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Abstract. In this chapter, we present a new interactive procedure for multiobjec-
tive optimization, which is based on the use of a set of value functions as a preference
model built by an ordinal regression method. The procedure is composed of two al-
ternating stages. In the first stage, a representative sample of solutions from the
Pareto optimal set (or from its approximation) is generated. In the second stage,
the Decision Maker (DM) is asked to make pairwise comparisons of some solutions
from the generated sample. Besides pairwise comparisons, the DM may compare se-
lected pairs from the viewpoint of the intensity of preference, both comprehensively
and with respect to a single criterion. This preference information is used to build a
preference model composed of all general additive value functions compatible with
the obtained information. The set of compatible value functions is then applied on
the whole Pareto optimal set, which results in possible and necessary rankings of
Pareto optimal solutions. These rankings are used to select a new sample of solu-
tions, which is presented to the DM, and the procedure cycles until a satisfactory
solution is selected from the sample or the DM comes to conclusion that there is
no satisfactory solution for the current problem setting. Construction of the set of
compatible value functions is done using ordinal regression methods called UTAGMS

and GRIP. These two methods generalize UTA-like methods and they are competi-
tive to AHP and MACBETH methods. The interactive procedure will be illustrated
through an example.
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4.1 Introduction

Over the last decade, research on MultiObjective Optimization (MOO) has
been mainly devoted to generation of exact Pareto optimal solutions, or of an
approximation of the Pareto optimal set (also called Pareto Frontier – PF),
for problems with both combinatorial and multiple criteria structure. Only
little attention has been paid to the inclusion of Decision Maker’s (DM’s)
preferences in the generation process. MOO has been thus considered merely
from the point of view of mathematical programming, while limited work is
devoted to the point of view of decision aiding (see, however, Chapter 6 and
Chapter 7, where preference information is used in evolutionary multiobjective
optimization). There is no doubt, that the research about the inclusion of
preferences within MOO is not sufficient, and thus the link between MOO
and decision aiding should be strengthened. With this aim, in this chapter
we propose to use the ordinal regression paradigm as a theoretically sound
foundation for handling preference information in an interactive process of
solving MOO problems.

In the following, we assume that the interactive procedure explores the PF
of an MOO problem, however, it could be as well an approximation of this set.

The ordinal regression paradigm has been originally applied to multiple cri-
teria decision aiding in the UTA method (Jacquet-Lagrèze and Siskos, 1982).
This paradigm assumes construction of a criteria aggregation model compati-
ble with preference information elicited from the DM. In the context of MOO,
this information has the form of holistic judgments on a reference subset of
the PF. The criteria aggregation model built in this way, is a DM’s preference
model. It is applied on the whole PF to show how the PF solutions compare
between them using this model. The ordinal regression paradigm, gives a new
sense to the interaction with the DM. The preference information is collected
in a very easy way and concerns a small subset of PF solutions playing the
role of a training sample. Elicitation of holistic pairwise comparisons of some
solutions from the training sample, as well as comparisons of the intensity of
preferences between some selected pairs of solutions, require from the DM a
relatively small cognitive effort. The ordinal regression paradigm is also ap-
propriate for designing an interactive process of solving a MOO problem, as a
constructive learning process. This allows a DM to learn progressively about
his/her preferences and make revisions of his/her judgments in successive it-
erations.

Designing an interactive process in a constructive learning perspective is
based on the hypothesis that beyond the model definition, one of the promi-
nent roles of the interactive process is to build a conviction in the mind of the
DM on how solutions compare between them. Elaborating such a conviction
is grounded on two aspects: (1) the preexisting elements, such as the DM’s
value system, past experience related to the decision problem; and (2) the
elements of information presented to the DM in the dialogue stage, showing
how the preference information from the previous iterations induces compar-
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isons of PF solutions. In order to be more specific about the nature of the
constructive learning of preferences, it is important to say that there is a clear
feedback in the process. On one hand, the preference information provided
by the DM contributes to the construction of a preference model and, on the
other hand, the use of the preference model shapes the DM’s preferences or,
at least, makes the DM’s conviction evolve.

An interactive MOO procedure using the ordinal regression has been pro-
posed in (Jacquet-Lagrèze et al., 1987). The ordinal regression implemented in
this procedure is the same as in the UTA method, thus the preference model
being used is a single additive value function with piecewise-linear compo-
nents.

The interactive procedure proposed in this chapter is also based on ordinal
regression, however, it is quite different from the previous proposal because
it is using a preference model being a set of value functions, as considered in
UTAGMS and GRIP methods (Greco et al., 2003, 2008; Figueira et al., 2008).
The value functions have a general additive form and they are compatible
with preference information composed of pairwise comparisons of some solu-
tions, and comparisons of the intensities of preference between pairs of selected
solutions. UTAGMS and GRIP methods extend the original UTA method in
several ways: (1) all additive value functions compatible with the preference
information are taken into account, while UTA is using only one such a func-
tion; (2) the marginal value functions are general monotone non-decreasing
functions, and not only piecewise-linear ones, as in UTA. Moreover, the DM
can provide a preference information which can be less demanding than in
UTA (partial preorder of some solutions instead of a complete preorder), on
one hand, and richer than in UTA (comparison of intensities of preference
between selected pairs of solutions, e.g., the preference of a over b is stronger
than the one of c over b), on the other hand. Lastly, these methods provide as
results necessary rankings that express statements that hold for all compati-
ble value functions, and possible rankings that express statements which hold
for at least one compatible value function, respectively. The two extensions
of the UTA method appear to be very useful for organizing an interactive
search of the most satisfactory solution of a MOO problem – the interaction
with the DM is organized such that the preference information is provided
incrementally, with the possibility of checking the impact of particular pieces
of information on the preference structure of the PF.

The chapter is organized as follows. Section 4.2 is devoted to presenta-
tion of the general scheme of the constructive learning interactive procedure.
Section 4.3 provides a brief reminder on learning of one compatible additive
piecewise-linear value function for multiple criteria ranking problems using
the UTA method. In Section 4.4, the GRIP method is presented, which is
currently the most general of all UTA-like methods. GRIP is also competitive
to the current main methods in the field of multiple criteria decision aiding. In
particular, it is competitive to the AHP method (Saaty, 1980), which requires
pairwise comparisons of solutions and criteria, and yields a priority ranking
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of solutions. Then, GRIP is competitive to the MACBETH method (Bana e
Costa and Vansnick, 1994), which also takes into account a preference order
of solutions and intensity of preference for pairs of solutions. The preference
information used in GRIP does not need, however, to be complete: the DM
is asked to provide comparisons of only those pairs of selected solutions on
particular criteria for which his/her judgment is sufficiently certain. This is
an important advantage when comparing GRIP to methods which, instead,
require comparison of all possible pairs of solutions on all the considered crite-
ria. Section 4.5 presents an application of the proposed interactive procedure
for MOO; the possible pieces of preference information that can be consid-
ered in an interactive protocol are the following: ordinal pairwise comparisons
of selected PF solutions, and ordinal comparisons of intensities of preference
between selected pairs of PF solutions. In the last Section, some conclusions
and further research directions are provided.

4.2 Application of an Ordinal Regression Method within
a Multiobjective Interactive Procedure

In the following, we assume that the Pareto optimal set of a MOO problem
is generated prior to an interactive exploration of this set. Instead of the
whole and exact Pareto optimal set of a MOO problem, one can also consider
a proper representation of this set, or its approximation. In any case, an
interactive exploration of this set should lead the DM to a conviction that
either there is no satisfactory solution to the considered problem, or there
is at least one such a solution. We will focus our attention on the interactive
exploration, and the proposed interactive procedure will be valid for any finite
set of solutions to be explored. Let us denote this set by A. Note that such set
A can be computed using a MOO or EMO algorithm (see Chapters 1 and 3).

In the course of the interactive procedure, the preference information pro-
vided by the DM concerns a small subset of A, called reference or training
sample, and denoted by AR. The preference information is transformed by an
ordinal regression method into a DM’s preference model. We propose to use
at this stage the GRIP method, thus the preference model is a set of general
additive value functions compatible with the preference information. A com-
patible value function compares the solutions from the reference sample in
the same way as the DM. The obtained preference model is then applied on
the whole set A, which results in necessary and possible rankings of solutions.
These rankings are used to select a new sample of reference solutions, which
is presented to the DM, and the procedure cycles until a satisfactory solution
is selected from the sample or the DM comes to conclusion that there is no
satisfactory solution for the current problem setting.

The proposed interactive procedure is composed of the following steps:
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Step 1. Select a representative reference sample AR of solutions from
set A.

Step 2. Present the sample AR to the DM.

Step 3. If the DM is satisfied with at least one solution from the sam-
ple, then this is the most preferred solution and the procedure stops. The
procedure also stops in this step if, after several iterations, the DM con-
cludes that there is no satisfactory solution for the current problem setting.
Otherwise continue.

Step 4. Ask the DM to provide information about his/her preferences on
set AR in the following terms:
– pairwise comparison of some solutions from AR,
– comparison of intensities of comprehensive preferences between some

pairs of solutions from AR,
– comparison of intensities of preferences on single criteria between some

pairs of solutions from AR.
Step 5. Use the GRIP method to build a set of general additive value
functions compatible with the preference information obtained from the
DM in Step 4.

Step 6. Apply the set of compatible value functions built in Step 5 on
the whole set A, and present the necessary and possible rankings (see
sub-section 4.4.2) resulting from this application to the DM.

Step 7. Taking into account the necessary and possible rankings on set
A, let the DM select a new reference sample of solutions AR ⊆ A , and go
to Step 2.

In Step 4, the information provided by the DM may lead to a set of con-
straints which define an empty polyhedron of the compatible value functions.
In this case, the DM is informed what items of his/her preference informa-
tion make the polyhedron empty, so as to enable revision in the next round.
This point is explained in detail in (Greco et al., 2008; Figueira et al., 2008).
Moreover, information provided by the DM in Step 4 cannot be considered
as irreversible. Indeed, the DM can come back to one of previous iterations
and continue from this point. This feature is concordant with the spirit of
a learning oriented conception of multiobjective interactive optimization, i.e.
it confirms the idea that the interactive procedure permits the DM to learn
about his/her preferences and about the “shape” of the Pareto optimal set
(see Chapter 15).

Notice that the proposed approach allows to elicit incrementally preference
information by the DM. Remark that in Step 7, the “new” reference sample
AR is not necessarily different from the previously considered, however, the
preference information elicited by the DM in the next iteration is richer than
previously, due to the learning effect. This permits to build and refine progres-
sively the preference model: in fact, each new item of information provided
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in Step 4 reduces the set of compatible value functions and defines the DM’s
preferences more and more precisely.

Let us also observe that information obtained from the DM in Step 4 and
information given to the DM in Step 6 is composed of very simple and easy
to understand statements: preference comparisons in Step 4, and necessary
and possible rankings in Step 6 (i.e., a necessary ranking that holds for all
compatible value functions, and a possible ranking that holds for at least one
compatible value function, see sub-section 4.4.2). Thus, the nature of informa-
tion exchanged with the DM during the interaction is purely ordinal. Indeed,
monotonically increasing transformations of evaluation scales of considered
criteria have no influence on the final result.

Finally, observe that a very important characteristic of our method from
the point of view of learning is that the DM can observe the impact of in-
formation provided in Step 4 in terms of necessary and possible rankings of
solutions from set A.

4.3 The Ordinal Regression Method for Learning
One Compatible Additive Piecewise-Linear
Value Function

The preference information may be either direct or indirect, depending
whether it specifies directly values of some parameters used in the preference
model (e.g. trade-off weights, aspiration levels, discrimination thresholds, etc.)
or, whether it specifies some examples of holistic judgments from which com-
patible values of the preference model parameters are induced. Eliciting direct
preference information from the DM can be counterproductive in real-world
decision making situations because of a high cognitive effort required. Conse-
quently, asking directly the DM to provide values for the parameters seems to
make the DM uncomfortable. Eliciting indirect preference is less demanding
of the cognitive effort. Indirect preference information is mainly used in the
ordinal regression paradigm. According to this paradigm, a holistic preference
information on a subset of some reference or training solutions is known first
and then a preference model compatible with the information is built and
applied to the whole set of solutions in order to rank them.

The ordinal regression paradigm emphasizes the discovery of intentions as
an interpretation of actions rather than as a priori position, which was called
by March the posterior rationality (March, 1978). It has been known for at
least fifty years in the field of multidimensional analysis. It is also concordant
with the induction principle used in machine learning. This paradigm has
been applied within the two main Multiple Criteria Decision Aiding (MCDA)
approaches mentioned above: those using a value function as preference model
(Srinivasan and Shocker, 1973; Pekelman and Sen, 1974; Jacquet-Lagrèze and
Siskos, 1982; Siskos et al., 2005), and those using an outranking relation as
preference model (Kiss et al., 1994; Mousseau and Slowinski, 1998). This
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paradigm has also been used since mid nineties’ in MCDA methods involving
a new, third family of preference models - a set of dominance decision rules in-
duced from rough approximations of holistic preference relations (Greco et al.,
1999, 2001, 2005; Słowiński et al., 2005).

Recently, the ordinal regression paradigm has been revisited with the aim
of considering the whole set of value functions compatible with the preference
information provided by the DM, instead of a single compatible value function
used in UTA-like methods (Jacquet-Lagrèze and Siskos, 1982; Siskos et al.,
2005). This extension has been implemented in a method called UTAGMS

(Greco et al., 2003, 2008), further generalized in another method called GRIP
(Figueira et al., 2008). UTAGMS and GRIP are not revealing to the DM one
compatible value function, but they are using the whole set of compatible
(general, not piecewise-linear only) additive value functions to set up a nec-
essary weak preference relation and a possible weak preference relation in the
whole set of considered solutions.

4.3.1 Concepts: Definitions and Notation

We are considering a multiple criteria decision problem where a finite set of so-
lutions A = {x, . . . , y, . . . w, . . .} is evaluated on a family F = {g1, g2, . . . , gn}
of n criteria. Let I = {1, 2, . . . , n} denote the set of criteria indices. We as-
sume, without loss of generality, that the greater gi(x), the better solution x
on criterion gi, for all i ∈ I, x ∈ A. A DM is willing to rank the solutions of A
from the best to the worst, according to his/her preferences. The ranking can
be complete or partial, depending on the preference information provided by
the DM and on the way of exploiting this information. The family of criteria
F is supposed to satisfy consistency conditions, i.e. completeness (all relevant
criteria are considered), monotonicity (the better the evaluation of a solution
on the considered criteria, the more it is preferable to another), and non-
redundancy (no superfluous criteria are considered), see (Roy and Bouyssou,
1993).

Such a decision-making problem statement is called multiple criteria rank-
ing problem. It is known that the only information coming out from the for-
mulation of this problem is the dominance ranking. Let us recall that in the
dominance ranking, solution x ∈ A is preferred to solution y ∈ A if and only
if gi(x) ≥ gi(y) for all i ∈ I, with at least one strict inequality. Moreover, x is
indifferent to y if and only if gi(x) = gi(y) for all i ∈ I. Hence, for any pair
of solutions x, y ∈ A, one of the four situations may arise in the dominance
ranking: x is preferred to y, y is preferred to x, x is indifferent to y, or x is
incomparable to y. Usually, the dominance ranking is very poor, i.e. the most
frequent situation is: x incomparable to y.

In order to enrich the dominance ranking, the DM has to provide prefer-
ence information which is used to construct an aggregation model making the
solutions more comparable. Such an aggregation model is called preference
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model. It induces a preference structure on set A, whose proper exploitation
permits to work out a ranking proposed to the DM.

In what follows, the evaluation of each solution x ∈ A on each criterion
gi ∈ F will be denoted either by gi(x) or xi.

Let Gi denote the value set (scale) of criterion gi, i ∈ I. Consequently,

G =
n∏

i=1

Gi

represents the evaluation space, and x ∈ G denotes a profile of a solution in
such a space. We consider a weak preference relation � on A which means,
for each pair of solutions x, y ∈ A,

x � y ⇔ “x is at least as good as y” .

This weak preference relation can be decomposed into its asymmetric and
symmetric parts, as follows,

1) x � y ≡ [x � y and not(y � x)] ⇔ “x is preferred to y”, and
2) x ∼ y ≡ [x � y and y � x] ⇔ “x is indifferent to y”.

From a pragmatic point of view, it is reasonable to assume that Gi ⊆ R, for
i = 1, . . . , n. More specifically, we will assume that the evaluation scale on
each criterion gi is bounded, such that Gi = [αi, βi], where αi, βi, αi < βi are
the worst and the best (finite) evaluations, respectively. Thus, gi : A → Gi,
i ∈ I. Therefore, each solution x ∈ A is associated with an evaluation solution
denoted by g(x) = (x1, x2, . . . , xn) ∈ G.

4.3.2 The UTA Method for a Multiple Criteria Ranking Problem

In this sub-section, we recall the principle of the ordinal regression via linear
programming, as proposed in the original UTA method, see (Jacquet-Lagrèze
and Siskos, 1982).

Preference Information

The preference information is given in the form of a complete preorder on
a subset of reference solutions AR ⊆ A (where |AR| = p), called reference
preorder. The reference solutions are usually those contained in set A for
which the DM is able to express holistic preferences. Let AR = {a, b, c, . . .} be
the set of reference solutions.
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An Additive Model

The additive value function is defined on A such that for each g(x) ∈ G,

U(g(x)) =
n∑

i=1

ui(gi(xi)), (4.1)

where, ui are non-decreasing marginal value functions, ui : Gi → R, i ∈ I.
For the sake of simplicity, we shall write (4.1) as follows,

U(x) =
n∑

i=1

ui(xi). (4.2)

In the UTA method, the marginal value functions ui are assumed to be
piecewise-linear functions. The ranges [αi, βi] are divided into γi ≥ 1 equal
sub-intervals,

[x0
i , x

1
i ], [x

1
i , x

2
i ], . . . , [x

γi−1
i , xγi

i ]

where,

xj
i = αi +

j

γi
(βi − αi), j = 0, . . . , γi, and i ∈ I.

The marginal value of a solution x ∈ A is obtained by linear interpolation,

ui(x) = ui(x
j
i ) +

xi − xj
i

xj+1
i − xj

i

(ui(x
j+1
i )− ui(x

j
i )), for xi ∈ [xj

i , x
j+1
i ]. (4.3)

The piecewise-linear additive model is completely defined by the marginal
values at the breakpoints, i.e. ui(x0

i ) = ui(αi), ui(x1
i ), ui(x2

i ), ..., ui(x
γi

i ) =
ui(βi).

In what follows, the principle of the UTA method is described as it was
recently presented by Siskos et al. (2005).

Therefore, a value function U(x) =
∑n

i=1 ui(xi) is compatible if it satisfies
the following set of constraints

U(a) > U(b)⇔ a � b
U(a) = U(b)⇔ a ∼ b

}

∀ a, b ∈ AR

ui(x
j+1
i )− ui(x

j
i ) ≥ 0, i = 1, ..., n, j = 1, ..., γi − 1

ui(αi) = 0, i = 1, ..., n∑n
i=1 ui(βi) = 1

(4.4)

Checking for Compatible Value Functions through Linear
Programming

To verify if a compatible value function U(x) =
∑n

i=1 ui(xi) restoring the
reference preorder � on AR exists, one can solve the following linear pro-
gramming problem, where ui(x

j
i ), i = 1, ..., n, j = 1, ..., γi, are unknown, and

σ+(a), σ−(a) (a ∈ AR) are auxiliary variables:
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Min→ F =
∑

a∈AR (σ+(a) + σ−(a))
s.t.

U(a) + σ+(a)− σ−(a) ≥
U(b) + σ+(b)− σ−(b) + ε ⇔ a � b

U(a) + σ+(a)− σ−(a) =
U(b) + σ+(b)− σ−(b) ⇔ a ∼ b

⎫
⎪⎪⎬

⎪⎪⎭

∀a, b ∈ AR

ui(x
j+1
i )− ui(x

j
i ) ≥ 0, i = 1, ..., n, j = 1, ..., γi − 1

ui(αi) = 0, i = 1, ..., n∑n
i=1 ui(βi) = 1

σ+(a), σ−(a) ≥ 0, ∀a ∈ AR

(4.5)

where, ε is an arbitrarily small positive value so that U(a)+σ+(a)−σ−(a) >
U(b) + σ+(b)− σ−(b) in case of a � b.

If the optimal value of the objective function of program (4.5) is equal to
zero (F ∗ = 0), then there exists at least one value function U(x) =

∑n
i=1 ui(xi)

satisfying (4.4), i.e. compatible with the reference preorder on AR. In other
words, this means that the corresponding polyhedron (4.4) of feasible solutions
for ui(x

j
i ), i = 1, ..., n, j = 1, ..., γi, is not empty.

Let us remark that the transition from the preorder � to the marginal value
function exploits the ordinal character of the criterion scale Gi. Note, however,
that the scale of the marginal value function is a conjoint interval scale. More
precisely, for the considered additive value function U(x) =

∑n
i=1 ui(xi), the

admissible transformations on the marginal value functions ui(xi) have the
form u∗

i (xi) = k × ui(xi) + hi, hi ∈ R, i = 1, . . . , n, k > 0, such that for all
[x1, ..., xn], [y1, ..., yn] ∈ G

n∑

i=1

ui(xi) ≥
n∑

i=1

ui(yi)⇔
n∑

i=1

u∗
i (xi) ≥

n∑

i=1

u∗
i (yi).

An alternative way of representing the same preference model is:

U(x) =
n∑

i=1

wiûi(x), (4.6)

where û(αi) = 0, û(βi) = 1, wi ≥ 0 i = 1, 2, . . . , n and
∑n

i=1 wi = 1. Note
that the correspondence between (4.6) and (4.2) is such that wi = ui(βi), ∀i ∈
G. Due to the cardinal character of the marginal value function scale, the
parameters wi can be interpreted as tradeoff weights among marginal value
functions ûi(x). We will use, however, the preference model (4.2) with nor-
malization constraints bounding U(x) to the interval [0, 1].

When the optimal value of the objective function of the program (4.5) is
greater than zero (F ∗ > 0), then there is no value function U(x) =

∑n
i=1 ui(xi)

compatible with the reference preorder on AR. In such a case, three possible
moves can be considered:
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• increasing the number of linear pieces γi for one or several marginal value
function ui could make it possible to find an additive value function com-
patible with the reference preorder on AR;

• revising the reference preorder on AR could lead to find an additive value
function compatible with the new preorder;

• searching over the relaxed domain F ≤ F ∗ + η could lead to an additive
value function giving a preorder on AR sufficiently close to the reference
preorder (in the sense of Kendall’s τ).

4.4 The Ordinal Regression Method for Learning the
Whole Set of Compatible Value Functions

Recently, two new methods, UTAGMS (Greco et al., 2008) and GRIP (Figueira
et al., 2008), have generalized the ordinal regression approach of the UTA
method in several aspects:

• taking into account all additive value functions (4.1) compatible with the
preference information, while UTA is using only one such function,

• considering marginal value functions of (4.1) as general non-decreasing
functions, and not piecewise-linear, as in UTA,

• asking the DM for a ranking of reference solutions which is not necessarily
complete (just pairwise comparisons),

• taking into account additional preference information about intensity of
preference, expressed both comprehensively and with respect to a single
criterion,

• avoiding the use of the exogenous, and not neutral for the result, parameter
ε in the modeling of strict preference between solutions.

UTAGMS produces two rankings on the set of solutions A, such that for any
pair of solutions a, b ∈ A:

• in the necessary ranking, a is ranked at least as good as b if and only
if, U(a) ≥ U(b) for all value functions compatible with the preference
information,

• in the possible ranking, a is ranked at least as good as b if and only if,
U(a) ≥ U(b) for at least one value function compatible with the preference
information.

GRIP produces four more necessary and possible rankings on the set of solu-
tions A×A as it can bee seen in sub-section 4.4.2.

The necessary ranking can be considered as robust with respect to the
preference information. Such robustness of the necessary ranking refers to the
fact that any pair of solutions compares in the same way whatever the additive
value function compatible with the preference information. Indeed, when no
preference information is given, the necessary ranking boils down to the weak
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dominance relation (i.e., a is necessarily at least as good as b, if gi(a) ≥ gi(b)
for all gi ∈ F ), and the possible ranking is a complete relation. Every new
pairwise comparison of reference solutions, for which the dominance relation
does not hold, is enriching the necessary ranking and it is impoverishing the
possible ranking, so that they converge with the growth of the preference
information.

Moreover, such an approach has another feature which is very appealing
in the context of MOO. It stems from the fact that it gives space for inter-
activity with the DM. Presentation of the necessary ranking, resulting from
a preference information provided by the DM, is a good support for gener-
ating reactions from part of the DM. Namely, (s)he could wish to enrich the
ranking or to contradict a part of it. Such a reaction can be integrated in the
preference information considered in the next calculation stage.

The idea of considering the whole set of compatible value functions was
originally introduced in UTAGMS. GRIP (Generalized Regression with Inten-
sities of Preference) can be seen as an extension of UTAGMS permitting to
take into account additional preference information in form of comparisons
of intensities of preference between some pairs of reference solutions. For so-
lutions x, y, w, z ∈ A, these comparisons are expressed in two possible ways
(not exclusive): (i) comprehensively, on all criteria, like “x is preferred to y
at least as much as w is preferred to z”; and, (ii) partially, on each criterion,
like “x is preferred to y at least as much as w is preferred to z, on criterion
gi ∈ F ”. Although UTAGMS was historically the first method among the two,
as GRIP incorporates and extends UTAGMS, in the following we shall present
only GRIP.

4.4.1 The Preference Information Provided by the Decision Maker

The DM is expected to provide the following preference information in the
dialogue stage of the procedure:

• A partial preorder � on AR whose meaning is: for some x, y ∈ AR

x � y ⇔ “x is at least as good as y”.

Moreover,� (preference) is the asymmetric part of �, and ∼ (indifference)
is its symmetric part.

• A partial preorder �∗ on AR × AR, whose meaning is: for some x, y, w,
z ∈ AR,

(x, y) �∗ (w, z) ⇔ “x is preferred to y at least as much as w is preferred
to z”.

Also in this case, �∗ is the asymmetric part of �∗, and ∼∗ is its symmetric
part.

• A partial preorder �∗
i on AR×AR, whose meaning is: for some x, y, w, z ∈

AR, (x, y) �∗
i (w, z)⇔ “x is preferred to y at least as much as w is preferred

to z” on criterion gi, i ∈ I.
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In the following, we also consider the weak preference relation �i being a
complete preorder whose meaning is: for all x, y ∈ A,

x �i y ⇔ “x is at least as good as y” on criterion gi, i ∈ I.

Weak preference relations �i, i ∈ I, are not provided by the DM, but they
are obtained directly from the evaluation of solutions x and y on criteria gi,
i.e., x �i y ⇔ gi(x) ≥ gi(y), i ∈ I.

4.4.2 Necessary and Possible Binary Relations in Set A and in Set
A × A

When there exists at least one value function compatible with the preference
information provided by the DM, the method produces the following rankings:

- a necessary ranking �N , for all pairs of solutions (x, y) ∈ A×A;
- a possible ranking �P , for all pairs of solutions (x, y) ∈ A×A;
- a necessary ranking �∗N

, with respect to the comprehensive intensities of
preferences for all ((x, y), (w, z)) ∈ A×A×A×A;

- a possible ranking �∗P

, with respect to the comprehensive intensities of
preferences for all ((x, y), (w, z)) ∈ A×A×A×A;

- a necessary ranking �∗N

i , with respect to the partial intensities of pref-
erences for all ((x, y), (w, z)) ∈ A × A × A × A and for all criteria gi,
i ∈ I;

- a possible ranking �∗P

i , with respect to the partial intensities of prefer-
ences for all ((x, y), (w, z)) ∈ A×A×A×A and for all criteria gi, i ∈ I.

4.4.3 Linear Programming Constraints

In this sub-section, we present a set of constraints that interprets the prefer-
ence information in terms of conditions on the compatible value functions.

To be compatible with the provided preference information, the value func-
tion U : A → [0, 1] should satisfy the following constraints corresponding to
DM’s preference information:

a) U(w) > U(z) if w � z
b) U(w) = U(z) if w ∼ z
c) U(w)− U(z) > U(x)− U(y) if (w, z) �∗ (x, y)
d) U(w)− U(z) = U(x)− U(y) if (w, z) ∼∗ (x, y)
e) ui(w) ≥ ui(z) if w �i z, i ∈ I
f) ui(w)− ui(z) > ui(x) − ui(y) if (w, z) �∗

i (x, y), i ∈ I
g) ui(w)− ui(z) = ui(x) − ui(y) if (w, z) ∼∗

i (x, y), i ∈ I

Let us remark that within UTA-like methods, constraint a) is written as
U(w) ≥ U(z) + ε, where ε > 0 is a threshold exogenously introduced. Analo-
gously, constraints c) and f) should be written as,
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U(w)− U(z) ≥ U(x) − U(y) + ε

and
ui(w)− ui(z) ≥ ui(x) − ui(y) + ε.

However, we would like to avoid the use of any exogenous parameter and,
therefore, instead of setting an arbitrary value of ε, we consider it as an
auxiliary variable, and we test the feasibility of constraints a), c), and f)
(see sub-section 4.4.4). This permits to take into account all possible value
functions, even those having a very small preference threshold ε. This is also
safer from the viewpoint of “objectivity” of the used methodology. In fact, the
value of ε is not meaningful in itself and it is useful only because it permits
to discriminate preference from indifference.

Moreover, the following normalization constraints should also be taken
into account:

h) ui(x∗
i ) = 0, where x∗

i is such that x∗
i = min{gi(x) : x ∈ A};

i)
∑

i∈I ui(y∗
i ) = 1, where y∗

i is such that y∗
i = max{gi(x) : x ∈ A}.

4.4.4 Computational Issues

In order to conclude the truth or falsity of binary relations �N , �P , �∗N

,
�∗P

, �∗N

i and �∗P

i , we have to take into account that, for all x, y, w, z ∈ A
and i ∈ I:

1) x �N y ⇔ inf
{

U(x)− U(y)
}
≥ 0,

2) x �P y ⇔ inf
{
U(y)− U(x)

}
≤ 0,

3) (x, y) �∗N

(w, z)⇔ inf
{(

U(x)− U(y)
)
−
(
U(w)− U(z)

)}
≥ 0,

4) (x, y) �∗P

(w, z)⇔ inf
{(

U(w)− U(z)
)
−
(
U(x)− U(y)

)}
≤ 0,

5) (x, y) �∗N

i (w, z)⇔ inf
{(

ui(xi)− ui(yi)
)
−
(
ui(wi)− ui(zi)

)}
≥ 0,

6) (x, y) �∗P

i (w, z)⇔ inf
{(

ui(wi)− ui(zi)
)
−
(
ui(xi)− ui(yi)

)}
≤ 0,

with the infimum calculated on the set of value functions satisfying constraints
from a) to i). Let us remark, however, that the linear programming is not able
to handle strict inequalities such as the above a), c), and f). Moreover, linear
programming permits to calculate the minimum or the maximum of an ob-
jective function and not an infimum. Nevertheless, reformulating properly the
above properties 1) to 6), a result presented in (Marichal and Roubens, 2000)
permits to use linear programming for testing the truth of binary relations,
�N , �P , �∗N

, �∗P

, �∗N

i and �∗P

i .
In order to use such a result, constraints a), c) and f) have to be reformu-

lated as follows:
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a′) U(x) ≥ U(y) + ε if x � y;
c′) U(x)− U(y) ≥ U(w) − U(z) + ε if (x, y) �∗ (w, z);
f ′) ui(x)− ui(y) ≥ ui(w)− ui(z) + ε if (x, y) �∗

i (w, z).

Notice that constraints a), c) and f) are equivalent to a′), c′), and f ′) whenever
ε > 0.

After properties 1) − 6) have to be reformulated such that the search of
the infimum is replaced by the calculation of the maximum value of ε on the
set of value functions satisfying constraints from a) to i), with constraints a),
c), and f) transformed to a′), c′), and f ′), plus constraints specific for each
point:

1′) x �P y ⇔ ε∗ > 0,
where ε∗ = max ε, subject to the constraints a′), b), c′), d), e), f ′), plus
the constraint U(x) ≥ U(y);

2′) x �N y ⇔ ε∗ ≤ 0,
where ε∗ = max ε, subject to the constraints a′), b), c′), d), e), f ′), plus
the constraint U(y) ≥ U(x) + ε;

3′) (x, y) �∗P

(w, z)⇔ ε∗ > 0,
where ε∗ = max ε, subject to the constraints a′), b), c′), d), e), f ′), plus
the constraint

(
(U(x) − U(y)

)
−
(
U(w)− U(z))

)
≥ 0;

4′) (x, y) �∗N

(w, z)⇔ ε∗ ≤ 0,
where ε∗ = max ε, subject to the constraints a′), b), c′), d), e), f ′), plus
the constraint

(
(U(w) − U(z)

)
−
(
U(x) − U(y))

)
≥ ε;

5′) (x, y) �∗P

i (w, z)⇔ ε∗ > 0,
where ε∗ = max ε, subject to the constraints a′), b), c′), d), e), f ′), plus
the constraint

(
ui(xi)− ui(yi)

)
−
(
ui(wi)− ui(zi)

)
≥ 0;

6′) (x, y) �∗N

i (w, z)⇔ ε∗ ≤ 0,
where ε∗ = max ε, subject to the constraints a′), b), c′), d), e), f ′), plus
the constraint

(
(ui(wi)− ui(zi)

)
−
(
ui(xi)− ui(yi)

)
≥ ε.

4.4.5 Comparison of GRIP with the Analytical Hierarchy Process

In AHP (Saaty, 1980, 2005), criteria should be compared pairwise with re-
spect to their importance. Actions (solutions) are also compared pairwise on
particular criteria with respect to intensity of preference. The following nine
point scale of preference is used: 1 - equal importance, 3 - moderate impor-
tance, 5 - strong importance, 7 - very strong or demonstrated importance, and
9 - extreme importance. 2, 4, 6 and 8 are intermediate values between the two
adjacent judgements. The intensity of importance of criterion gi over criterion
gj is the inverse of the intensity of importance of gj over gi. Analogously, the
intensity of preference of action x over action y is the inverse of the intensity
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of preference of y over x. The above scale is a ratio scale. Therefore, the in-
tensity of importance is read as the ratio of weights wi and wj corresponding
to criteria gi and gj, and the intensity of preference is read as the ratio of the
attractiveness of x and the attractiveness of y, with respect to the considered
criterion gi. In terms of value functions, the intensity of preference can be
interpreted as the ratio ui(gi(x))

ui(gi(y)) . Thus, the problem is how to obtain values
of wi and wj from ratio wi

wj
, and values of ui(gi(x)) and ui(gi(y)) from ratio

ui(gi(x))
ui(gi(y)) .

In AHP, it is proposed that these values are supplied by principal eigenvec-
tors of matrices composed of the ratios wi

wj
and ui(gi(x))

ui(gi(y)) . The marginal value
functions ui(gi(x)) are then aggregated by means of a weighted-sum using the
weights wi.

Comparing AHP with GRIP, we can say that with respect to a single cri-
terion, the type of questions addressed to the DM is the same: express the
intensity of preference in qualitative-ordinal terms (equal, moderate, strong,
very strong, extreme). However, differently from GRIP, this intensity of pref-
erence is translated into quantitative terms (the scale from 1 to 9) in a quite
arbitrary way. In GRIP, instead, the marginal value functions are just a nu-
merical representation of the original qualitative-ordinal information, and no
intermediate transformation into quantitative terms is exogenously imposed.

Other differences between AHP and GRIP are related to the following
aspects.

1) In GRIP, the value functions ui(gi(x)) depend mainly on holistic judge-
ments, i.e. comprehensive preferences involving jointly all the criteria,
while this is not the case in AHP.

2) In AHP, the weights wi of criteria gi are calculated on the basis of pairwise
comparisons of criteria with respect to their importance; in GRIP, this is
not the case, because the value functions ui(gi(x)) are expressed on the
same scale and thus they can be summed up without any further weighting.

3) In AHP, all non-ordered pairs of actions must be compared from the view-
point of the intensity of preference with respect to each particular criterion.
Therefore, if m is the number of actions, and n the number of criteria, then
the DM has to answer n× m×(m−1)

2 questions. Moreover, the DM has to
answer questions relative to n×(n−1)

2 pairwise comparisons of considered
criteria with respect to their importance. This is not the case in GRIP,
which accepts partial information about preferences in terms of pairwise
comparison of some reference actions. Finally, in GRIP there is no question
about comparison of relative importance of criteria.

As far as point 2) is concerned, observe that the weights wi used in AHP rep-
resent tradeoffs between evaluations on different criteria. For this reason it is
doubtful if they could be inferred from answers to questions concerning com-
parison of importance. Therefore, AHP has a problem with meaningfulness of
its output with respect to its input, and this is not the case of GRIP.
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4.4.6 Comparison of GRIP with MACBETH

MACBETH (Measuring Attractiveness by a Categorical Based Evaluation
TecHnique) (Bana e Costa and Vansnick, 1994; Bana e Costa et al., 2005)
is a method for multiple criteria decision analysis that appeared in the early
nineties. This approach requires from the DM qualitative judgements about
differences of value to quantify the relative attractiveness of actions (solutions)
or criteria.

When using MACBETH, the DM is asked to provide preference infor-
mation composed of a strict order of all actions from A, and a qualitative
judgement of the difference of attractiveness between all two non-indifferent
actions. Seven semantic categories of the difference of attractiveness are con-
sidered: null, very weak, weak, moderate, strong, very strong, and extreme.
The difference of attractiveness reflects the intensity of preferences.

The main idea of MACBETH is to build an interval scale from the pref-
erence information provided by the DM. It is, however, necessary that the
above categories correspond to disjoint intervals (represented in terms of the
real numbers). The bounds for such intervals are not arbitrarily fixed a priori,
but they are calculated so as to be compatible with the numerical values of all
particular actions from A, and to ensure compatibility between these values
(see Bana e Costa et al. 2005). Linear programming models are used for these
calculations. In case of inconsistent judgments, MACBETH provides the DM
with information in order to eliminate such inconsistency.

When comparing MACBETH with GRIP, the following aspects should be
considered:

• both deal with qualitative judgements;
• both need a set of comparisons of actions or pairs of actions to work out a

numerical representation of preferences, however, MACBETH depends on
the specification of two characteristic levels on the original scale, “neutral”
and “good”, to obtain the numerical representation of preferences, while
GRIP does not need this information;

• GRIP adopts the “disaggregation-aggregation” approach and, therefore,
it considers mainly holistic judgements relative to comparisons involving
jointly all the criteria, which is not the case of MACBETH;

• GRIP is more general than MACBETH since it can take into account
the same kind of qualitative judgments as MACBETH (the difference of
attractiveness between pairs of actions) and, moreover, the intensity of
preferences of the type “x is preferred to y at least as much as z is preferred
to w”.

As for the last item, it should be noticed that the intensity of preference
considered in MACBETH and the intensity coming from comparisons of the
type “x is preferred to y at least as strongly as w is preferred to z” (i.e., the
quaternary relation �∗) are substantially the same. In fact, the intensities of
preference are equivalence classes of the preorder generated by �∗. This means
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that all the pairs (x, y) and (w, z), such that x is preferred to y with the same
intensity as w is preferred to z, belong to the same semantic category of
difference of attractiveness considered in MACBETH. To be more precise, the
structure of intensity of preference considered in MACBETH is a particular
case of the structure of intensity of preference represented by �∗ in GRIP. Still
more precisely, GRIP has the same structure of intensity as MACBETH when
�∗ is a complete preorder. When this does not occur, MACBETH cannot be
used while GRIP can naturally deal with this situation.

Comparison of GRIP and MACBETH could be summarized in the follow-
ing points:

1. GRIP is using preference information relative to: 1) comprehensive prefer-
ence on a subset of reference actions with respect to all criteria, 2) marginal
intensity of preference on some single criteria, and 3) comprehensive inten-
sity of preference with respect to all criteria, while MACBETH requires
preference information on all pairs of actions with respect to each one of
the considered criteria.

2. Information about marginal intensity of preference is of the same nature
in GRIP and MACBETH (equivalence classes of relation �∗

i correspond
to qualitative judgements of MACBETH), but in GRIP it may not be
complete.

3. GRIP is a “disaggregation-aggregation” approach while MACBETH makes
use of the “aggregation” approach and, therefore, it needs weights to ag-
gregate evaluations on the criteria.

4. GRIP works with all compatible value functions, while MACBETH builds
a single interval scale for each criterion, even if many such scales would
be compatible with preference information.

5. Distinguishing necessary and possible consequences of using all value func-
tions compatible with preference information, GRIP includes a kind of
robustness analysis instead of using a single “best-fit” value function.

6. The necessary and possible preference relations considered in GRIP have
several properties of general interest for MCDA.

4.5 An Illustrative Example

In this section, we illustrate how our approach can support the DM to specify
his/her preferences on a set of Pareto optimal solutions. In this didactic ex-
ample, we shall imagine an interaction with a fictitious DM so as to exemplify
and illustrate the type of interaction proposed in our method.

We consider a MOO problem that involves five objectives that are to be
maximized. Let us consider a subset A of the Pareto Frontier of a MOO
problem consisting of 20 solutions (see Table 4.1). Note that this set A can
be computed using a MOO or EMO algorithm (see Chapters 2 and 3). Let us
suppose that the reference sample AR of solutions from set A is the following:
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Table 4.1. The whole set of Pareto optimal solutions for the example MOO problem

s1 = (14.5, 147, 4, 1014, 5.25) s11 = (15.75, 164.375, 41.5, 311, 6.5)
s2 = (13.25, 199.125, 4, 1014, 4) s12 = (13.25, 181.75, 41.5, 311, 4)
s3 = (15.75, 164.375, 16.5, 838.25, 5.25) s13 = (12, 199.125, 41.5, 311, 2.75)
s4 = (12, 181.75, 16.5, 838.25, 4) s14 = (17, 147, 16.5, 662.5, 5.25)
s5 = (12, 164.375, 54, 838.25, 4) s15 = (15.75, 199.125, 16.5, 311, 6.5)
s6 = (13.25, 199.125, 29, 662.5, 5.25) s16 = (13.25, 164.375, 54, 311, 4)
s7 = (13.25, 147, 41.5, 662.5, 5.25) s17 = (17, 181.75, 16.5, 486.75, 5.25)
s8 = (17, 216.5, 16.5, 486.75, 1.5) s18 = (14.5, 164.375, 41.5, 838.25, 4)
s9 = (17, 147, 41.5, 486.75, 5.25) s19 = (15.75, 181.75, 41.5, 135.25, 5.25)
s10 = (15.75, 216.5, 41.5, 662.5, 1.5) s20 = (15.75, 181.75, 41.5, 311, 2.75)

AR = {s1, s2, s4, s5, s8, s10}. For the sake of simplicity, we shall consider the
set AR constant across iterations (although the interaction scheme permits AR

to evolve during the process). For the same reason, we will suppose that the
DM expresses preference information only in terms of pairwise comparisons
of solutions from AR (intensity of preference will not be expressed in the
preference information).

The DM does not see any satisfactory solution in the reference sample AR

(s1, s2, s4 and s5 have too weak evaluations on the first criterion, while s8

and s10 have the worst evaluation in A on the last criterion), and wishes to
find a satisfactory solution in A. Obviously, solutions in A are not comparable
unless preference information is expressed by the DM. In this perspective,
he/she provides a first comparison: s1 � s2.

Considering the provided preference information, we can compute the
necessary and possible rankings on set A (computation of this example were
performed using the GNU-UTA software package (Chakhar and Mousseau,
2007); note that the UTAGMS and GRIP methods are also implemented in
the Decision Deck software platform (Consortium, 2008)). The DM decided to
consider the necessary ranking only, as it has more readable graphical repre-
sentation than the possible ranking at the stage of relatively poor preference
information. The partial preorder of the necessary ranking is depicted in Fig.
4.1 and shows the comparisons that hold for all additive value functions com-
patible with the information provided by the DM (i.e., s1 � s2). It should be
observed that the computed partial preorder contains the preference informa-
tion provided by the DM (dashed arrow), but also additional comparisons that
result from the initial information (continuous arrows); for instance, s3 �N s4

holds because U(s3) ≥ U(s4) for each compatible value function (this gives
s3 �N s4) and U(s3) > U(s4) for at least one value function (this gives
not(s4 �N s3)).

Analyzing this first result, the DM observes that the necessary ranking is
still very poor which makes it difficult to discriminate among the solutions
in A. He/she reacts by stating that s4 is preferred to s5. Considering this
new piece of preference information, the necessary ranking is computed again
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Fig. 4.1. Necessary partial ranking at the first iteration

and shown in Fig. 4.2. At this second iteration, it should be observed that
the resulting necessary ranking has been enriched as compared to the first
iteration (bold arrows), narrowing the set of “best choices”, i.e., solutions that
are not preferred by any other solution in the necessary ranking: {s1, s3, s6,
s8, s10, s14, s15, s17, s18, s19, s20 }.

Fig. 4.2. Necessary partial ranking at the second iteration

The DM believes that this necessary ranking is still insufficiently decisive
and adds a new comparison: s8 is preferred to s10. Once again, the necessary
ranking is computed and shown in Fig. 4.3.

At this stage, the set of possible “best choices” has been narrowed down to
a limited number of solutions, among which s14 and s17 are judged satisfactory
by the DM. In fact, these two solutions have a very good performance on the
first criterion without any “dramatic” evaluation on the other criteria.



4 Interactive MOO Using a Set of Additive Value Functions 117

Fig. 4.3. Necessary partial ranking at the third iteration

The current example stops at this step, but the DM could then decide to
provide further preference information to enrich the necessary ranking. He/she
could also compute new Pareto optimal solutions “close” to s14 and s17 to zoom
investigations in this area. In this example we have shown that the proposed
interactive process supports the DM in choosing most satisfactory solutions,
without imposing any strong cognitive effort, as the only information required
is a holistic preference information.

4.6 Conclusions and Further Research Directions

In this chapter, we introduced a new interactive procedure for multiobjective
optimization. It consists in an interactive exploration of a Pareto optimal set,
or its approximation, generated prior to the exploration using a MOO or EMO
algorithm. The procedure represents a constructive learning approach, because
on one hand, the preference information provided by the DM contributes to
the construction of a preference model and, on the other hand, the use of
the preference model shapes the DM’s preferences or, at least, makes DM’s
convictions evolve.

Contrary to many existing MCDA methods, the proposed procedure does
not require any excessive cognitive effort from the DM because the preference
information is of a holistic nature and, moreover, it can be partial. Due to dis-
tinguishing necessary and possible consequences of using all value functions
compatible with the preference information, the procedure is also robust, com-
paring to methods using a single “best-fit” value function. This is a feature of
uttermost importance in MOO.
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An almost immediate extension of the procedure could consist in admitting
preference information in form of a sorting of selected Pareto optimal solu-
tions into some pre-defined and preference ordered classes. Providing such an
information could be easier for some DMs than making the pairwise compar-
isons.
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