges.

Mots-clefs : Négociation, enchéres multi-attributs, systéme multiagents, commerce
électronique

Abstract

In this paper we present a multi-attribute negotiation mechanism for electronic
commerce which is based on a multicriteria model using reference points. According
to the model, the buyer must specify an aspiration point that expresses his desired
values on the attributes and a reservation point that represents the minimal values
required. The negotiation mechanism uses an English reverse auction protocol and
leads the negotiation to the buyer’s aspiration point by providing a direct control on
the bidding process.

Key words : Negotiation, multi-attribute auctions, multi-agent systems, electronic
commerce

* LAMSADE, Université Paris-Dauphine, 75775 Paris cedex 16, Frajlel | osta, bri gui,
kor nman, pinson, vdp}@ ansade. dauphine. fr
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1 Introduction

Les applications de commerce électronique de derniére génération suivent générale-
ment le modéle Consumer Buying Behaviour model (CBB) [7]. Le modéle CBB comporte
six phases: identification des besoins, sélection des produits, recherche des meilleures
offres, négociation, achat et livraison du produit. Les acteurs humains consommateurs et
vendeurs sont représentés par des agents logiciels. Un consommateur est représenté par
un agent acheteur qui connait les produits cherchés, ainsi que les préférences du consom-
mateur. Un vendeur est représenté par un agent vendeur qui connait I'état des stocks et
les conditions de vente que le vendeur est prét a accorder. La phase de négociation porte
sur 'amélioration des conditions de vente. L'accord final entre agents résulte d’'une suite
d’échanges régis par un protocole de négociation. Les protocoles d’enchéres offrent les
mécanismes les plus compétitifs pour la négociation [8, 17]. Un mécanisme d’enchéres
alloue des ressources aux acheteurs et aux vendeurs en se basant sur des régles prédéfi-
nies. Ces régles définissent le processus d'échange de propositions, la détermination du
gagnant et I'accord final. Les protocoles d’enchéres mis en oeuvre sont les encheéres hol-
landaises, les enchéres a enveloppes scellées, les enchéres Vickrey [16] et les enchéres
anglaises. Face aux encheres portant uniquement sur le prix qui sont largement domi-
nantes [5, 9, 12], d'autres types d’enchéres ont été définis et étudiés tels que les encheres
a multiples exemplaires [3], les enchéres combinées [6, 13] et les enchéres multi-attributs
[1, 3,5, 10, 11]. Les encheres a multiples exemplaires portent sur un ensemble d’articles
identiques. Les encheres combinées sont des enchéres a multiples exemplaires ou les pro-
positions peuvent s’effectuer sur une partie de 'ensemble d’articles. Les enchéres multi-
attributs portent sur plusieurs caractéristiques d’'un produit incluant non seulement son
prix mais aussi sa qualité, les conditions de livraisons, de maintenance, etc. Les acheteurs
definissent leurs préférences sur I'article recherché et les vendeurs sont en concurrence
sur tous les attributs spécifiés par I'acheteur. Dans cet article, nous prenons en compte les
encheres multi-attributs.

L'automatisation d’enchéres multi-attributs s’appuie sur plusieurs composants clefs:

1. un modele de préférence pour I'expression des préférences de I'acheteur;
2. une méthode d’agrégation multicritere pour la sélection de la meilleure offre par
'agent acheteur;

3. un module de décision de I'agent acheteur pour la formulation des contre proposi-
tions.

Les méthodes d’agrégation multicritéres se basent généralement sur le modéle de
la somme pondérée. Selon ce modéle, chaque critere se voit assigner un poids rendant
compte de son importance. L'évaluation d’une proposition se fait en sommant les valeurs
pondérées relatives a chaque critére. La meilleure proposition correspond a I'évaluation
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la plus élevée. Toutefois, ce modele présente quelques défauts [15]:

1. les poids associés aux attributs sont difficiles a définir et a interpréter, d’autant plus
gue de petites variations de ces poids peuvent changer radicalement le choix de la
meilleure proposition;

2. le modéle de la somme pondérée est totalement compensatoire. Ainsi, une proposi-
tion avec un tres bas score sur un critere important et des scores élevés sur d’autres
critéres a moindre importance peut étre préférée a une autre proposition ayant de
bons scores sur 'ensemble des critéres.

3. une proposition non-dominée peut ne jamais étre la meilleure. Ceci est un inconvé-
nient sévere, car certaines solutions non dominées sont systématiquement rejetées
pour d’'uniques raisons techniques.

Dans cet article, nous proposons un mécanisme de négociation basé sur un modéle a
points de référence pour répondre aux insuffisances du modéle de la somme pondérée. Le
mécanisme proposé adapte le protocole d’encheres anglaises inversées au modéle multi-
critere a points de référence. A chaque étape de la négociation, I'agent acheteur spécifie la
valeur minimale acceptable sur chaque critere d’'une proposition. Ce mécanisme permet a
I'agent acheteur un contréle plus direct sur le processus de négociation.

La suite de cet article est structurée en six parties. La section 2 présente un état de I'art
ciblant les enchéres multi-attributs dans le commerce électronique. La section 3 introduit
le modéle de préférence choisi. La section 4 détaille le mécanisme d’enchéres adopté. La
section 5 présente les tests réalisés et compare les résultats obtenus avec le modele de la
somme pondérée. La section 6 termine par une conclusion et des perspectives.

2 Etatde l'art

La plupart des recherches menées pour automatiser les enchéres multi-attributs se
basent sur le modéle de la somme pondérée [11, 4, 3, 10]. Les protocoles d’encheres clas-
siques ont été étendus en remplacant l'attribut prix par I'évaluation multi-attribut d’'une
proposition.

Oliveira et al. proposent un protocole peer-to-peer d’enchéres anglaises inversées
multi-attributs, basé sur la somme pondérée. La négociation est distribuée : I'agent ache-
teur négocie directement avec chaque vendeur. Les enchéres comportent plusieurs étapes
d’'une durée prédéfinie. La négociation est lancée par I'agent acheteur qui envoie aux
agents vendeurs concernés ses préférences sur le produit recherché ainsi que I'évaluation
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minimale de départ pour une proposition. Les vendeurs évaluent la demande, envoient une
proposition acceptable ou se retirent de la négociation. Quand I'acheteur a regu toutes les
offres ou le délai prédéfini a été atteint, les offres sont évaluées et la meilleure sélection-
née. Son évaluation sert de base a I'étape suivante sous la forme d’une contre-proposition
envoyée par I'agent acheteur aux vendeurs restant en compétition. Les encheres conti-
nuent jusqu a ce que tous les vendeurs sauf un aient abandonné et se terminent sur un
contrat avec le vendeur gagnant (le dernier restant). Ce protocole a été défini pour prendre
en compte I'aspect multicritere des encheres. Nous I'avons adapté dans le cadre du mo-
dele multicritere a points de référence, ce qui nous a permis de comparer l'utilisation de
notre modéle et celui de la somme pondérée.

Bichler et al. utilisent un protocole d’enchéres multi-attributs pour une place de mar-
ché. lls introduisent la notion de monnaie virtuelle, qui représente I'évaluation d’une pro-
position suivant son prix et la valeur des autres attributs. Les enchéres utilisent un agent
médiateur et débutent lorsque les agents vendeurs déclarent leurs capacités. Dans une
étape ultérieure, I'acheteur pourvoit toutes les informations relatives a 'article souhaité
et a ses préférences. Toutes ces informations sont regroupées dans un message d'appel
a proposition envoyé a I'agent médiateur qui se charge d’en informer les différents ven-
deurs engagés dans la négociation et collecte en conséquence leurs propositions. Du coté
des vendeurs, le systeme fournit un outil d’aide a la formulation des propositions leur per-
mettant de demander des informations (a caractére anonyme) concernant les autres pro-
positions. Une fois les propositions faites et I'enchére close, 'agent médiateur détermine
la meilleure proposition toujours sur la base de la somme pondérée et établit le contrat.
Linconvénient majeur du modele de la somme pondérée est son caractére totalement
compensatoire, déja évoqué dans l'introduction. Bichler [3] note que l'interprétation des
poids associés a chaque attribut n’est pas claire et intuitive. Le modeéle que nous propo-
sons est basé sur des éléments faciles a interpréter (point d’exigence et point d’aspiration)
et simplifie ainsi la phase d’élicitation des préférences.

Basé sur un modéle de préférences dedié a la vente de billets d’avion, le systéme
SARDINE [10] présente un marché aux enchéres décrit par plusieurs attributs statiques.
Les préférences portent sur plusieurs critéres tels que le prix, la date et I'heure du vol,
auxquels est associé un degré de flexibilité pouvant prendre trois valeurs prédéfsies :
flexible moyennement-flexib&t peu-flexiblequi permet de dégager le poidsdight) et
l'intervalle d’acceptabilitéfange) de chaque critére. L'évaluation des propositions se fait
suivant la formule suivante :

dist — Z weight (preferreq — actuaJ)

range

- Preferred;: lavaleur préférée sur le ieme critere.
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- Actual; : la valeur du ieme critére dans la proposition courante.

La similarité a noter entre ce modele et celui que nous proposons est la définition d’'un
point de référence exprimant les valeurs souhaitées sur chaque critére. Contrairement au
modéle a points de référence, le modéle de SARDINE considére comme équivalentes
les valeurgpreferred-x)et (preferred+x)d’'un méme attribut. Ainsi, si I'heure de départ
souhaitée est 8h du matin, les heures de départ 11h et 5h du matin seront considérées
comme équivalentes, ce qui n’est pas nécessairement le cas.

3 Modele multicritére

Dans ce paragraphe, nous présentons les concepts fondamentaux du modéle multicri-
tere qui permettent d’identifier les préférences de I'acheteur, ainsi que la méthode multi-
critere d’évaluation et de sélection des propositions.

3.1 Modele de préférences

Nous donnons quelques notations et définitions préliminaires:

- n, le nombre de vendeurs.

- p, le nombre d’attributs.

- D =D, x...x D,, I'espace de décision al}; designe le domaine de valeurs du
criterej.

- = (21,...,x,) € D la proposition dwendeur;.

- C =C) x ... x C, 'espace des criteres.

- v;, la fonction de valorisation définie d@; dansC; = [0,100] correspondant a
l'attribut ;.

- b = (ba,...,byp) € C avec b; = vj(x;;), la proposition valorisée du vendeir
sur le criterey.

Nous rappelons, par ailleurs, les concepts suivants de I'aide a la décision [14]:
- A, larelation de dominance telle que:
DAY & Vj € {1,...ptb; > b, et € {1,...p}: b > b,

- best non dominée ssi il n’existe pagelle queb Ab.

- b est efficace sgi is non-dominée. L'ensemble de toutes les proposition efficaces
est notér.
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- ideal = (idealy, ... jideal,) oUideal; = maxpcp(b;), le point idéalformé des
scores optimaux sur tous les critéres recueillis séparément.

- antildeal = (antildealy, ... ,antildeal,) oU antildeal; = minyep(b;), le point
antildeal formé des scores minimaux sur tous les critéres recueillis séparément.

Le modéle multicritere utilisé se base sur les points de référence suivants::

- a = (a1,...,a,): le point d’aspiration ou; représente le score souhaité par I'ache-
teur sur le critérgj. L'acheteur fournit ses aspirations en valeurs effectives et le
systeme les traduit en scores pour former les niveaux d’aspiration.

- e = (e1,...,ep) : le point d’exigence ou; représente la valeur minimale exigée par
I'acheteur sur le critére j. L'acheteur fournit ses exigences en valeurs effectives et
le systeme les traduit en scores pour former les niveaux d’exigence.

3.2 Méthode multicritéere

La méthode multicritere utilise la définition d’'une déviation au point d’aspiration qui
mesure I'écart maximal entre les valeurs des criteres. Soit le point d’aspiraéibaone
propositiond, la déviation dé aa est définie par la relation:

deviatior{a,b) = jplaxp{Aj(aj —b;)}ou A, =1/(ideal, — antildea}). (1)

La déviation retenue est la norme pondérée de Tchebychev. Cette déviation est cal-
culée pour chaque critere en évaluant I'écart entre le niveau d’aspiration et le score de
la proposition pondéré par I'écart entre le meilleur et le pire score sur ce critére. Cette
pondération permet de ramener a une méme échelle les écarts absolus sur les différents
critéres: un écart absolu de 1 sur deux critéres différents peut en effet représenter des
ecarts d'importance tres différente. On retient finalement I'écart maximal obtenu sur I'en-
semble des criteres. Cet écart est positif si le point d’aspirati@est pas dominé par la
propositionb et négatif sinon.

Proposition 1 La relation de préférence définie surkE par :
bm®b; < deviation(a,b,,) < deviation(a,b;)

est une relation d’ordre total suf . L'ensemble des propositions recues lors d’une
enchére est totalement ordonné par cette relation. Ainsi, a chaque étape d’une enchere, la
meilleure proposition* est celle qui minimise la déviation au point d’aspiration :

B*={be B:arg rbnig{deviatior(a,b)}} (2)
€
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4 Protocole et mécanisme d’'encheres

La mise en oeuvre d’enchéres automatiques suppose la définition d’un protocole de
communication entre agents et d’'un mécanisme de relance des enchéres. Le protocole
fixe les possibilités d’initier une négociation, de répondre a un message et d'utiliser des
séquences d’actions au sein du processus d’enchéres [7, 8]. Le mécanisme de relance
détermine a chaque étape quelles contraintes les nouvelles propositions doivent respecter.

4.1 Primitives et sémantique

Le protocole considéré définit une adaptation a I'aspect multicritere du protocole des
enchéres anglaises inversées [11]. Le tableau 1 regroupe les actes primitifs de communi-
cation du protocole ainsi que la sémantique qui leur est associée.

Le diagramme de la Figurke définit le modéle comportemental de I'agent acheteur.
La négociation débute quand I'agent acheteur envoie un appel d'offre a tous les agents
vendeurs potentiellement intérességdtInitial vers Etat,). Lappel d'offre définit le
produit recherché, les préférences concernant le produit et la valeur minimale requise pour
une proposition. L'agent acheteur attend alors les propositions des vendewrs (A la
fin de I'étape, I'agent acheteur évalue les propositidnis:{; a Etat,). Trois situations
peuvent alors se présenter :

1. toutes les réponses sont des refus et la négociation se termine sur unfdefgc (
a Echec);

2. au moins deux réponses contiennent une proposition pour le produit recherché. La
meilleure proposition est alors sélectionnée, le vendeur correspondant mis en at-
tente et la contre-proposition calculée et envoyée aux vendeurs regiaats &

EtCLtl),

3. une seule réponse comporte une proposition, 'agent acheteur I'accepte, envoie un
message d’acceptation et attend la validation du vendetut{ a Succeys La né-
gociation se termine sur un succes.

4.2 Définition des contre-propositions

La définition des contre-propositions assure la progression des propositions vers le
point d’aspiration de I'acheteur et I'efficacité, au sens de Pareto, du mécanisme d’enchéres
propose. Elle est basée sur la reglebaat-the-quote (BQptroduite dans [17]. Selon le
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Primitives Sémantique Contexte
CallForPropose(a,g,Preferencesy lance les enchérgsa suppose que les ven-
avec le groupe de ven-deurs peuvent fournir le
deursg en donnant ses produit désiré.
préférences sur le pro-
duit.
propose (v, a, bid) v envoie une proposit En réponse a un mes-
tion aa sage callFor Propose
ou a un
request F'or Propose
requestForPropose(a, g, counw demande au groupeEn réponse aux mes-
terproposal) de vendeurs restanissagegropose
d’améliorer leurs offres
Accept (a, v) a accepte la derniereEn réponse a un mes-
proposition envoyeée parsagepropose et annon-
v cant la fin des encheres
Reject (a, v) a élimine v des en-| En réponse a un mes-
chéres sagepropose et annon-
cant la fin des enchéres
abort (v) v abandonne les en-En réponse a un mes-
cheres sage callFor Propose
OuU a un message
request Flor Propose

TAB. 1 —Primitives de dialogue

principe des enchéres anglaises, la regldBuimpose que toute nouvelle proposition

soit meilleure que la meilleure proposition recue jusqu’alors. Lorsque I'évaluation des
propositions se réduit & une fonction d’agrégation réelle, cette régle est mise en oeuvre en
introduisant un incrémentqui représente I'amélioration demandée a chaque étape.

Proposition 2 Une condition suffisante pour que le mécanisme d’enchére réponde a
la reégle duBQ est qu'a I'étape + 1 de I'enchére toute propositidi™! satisfasse:

VJG{]_,,p} b;HZaj—(dt—s)//\j

oua; désigne le niveau d’aspiration sur le critgrel, la déviation minimale au point
d’aspiration a I'étape et un décrément spécifié a I'avance. La relation (3) se déduit de
la relation suivante imposée par la regleRiR et de la définition (1). Cette regle demande
gue toute propositiob ™! recue a I'étape + 1 respecte (4)

deviatior(a,b'™) < deviatior{a,best') = d"
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Définition du point d’éxigence Une condition suffisante pour (4) peut étre exprimée
par un point d’exigence’*! actif a I'étapet + 1. Le point d’exigence de I'étapet- 1 est
défini par la relation (5)

Vie{l,....p} e?“ = max{a; — (d' —¢)/\j; €]

La définition du point d’exigence a I'étaget 1 est se fait en reportant la déviation
de la meilleure proposition’ sur I'ensemble des critéres en considérant le décrément
opéré sur sur cette déviation. Afin de respecter le point d’exigence défini au début des
enchéres et d’interdire sa dégradation, le niveau d’exigence a toute étape des enchéres sur
un critere donné doit étre supérieur au niveau spécifié a la premiere itération.

A I'étapet + 1, 'agent acheteur envoie le point d’exigence défini par (5) comme
contre-proposition a tous les vendeurs appelés a améliorer leurs propositions. La défini-
tion des contre-propositions sous forme de points d’exigence assure la progression des
propositions vers le point d’aspiration. De plus, elle permet a I'agent acheteur de garder
privé son point d’aspiration et son modele d’agrégation.

La figure2 illustre la détermination du point d’exigence a I'étape suivante en fonction
d’'une meilleure proposition a I'étagest du décrément. Parmi les propositions respec-
tant le point d’exigence;, la meilleure est notémicilleure;. En considérant la déviation
entre cette proposition et le point d’aspiration, le point d’exigence de I'étdpest défini
en reportant cette déviatiore{réalisée dans cet exemple sur le critere le plus pénalisant
co) Sur les criteres; ete,.

4.3 Propriétés

Le mécanisme d’enchére ainsi défini présente plusieurs propriétés intéressantes [2].
Tout d’abord, la suite des points d’exigenc€ét € 1, ... derniere) est une suite crois-
sante pour la relation d’ordre définie dans la section 3. Cette propriété résulte de I'in-
égalité suivante:

vt € {1,... derniere— 1} deviation(a,e'™) < deviation(a,e')

Cette propriété assure la progression des propositions vers le point d’aspiration, étape
apres étape.

Par ailleurs, la suite’ (¢ € 1,..,derniere) est également croissante pour la relation de
dominance::

best™ Abest (3)
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En outre, la définition d’'une contre-proposition assure deux propriétés nécessaires a
une enchere:

- la dominance de proposition @id — dominance exige qu’un vendeur offre tou-
jours une proposition meilleure que sa derniére envoyée ;

- l'efficacité suppose que le vendeur avec la meilleure proposition gagne.

En effet, dans les enchéres anglaises, deux cas peuvent se produire : soit le vendeur
avec la meilleure proposition gagne avec une proposition juste au-dessus de la deuxieme
meilleure, soit le deuxiéme vendeur gagne avec une proposition juste en-dessous de la
meilleure. Ce deuxieme cas arrive quand I'incrément utilisé par I'agent acheteur est supé-
rieur & la différence entre la meilleure proposition et la deuxieme meilleure. Dans ce sens,
le mécanisme présenté assure l'efficacité des enchéres. En résumé, le mécanisme d’en-
chéres que nous avons défini assure les regles de base des enchéres anglaises et garantit
une évolution des enchéres vers le point d’aspiration défini par I'acheteur.

4.4 Algorithme

L'algorithme d’encheres étend I'algorithme des encheres anglaises inversées [11] en
considérant le modele des points de référence. Il se décompose en quatre étapes décrites
ci-dessous. L'acheteur lance I'enchére avec le nom du produit cherché et la liste des ven-
deurs qui fournissent ce produit.

Collecte des informations L'agent acheteur collecte les préférences de I'acheteur
(les fonctions de valorisation des critéres, les valeurs effectives pour les points d’as-
piration et d’exigence), la durée maximale de I'enchere et I'incrémeppel
d’offre. L'agent acheteur calcule les points de référence en utilisant les fonctions de
valorisation et la durée maximale d’une étape. Il envoie un appel d’offre (performa-
tive call For Propose) composé des fonctions de valorisation, du point d’exigence
initial, du temps de fin de I'enchére, et de la durée maximale d’'une étape.

définition des Lambdas L'agent acheteur recoit les premieres réponses (messages
propose et/ouabort). Il définit les valeurs\; avecj € 1,... p, qui sont utilisées
durant toute I'enchere.

Boucle de I'enchere L'agent acheteur répeéte les opérations suivantes jusqu’a la fin
de I'enchére, i.e., 'ensemble des vendeurs en compétition est vide ou le temps de
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fin de négociation est atteint:

1. sélectionne la meilleure proposition comme proposition de référence pour
I'étape suivante et met en attente le vendeur correspondant,

2. définit le nouveau point d’exigence,

3. envoie une nouvelle demande aux agents vendeurs (performejivestFor-
Proposa) hormis le vendeur en attente,

4. attend et collecte les propositions des vendeurs.

Fin de I'enchere Les enchéres échouent s'il n'y a pas de proposition, sinon les en-
cheres se terminent avec succeés. S'il ne reste qu’une seule proposition, celle-ci est
gagnante et I'acheteur envoie un message d’acceptation a I'agent associé (perfor-
mativeaccept). Dans le cas contraire, la durée de I'enchére est atteinte et plusieurs
propositions restent en compétition. L'agent acheteur envoie un message d’accep-
tation a I'agent associé a la meilleure proposition et un message de rejet autres
vendeurs (performativesject).

5 Exemple d’illustration

Nous présentons un exemple qui illustre une enchére ou un acheteur négocie avec 5
vendeurgVi, ... ,Vs) 'achat d’un produit décrit par 2 criteres etc,. Le point d’aspira-
tion esta = (80,50) et le point d’exigence = (20,5). L'incrémente est fixé 4 0.03. A la
premiere étape, les vendeurs formulent les propositions respectives du tableau ci-dessous.

vendeur valorisation deviation
i (96,7) 0.57
Vo (50,55) 0.41
1% (94,7) 0.57
Vy (85,20) 0.40
Vs (23,82) 0.78

TAB. 2 —Premiére itération

Les points/deal etantildeal sont déduits de 'ensemble des propositions :

ideal = (96,82)
antildeal = (23,7)
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D’ou les valeurs:

AL =1/(96 —23) =1/73
Ay =1/(82—7)=1/75.

La propositionh} = (85,20) est la meilleure avedeviation(a,b)) = 0.4. Les niveaux
d’exigence de la deuxiéme étape sont calculés a I'aide de la relation (5):

¢ =80 — (0.4 — ) /A = 53
e3 =50 — (0.4 —¢)/Xy = 22.

t el dev(a,e?) vendeurs m? dev(a,m?)
1 (20,5) 0.82 V1, Va,V3,V4, Vs (85,20) 0.4

2 (53,22) 037 Vi VaVaVs (75,40) | 0.13

3 | (72,42) 0.10 Vi Vs Va (73,45) | 0.096

4| (75,45 0.066 VaVa (77,46) | 0.053

5 | (78,48) 0.023 Vs

TAB. 3 —Etapes de I'enchere

Les encheres se déroulent en 5 étapes et se terminent sur un accord avec le vendeur
V3 pour la propositiorh = (77,46). Le tableau 3 présente la suite des points d’exigence
(colonneet) ainsi que les meilleures propositions (colomn§.

vendeur; meilleure propositiomn(v;) | deviation(a,m(v;))
Vi (74, 50) 0.08

Vs (52, 52) 0.38

Vs (83, 60) -0.04

Vi (76, 48) 0.055

Vs (70, 57) 0.13

TAB. 4 —Meilleures propositions des vendeurs

5.1 Interprétation

Le déroulement de I'enchére peut étre interprété en considérant les meilleures proposi-
tions de chaque vendeur (voir Tableau 4) et les points d’exigence successivement définis
(voir Tableau 3). A chaque étape un vendeur peut fournir une proposition quand sa
meilleure proposition est meilleure que le point d exigence. A la premiere étape, tous les
vendeurs peuvent répondre. Le vendguabandonne a I'étape 2 quadeviation(a,e?)
=0.37<0.38 Le vendeul; abandonne a I'étape 3 quaiiebiation(a,e®) = 0.10 < 0.13,
le vendeurl; al'étape 4 et le vendewr; a I'étape 5. Le vendeur; gagne I'enchére avec
une proposition qui est Iégérement meilleure que la meilleure du vemgeur
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6 Conclusions et perspectives

Nous avons présenté dans cet article un mécanisme de négociation multicritére pour
le commerce électronique basé sur des points d’aspiration et d’exigence. Le point d’aspi-
ration exprime les valeurs souhaitées sur chaque attribut décrivant le produit a acheter. Un
point d’exigence représente les valeurs minimales acceptables sur chaque critere d’une
proposition. La méthode d’agrégation multicritére utilise la définition d’'une déviation au
point d’aspiration pour classer les propositions. Une encheére est conduite par des points
d’exigence. La définition des points d’exigence force les agents vendeurs a améliorer leur
proposition sur tous les critéres sans compensation possible. Elle assure la progression de
'enchére vers le point d’aspiration de I'acheteur, ainsi que I'amélioration graduelle des
propositions jusqu’a la fin de I'enchére. Elle permet, en outre, a 'agent acheteur de main-
tenir privé son point d’aspiration et son modele d’agrégation. Cependant, la définition
des niveaux d’aspiration est déterminante dans la conduite des enchéres et une limitation
apparait quand le point d’aspiration défini par I'acheteur se trouve loin des propositions
réelles du marché. La proposition gagnante reste alors €loignée du point d’aspiration.
Dans ce cas, il vaudrait mieux laisser a I'acheteur la possibilité de reformuler son point
d’aspiration. Une autre alternative serait de prévoir une phase de prospection précédant les
encheres afin d’aider I'acheteur dans la formulation de son point d’aspiration en fonction
de I'offre du marché.
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callForPropose—

(1. Attend les propositions]

counterPropose» —» propose & abort

@. Traite les propositions)

@ ctat initial
accept—» [Aucune proposition]
@ Etat final
——> Evénement
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FIG. 2 —Détermination du point d’exigence

33






Conjoint measurement tools for MCDM
A brief introduction

Denis Bouyssoy Marc Pirlot

Résumé
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Conjoint measurement tools for MCDM

1 Introduction and motivation

Conjoint measurement is a set of tools and results first dpedlan Economics [44]
and Psychology [141] in the beginning of the ‘60s. Its, amob#, aim is to provide
measurement techniques that would be adapted to the ne¢kle 8bcial Sciences in
which, most often, multiple dimensions have to be taken aimount.

Soon after its development, people working in decision ymiglrealized that the
techniques of conjoint measurement could also be used Bsttostructure preferences
[51, 165]. This is the subject of this paper which offers &baind nontechnical introduc-
tion to conjoint measurement models and their use in melipiteria decision making.
More detailed treatments may be found in [63, 79, 121, 139].2R&dvanced references
include [58, 129, 211].

1.1 Conjoint measurement models in decision theory

The starting point of most works in decision theory is a bynalation— on a setA of
objects. This binary relation is usually interpreted as anléast as good as” relation
between alternative courses of action gathered.in

Manipulating a binary relation can be quite cumbersome asn a8 the set of objects
is large. Therefore, it is not surprising that many workseh&oked for anumerical
representatiorof the binary relation . The most obvious numerical representation
amounts to associate a real numb&w) to each object: € A in such a way that the
comparison between these numbers faithfully reflects tlggnad relation »—. This leads
to defining a real-valued functior on A, such that:

arzbeVia)>V(b), (1)

forall a,b € A. When such a numerical representation is possible, one edr unstead
of ~ and, e.g. apply classical optimization techniques to fiedtiost preferred elements
in A givenz;. We shall call such a functiow avalue function

It should be clear that not all binary relationsmay be represented by a value func-
tion. Condition (1) imposes that; is complete (i.ea =2 borb - a, forall a,b € A)
and transitive (i.ea >~ b andb - cimply a = ¢, for all a,b,c € A). WhenA is finite
or countably infinite, it is well-known [58, 129] that theseat conditions are, in fact, not
only necessary but also sufficient to build a value functitis$ying (1).

Remark 1

The general case is more complex since (1) implies, for mgtathat there must be
“enough” real numbers to distinguish objects that have tdisiinguished. The necessary
and sufficient conditions for (1) can be found in [58, 129]. &dvanced treatment is [13].
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Sufficient conditions that are well-adapted to cases fretipyencountered in Economics
can be found in [42, 45]; see [34] for a synthesis. o

It is vital to note that, when a value function satisfying €Xjsts, it is by no means
unique. Taking any increasing functi@non R, it is clear thatp o V' gives another ac-
ceptable value function. A moment of reflection will conwnihie reader that only such
transformations are acceptable and that iandU are two real-valued functions a#
satisfying (1), they must be related by an increasing t@anstion. In other words, a
value function in the sense of (1) definesadinal scale

Ordinal scales, although useful, do not allow the use of stighted assessment pro-
cedures, i.e. of procedures that allow an analyst to asisesslation - through a struc-
tured dialogue with the decision-maker. This is becausé&rioevledge that’(a) > V' (b)
is strictly equivalent to the knowledge of- b and no inference can be drawn from this
assertion besides the use of transitivity.

sentations leading to more constrained scales. Many pessibnues have been explored
to do so. Among the most well-known, let us mention:

¢ the possibility to comparprobability distributionson the setA [58, 207]. If it is
required that, not only (1) holds but that the numbers a#dcb the objects should
be such that their expected values reflect the comparisabépility distributions
on the set of objects, a much more constrained numericaéseptation clearly
obtains,

¢ the introduction of “preference difference” comparisohghe type: the difference
betweeru andb is larger than the difference betweeandd, see [44, 81, 123, 129,
159, 180, 199]. If it is required that, not only (1) holds, &t the differences
between numbers also reflect the comparisons of preferdffeeedces, a more
constrained numerical representation obtains.

When objects are evaluated according to several dimensienghen - is defined
on a product set, new possibilities emerge to obtain nuralerpresentations that would
specialize (1). The purpose of conjoint measurement isudyssuch kinds of models.

There are many situations in decision theory which call fer $tudy of binary rela-
tions defined on product sets. Among them let us mention:

e Multiple criteria decision makingsing a preference relation comparing alternatives
evaluated on several attributes [16, 121, 162, 173, 209],

e Decision under uncertaintysing a preference relation comparing alternatives eval-
uated on several states of nature [68, 107, 177, 184, 210, 211
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e Consumer theorynanipulating preference relations for bundles of seveoaldg
[43],

e Intertemporal decision makingsing a preference relation between alternatives
evaluated at several moments in time [121, 125, 126],

¢ Inequality measuremebmparing distributions of wealth across several individu
als [5, 17, 18, 217].

The purpose of this paper is to give an introduction to thennmaddels of conjoint
measurement useful in multiple criteria decision makinge Tesults and concepts that
are presented may however be of interest in all of the af@rtioned areas of research.

Remark 2

Restricting ourselves to applications in multiple critestecision making will not al-
low us to cover every aspect of conjoint measurement. Ambegrtost important topics
left aside, let us mention: the introduction of statistiel@iments in conjoint measurement
models [54, 108] and the test of conjoint measurement madebsperiments [135]. e

Given a binary relatiorr; on a product seX = X; x X, x --- x X,,, the theory of
conjoint measurement consists in finding conditions undechwvit is possible to build a
convenient numerical representation gfand to study the uniqueness of this representa-
tion. The central model is thedditive value functiomodel in which:

Ty e Zvi(%’) > Z%‘(yi) (2)

wherev; are real-valued functions, callgmhrtial value functionson the setsX; and it
is understood that = (z1,23,... ,z,) andy = (y1,v2,...,yn). Clearly if =~ has a
representation in model (2), taking any common increasiamgsformation of the; will
notlead to another representation in model (2).

Specializations of this model in the above-mentioned age@sseveral central models
in decision theory:

e The Subjective Expected Utility model, in the case of decignaking under un-
certainty,

e The discounted utility model for dynamic decision making,

¢ Inequality measures la Atkinson/Sen in the area of social welfare.

The axiomatic analysis of this model is now quite firmly es&ied [44, 129, 211];
this model forms the basis of many decision analysis teclas{79, 121, 209, 211]. This
is studied in sections 3 and 4 after we introduce our maintiootaand definitions in
section 2.
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Remark 3

One possible objection to the study of model (2) is that theiczh of anadditive
model seems arbitrary and restrictive. It should be obsHneee that the functions will
precisely be assessed so that additivity holds. Furthexyribe use of a simple model
may be seen as an advantage in view of the limitations of tgeitee abilities of most
human beings.

It is also useful to notice that this model can be reformulate as to make addition
disappear. Indeed if there are partial value functionsuch that (2) holds, it is clear
thatV = > | v; is a value function satisfying (1). Sindé defines an ordinal scale,
taking the exponential df leads to another valid value functidti. ClearlyW has now
a multiplicative form:

vy e W(r) = sz(%) > W(y) = sz(%)

wherew; (z;) = eV,

The reader is referred to [50, 209] for the study of situaionwhichV defines a
scale that is more constrained than an ordinal scale, ecgube it is supposed to reflect
preference differences or because it allows to computecte@eutilities. In such cases,
the additive form (2) is no more equivalent to the multipiiea form considered above.

In section 5 we present a number of extensions of this modefigoom nonadditive
representations of transitive relations to model tolagpintransitive indifference and,
finally, nonadditive representations of nontransitivatiens.

Remark 4

In this paper, we shall restrict our attention to the casehiclvalternatives may be
evaluated on the various attributes without risk or unéetya Excellent overviews of
these cases may be found in [121, 209]; recent referenceslenf142, 150]. .

Before starting our study of conjoint measurement orienteedatds MCDM, it is
worth recalling that conjoint measurement aims at estaibigsmeasurement models in
the Social Sciences. To many, the very notion of “measuréimethe Social Sciences”
may appear contradictory. It may therefore be useful tdlgremnsider how the notion of
measurement can be modelled in Physics, an area in whictotlmof “measurement”
seems to arise quite naturally, and to explain how a “measemé model” may indeed be
useful in order to structure preferences.

1.2 An aside: measuring length

Physicists usually take measurement for granted and aneantitularly concerned with
the technical and philosophical issues it raises (at leastvthey work within the realm
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of Newtonian Physics). However, for a Social Scientistséhguestion are of utmost
importance. It may thus help to have an idea of how things apfmework in Physics
before tackling more delicate cases.

Suppose that you are on a desert island and that you want t@astme’ the length of
a collection of rigid straight rods. Note that we do not dsshere the “pre-theoretical”
intuition that “length” is a property of these rods that canrbeasured, as opposed, say,
to their softness or their beauty.

r r’ S s
ro=r s~ s

Figure 1. Comparing the length of two rods.

A first simple step in the construction of a measure of lengtio iplace the two rods
side by side in such a way that one of their extremities isastime level (see Figure 1).
Two things may happen: either the upper extremities of tleertwls coincide or not. This
seems to be the simplest way to devise an experimental proetzhding to the discovery
of which rod “has more length” than the other. Technicallystieads to defining two
binary relations>- and~ on the set of rods in the following way:

r = r’ when the extremity of is higher than the extremity of,
r ~ r’ when the extremities of andr’ are at the same level,

Clearly, if length is a quality of the rods that can be measuited expected that these
pairwise comparisons are somehow consistent, e.g.,

o if r = r"andr’ > r”, it should follow thatr >~ ",
o if r ~ " andr’ ~ r”, it should follow thatr ~ ",

o if r ~ 7" andr’ = r”, it should follow that~ = r”.

Although quite obvious, these consistency requirememssaimgent. For instance,
the second and the third conditions are likely to be violagt#te experimental procedure
involves some imprecision, e.g if two rods that slightlyfelifin length are nevertheless
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judged “equally long”. They represent a formidealizationof what could be a perfect
experimental procedure.

With the binary relations- and~ at hand, we are still rather far from a full-blown
measure of length. It is nevertheless possible to assigrbarsrio each of the rods in
such a way that the comparison of these numbers reflects \akdiden obtained experi-
mentally. When the consistency requirements mentionedeai@/satisfied, it is indeed
generally possible to build a real-valued functibron the set of rods that would satisfy:

r=r1r < o(r) > o(r')and
r~r s d(r)=o().

If the experiment is costly or difficult to perform, such a renwal assignment may indeed
be useful because it summarizes, once for all, what has ba@med in experiments.
Clearly there are many possible ways to assign numbers toimdtiss way. Up to this
point, they are equally good for our purposes. The readéreadily check that defining

>~ as> or ~, the function® is noting else than a “value function” for length: any
increasing transformation may therefore be applied.to

N

r ands r ands’

Figure 2: Comparing the length of composite rods.

The next major step towards the construction of a measuength is the realization
that it is possible to form new rods by simply placing two orreoods “in a row”, i.e.
you mayconcatenateods. From the point of view of length, it seems obvious toestp
this concatenation operatiento be “commutative” { o s has the same length as r)
and associative(( o s) o t has the same length as (s o t)).

You clearly want to be able to measure the length of these ositgobjects and you
can always include them in our experimental procedure redliabove (see Figure 2).
Ideally, you would like your numerical assignmeanto be somehow compatible with the
concatenation operation: knowing the numbers assignedaodds, you want to be able
to deduce the number assigned to their concatenation. Teeohwious way to achieve
that is to require that the numerical assignment of a congosiject can be deduced by
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addition from the numerical assignments of the objects asimg it, i.e. that
O(ror')=d(r)+ o).

This clearly places many additional constraints on theltegi your experiment. An
obvious one is that>- and~ should be compatible with the concatenation operation

e.g.
r =" andt ~ t' should lead to- ot = 1’ o t'.

These new constraints may or may not be satisfied. When thetharasefulness of the
numerical assignmerdt is even more apparent: a simple arithmetic operation wimal
to infer the result of an experiment involving compositesuits.

Let us take a simple example. Suppose that you bangglsr,rs, ..., r5 and that,
because space is limited, you can only concatenate at mostasls and that not all
concatenations are possible. Let us suppose, for the mothahtyou do not have much
technology available so that you may only experiment udiffgrentrods. You may well
collect the following information, using obvious notatierploiting the transitivity of -
which holds in this experiment,

"1 OTy > 130T, >=1T10To =15 =14 =173 >7T0>T1.

Your problem is then to find a numerical assignmernb rods such that using an addition
operation, you can infer the numerical assignment of cotgobjects consistently with
your observations. Let us consider the following threegassents:

@ @/ @//
rn 14 10 14
ro 15 91 16
rg 20 92 17
ry, 21 93 18
rs 28 100 29

These three assignments are equally valid to reflect the aosgms of single rods.
Only the first and the third allow to capture the comparisohsamposite objects that
were performed. Note that, going frointo ®” does not involve just changing the “unit
of measurement”: sincé(r,) = ®”(r;) this would imply that® = &”, which is clearly
false.

Such numerical assignments have limited usefulness. thdees tempting to use
them to predict the result of comparisons that we have nat bbke to perform. But this
turns out to be quite disappointing: usifgyou would conclude that, o r3 ~ r; o ry
since®(ry)+®(r3) = 15420 = 35 = ®(ry) +P(ry), but, usingd”, you would conclude
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thatry o r3 = 7 o 1y Sinced”(ry) + ®”(r3) = 16 + 17 = 33 while ®”(ry) + ®"(ry) =
14 + 18 = 32.

Intuitively, “measuring” calls for some kind ofstandard(e.g. the “Métre-étalon” that
can be found in the Bureau International des Poids et Mesui®é\vres, near Paris). This
implies choosing an appropriate “standard” aottl being able to prepare perfect copies
of this standard rod (we say here “appropriate” becauselibee of a standard should
be made in accordance with the lengths of the objects to beunadt a tiny or a huge
standard will not facilitate experiments). Let us callthe standard rod. Let us suppose
that you have been able to prepare a large number of perfpEq, s,,... of s9. We
therefore have:

S0 ™~ S1,80 ™~ S2,80 ™~ 53, .-

Let us also agree that the lengthgfis 1. This is your, arbitrary, unit of length. How
can you use, and its perfect copies so as to determine unambiguousletigth of any
other (simple or composite) object? Quite simply, you magpgare a “standard sequence
of lengthn”, S(n) = s;0s50...08, 10 s,, i.e. a composite object that is made by
concatenating, perfect copies of our standard regl The length of a standard sequence
of lengthn is exactlyn since we have concatenatedbjects that are perfect copies of
the standard rod of length Take any rod- and let us compare with several standard
sequences of increasing lengft(1), S(2),...

Two cases may arise. There may be a standard sequ&h¢euch that- ~ S(k).
In that case, we know that the numbifr) assigned to must be exactly:. This is un-
likely however. The most common situation is that we will fims consecutive standard
sequences$(k — 1) andS(k) such that- - S(k — 1) andS(k) - r (see Figure 3). This
means thatb(r) must be such that — 1 < ®(r) < k. We seem to be in trouble here
since, as beforeb(r) is not exactly determined. How can you proceed? This depamds
your technology for preparing perfect copies.

r=S(7),5(8) = r

7T<P(r)<8

Figure 3: Using standard sequences.

43



Conjoint measurement tools for MCDM

Imagine that you are able to prepare perfect copies not ohiye standard rod
but also of any object. You may then prepare several copigs, ...) of the rodr.
You can now compare a composite object made out of two peciggies ofr with
your standard sequencg£$l), S(2), ... As before, you shall eventually arrive at locat-
ing ®(r; o ry) = 2®(r) within an interval of width 1. This means that the interval of
imprecision surroundin@(r) has been divided by two. Continuing this process, consid-
ering longer and longer sequences of perfect copies wbu will keep on reducing the
width of the interval containing(r). This means that you can approximaié-) with
any given level of precision. Mathematically, a unique eatar ®(r) will be obtained
using a simple argument.

Supposing that you are in position to prepare perfect cagiesy object is a strong
technological requirement. When this is not possible, tegHeexists a way out. Instead
of preparing a perfect copy of you may also try to increase the granularity of your
standard sequence. This means building an objdtt you would be able to replicate
perfectly and such that concatenatingith one of its perfect replicas gives an object that
has exactly the length of the standard objecti.e. ®(¢t) = 1/2. Considering standard
sequences based onyou will be able to increase by a fact®the precision with which
we measure the length of Repeating the process, i.e. subdividinwill lead, as before,
to a unique limiting value fofd(r).

The mathematical machinery underlying the measuremertepsoinformally de-
scribed above (called “extensive measurement”) restsethdory of ordered groups. It
is beautifully described and illustrated in [129]. Althduthe underlying principles are
simple, we may expect complications to occur e.g. when nabalcatenations are feasi-
ble, when there is some level (say the velocity of light if werevto measure speed) that
cannot be exceeded or when it comes to relate different mesastee [129, 140, 168] for
a detailed treatment.

Clearly, this was an overly detailed and unnecessary coatplicdescription of how
length could be measured. Since our aim is to eventuallywligfal'measurement” in the
Social Sciences, it may however be useful to keep the abamaegs in mind. Its basic
ingredients are the following:

¢ well-behaved relations: and~ allowing to compare objects,

a concatenation operatiorallowing to consider composite objects,

consistency requirements linking, ~ ando,

the ability to prepare perfect copies of some objects inléuild standard se-
quences.

Basically, conjoint measurement is a quite ingenious wayetéopm related measure-
ment operations when no concatenation operation is alailahis will however require
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that objects can be evaluated along several dimensionsreBextplaining how this might
work, it is worth explaining the context in which such measnent might prove useful.

Remark 5

It is often asserted that “measurement is impossible in teabSciences” precisely
because the Social Scientist has no way to define a concatemgieration. Indeed, it
would seem hazardous to try to concatenate the intelligeht®@o subjects or the pain
of two patients (see [56, 106]). Under certain conditioh® power of conjoint mea-
surement will precisely be to provide a means to bypass bssrace of readily available
concatenation operation when the objects are evaluateeMemnad dimensions.

Let us remark that, even when there seems to be a concateggoation readily
available, it does not always fit the purposes of extensivasmmement. Consider for in-
stance an individual expressing preferences for the gyanitihe two goods he consumes.
The objects therefore take the well structured form of minthe positive orthant dk?.
There seems to be an obvious concatenation operation (xerg:o (z, w) might simply
be taken to béx + y, z + w). However a fairly rational person, consuming pants and
jackets, may indeed prefés, 0) (3 pants and no jacket) {0, 3) (no pants and 3 jackets)
but at the same time prefés, 3) to (6,0). This implies that these preferences cannot be
explained by a measure that would be additive with respdbitconcatenation operation
consisting in adding the quantities of the two goods consurmeleed 3, 0) > (0, 3) im-
plies®(3,0) > ®(0, 3), which implies®(3,0) + ®(3,0) > ®(0,3) + ¢(3,0). Additivity
with respect to concatenation should then imply #3a0) o (3,0) > (0,3) o (3,0), that
is (6,0) = (3,3).

1.3 Anexample: Even swaps

The even swaps technique described and advocated in [120183] is a simple way to
deal with decision problems involving several attributest tdoes not have recourse to a
formal representation of preferences, which will be thgestttof conjoint measurement.
Because this technique is simple and may be quite useful, seitde it below using the
same example as in [120]. This will also allow to illustrate type of problems that are
dealt with in decision analysis applications of conjointaserement.

Example 6 (Even swaps technique)

A consultant considers renting a new office. Five differecttions have been identi-
fied after a careful consideration of many possibilitieggetng all those that do not meet
a number of requirements.

His feeling is that five distinct characteristics, we shalf §ve attributes, of the pos-
sible locations should enter into his decision: his dailgnowute time (expressed in min-
utes), the ease of access for his clients (expressed asrttenfage of his present clients
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living close to the office), the level of services offered bg hew office (expressed on an
ad hoc scale with three levelst (all facilities available),B (telephone and fax);' (no
facilities)), the size of the office expressed in square fad the monthly cost expressed
in dollars.

The evaluation of the five offices is given in Table 1. The cttastihas well-defined

a b c d e
Commute 45 25 20 25 30
Clients 50 80 70 85 75
Services A B C A C
Size 800 700 500 950 700
Cost 1850 1700 1500 1900 1750

Table 1: Evaluation of the 5 offices on the 5 attributes.

preferences on each of these attributes, independentiyaf & happening on the other
attributes. His preference increases with the level of seder his clients, the level of
services of the office and its size. It decreases with comtmagand cost. This gives a
first easy way to compare alternatives through the usofinance

An alternativey is dominated by an alternativeif x is at least as good ason all
attributes while being strictly better for at least oneibittte. Clearly dominated alterna-
tives are not candidate for the final choice and may, thusydeped from consideration.
The reader will easily check that, on this example, altévaatdominates alternative e
andb have similar size but is less expensive, involves a shorter commute time, anreasie
access to clients and a better level of services. We mayftirerrget about alternative
e. This is the only case of “pure dominance” in our table. Itasviever easy to see thét
is “close” to dominating:, the only difference in favor af being on the cost attribute (50
$ per month). This is felt more than compensated by the diffees in favor ofi on all
other attributes: commute time (20 minutes), client ac8s$6) and size (150 sqg. feet).

Dropping all alternatives that are not candidate for choibes initial investigation
allows to reduce the problem to:

b c d
Commute 25 20 25
Clients 80 70 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900

A natural way to proceed is then to assess tradeoffs. Obseavall alternatives but
¢ have a common evaluation on commute time. We may therefdreéhasconsultant,
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starting with officer, what gain on client access would compensate a lo§swhutes on
commute time. We are looking for an alternativéhat would be evaluated as follows:
c d
Commute 20 25
Clients 70 7049
Services (C C
Size 500 500
Cost 1500 1500

and judged indifferent ta. Although this is not an easy question, it is clearly crucial
in order to structure preferences.

Remark 7

In this paper, we do not consider the possibility of lexiaric preferences, in which
such tradeoffs do not occur, see [59, 60, 160]. Lexicogmpheferences may also be
combined with the possibility of “local” tradeoffs, see [B4, 136]. o

Remark 8
Since tradeoffs questions may be difficult, it is wise totstath an attribute requiring

few assessments (in the example, all alternatives but ovee da@ommon evaluation on
commute time). Clearly this attribute should be traded ajaine with an underlying
“continuous” structure (cost, in the example). °

Suppose that the answer is thatdoE 8, itis reasonable to assume thandc would
be indifferent. This means that the decision table can lermaflated as follows:

b c d
Commute 25 25 25
Clients 80 78 85

Services B C A
Size 700 500 950
Cost 1700 1500 1900

It is then apparent that all alternatives have a similarwat#n on the first attribute
which, therefore, is not useful to discriminate betweearaktives and may be forgotten.

The reduced decision table is as follows:

b c d
Clients 80 78 85

Services B C A
Size 700 500 950
Cost 1700 1500 1900
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There is no case of dominance in this reduced table. Theréfiother simplification
calls for the assessment of new tradeoffs. Using cost asteeence attribute, we then
proceed to “neutralize” the service attribute. Startinghvaffice ¢/, this means asking
for the increase in monthly cost that the consultant woudd pe prepared to pay to go
from level “C” of service to level ‘B”. Suppose that this increase is roughly 250 $. This
defines alternative”. Similarly, starting with officed we ask for the reduction of cost
that would exactly compensate a reduction of services frdirtd “ B”. Suppose that the
answer is 100 $ a month, which defines alternafiva he decision table is reshaped as:

b CI/ d/
Clients 80 78 85
Services B B B
Size 700 500 950
Cost 1700 1750 1800

We may forget about the second attribute which does notidigtate any more be-
tween alternatives. When this is done, it is apparenttha& dominated by and can be
suppressed. Therefore, the decision table at this stage lie the following:

b d
Clients 80 85
Size 700 950
Cost 1700 1800

Unfortunately, this table reveals no case of dominance. keadeoffs have to be
assessed. We may now ask, starting with officevhat additional cost the consultant
would be ready to incur to increase its size by 250 square fRa@ppose that the rough
answer is 250 $ a month, which definésWe are now facing the following table:

b d
Clients 80 85
Size 950 950
Cost 1950 1800

Attribute size may now be dropped from consideration. Butemvthis is done, it is
clear thatd’ dominatesy’. Hence it seems obvious to recommend officas the final
choice. &

The above process is simple and looks quite obvious. If thiksy why be interested
at all in “measurement” if the idea is to help someone to comwith a decision?
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First observe that in the above example, the set of alteewmtvas relatively small.
In many practical situations, the set of objects to compamauch larger than the set
of alternatives in our example. Using the even swaps tecienapuld then require a
considerable number of difficult tradeoff questions. Feamthore, as the output of the
technique is not a preference model but just the recommiemdat an alternative in a
given set, the appearance of new alternatives (e.g. beeaus# office is for rent) would
require starting a new round of questions. This is likely édhighly frustrating. Finally,
the informal even swaps technique may not be well adapteldetonbany, situations, in
which the decision under study takes place in a complex argadonal environment. In
such situations, having a formal model to be able to comnat@iand to convince is an
invaluable asset. Such a model will furthermore allow todwa extensive sensitivity
analysis and, hence, to deal with imprecision both in théuewimns of the objects to
compare and in the answers to difficult questions concertnaupoffs.

This clearly leaves room for a more formal approach to stmecpreferences. But
where can “measurement” be involved in the process? It dimeibbserved that, beyond
surface, there are many analogies between the even swagesprand the measurement
of length considered above.

First, note that, in both cases, objects are compared usnagybrelations. In the
measurement of length, the binary relation reads “is longer than”. Here it reads “is
preferred to”. Similarly, the relation~ reading before “has equal length” now reads “is
indifferent to”. We supposed in the measurement of lengticgss that- and~ would
nicely combine in experiments: if = ' andr’ ~ r” then we should observe that- r”.
Implicitly, a similar hypothesis was made in the even swaphnique. To realize that this
is the case, it is worth summarizing the main steps of theraem.

We started with Table 1. Our overall recommendation was b office d. This
means that we have reasons to believe thiatpreferred to all other potential locations,
i.e.d > a,d > b,d > c,andd - e. How did we arrive logically at such a conclusion?

Based on the initial table, using dominance and quasi-damave concluded that
b was preferable te and thatd was preferable ta. Using symbols, we have - ¢ and
d = a. After assessing some tradeoffs, we concluded, using doma) that - ¢’. But
remember¢” was built so as to be indifferent 6 and, in turn,c’ was built so as to be
indifferent toc. That is, we have” ~ ¢ andc’ ~ c. Later, we built an alternative that
is indifferent tod (d ~ d’) and an alternativé that is indifferent tab (b ~ ). We then
concluded, using dominance, thétvas preferable t&' (d' > ¢'). Hence, we know that:

d > a,b e,
'~ d~e b=,

dr~d b~V d =Y,
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Using the consistency rules linking- and ~ that we considered for the measurement
of length, it is easy to see that the last line implies- b. Sinceb > e, this implies

d > e. It remains to show that > c. But the second line leads to, combinirgand~,

b > c. Therefored - b leads tod >~ ¢ and we are home. Hence, we have used the same
properties for preference and indifference as the prageedf “is longer than” and “has
equal length” that we hypothesized in the measurement gtten

Second it should be observed that expressing tradeoffs,|@&adirectly, to equating
the “length” of “preference intervals” on different attites. Indeed, remember haw
was constructed above: saying thandc’ are indifferent more or less amounts to saying
that the interval25, 20] on commute time has exactly the same “length” as the interval
[70, 78] on client access. Consider an alternatfiat would be identical to except that
it has a client access @ag%. We may again ask which increase in client access would
compensate a loss biminutes on commute time. In a tabular form we are now compgarin
the following two alternatives:

/ f!
Commute 20 25
Clients 78 T846
Services C C
Size 500 500
Cost 1500 1500

Suppose that the answer is that o= 10, f and ' would be indifferent. This means
that the interval25,20] on commute time has exactly the same length as the interval
[78,88] on client access. Now, we know that the preference intefval§8| and|78, 88]
have the same “length”. Hence, tradeoffs provide a meangquate two preference in-
tervals on the same attribute. This brings us quite closegabnstruction of standard
sequences. This, we shall shortly do.

How does this information about the “length” of preferenceeivals relate to judge-
ments of preference or indifference? Exactly as in the ewaps technique. You can use
this measure of “length” modifying alternatives in such aywlaat they only differ on a
single attribute and then use a simple dominance argument.

Conjoint measurement techniques may roughly be seen as alipation of the even
swaps technique that leads to building a numerical modeledépences much in the same
way that we built a numerical model for length. This will reéguassessment procedures
that will rest on the same principles as the standard segquectnique used for length.
This process of “measuring preferences” is not an easy aneill lIhowever lead to a
numerical model of preference that will not only allow us t@ke a choice within a
limited number of alternatives but that can serve as an iopctmputerized optimization
algorithms that will be able to deal with much more complesesa
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2 Definitions and notation

Before entering into the details of how conjoint measuremeyt work, a few definitions
and notation will be needed.

2.1 Binary relations

A binary relation; on a setA is a subset ofl x A. We writea - binstead of(a, b) € 7.
A binary relation - on A is said to be:

o reflexiveif [a 7 al,

completef [a 7 borb = al,

symmetridf [a 7 b] = [b 7 dl,

~

asymmetridf [a = b = [Not[b = a]],

transitiveif [a 7z bandb - ] = [a 2= ¢,

e negatively transitivéf | Not[a 7 b] and Not[b - c]| = Notla 7 ¢],

Y

forall a,b,c € A.

The asymmetriqresp.symmetri¢ part of - is the binary relation>- (resp.~) on A
defined letting, for alk,b € A, a > b < [a 77 bandNot(b - a)] (resp.a ~ b < [a 7
b andb 77 al]). A similar convention will hold whenz is subscripted and/or superscripted.

A weak order(resp. arequivalence relationis a complete and transitive (resp. reflex-
ive, symmetric and transitive) binary relation. For a dethanalysis of the use of binary
relation as tools for preference modelling we refer to [4,688 161, 167, 169]. The weak
order model underlies the examples that were presentee imttoduction. Indeed, the
reader will easily prove the following.

Proposition 9
Let - be a weak order oal. Then:

e >~ is transitive,
e > IS negatively transitive,
e ~ istransitive,
e [a>bandb~ ] =a>c
e [a~bandb > c] = a > ¢,

forall a,b,c € A.
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2.2 Binary relations on product sets

In the sequel, we consider a sét= [[_, X; withn > 2. Elementst, y, z, ... of X will

be interpreted as alternatives evaluated on &'set{1,2, ... n} of attributes. A typical
binary relation onX is still denoted ag_, interpreted as an “at least as good as” preference
relation between multi-attributed alternatives withinterpreted as indifference andas
strict preference.

For any nonempty subsétof the set of attributed/, we denote byX ; (resp.X_,) the
set[[,., X; (resp. HiW X; ). With customary abuse of notatiofy s, y_ ;) will denote
the elementv € X such thatw; = z; if i € J andw; = y; otherwise. Wher/ = {i} we
shall simply writeX _; and(z;, y_;).

Remark 10
Throughout this paper, we shall work with a binary relati@fiiged on a product set.
This setup conceals the important work that has to be doneutipe to make it useful:

¢ the structuring of objectives [3, 15, 16, 117, 118, 119, 1%3],

¢ the definition of adequate attributes to measure the atenhof objectives [80, 96,
116, 122,173, 208, 216],

¢ the definition of an adequate family of attributes [24, 1243,1174, 209],

e the modelling of uncertainty, imprecision and inaccurag¢edmination [23, 27,
121, 171].

The importance of this “preliminary” work should not be fotgen in what followss

2.3 Independence and marginal preferences

In conjoint measurement, one starts with a preferenceoalgt on X. It is then of vital
importance to investigate how this information makes itgilale to define preference
relations on attributes or subsets of attributes.

Let J C N be a nonempty set of attributes. We define tharginal relation -,
induced onX; by - letting, for allz 5, y;, € X ;:

xj,ﬁjyj<:>(xJ,Z,J)?V(yJ,z,J), fora”Z,JEX,J,

with asymmetric (resp. symmetric) past ; (resp.~ ;). WhenJ = {i}, we often abuse
notation and writeZ, instead of Z;;. Note that if  is reflexive (resp. transitive), the
same will be true for- ;. This is clearly not true for completeness however.
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Definition 11 (Independence)
Consider a binary relatiori; on a setX = [["_, X; and letJ C N be a nonempty
subset of attributes. We say thgtis independent foy if, for all z;,y; € X},

[(:IZ'J,Z,J) z (yJ,Z,J), forsomez,J GX,J] = Ty zJ YJ.

If > is independent for all nonempty subsets\af we say that- is independent If
>~ is independent for all subsets containing a single attebute say that is weakly
independent

In view of (2), it is clear that the additive value model widquire that - is inde-
pendent. This crucial condition says that common evaloatan some attributes do not
influence preference. Whereas independence implies weaga@ndence, it is well-know
that the converse is not true [211].

Remark 12
Under certain conditions, e.g. wheéhis adequately “rich”, it is not necessary to test
that a weak orderz is independent for/, for all J C N in order to know that; is

independent, see [21, 89, 121]. This is often useful in pract °
Remark 13
Weak independence is referred to as “weak separability214]; in section 5, we use
“weak separability” (and “separability”) with a differenteaning. °
Remark 14

Independence, or at least weak independence, is an almustsally accepted hy-
pothesis in multiple criteria decision making. It cannotdveremphasized that it is easy
to find examples in which it is inadequate.

If a meal is described by the two attributes, main course ané it is highly likely
that most gourmets will violate independence, preferried) wine with beef and white
wine with fish. Similarly, in a dynamic decision problem, afarence for variety will
often lead to violating independence: you may prefer Piazatéak, but your preference
for meals today (first attribute) and tomorrow (second laite) may well be such that
(Pizza, Steak) preferred to (Pizza, Pizza), while (Steakzda} is preferred to (Steak,
Steak).

Many authors [119, 173, 209] have argued that such failurésdependence were
almost always due to a poor structuring of attributes (e.@ur choice of meal example
above, preference for variety should be explicitly mod#lle °

When is a weakly independent weak order, marginal prefereneeweall-behaved
and combine so as to give meaning to the idea of dominancevéhalready encountered.
The proof of the following is left to the reader as an easy @ser
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Proposition 15
Let- be a weakly independent weak order®n= [, X;. Then:

e —,is a weak order on;,
o [v; =y, foralie N|=uzzy,

e [x; ; y;, foralli € Nandz; >, y,; forsomej € N| =z >y,

forall z,y € X.

3 The additive value model in the “rich” case

The purpose of this section and the following is to preseatdbnditions under which
a preference relation on a product set may be representdtel@dtditive value function
model (2) and how such a model can be assessed. We begin hletbevcase that most
closely resembles the measurement of length describediiosd.2.

3.1 Outline of theory

When the structure oK is supposed to be “adequately rich”, conjoint measurenseat i
quite clever adaptation of the process that we describegtios 1.2 for the measurement
of length. What will be measured here are the “length” of peafee intervals on an

attribute using a preference interval on another attribsta standard.

3.1.1 The case of two attributes

Consider first the two attribute case. Hence the relatjiosmdefined on a set = X; x Xs.
Clearly, in view of (2), we need to suppose thgtis anindependent weak orde€onsider
two levelsz!, 21 € X, on the first attribute such that =, 29, i.e. z] is preferable ta?.
This makes sense because, we supposed‘that independentNote also that we shall
have to exclude the case in which all levels on the first aiteittvould be indifferent in
order to be able to find such levels.

Choose anyr € X,. The, arbitrarily chosen, element?, z9) € X will be our
“reference point”. The basic idea is to use this referengetf@md the “unit” on the first
attribute given by the reference preference intefvélz1] to build a standard sequence
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on the preference intervals on the second attribute. Heveaye looking for an element
r3 € X, that would be such that:

(a1, ) ~ (1, 73). (3)

Clearly this will require the structure oX, to be adequately “rich” so as to find the
level 23 € X, such that the reference preference interval on the firdbateér [z, x1]

is exactly matched by a preference interval of the same théran the second attribute
(29, z1]. Technically, this calls for a solvability assumption o restrictively, for the
supposition thatX, has a (topological) structure that is close to that of anvaleof R
and that- is “somehow” continuous.

If such a level:} can be found, model (2) implies:

(4)

Let us fix the origin of measurement letting:

v (a) = vy(5) = 0,
and our unit of measurement letting:

vi(z7) = 1 so thaty (1) — vy (2)) = 1.

Using (4), we therefore obtainy(z) = 1. We have therefore found an interval between
levels on the second attribute:{, z}]) that exactly matches our reference interval on the
first attribute (9, z1]). We may proceed to build our standard sequence on the second
attribute (see Figure 4) asking for leveis =3, . . . such that:

(21, 23) ~ (1, 75),

(1, a3) ~ (w1, 73),
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0 X
Lo

0 1
Ty

Ly

Figure 4. Building a standard sequence.on

so that:
vy(23) = 2,v5(23) = 3,.. . vp(ah) = k.

This process of building a standard sequence of the secdnilolitd therefore leads to
definingv, on a number of, carefully, selected elements(ef

Remember the standard sequence that we built for length fioselc2. An implicit
hypothesis was that the length of any rod could be exceeddldebength of a compos-
ite object obtained by concatenating a sufficient numbereofegt copies of a standard
rod. Such an hypothesis is called “Archimedean” since it itsnthe property of the real
numbers saying that for any positive real numberg it is true thatnx > y for some
integern, i.e.y, no matter how large, may always be exceeded by taking:ang matter
how small, and adding it with itself and repeating the operaa sufficient number of
times. Clearly, we will need a similar hypothesis here. Rgiit, there might exist a level
y2 € X, that will never be “reached” by our standard sequence ligh thaty, =, x4, for
k =1,2,.... For measurement models in which this Archimedean comdii@mitted,
see [155, 193].

Remark 16

At this point a good exercise for the reader is to figure out evmay extend the
standard sequence to cover levelsXof that are “below” the reference leveb. This
should not be difficult. °
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Figure 5: Building a standard sequenceXon

Now that a standard sequence is built on the second attriimgtenay use any part
of it to build a standard sequence on the first attribute. Whilsrequire finding levels
22 23,... € X such that (see Figure 5):

(I%, Ig) ~ (I%v I%)v

(a1, 23) ~ (a1, 75),

(1, 75) ~ (217, 23).

Using (2) leads to:

Ul(l’i’) - Ul(fU%) = va(w3) — Uz(fﬂg)a

vi(@) — v (2771) = va(ws) — va(ay),

so that:
Ul(‘r%) = 27/1]1(:6?) = 3, . ”U1<x’f) = /{j

As was the case for the second attribute, the constructisnaf a sequence will require
the structure ofX; to be adequately rich, which calls for a solvability assuompt An
Archimedean condition will also be needed in order to be tueall levels ofX; can be
reached by the sequence.

We have defined a “grid” ik’ (see Figure 6) and we have(zt) = k anduvy(25) = k
for all elements of this grid. Intuitively such numericakggmments seem to define an
adequate additive value function on the grid. We have togptloat this intuition is correct.
Let us first verify that, for all integers, /3, ~, 9:
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Xo

Figure 6: The grid.

a+B=y+06=c= (27,25) ~ (z],29). (5)

Whene = 1, (5) holds by construction because we have!}, z}) ~ (x1,29). When
e = 2, we know that(z9, 23) ~ (z1,2}) and(2?,29) ~ (21, 2l) and the claim is proved
using the transitivity of~.

Consider thee = 3 case. We havézr!, x3) ~ (z1,23) and (2%, 23) ~ (x1,23). It

remains to be shown thét? z}) ~ (z}, x3) (see the dotted arc in Figure 6). This does
not seem to follow from the previous conditions that we mardess explicitly used:
transitivity, independence, “richness”, Archimedeardded, it does not. Hence, we have
to suppose that{z?, 29) ~ (2%, 22) and (29, z}) ~ (x1,29) imply (2%, 23) ~ (z},23).
This condition, called the Thomsen condition, is clearlgessary for (2). The above
reasoning easily extends to all points on the grid, usingcveedering, independence and
the Thomsen condition. Hence, (5) holds on the grid.

It remains to show that:

e=a+ 0> =v+0= (a3,29) = (2], 23). (6)

Using transitivity, it is sufficient to show that (6) holds ame = ¢ + 1. By
construction, we know thate}, 29) = (29, 29). Using independence this implies that
(21, 25) = (27, 2%). Usmg (5) we havezi,z5) ~ (a7*!, 29) and (), 25) ~ (zf,29).
Therefore we havért ™ 29) = (2%, 29), the desired conclusion.

Hence, we have built an additive value function of a suitaiflpsen grid (see Fig-
ure 7). The logic of the assessment procedure is then tosass@® and more points
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Figure 7: The entire grid.

somehow considering more finely grained standard sequendé® two techniques
evoked for length may be used here depending on the undgryyracture ofX. Go-
ing to the limit then unambiguously defines the functiopnsndv,. Clearly suchy; and
vy are intimately related. Once we have chosen an arbitragyaate pointz!, z9) and

a levelz! defining the unit of measurement, the process just desceibtietly defines,
anduws. It follows that the only possible transformations that b@napplied ta; andv,

is to multiply both by the same positive numhkeand to add to both a, possibly different,
constant. This is usually summarized saying thaandv, define interval scales with a
common unit.

The above reasoning is a rough sketch of the proof of theemgstof an additive value
function whenn = 2, as well as a sketch of how it could be assessed. Careful seader
want to refer to [58, 129, 211].

Remark 17

The measurement of length through standard sequencesba@eisabove leads to a
scale that is unique once the unit of measurement is chosethisApoint, a good ex-
ercise for the reader is to find an intuitive explanation t fdact that, when measuring
the “length” of preference intervals, the origin of measoeat becomes arbitrary. The
analogy with the the measurement of duration on the one haddiates, as given in a
calendar, on the other hand should help. °
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Remark 18

As was already the case with the even swaps technique, itrithwmphasizing that
this assessment technique makes no use of the vague notibe ‘Gimportance” of the
various attributes. The “importance” is captured here m ldngths of the preference
intervals on the various attributes.

A common but critical mistake is to confuse the additive gafunction model (2)
with a weighted average and to try to assess weights askiethehan attribute is “more
important” than another. This makes no sense. °

3.1.2 The case of more than two attributes

The good news is that the process is exactly the same whea #nermore than two
attributes. With one surprise: the Thomsen condition is mvemeeded to prove that
the standard sequences defined on each attribute lead teeguaae value function on
the grid. A heuristic explanation of this strange resulthiatf whenn = 2, there is no
difference between independence and weak independenisas fib more true when >

3 and assuming independence is much stronger than just agguraak independence.

3.2 Statement of results

We use below the “algebraic approach”[127, 129, 141]. A mesérictive approach using
a topological structure oX is given in [44, 58, 211]. We formalize below the conditions
informally introduced in the preceding section. The reaugrinterested in the precise
statement of the results or, better, having already wridtlgnn his own statement, may
skip this section.

Definition 19 (Thomsen condition)
Let >~ be a binary relation on a seX’ = X; x X,. Itis said to satisfy the Thomsen
condition if

(1, 22) ~ (y1,y2) @and (yy, z2) ~ (21, 22) = (1, 22) ~ (21, Y2),

for all T1,Y1,21 € X and a”l’g,yg, z5 € Xo.
Figure 8 shows how the Thomsen condition uses two “indiffeescurves” (i.e. curves
linking points that are indifferent) to place a constraintabthird one. This was needed

above to prove that an additive value function existed onguis. Remember that the
Thomsen condition is only needed whenr= 2; hence, we only stated it in this case.
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Figure 8: The Thomsen condition.

Definition 20 (Standard sequences)

A standard sequence on attributec N is a set{a’ : a} € X,k € K} whereK
is a set of consecutive integers (positive or negativegfmitinfinite) such that there are
T,y € X_; satisfyingNot[x_; ~_;y_;] and(a¥,z_;) ~ (aF™, y_;), forall k € K.

A standard sequence on attributec N is said to bestrictly boundedif there are
bi,c; € X; such that; =; a¥ =; ¢;, for all k € K. Itis then clear that, when model (2)
holds, any strictly bounded standard sequence must be finite

Definition 21 (Archimedean)
For all i € N, any strictly bounded standard sequence @an /N is finite.

The following condition rules out the case in which a staddsgquence cannot be
built because all levels are indifferent.

Definition 22 (Essentiality)
Let- be a binary relation on aseX = X; x X, x --- x X,,. Attribute; € N is said
to be essential ifx;, a_;) > (y;,a_;), for somer;,y; € X; and somer_; € X _;.

Definition 23 (Restricted Solvability)

Let- be a binary relation on a seX = X; x X, x --- x X,,. Restricted solvability
is said to hold with respect to attributee N if, for all x € X, all z_; € X_; and all
ai,bl- e X, [(ai,z_,») ?\: x ?\: (bl‘,Z_l‘)] = [l’ ~ (Ci,Z_i), for somec; € Xz]

Remark 24

Restricted solvability is illustrated in Figure 9 in the cageeren = 2. It says that,
given anyx € X, if it is possible find two levels;, b; € X; such that when combined
with a certain levek_; € X_; on the other attributegq;, z_;) is preferred tor andzx is
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preferred ta(b;, z_;), it should be possible to find a level “in between’a; andb;, such
that(c;, z_;) is exactly indifferent tac.

A much stronger hypothesis is unrestricted solvabilityeassg that for all: € X and
all z_;, € X ;, x ~ (¢;,2;), for somec; € X;. Its use leads however to much simpler
proofs [58, 86].

It is easy to imagine situations in which restricted solirgbmight hold while un-
restricted solvability would fail. Suppose, e.g. that a fltes to choose between several
investment projects, two attributes being the Net Presahte{NPV) of the projects and
their impact on the image of the firm in the public. Consider @qut consisting in in-
vesting in the software market. It has a reasonable NPV aradinerse consequences on
the image of the firm. Consider another project that could limaenatic consequences
on the image of the firm, because it leads to investing the edaficocaine. Unrestricted
solvability would require that by sufficiently increasingetNPV of the second project it
would become indifferent to the more standard project adstwig in the software market.
This is not required by restricted solvability. °

X

Z9
Xy
bl C1 ay
Z = .
} = thereis av such thatr ~ w
T =y

Figure 9: Restricted Solvability oX’;.

We are now in position to state the central results concgrmiadel (2). Proofs may
be found in [129, 213].

Theorem 25 (Additive value function whenn = 2)

Let >~ be a binary relation on a seX = X; x Xj. If restricted solvability holds on
all attributes and each attribute is essential then has a representation in mod&) if
and only if 7~ is an independent weak order satisfying the Thomsen and tieredean
conditions
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Furthermore in this representation; andwv, are interval scales with a common unit,
i.e. if vy, vy and wy, w, are two pairs of functions satisfyin@), there are real numbers
a, (1, B2 with @ > 0 such that, for allz; € X; and allz, € X,

Ul(ﬁl) = Oé’wl(l'l) -+ ﬁl andvg(ﬂfz) = CYU)2<I2) + 52.

Whenn > 3 and at least three attributes are essential, the above saswlifies in
that the Thomsen condition can now be omitted.

Theorem 26 (Additive value function whenn > 3)

Let be a binary relation on a seX = X; x X, x ... x X,, withn > 3. If restricted
solvability holds on all attributes and at least 3 attribatare essential then- has a
representation in mod€PR) if and only if >~ is an independent weak order satisfying the
Archimedean condition.

Furthermore in this this representatian, v,, .. . , v, are interval scales with a com-
mon unit.

Remark 27

As mentioned in introduction, the additive value model istcal to several fields
in decision theory. It is therefore not surprising that mectergy has been devoted to
analyze variants and refinements of the above results. Artienmost significant ones,
let us mention:

¢ the study of cases in which solvability holds only on somearenof the attributes
[75, 85, 86, 87, 88, 112, 113, 154],

¢ the study of the relation between the “algebraic approastrbduced above and
the topological one used in [44], see e.g. [115, 124, 211].213

The above results are only valid whénis the entire Cartesian product of the s&ts
Results in whichX is a subset of the whole Cartesian prodigt< X, x ... x X, are not
easy to obtain, see [37, 181] (the situation is “easier” egpecial case of homogeneous
product sets, see [214, 215]). o

3.3 Implementation: Standard sequences and beyond
We have already shown above how additive value functionsbeaassessed using the
standard sequence technique. It is worth recalling hereesirthe characteristics of this

assessment proced ure:
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e It requires the sek; to berich so that it is possible to find a preference interval on
X; that will exactly match a preference interval on anothethaite. This excludes
using such an assessment procedure when some of th&,sats discrete.

e It relies onindifferencgudgements which, a priori, are less firmly established than
preference judgements.

e It relies on judgements concerning fictitious alternatiwsch, a priori, are harder
to conceive than judgements concerning real alternatives.

e The various assessments are thoroughly intertwined aggae.imprecision on the
assessment ofl, i.e. the endpoint of the first interval in the standard seqaeon
X5 (see Figure 4) will propagate to many assessed values,

e The assessment of tradeoffs may be plagued with cognitasebj see [46, 197].

The assessment procedure based on standard sequencesf@éh@ather demand-
ing; this should be no surprise given the proximity betwe®a form of measurement
and extensive measurement illustrated above on the casmgthl Hence, the assess-
ment procedure based on standard sequences seems to lme gsébin the practice of
decision analysis [121, 209]. The literature on the expental assessment of additive
value functions, see e.g. [197, 208, 216], suggests thmbadsessment is a difficult task
that may be affected by several cognitive biases.

Many other simplified assessment procedures have beengadpioat are less firmly
grounded in theory. In many of them, the assessment of theapaalue functionsy;
relies ondirect comparison of preference differences without recoursentmerval on
another attribute used as a “meter stick”. We refer to [5@] 20r a theoretical analysis
of these techniques.

These procedures include:

e direct ratingtechniques in which values of are directly assessed with reference
to two arbitrarily chosen points [52, 53],

e procedures based dsection the decision-maker being asked to assess a point that
is “half way” in terms of preference two reference points9R0

e procedures trying to buildtandard sequences each attribute in terms of “prefer-
ence differences” [129, ch. 4].

An excellent overview of these techniques may be found i9]20
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4 The additive value model in the “finite” case

4.1 Outline of theory

In this section, we suppose thatis a binary relation on a finite sef C X; x X, X

-+ x X, (contrary to the preceding section, dealing with subsepsaduct sets will raise
no difficulty here). The finiteness hypothesis clearly iales the standard sequence
mechanism used till now. On each attribute there will onlyfibgely many “preference
intervals” and exact matches between preference intemithisnly happen exceptionally,
see [212].

Clearly, independence remains a necessary condition foehi@pas before. Given
the absence of structure of the 3&tit is unlikely that this condition is sufficient to ensure
(2). The following example shows that this intuition is iedecorrect.

Example 28
Let X = X; x Xy with Xy = {a,b,c} and X, = {d, e, f}. Consider the weak order
on X such that, abusing notation in an obvious way,

ad > bd > ae = af = be > cd > ce>=bf > cf.

It is easy to check that; is independent. Indeed, we may for instance check that:

ad > bd andae > be andaf > bf,
ad = ae andbd = be andcd = ce.

This relation cannot however be represented in model (2gsin

af = be = vi(a) + va(f) > v1(b) + va(e),
be = cd = v1(b) + va(e) > v1(c) + vo(d),
ce = bf = vi(c) +va(e) > v1(b) + va(f),
bd > ae = v1(b) + vo(d) > vi(a) + ve(e).

Summing the first two inequalities leads to:

vi(a) + vo(f) > vi(c) + va(d).
Summing the last two inequalities leads to:

v1(e) + va(d) > vi(a) + va(f),

a contradiction.

Note that, since no indifference is involved, the Thomsenddmn is trivially sat-
isfied. Although it is clearly necessary for model (2), addinhto independence will
therefore not solve the problem. &
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The conditions allowing to build an additive value model lve ffinite case were in-
vestigated in [1, 2, 179]. Although the resulting condigdarn out to be complex, the
underlying idea is quite simple. It amounts to finding coiotié under which a system of
linear inequalities has a solution.

Suppose that - y. If model (2) holds, this implies that:

n n

=1 =1
Similarly if z ~ y, we obtain:

n n

Uz(xz) = sz(%) (8)

i=1 =1

The problem is then to find conditions on such that the system of finitely many equal-
ities and inequalities (7-8) has a solution. This is a ctadgroblem in Linear Algebra
[83].

Definition 29 (Relation E™)
Letm be aninteger> 2. Letz!, 22, ..., 2™, y', %, ..., y™ € X. We say that

(.CEl, 2. ,xm)Em(yl, Tal Y™

if, forall i € N, (z},2?,...,2") is a permutation ofy;, v, ..., y™).

19

Suppose thatr!, 22, ..., z™)E™(y', y?, ..., y™) then model (2) implies that

n m n

PIDIICIED B PR}

j=1 i=1 j=1 i=1

Therefore ifz7 = 4’ for j = 1,2,...,m — 1, it cannot be true that™ = y™. This
condition must hold for alin = 2,3, . . ..

Definition 30 (Condition C'™)
Letm be an integer> 2. We say that condition holds if

[2) =yl forj=1,2,...,m—1] = Not[z™ = y™]
forall 21,22, ... 2™ y', v?, ..., y™ € X such that
(22, ™ E™ (R, y™).

Remark 31
It is not difficult to check that:
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° Cm+1 = C«m,
e (? = ~isindependent,

e (C? = = is transitive. o

We already observed that™ was implied by the existence of an additive representa-
tion. The main result for the finite case states that reqgitiivat - is complete and that
C™ holds form = 2, 3, . .. is also sufficient. Proofs can be found in [58, 129].

Theorem 32

Let - be a binary relation on a finite sef C X; x X, x --- x X,,. There are real-
valued functions; on X; such that(2) holds if and only if >~ is complete and satisfies
C™form=2,3,....

Remark 33

Contrary to the “rich” case considered in the preceding sectve have here neces-
sary and sufficient conditions for the additive value mo@gl However, it is important to
notice that the above result uses a denumerable schemedificos. It is shown in [180]
that this denumerable scheme cannot be truncated: for &l 2, there is a relation’-
on a finite setX such thatC™ holds but violatingC™*!. This is studied in more detail in
[139, 201, 218]. Therefore, no finite scheme of axioms is gefiit to characterize model
(2) for all finite setsX.

Given afinite seX of given cardinalityit is well-known that the denumerable scheme
of condition can be truncated. The precise relation betvieerardinality ofX and the
number of conditions needed raises difficult combinatagisstions that are studied in
[77, 78]. o

Remark 34

It is clear that, if a relatiori; has a representation in model (2) with functiansit
also has a representation using functiohs= av; + §; with « > 0. Contrary to the
rich case, the uniqueness of the functiengs more complex as shown by the following
example.

Example 35
Let X = X; x X, with X; = {a,b,c} and X, = {d, e}. Consider the weak order on
X such that, abusing notation in an obvious way,

ad = bd = ae = cd = be = ce.

This relation has a representation in model (2) with

vi(a) = 3,v1(b) = 1,v1(c) = 0,v9(d) = 3,v2(e) = 0.5.
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An equally valid representation would be given takingh) = 2. Clearly this new repre-
sentation cannot be deduced from the original one applyipgsitive affine transforma-
tion. &

Remark 36

Theorem 32 has been extended to the case of an arbitrary se{113, 112], see
also [75, 81]. The resulting conditions are however quitaglex. This explains why we
spent time on this “rich” case in the preceding section. °

Remark 37

The use of a denumerable scheme of conditions in theorem &2 rdut facilitate the
interpretation and the test of conditions. However it stdag noticed that, on a given set
X, the test of the”" conditions amounts to finding if a system of finitely many &ne
inequalities has a solution. Itis well-known that Lineangiamming techniques are quite
efficient for such a task. °

4.2 Implementation: LP-based assessment

We show how to use LP techniques in order to assess an adgitive model (2), without
supposing that the sefs; are rich. For practical purposes, it is not restrictive teusse

that we are only interested in assessing a model for a limaede on eachX;. We
therefore assume that the séfs are bounded so that, using independence, there is a
worst valuer;, and a most preferable valug. Using the uniqueness properties of model
(2), we may always suppose, after an appropriate normiligahat:

U1(214) = vo(T24) = ... = vy(2ps) = 0 @nd 9
Z”Uz(ff:) =L (10)

Two main cases arise (see Figures 10 and 11):

e attributei € N is discrete so that the evaluation of any conceivable altem on
this attribute belongs to a finite set. We supposeat {z;., z}, 2?,... z}" x}}.
We therefore have to assesst 1 values ofv;,

e the attributei € N has an underlying continuous structure. It is hardly retve
in practice to suppose that; C R, so that the evaluation of an alternative on this
attribute may take any value between andz;. In this case, we may opt for
the assessment of a piecewise linear approximatian pértitioning the sefX; in
r; + 1 intervals and supposing thatis linear on each of these intervals. Note that
the approximation of; can be made more precise simply by increasing the number
of these intervals.
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UZ<$:<) ............................. °
vz(w?) ..................... .

UZ(./,U,}) .............. .

Ui<$i* ‘ I I I X

X

Ui<xi*

Figure 11: Value function whe#; is continuous.

With these conventions, the assessment of the model (2)@stugiving a value to
> ¢ (ri+1) unknowns. Clearly any judgment of preference linkingndy translate into
alinear inequalitybetween these unknowns. Similarly any judgment of indsfifere link-
ing = andy translate into dinear equality Linear Programming (LP) offers a powerful
tool for testing whether such a system has solutions. Tosreén assessment procedure

can be conceived on the following basis:

e obtain judgments in terms of preference or indifferenckiig several alternatives
in X,

e convert these judgments into linear (in)equalities,

e test, using LP, whether this system has a solution.
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If the system has no solution then one may either proposeuticolhat will be “as
close as possible” from the information obtained, e.g.atioh the minimum number of
(in)equalities or suggest the reconsideration of certaig¢ments. If the system has a so-
lution, one may explore the set of all solutions to this syssence they are all candidates
for the establishment of model (2). These various techrsigiepend on:

¢ the choice of the alternatives ii that are compared: they may be real or fictitious,
they may differ on a different number of attributes,

¢ the way to deal with the inconsistency of the system and toteedly propose some
judgments to be reconsidered,

e the way to explore the set of solutions of the system and taghiseet as the basis
for deriving a prescription.

Linear programming offers of simple and versatile techaitpuassess additive value
functions. All restrictions generating linear constraif the coefficient of the value
function can easily be accommodated. This idea has beem @fjgoited, see [16]. We
present below two techniques using it. It should be notibatifather different techniques
have been proposed in the literature on Marketing [35, 103, 114, 132].

421 UTA[111]

UTA (“UTilité Additive”, i.e. additive utility in French) § one of the oldest techniques be-
longing to this family. It is supposed in UTA that there is &setRef C X of reference
alternatives that the decision-maker knows well eitherabhee he/she has experienced
them or because they have received particular attentioe.td¢hnique amounts to ask-
ing the DM to provide a weak order oRef. Each preference or indifference relation
contained in this weak order is then translated into a liceastraint:

e x ~ y gives an equality(x) — v(y) = 0 and

e = > y gives an inequality(z) — v(y) > 0,

wherev(z) andv(y) can be expressed as a linear combination of the unknowns as
remarked earlier. Strict inequalities are then translatemllarge inequalities as is usual
in Linear Programming, i.eu(z) — v(y) > 0 becomesy(z) — v(y) > € wheree > 0
is a very small positive number that should be chosen aaugitdi the precision of the
arithmetics used by the LP package.

The test of the existence of a solution to the system of liceastraints is done via
standard Goal Programming techniques [36] adding ap@tepdeviation variables. In
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UTA, each equation(z) —v(y) = 0is translated into an equatioiix) —v(y)+ o, —o, +

of — o, =0, wheres}, o, 0 ando, are nonnegative deviation variables. Similarly
each inequality () — v(y) > eis written asv(z) —v(y) + o — o, +o —o, > e It

is clear that there will exist a solution to the original gystof linear constraints if there
is a solution of the LP in which all deviation variables areazeThis can easily be tested

using the objective function

Minimize Z = Y o + o, (11)
z€ Ref

Two cases arise. If the optimal value Bfis 0, there is an additive value function that
represents the preference information. It should be obseiivat, except in exceptional
cases (e.g. if the preference information collected istidahto the preference infor-
mation collected with the standard sequence techniqueje tare infinitely many such
additive value functions (that are not related via a simplange of origin and of unit,
since we already fixed them through normalization (9-10))e ®ne given as the “opti-
mal” one by the LP does not have a special status since it lyhdependent upon the
arbitrary choice of the objective function; instead of miiging the sum of the deviation
variables, we could have as well, and still preserving lilgaminimized the largest of
these variables. The whole polyhedron of feasible solstmfrthe original (in)equalities
corresponds to adequate additive value functions: we heteke sef) of additive value
functions representing the information collected on thie@eeference alternativeBef .

The size of)V is clearly dependent upon the choice of the alternativegejh Using
standard techniques in LP, several function®’imay be obtained, e.g. the ones maxi-
mizing or minimizing, withinV, v;(z}) for each attribute [111]. It is often interesting to
present them to the decision-maker in the pictorial formigtiFes 10 and 11.

If the optimal value of7 is strictly greater than, there is no additive value function
representing the preference information available. Theiso given as optimal (note that
it is not guaranteed that this solution leads to the minimassfble number of violations
w.r.t. the information provided—this would require solgian integer linear programme)
is, in general, highly dependent upon the choice of the dligtunction.

This absence of solution to the system might be due to sefeatalrs:

e the piecewise linear approximation of thefor the “continuous” attributes may be
too rough. It is easy to test whether an increase in the nuofderear pieces on
some of these attributes may lead to a nonempty set of agld#ilie functions.

¢ the information provided by the decision-maker may be ofrgpality. It might
then be interesting to present to the decision-maker onéaeldalue function (e.qg.
one may present an average function after some post-oginaalalysis) in the
pictorial form of Figures 10 and 11 and to let him react to thisrmation either by
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modifying his/her initial judgments or even by letting hlmef react directly on the
shape of the value functions. This is the solution impleraémt the well-known
PREFCALC system [109].

e the preference provided by the decision-maker might benisistent with the con-
ditions implied by an additive value function. The systerowdt then help locate
these inconsistencies and allow the DM to think about theterAatively, since
many alternative attribute descriptions are possible,ay ime worth investigating
whether a different definition of the various attributes niegd to a preference
model consistent with model (2). Several examples of sualyais may be found
in [119, 121, 209]

When the above techniques fail, the optimal solution of thegl/Bn if not compatible
with the information provided, may still be considered asdaquate model. Again, since
the objective function introduced above is somewhat ahyjitand it is recommended in
[111] to perform a post-optimality analysis, e.g. consitgadditive value functions that
are “close” to the optimal solution through the introduntwf a linear constraint:

7 <7+,

where Z* is the optimal value of the objective function of the oridim# and is a
“small” positive number. As above, the result of the anaysia set’ of additive value
functions defined by a set of linear constraints. A repregmet sample of additive value
functions within) may be obtained as above.

It should be noted that many possible variants of UTA can meeived building on
the following comments. They include:

e the addition of monotonicity properties of the with respect to the underlying
continuous attributes,

¢ the addition of constraints on the shape of the marginalev&lictionsv;, e.g.
requiring them to be concave, convex or S-shaped,

¢ the addition of constraints linked to a possible indicatibpreference intensity for
the elements ofkef given by the DM, e.g. the difference betweeandy is larger
than the difference betweerandw.

For applications of UTA-like techniques, we refer to [38, 48, 105, 110, 148, 185,
186, 187, 188, 189, 190, 192, 195, 196, 219, 221, 220, 223, ¥adants of the method
are considered in [19, 20, 191].
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4.2.2 MACBETH [12]

It is easy to see that (9) and (10) may equivalently be wrigt&n

where _ _
U (214) = U (o) = ... Up(Tps) = 0, (13)
uy(27) = ue(2h) = ... uy(x)) =1 and (14)
> k=1 (15)

With such an expression of an additive value function, iemmpting to break down the
assessment into two distinct parts: a value functipis assessed on each attribute and,
then, scaling constants are assessed taking the shape of the value functioas given.
This is the path followed in MACBETH.

Remark 38

Again, note that we are speaking herépasscaling constantand not asveights As
already mentioned weights that would reflect the “imporédraf attributes are irrelevant
to assess the additive value function model. Notice thadeul2-15) the ordering of
the scaling constarit; is dependent upon the choicemf andz;. Increasing the width
of the interval|x;., ;] will lead to increasing the value of the scaling constgntThe
value k; has, therefore, nothing to do with the “importance” of atitei. This point
is unfortunately too often forgotten when using a weighteerage of some numerical
attributes. In the latter model, changing the units in whioé attributes are measured
should imply changing the “weights” accordingly. °

The assessment procedure of thés conceived in such a way as to avoid comparing
alternatives differing on more than one attribute. In vidhwvwat was said before con-
cerning the standard sequence technique, this is cleardaeantage of the technique.
But can it be done? The trick here is that MACBETH asks for judgseslated to the
difference between the desirability of alternatives and ardy judgments in terms of
preference or indifference. Partial value functiensare approximated in a similar way
than in UTA: for discrete attributes, each point on the fiorcts assessed, for continuous
ones, a piecewise linear approximation is used.

MACBETH asks the DM to compare pairs of levels on each attridfiteo difference
is felt between these levels, they receive an identicalgdaslue level. If a difference is
felt betweenz* andz?, MACBETH asks for a judgment qualifying the strength of this
difference. The method and the associated software prapose different semantical
categories:
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Categories Description

C1 weak
C2 strong
C3 extreme

with the possibility of using intermediate categories, hetween null and weak, weak
and strong, strong and extreme (giving a total of six distbategories). This information
is then converted into linear inequations using the natatafpretation that if the “differ-
ence” between the leveld andx? has been judged larger than the “difference” between
z¥ andz!’ then it should follow thaty;(z¥) — w;(z7) > us(2¥) — uy(27). Technically
the six distinct categories are delimited by thresholds déin@ used in the establishment
of the constraints of the LP. The software associated to MAGBBTfers the possibility
to compare all pairs of levels on each attribute for a totalroft- 1)r;/2 comparisons.
Using standard Goal Programming techniques, as in UTA,abkedf the compatibility
of a partial value function with this information is perfoechvia the solution of a LP. If
there is a partial value function compatible with the infation, a “central” function is
proposed to the DM who has the possibility to modify it. If nibte results of the LP are
exploited in such a way to propose modifications of the infation that would make it
consistent.

The assessment of the scaling constaiig done using similar principles. The DM is
asked to compare the followin@ + 2) alternatives by pairs:

(a:l*,xg*,...,mn*),
(mT’IQ*a"wxn*)a
(X1, T3y ooy Ty
(T14, Tox, - . ., ) @nd
(JIT,JJ;,. 737:;)7

placing each pair in a category of difference. This infoioratmmediately translates into

a set of linear constraints on tihe These constraints are processed as before. It should
be noticed that, once the partial value functiangare assessed, it is not necessary to use
the levelsz;, andz} to assess thg; since they may well lead to alternatives that are too
unrealistic. The authors of MACBETH suggest to replageby a “neutral” level which
appears neither desirable nor undesirable @ntty a “desirable” level that is judged
satisfactory. Although this clearly impacts the qualitytieé¢ dialogue with the DM, this
has no consequence on the underlying technique used tosgriméermation.

We refer to [6, 7, 8, 9, 10, 11] for applications of the MACBETldheique.
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5 Extensions

The additive value model (2) is the central model for the @pgibn of conjoint measure-
ment techniques to decision analysis. In this section, wisider various extensions to
this model.

5.1 Transitive Decomposable models

The transitive decomposable model has been introduce®8] Hs a natural generaliza-
tion of model (2). It amounts to replacing the addition opieraby a general function
that is increasing in each of its arguments.

Definition 39 (Transitive decomposable model)

Let be a binary relation on a seX = [["_, X;. The transitive decomposable model
holds if, for alli € N, there is a real-valued functiosny on X; and a real-valued function
gon [, v;(X;) thatis increasing in all its arguments such that:

T ,>\_/ Yy <= g(vl(xl)v T ,Un(l’n)) > g(vl(yl)a s 7Un(yn))7 (16)

forall x,y € X.

An interesting point with this model is that it admits an iitittely appealing simple
characterization. The basic axiom for characterizing th&va transitive decomposable
model is weak independence, which is clearly implied by (I®)e following theorem is
proved in [129, ch. 7].

Theorem 40
A preference relatior; on a finite or countably infinite set has a representation in
the transitive decomposable model iff is a weakly independent weak order.

Remark 41
This result can be extended to sets of arbitrary cardinatitying a, necessary, condi-
tion implying that the weak ordef; has a numerical representation, see [42, 45]. e

The weak point of such a model is that the functipis left unspecified so that the
model will be difficult to assess. Furthermore, the uniggsnesults for; and g are
clearly much less powerful than what we obtained with mog2glgee [129, ch. 7]. There-
fore, practical applications of this model generally imppecifying the type of function
g, possibly by verifying further conditions on the preferemelation that impose that
belongs to some parameterized family of functions, e.g.espatynomial function of the
v;. This is studied in detail in [129, ch. 7] and [14, 82, 139, 1886, 166, 202]. Since
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such models have, to the best of our knowledge, never beenmusgecision analysis, we
do not analyze them further.

The structure of the decomposable model however suggestsasisessment tech-
niques for this model could well come from Artificial IntegJence with its “rule induction”
machinery. Indeed the functianin model (16) may also be seen as a set of “rules”. We
refer to [97, 98, 100, 101] for a thorough study of the potdityi of such an approach.

Remark 42

A simple extension of the decomposable model consists iplgiasking for a func-
tion ¢ that would be nondecreasing in each of its arguments. Thewiolg result is
proved in [30] (see also [100]) (it can easily be extendedigecthe case of an arbitrary
setX, adding a, necessary, condition implying thgthas a numerical representation).

We say that is weakly separable if, for alle N and allz;, y; € X;, itis never true
that (z;, z_;) > (vi,2—;) and (y;, w_;) = (x;,w_;), for somez_;,w_; € X_;. Clearly
this is a weakening of weak independence since it toleratdgmve at the same time
(i, 2—i) > (Y, 2—;) and(z;, w_;) ~ (y;, w—;).

Theorem 43
A preference relatiorr; on a finite or countably infinite set has a representation in
the weak decomposable model:

vy g(u(z),. . un(mn)) > glur(yr), - - un(yn))

with ¢ nondecreasing in all its arguments iff is a weakly separable weak order.

A recent trend of research has tried to characterize speriational forms forg in
the weakly decomposable model, suchmasx, min or some more complex forms. The
main references include [26, 100, 102, 182, 194]. °

Remark 44

The use of “fuzzy integrals” as tools for aggregating critdras recently attracted
much attention [49, 90, 91, 93, 94, 95, 143, 145, 144, 14€]CGhoquet Integral and the
Sugeno integral being among the most popular. It should roaglly emphasized that
the very definition of these integrals requires to have atlmweak order onJ? ; X;,
supposing w.l.0.g. that the seXs are disjoint. This is usually called a “commensurability
hypothesis”. Whereas this hypothesis is quite natural wieatirth with an homogeneous
Cartesian product, as in decision under uncertainty (sed2lg]), it is far less so in
the area of multiple criteria decision making. A neat camjoneasurement analysis of
such models and their associated assessment procedunegpsraresearch question, see
[92]. °
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5.2 Intransitive indifference

Decomposable models form a large family of preferencesghmot large enough to
encompass all cases that may be encountered when askiegtsubjexpress preferences.
A major restriction is that not all preferences may be assutoebe weak orders. The
example of the sequence of cups of coffee, each differingp fitee previous one by an
imperceptible quantity of sugar added [133], is famougatls to the notions of semiorder
and interval order [4, 57, 66, 133, 161], in which indiffecens not transitive, while strict
preference is.

Ideally, taking intransitive indifference into accountewould want to arrive at a
generalization of (2) in which:

v~y Vi) -Vl <e
-y Vie)>Viy) +e,

wheree > 0 andV (z) = > "7 | vi(x;).

In the finite case, it is not difficult to extend the conditiggresented in section 4 to
cover such a case. Indeed, we are still looking here for theiso to a system of linear
constraints. Although this seems to have never been dome&uld not be difficult to
adapt the LP-based assessment techniques to this case.

On the contrary, extending the standard sequence techrofsection 3 is a
formidable challenge. Indeed, remember that these teabsigrucially rest on indiffer-
ence judgments which lead to the determination of “perfepies” of a given preference
interval. As soon as indifference is not supposed to be itrems‘perfect copies” are not
so perfect and much trouble is expected. We refer to [84, 128, 161, 198] for a study
of these models.

Remark 45

Even if the analysis of such models proves difficult, it slkido# noted that the semi-
ordered version of the additive value model may be integgrets having a “built-in”
sensitivity analysis via the introduction of the thresheld Therefore, in practice, we
may usefully viewe not as a parameter to be assessed but as a simple trick to avoid
undue discrimination, because of the imprecision inelytaivolved in our assessment

procedures, between close alternatives o
Remark 46
Clearly the above model can be generalized to cope with alggsson-constant
threshold. The literature on the subject remains minimaldwer, see [161]. .
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5.3 Nontransitive preferences

Many authors [147, 203] have argued that the reasonablaiesgpposing that strict

preference is transitive is not so strong when it comes topawimg objects evaluated on
several attributes. As soon as it is supposed that subjesyysuse an “ordinal” strategy

for comparing objects, examples inspired from the wellwnd&ondorcet paradox [176,
183] show that intransitivities will be difficult to avoidndleed it is possible to observe
predictable intransitivities of strict preference in datly controlled experiments [203].

There may therefore be a descriptive interest to studyiof swdels. When it comes to
decision analysis, intransitive preferences are oftemidsed on two grounds:

e on a practical level, it is not easy to build a recommendatarthe basis of a
binary relation in which- would not be transitive. Indeed, social choice theorists,
facing a similar problem, have devoted much effort to degjsvhat could be called
reasonable procedures to deal with such preferences [41,362 131, 149, 158,
178]. This literature does not lead, as was expected, tortltexgence of a single
suitable procedure in all situations.

e On amore conceptual level, many others have questione@tieationality of such
preferences using some version of the famous “money pungpinaent [137, 164].

P. C. Fishburn has forcefully argued [73] that these argusnaight not be as decisive
as they appear at first sight. Furthermore some MCDM techriqueke use of such
intransitive models, most notably the so-called outragkirethods [25, 172, 204, 205].
Besides the intellectual challenge, there might therefera keal interest in studying such
models.

A. Tversky [203] was one of the first to propose such a modetgaizing (2), known
as theadditive difference modgh which:

Ty e z": ®;(ui(wi) — uily:)) = 0 (17)

=1
where®; are increasing and odd functions.

It is clear that (17) allows for intransitive, but implies its completeness. Clearly,
(17) implies that - is independent. This allows to unambiguously define matgired-
erences ;. Although model (17) can accommodate intransitigg a consequence of
the increasingness of thig is that the marginal preference relations are weak orders.
This, in particular, excludes the possibility of any perto@pthreshold on each attribute
which would lead to an intransitive indifference relatiam@ach attribute. Imposing that
®, are nondecreasing instead of being increasing allows fdr aypossibility. This gives
rise to what is called the “weak additive difference modal{22].
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As suggested in [22, 70, 69, 72, 206], the subtractivity imespent in (17) can be
relaxed. This leads toontransitive additiveonjoint measurement models in which:

Ty Zpi(xi,yi) >0 (18)

=1

where thep; are real-valued functions aki? and may have several additional properties
(e.g.pi(zs,z;) =0, foralli € {1,2,...,n} and allz; € X;).

This model is an obvious generalization of the (weak) adelitlifference model. It
allows for intransitive and incomplete preference relagio- as well as for intransitive
and incomplete marginal preferences;. An interesting specialization of (18) obtains
whenp; are required to bekew symmetrice. such thap;(z;, v;) = —pi(y;, z;). This
skew symmetric nontransitive additive conjoint measumenmeodel implies that =~ is
complete and independent.

An excellent overview of these nontransitive models is [73gveral axiom systems
have been proposed to characterize them. P. C. Fishburn gayé9, 72] axioms for
the skew symmetric version of (18) both in the finite and tHenite case. Necessary
and sufficient conditions for a nonstandard version of (I8)@esented in [76]. [206]
gives axioms for (18) withy;(z;, x;) = 0 whenn > 4. [22] gives necessary and sufficient
conditions for (18) with and without skew symmetry in the dererable case when= 2.

The additive difference model (17) was axiomatized in [f4jhe infinite case when
n > 3 and [22] gives necessary and sufficient conditions for thaekweelditive difference
model in the finite case when= 2. Related studies of nontransitive models include [39,
64, 136, 153]. The implications of these models for decisiking under uncertainty
were explored in [71] (for a different path to nontransitivedels for decision making
under risk and/or uncertainty, see [65, 67]).

It should be noticed that even the weakest form of these mpdel (18) without skew
symmetry, involves an addition operation. Therefore itnsurprising that the axiomatic
analysis of these models share some common features withdthigve value function
model (2). Indeed, except in the special case in whick 2, this case relating more
to ordinal than to conjoint measurement (see [72]), theousriaxiom systems that have
been proposed involve either:

e a denumerable set of cancellation conditions in the finite @,

¢ a finite number of cancellation conditions together withecessary structural as-
sumptions in the general case (these structural assursgiemerally allow us to
obtain nice uniqueness results for (18): the functiprare unique up to the multi-
plication by a common positive constant).
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A different path to the analysis of nontransitive conjoinéasurement models has
recently been proposed in [30, 29, 31]. In order to get arigeiior these various mod-
els, it is useful to consider the various strategies thatiket/ to be implemented when
comparing objects differing on several dimensions [40, 152, 175, 200, 203].

Consider two alternatives andy evaluated on a family of attributes so that =
(x1, T, ..., x,) @NAY = (y1,Y2, -, Yn)-

A first strategy that can be used in order to decide whetheobit tan be said that
“x is at least as good ag consists in trying to measure the “worth” of each altervati
on each attribute and then to combine these evaluationsiatédy Giving up all idea of
transitivity and completeness, this suggests a model ichwvhi

rZys Flu(zy), .. un(xn), u1(y1), - un(yn)) >0 (29)

where u; are real-valued functions on th&,; and F' is a real-valued function on
[T, w(X;)* Additional properties orf", e.g. its nondecreasingness (resp. nonincreas-
ingness) in its first (resp. last) arguments, will give rise to a variety of models imple-
menting this first strategy.

A second strategy relies on the idea of measuring “preferdifterences” separately
on each attribute and then combining these (positive ortivegalifferences in order to
know whether the aggregation of these differences leads @dsantage for over y.
More formally, this suggests a model in which:

z 2y G, 1), p2(@2,Y2), - - s Dn(Tns Yn)) = 0 (20)

wherep; are real-valued functions oki? andG is a real-valued function ofi[}"_, p;(X?).
Additional properties ord~ (e.g. its oddness or its nondecreasingness in each of iis arg
ments) or orp; (e.9.pi(z;, z;) = 0 or p;(z;,y;) = —pi(ys, z;)) will give rise to a variety
of models in line with the above strategy.

Of course these two strategies are not incompatible and ayearall consider using

the “worth” of each alternative on each attribute to meaSomreference differences”. This
suggests a model in which:

2y H(d(u(z),ur(v1)), -+ s Gn(un(@n), un(yn))) =0 (21)

whereu; are real-valued functions ak;, ¢; are real-valued functions an(X;)* and H
is a real-valued function ofi [\, &; (u;(X;)?).

The use of general functional forms, instead of additivespmggeatly facilitate the
axiomatic analysis of these models. It mainly relies on ttuelys of various kinds of
tracesinduced by the preference relation on coordinates and dateequire a detailed
analysis of tradeoffs between attributes.
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The price to pay for such an extension of the scope of conjoggsurement is that the
number of parameters that would be needed to assess suclsnsagigte high. Further-
more, none of them is likely to possess any remarkable uneggeproperties. Therefore,
although proofs are constructive, these results will ngé glirect hints on how to de-
vise assessment procedures. The general idea here is tamseical representations as
guidelines to understand the consequences of a limited euaflsancellation conditions,
without imposing any transitivity or completeness requieait on the preference relation
and any structural assumptions on the set of objects. Sudelsbave proved useful to:

e understand the ordinal character of some aggregation mpdeposed in the liter-
ature [170, 172], known as the “outranking methods” as shiovj&8],

e understand the links between aggregation models aimingrethéng a dominance
relation and more traditional conjoint measurement apgres [30],

e to include in a classical conjoint measurement framewookcompensatory pref-
erences in the sense of [22, 33, 55, 60, 61] as shown in [2832,
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