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Abstract. Given afinite set of alternatives, the sorting problem consists in the assignment of each
alternative to one of the pre-defined categories. In this paper, we are interested in multiple criteria
sorting problems and, more precisely, in the existing method ELECTRE TRI. This method requires
theelicitation of parameters (weights, thresholds, category limits,...) in order to construct the Decision
Maker's (DM) preference model. A direct elicitation of these parameters being rather difficult, we
proceed to solve this problem in a way that requires from the DM much less cognitive effort. We
elicit these parameters indirectly using holistic information given by the DM through assignment
examples. We propose an interactive approach that infers the parameters of an ELECTRE TRI model
from assignment examples. The determination of an ELECTRE TRI model that best restitutes the
assignment examples is formulated through an optimization problem. The interactive aspect of this
approach liesin the possibility given to the DM to revise his’her assignment examples and/or to give
additional information before the optimization phase restarts.

Key words. Multiple criteria decision aid, sorting problem, ELECTRE TRI method, parameters
elicitation, inference procedure, optimization.

1. Introduction

When modeling areal world decision problem using multiple criteria decision aid,
several problematics (or problem formulations) can be considered. In [15], Roy,
distinguishes three basic problematics: choice, sorting and ranking (see also [1]).

Given aset A of aternatives (or actions), the choice (or selection) problematic
(see Figure 1) consistsin a choice of asubset A’ ¢ A, as small as possible, com-
posed of alternatives being judged as the most satisfying. Optimisation problems
are particular casesof achoice problematic where A’ isrestricted to onealternative.

The sorting problematic (see Figure 2) consists in formulating the decision
problem in terms of a classification so asto assign each alternative from A to one
of the predefined categories. The assignment of an alternative a to the appropriate
category should rely on the intrinsic value of a (and not on the comparison of a to
other alternatives from A).
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The ranking problematic (see Figure 3) consists in establishing a preference
pre-order (either partial or complete) on the set of alternatives A.

In this paper, we are interested in the multiple criteria sorting problematic and,
more precisely, in an existing method called ELECTRE TRI (see [24], [25] and
[17]). When using this method, the analyst must determine values of several param-
eters (profilesthat definethe limits between the categories, weights, discrimination
thresholds,...). These parameters are used to construct a preference model of the
decision maker (DM). Apart from some very specific cases, it is not redlistic to
assumethat the DM would be ableto give explicitly the values of these parameters.
They are far different from the natural terms in which the DM usually expresses
his/her preferences and expertise. Our aim is to infer the model parameters of
ELECTRE TRI through an analysis of assignment examplesgiven by theDM, i.e,,
from halistic judgments. This approach represents the paradigm of disaggregation
of preferences (see[6]) which aims at extracting implicit information contained in
holistic statements given by a DM. In our case the statements to be disaggregated
are assignment examples.

The paper is organized as follows. In the next section, we characterize the
general objectives of our approach. In section 3, we recall the main steps of the
ELECTRE TRI method and then we pass, in section 4, to the description of our
inference procedure from assignment examples. In section 5, we are considering
the choice of an optimization techniquefor our inference procedureand we provide,
in section 6, anillustrative example. A final section groups conclusions.

2. General Objectives

2.1. SCHEME OF THE PROPOSED APPROACH

The general scheme of the inference procedure using the paradigm of disaggrega-
tionispresentedin Figure 4. Itsaimisto find an ELECTRE TRI model as compat-
ible as possible with the assignment examples given by the DM. The assignment
examples concern a subset A* C A of aternatives for which the DM has clear
preferences, i.e., aternatives that the DM can easily assign to a category, taking
into account their evaluation on all criteria. The compatibility between the ELEC-
TRE TRI model and the assignment examples is understood as an ability of the
ELECTRE TRI method using this model to reassign the alternatives from A* in
the sameway asthe DM did. To get arepresentative model, the subset A* must be
defined such that the numbers of alternatives assigned to the categories are almost
equal and sufficiently large to “contain enough information”.

In order to minimize the differences between the assignments made by ELEC-
TRE TRI and the assignments made by the DM, an optimization procedure is
used. The resulting ELECTRE TRI model is denoted by M. The DM can tune
up the model in the course of an interactive procedure. He/she may either revise
the assignment examples or fix values (or intervals of variation) for some model
parameters. In the former case, the DM may:
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e remove and/or add some alternatives from/to A*,
e change the assignment of some alternatives from A*.

In the latter case, the DM can give additional information on the range of
variation of some model parameters basing on his/her own intuition. For example,
he/she may specify:

e ordinal information on the importance of criteria,
e noticeable differences on the scales of criteria,
e incomplete definition of some profiles defining the limits between categories.

When the model is not perfectly compatible with the assignment examples, the
procedure should be able to detect all “hard cases’, i.e., the aternatives for which
the assignment computed by the model strongly differs from the DM’s assignment.
The DM could then be asked to reconsider his/her judgment.

2.2. INTEREST OF THE APPROACH

One of the main difficulties that an analyst must face when interacting with aDM
in order to build a decision aid procedure is the elicitation of various parameters
of the DM’s preference model. In the ELECTRE TRI method, the analyst should
assign values to profiles, weights and thresholds (see section 3). Even if these
parameters can be interpreted, it isdifficult to fix directly their valuesand to have a
clear global understanding of the implications of these valuesin terms of the output
of the model.

Our approach to the construction of an ELECTRE TRI model aims at sub-
stituting assignment examples for direct elicitation of the model parameters. The
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values of the parameters will be inferred through a certain form of regression on
assignment examples.

Inferring aform of knowledge from examples of expert's decisionsis atypical
approach of artificial intelligence. Induction of rules or decision trees from exam-
ples in machine learning (see [9], [14]), knowledge acquisition based on rough
sets (see [3], [13], [21]), supervised learning of neural nets (see [2], [22]) are
well-known representatives of this approach. The appeal of this approach is that
the experts are typically more confident exercising their decisions than explaining
them.

In Multiple Criteria Decision Analysis, this approach is concordant with the
principle of posterior rationality (see[7]) and with the aggregation-disaggregation
paradigm used for the construction of a preference model in UTA-like procedures
(see (6], [19], [23], [5], [4], [12], [20]). It has been also applied for the elicitation
of weights used for the construction of an outranking relation in the DIVAPIME
method (see[11] and [10]).

Moreover, such an approach may be used within adifferent context from the one
itwasinitially intended for: construction of ordinal criteria. When acriterion should
take into account several dimensions related to specific aspects of the decision, it
is sometimes difficult to define directly a satisfactory index that “measures’ the
performance of alternatives relatively to this criterion. A way to overcome this
difficulty isto proceed as follows:

e define, for the considered criterion, an ordinal scale made of several impact
levels using linguistic terms,

o specify several prototypes of alternatives that meet these impact levels,

e consider the impact levels as categories and prototypes as assignment exam-
ples and infer the corresponding ELECTRE TRI model using the proposed
approach,

¢ usethisELECTRE TRI model to definethe evaluation of any other alternative
on the considered criterion.

3. Presentation of the ELECTRE TRI Method

ELECTRE TRI is a multiple criteria sorting method, i.e., a method that assigns
aternatives to predefined categories. The assignment of an alternative a results
from the comparison of a with the profiles defining the limits of the categories. Let
F denote the set of the indices of the criteria g1, g2, ..., 9 (F = {1,2,...,m})
and B the set of indices of the profilesdefining p + 1 categories(B= {1, 2,...,p}),
by, being the upper limit of category €', and the lower limit of category Cj, 11, h =
1,2,...,p (see Figure 5). In what follows, we will assume, without any loss of
generality, that preferencesincrease with the value on each criterion.

ELECTRE TRI builds an outranking relation .S, i.e., validates or invalidates
the assertion a.Sb;, (and b, Sa), whose meaning is “a is at least as good as by,”.
Preferencesrestricted to the significance axis of each criterion are defined through
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Figure 5. Definition of categories using limit profiles.

pseudo-criteria(see[18] for details on this double-threshold preference representa-
tion). Theindifference and preferencethresholds (¢; (by,) and p; (b)) constitutethe
intra-criterion preferential information. They account for theimprecise nature of the
evaluations g;(a) (see[16]). ¢;(by) specifiesthe largest difference g;(a) — g;(bn)
that preservesindifference between a and by, on criterion g;; p;(bs) representsthe
smallest difference g;(a) — g;(bn) compatible with a preference in favor of a on
criterion g;. At the comprehensive level of preferences, in order to validate the
assertion a.Sby, (or by Sa), two conditions should be verified:
e concordance: for an outranking a.Sby, (or by Sa) to be accepted, a“ sufficient”
majority of criteriashould bein favor of this assertion,
¢ non-discordance: when the concordance condition holds, none of the criteria
in the minority should opposeto the assertion a.Sby, (or b, Sa) ina*“too strong
way”.
Two types of inter-criteria preference parameters intervene in the construction of
S
e the set of weight-importance coefficients (k1, k2, . . ., ki, ) 1S used in the con-
cordance test when computing the relative importance of the coalitions of
criteriabeing in favor of the assertion a.Sby,.
e the set of veto thresholds (v, (by,), v2(bn), ..., vm(bp)) is used in the discor-
dancetest. v;(by,) represents the smallest difference g;(by,) — g;(a) incompat-
ible with the assertion a.Sby,.

ELECTRE TRI buildsanindex o(a, b) € [0, 1](o(bp, a), resp.) that represents
the degree of credibility of the assertion a.Sby, (by,Sa, resp.), Va € A,Vh € B.The
assertionaSby, (by,Sa,resp.),isconsideredtobevaidif o(a, by) > Ao (by,a) > A,
resp.), A beinga“cuttinglevel” suchthat A € [0.5, 1]. Determining o (a, b, ) consists
of the following steps (the value of o (by,, a) is computed analogously):
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1 — compute the partial concordanceindex c;(a, by,), Vs € F:

0 if g;j(bn) — gj(a) > p;(bn)

1 ifgj(by) —gj(a) < q;(bp)

pj(bn) + gj(a) — g;(bn)
p;(br) — q;(bn)

2 — compute the comprehensive concordance index c(a, by, ):

Z k]'Cj (a, bh)

_ jEF

L )
Yk

JEF

Cj(a‘7 bh) =

D

otherwise

c(a,by)

3 — compute the discordance indices d; (a, by,), Vj € F:

0 ifgj(a) < g;(bn) +pj(bn)
dj(a,bp) = { 1 ifgj(a) > g(bn) + v;(bn)
€10,1] otherwise

4 — compute the credibility index o (a, b, ) of the outranking relation:

1—d;(a,by)

oa,br) = ela,by) J[ S—aion),
h h }E—L 1—c(a,by)

where F = {j € F : d;(a,by) > c(a,by)} 3

Thevaluesof o(a, by), o(by, a) and X determine the preference situation between
a and by,:
e o(a,by) > Aando(by,a) > A = aSby andb,Sa = alby,i.e., aisindifferent
to by,
e o(a,by) > X and o(by,a) < A = aSb, and not by Sa = a > by, i.e., ais
preferred to b, (weakly or strongly),
e o(a,by) < XAand o(by,a) > X = not aSby, and b,Sa = by, > a,i.e, by is
preferred to a (weakly or strongly),

e o(a,by) > Xand o(by,a) < XA = notaSh, and not b, Sa = aRb, = aRby,
i.e., a isincomparableto by,.

Two assignment procedures are then available:
Pessimistic procedure:
a) compare a successivelyto b;, fori =p,p — 1,...,0,
b) by, beingthefirst profilesuchthat aSby,, assigna to category Cy, 1 1(a — Chy1).

Optimistic procedure:
a) compare a successivelytob;,i =1,2,...,p,
b) by, being the first profile such that b, > a, assign a to category Cj,(a — Cf).
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4. Inferringan ELECTRE TRI Model From Assignment Examples

An ELECTRE TRI model M, is composed of:

e the profiles defined by their evaluations g;(by,),Vj € F,Vh € B,

e the importance coefficientsk;,Vj € F,

e theindifference and preference thresholds g;(bs), p;(by), Vj € F,Vh € B,

e the veto thresholds v;(by,), Vs € F,Yh € B,

¢ aselected assignment procedure (either pessimistic or optimistic).
In what follows, we will configure our analysis to the case were the pessimistic
assignment procedure is used and where the inferred parameters are the profiles,
the importance coefficients and preference and indifference thresholds. As for
veto thresholds, they are not inferred from the assignment examples because of
computational complexity. However, they can beintroduced directly by the DM in
the ELECTRE TRI model.

S0 as to determine a model M, that best matches the assignment examples
given by the DM, one should formulate an appropriate optimization problem, i.e.,
define the variables, an accuracy criterion and the constraints.

4.1. VARIABLES OF THE PROBLEM

In ELECTRE TRI pessimistic assignment procedure, an alternative ay, is assigned
to category ¢y, (b1 and by, being thelower and upper profilesof C,, respectively) iff
ox(ak,bp_1) > Xand o, (ag, by) < A. Let ussupposethat the DM hasassigned the
aternative a, € A* to category Cj, (ar, — C, ). Let us define the slack variables
zy, and y, unrestricted in sign such that o (ag, by, —1) — zx, = X and o (ak, by, ) +
yr = A. The optimization problem will include the following variables:

Tk, Yk, Vap € A* slack variables (2n)
A cutting level (1)
ki, VjeF importance coefficients (m)

gj(bn), Yj € F,Yh e B profile evaluations (mp)
q;j(by), Vj € F,Yh € B indifference thresholds (mp)
pj(bn), Vi € F,Yh € B preference thresholds (mp)

4.2. AN ACCURACY CRITERION

If the values of the slack variables x;, and y;, are both positive, then ELECTRE
TRI pessimistic assignment procedure will assign alternative a,, to the “correct”
category. If, however, one or both of these values are negative, the ELECTRE
TRI pessimistic assignment procedure will assign aternative a; to a “wrong”
category. The lower the minimum of these two values, the less adapted is the
model M. to give an account of the assignment of a;, made by the DM. Moreover,
if =, and y, are both positive, then a;, is assigned consistently with the DM’s
statement, for all \' € [\ — yg, A + 2] Let us consider now the set of alternatives



INFERRING AN ELECTRE TRI MODEL 165

A* ={ay,a,...,ak,...,a,} andsupposethat the DM hasassigned thealternative
ay, tothecategory Cj, , Vay, € A*. Themodel M, will be consistent withtheDM’s
assignmentsiff x; > 0andy; > 0, Va, € A*.

Consistently with the preceding argument, an accuracy criterion to be maxi-
mized can be defined as:

N (e, i) — max )

If the accuracy criterion takes a non-negative value, then al alternatives con-
tained in A* are “correctly” assigned, for al X € [A — ming ca-(yk), A +
MiNg, c A+ (k)]

This criterion, however, takes into account the “worst case” only, i.e, the
alternative for which the model M, gives the most different assignment from
the DM. An accuracy criterion should be able to take not account an average
information concerning the accuracy of the model, i.e., its overall ability to assign
the aternatives from A* to the “correct” category. Hence, we propose to replace
criterion (4) by the following one:

a

min, (Tr,yk) +€ Y (zp +yr) — max ®)
k
apEA*

where e is asmall positive value. (5) can be rewritten as:

(a +e > (m+ yk)) — max (6)

apEA*
st. a<wgzg, Va,e€A* (7)
a<yp, Va,eA" (8)

4.3. CONSTRAINTS OF THE PROBLEM
The constraints of the optimization problem are the following:

or(ak, b, —1) —zr =X, Ya, € A* definition of the slack variables z;, (n)

or(ak, bp,)+yr=A, VYa, € A* definition of the slack variables y;. (n)
a< xp,a <y, Yap € A* definition of « (2n)
A € ]0.5,1] interval of variation for A (2)

95 (bny1) > g (bn) +pj(bn) + pj(bay1), Vi € F,Vh € B

consistency of categories (m(p — 1))
pj(br) > q;(by), Vj € F, Vh € B thresholds consistency (mp)
k;j > 0,q;(by) > 0, Vj€F,Yhe B non-negativity constraints (m + mp)

According to the general scheme in Figure 4, some additional constraints can
be added in the course of the interactive procedure in order to take into account
an intuitive view of the DM on the value of some parameters. For instance, if
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the DM does not consider any criterion as a dictator, an appropriate constraint is:
ki <1257 ki, Vi€ F.

4.4. OPTIMIZATION PROBLEM TO BE SOLVED

The basic form of the optimization problem to be solved is the following:

(a—i—a > (wk —i—yk)) — max 9

ap€A*

st. a<zg, Vap€A* (10)
a <y, Va,e A* (12
>oitq kjcj(ag, by, —1)

—gp =), Vagc A* 12
Z;'nzl k; (12
m ke (ag, b

L kel tn) |y e, e a0 (13)

j=1 k;
X € [0.5,1] (14)
95 (bny1) > gj(bn) +pj(bp) +pj(bry1), Vj€F,YheB (15
pj(bj) > q;(bn), Vj€F, VheB (16)
k; > 0,q;(by) >0, Vj€F, VheB (17)

Because of constraints (12) and (13), the above problem is a non-linear program-
ming problem. It contains2n+3mp+m+2 variablesand 4n+3mp+2 constraints.
L et usremark that the slack variablesz;, and ;. can be eliminated from the problem
formulation sincethey are defined by the constraints (12) and (13). Thiselimination
reduces the number of variablesto 3mp + m + 2.

4.5. APPROXIMATION OF PARTIAL CONCORDANCE INDICES ¢ (ay, bp,)

The partial concordanceindicesc;(ax, by,) are piecewiselinear functions (see (1)),
and are hence non differentiable. This prevents from using gradient optimization
techniques which would be the most suitable ones for solving the above prob-
lem. In order to circumvent this difficulty, we will approximate c;(ay,bs) by a
differentiable sigmoidal function f(z) of the following form:

/()

1
= 1 explfle —a0) (18)
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Figure 6. Sigmoidal function f(z).

cj(ak,bn), éj(ax,bs)

—P:I(bh) -qyl(bh)

¢i(ag,by) —mm———— cj(ax, bn)

Figure 7. Approximation of ¢; (ax,br) by é;(ak,br).

The sigmoidal function has the following properties:

i, fle) =1

f(z0) = 0.5 (19)

PO i@ s

These properties make possible a “fair” representation of ¢;(ax, by) by f(z).
The shape of this function is shown in Figure 6. ¢;j(ax, by,) is a function of the
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difference g;(ax) — g;(bn) and of the thresholds ¢;(by,) and p;(by,)*. In order to
represent c;(ax, by) by f(z), we substitute = for g;(ax) — g;(by) and include
both thresholds in the parameters zo and 5. As ¢;j(ag,by) = 0.5 for g;(a;) —
g (bp) = pj(bh) + qj(bh)/z, we pose zg = (pj (bp) + Qj(bh))/z. The value of
minimizing the approximationerror is: 5 = 5.55/(p; (b,) — ¢;(br)) (See appendix).
The resulting approximation of ¢;(ax, by,) is given below and shown in Figure 7.

1

—5.55 _ , pi (bn) + g(bn)
l1+exp [m : <gj(a<) —g(bn) + %)]

&(ax, bn) =

(20)

5. Solving the Optimization Problem
5.1. INPUT DATA

In order to run the optimization phase, the model should contain “enough” infor-
mation so asto infer aset of ELECTRE TRI parameters. More specifically, the set
of assignment examples a;, —pomC},,, Ya, € A*, should be “sufficiently large”,
e.g., n > m + p). Moreover, the alternatives should be well distributed among the
p+ 1 categories and alternatives assigned to the same category C}, should have pro-
files “as different as possible”’. Consistently with the general scheme presented in
§2.1, the DM can add information concerning the value of some parameters of the
model. Thisinformation take the form of additional constraintsin the optimization
problem.

5.2. OUTPUT OF THE INFERENCE PHASE

The output of the inference phase consists of a set of values for ELECTRE TRI
parameters. It should be checked then whether the obtained model is compatible
with the assignment examples. If it isthe case, the variable o takes a positive value.
The inferring process stops at this point unless the DM wants to revise the value
of some parameters.

In the case of a negative value of «, it is possible to find which assignment
example causes this negative value, i.e., which example is the most difficult to be
reproduced by the model. Let us denote by a the corresponding alternative. This
assignment exampl e can be viewed asthe most “ untypical” compared to the others.
In such a case, two options are possible:

¢ either the DM changesthe “untypical” assignment of & and then the optimiza-
tion phase restarts with the modified set of assignment examples,

e or the DM confirms hig’her assignment of & and then the optimization phase
restarts considering all assignment examples but a.

* We assume here that the preference increases with the value of g;.
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In the second option, the elimination of & is temporary and aims at finding an
appropriate model for the remaining examples. This elimination is not definite as
a can bere-integrated to A* when the DM modifies another assignment example.

5.3. CHOICE OF AN OPTIMIZATION TECHNIQUE

In the case of relatively small optimization problems, the solver of Excel 5.0 gives
satisfactory results in a reasonable computing time (see section 6), although we
cannot be sure to attain the global optimum with thistool. When considering large
problems, a more powerful solver seems necessary, mainly because of the multi-
plicity of local minima. As can be seen from recent works (see[8]), metaheuristics
in particular based on genetic algorithms can satisfactorily deal with the local
minima problems. This direction of research deserves further investigation.

6. An lllustrative Example

L et usconsider asorting problem in which alternatives haveto be assigned to three
categories, C1, C, and C3, defined by two profiles, by and b, = (B = {1,2}),
taking into account their evaluationson three criteria, g1, g2 and g3(F' = {1,2, 3}).
The evaluations on each criterion take their values in the interval [0, 100]. Let us
consider the 6 assignment examplesgiven in Table 1.

Table 1. Set of assignment examples.

91 g2 g3 Category
ax 70 64.75 46.25 Cs
az 61 62 60 Cs
as 40 50 37 C>
as 66 40 23.125 Cs
as 20 20 20 Ch
as 15 15 30 Ch

The optimization problem corresponding to the search of an ELECTRE TRI
model consistent with the assignment examples contains 23 variables and 44 con-
straints (see §4.4). Three additional constraintsof theform k; < 1/237" 1 kj,j =
1,2, 3 prevent any criterion to be a dictator. In order to perform the optimization
phase, we need to determine a starting point. In the absence of any additional infor-
mation from the DM, wefix k; = 1,5 = 1,2, 3. Theinitia profiles are defined by
the following heuristic rule:

L > gjla) > gjla)
a;—Ch_ a; —~C
9i(bn) = 3 ;hil + 2= ;h
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where n;, and ny,_, are the number of alternatives assigned to categories C}, and
Ch_1, respectively.
The above heuristic rule leads to the initial profiles defined in Table 2.

Table 2. Initial profiles defining the category limits

g1 g2 g3
b2 50.25 54.19 41.6
b1 35.25 31.25 275

As to the initial values for the indifference and preference thresholds, their
values are fixed arbitrarily asfollows:

q]'(bh) = 0.05gj (bh)
pj(bn) = 0.1g;(bn)

Table 3 presentstheinitial values of the thresholds.

(21)

Table3. Initia valuesof indifference and preference thresholds.

g1 g2 g3
qi (b2) 2.96 271 2.08
pi(b2) 5.93 5.42 4.16
qi(b1) 1.77 1.56 1.38
pi(b1) 3.53 3.12 2.75

Fixing A = 0.75, we obtain the initial valuesfor x, and y, shownin Table 4.

Table 4. Initia values of the slack variables

Tr and Yk -
Tk Yk
a1 0.25 0.75
az 0.25 0.75
as 0.25 0.598
as —0.083 0.417
as 0.25 0.75
a6 0.25 0.417

Theinitial values of the parameters |ead to amodel that is not able to assign all
alternatives consistently with the DM’s assignments. a4 is assigned by the model
to category C; while the DM assigned a4 to category C>. As can be seen in the
starting point, « = z4 = —0.083 < 0.

The resulting optimization problem has been solved using the Excel 5.0 solver
which computes a solution within less than two minutes on a Pentium 60 Mhz
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computer. The values of parameters in the obtained model are shown in Tables 5
and 6.

Table 5. “Optima” profiles defining the category limits.

g1 g2 g3
b2 59.25 62.75 41.6
b1 35.25 31.25 23.65

Table 6. “Optima” values of indifference and preference thresh-

olds.
g1 g2 g3
qi (b2) 2.96 271 2.08
pi(b2) 5.925 5.419 4.16
qi(b1) 1.762 1.563 1.376
pi(b1) 3.525 3.125 2.813

Moreover, o = 0.37,\ = 0.629, k1 = 0.517, k, = 1, k3 = 0.483.

We obtain the final valuesfor x;, and y;, shown in Table 7. The obtained model
isableto assign all alternatives from A* consistently with the DM’s assignments.
The model assignments remain consistent for all A € [0.5, 1] which proves a good
robustness of the model.

Table 7. Final values of the dack variables

Tr and Yk -
Tk Yk
a1 0.371 0.629
az 0.370 0.629
as 0.371 0.624
as 0.370 0.370
as 0.371 0.628
a6 0.371 0.387

7. Conclusionsand Further Research

We have proposed an interactive approach that infers the parameters of an ELEC-
TRE TRI model from assignment examples. The determination of the model that
best restitutes the assignment examples is formulated as an optimization problem.
The interactive aspect of this approach lies in the possibility given to the DM to
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revise his’lher assignment examples and/or to give additional information on the
range of variation of some parameters before the optimization phase restarts.

The proposed approach is based on a realistic assumption that the DM prefers
to give some assignment examples rather than to specify directly the values of
parameters used in ELECTRE TRI. In this way, our approach transfers the inter-
action with the DM from the level of direct elicitation of parametersto the level of
exemplary assignment decisions at which less cognitive effort is required.

As preliminary experience with this approach is encouraging, further research
should be pursued in two complementary directions: improvement of computa-
tional efficiency in the optimization phase and extension of some useful features
of the proposed approach.

Asto thefirst direction, additional computational experiments should be made,
both for larger problems and using different optimization techniques. The use of
metaheuristics based, in particular, on genetic algorithms deserves further investi-
gation. Another important point to be studied concerns postoptimal analysis of the
obtained solution so asto estimate its stability.

As to the second direction, it should be given a possibility of considering sub-
problems concerning subset of ELECTRE TRI parametersto be inferred, this may
be particularly interesting from apractical point of view and can lead to linear opti-
mization problems. Moreover, the inference procedure should be able to propose a
rich interaction with the DM. The dialog with the DM should enable assignments
of aternatives to multiple categories, e.g., “a;, should be assigned to the top two
categories’ or “ax Will not be assigned to the two extreme categories’, etc. It
should be also taken into account that the DMs are sometimes able to express a
degree of confidence related to an assignment. Two assertions, “it is possible that
aj meetstherequirementsof category C,” and “ay should certainly be assignedto
Cp", should not be processed by the inference procedure in the sameway. Further-
more, the approach should be extended to take into account the veto phenomenon
considered in the complete version of the ELECTRE TRI method. Finally, the
development of user-friendly interactive software is a necessary condition of a
successful implementation of this approach in real-world decision problems.
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Appendix: Approximation of c;(ax, by) by ¢;(a, by)

We approximate the partial concordanceindex c;(ax, by,) (see (1)) by thesigmoideal
function f(z) = 1/(1+ exp(—B(xz — z0))). Asfollows from §4.5, the value of zg
is (pj(bn) + q;(by))/2. The value of g influences the angle of inclination of the
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“pi(bn)  —pilba)=pi)  —q;(bn)
2

éj(ak,bh) ——————- cj(ak’bh)

Figure 8. Determination of 3 minimizing the approximation error.

tangent to ¢; (ax, by,) in the point (zo, 0.5) (see Figure 6). As aconsequence, it also
influences the size of the closed areas A and B created by c; (ay, by) and é(ay, by,)
(see Figure 8). The value of 3 hasto be chosen such that the surface of A is equal

to

the surface of B. Then, the approximation error is minimal. Solving a simple

integral equation, we get 5 = 5.55/(p; (b,) — q;(bn))-
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