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Abstract

Abstract
USING ASSIGNMENT EXAMPLES
TO INFER WEIGHTS FOR ELECTRE TRI METHOD:
SOME EXPERIMENTAL RESULTS

Given a finite set of alternatives A, the sorting (or assignment) prob-
lem consists in the assignment of each alternative to one of the pre-
defined categories. In this paper, we are interested in multiple cri-
teria sorting problems and, more precisely, in the existing method
ELECTRE TRI. This method requires the elicitation of preferen-
tial parameters (weights, thresholds, category limits,...) in order to
construct a preference model with which the Decision Maker (DM)
accept as a working hypothesis in the decision aid study. A direct
elicitation of these parameters requiring a high cognitive effort from
the DM, [MS98] proposed an interactive aggregation-disaggregation
approach that infer ELECTRE TRI parameters indirectly from hol-
listic information, i.e., assignment examples. In this approach, the
determination of ELECTRE TRI parameters that best restitute the
assignment, examples is formulated through a non-linear optimiza-
tion program.

In this paper, we consider the subproblem of the determination of
the weights only (the thresholds and category limits being fixed).
This subproblem leads to solve a linear program (rather than non-
linear in the global inference model). Numerical experiments were
conducted so as to check the abilities of this disagregation tool. Re-
sults showed that this tool is able to infer weights that restitutes in
a stable way the assignment examples and that it is able to identify
”inconsistencies” in the assignment examples.

Key words: Sorting Problematic, Preference Disaggregation, Weight
Elicitation, Numerical Experiments
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1 Introduction

When modeling a real world decision problem, we can face situations in which
the decision can be formulated in terms of the assignment of a set of potential
alternatives A = {a1, az, ..., a;} to one of pre-defined categories. The assignment
of an alternative a to the appropriate category should rely on the intrinsic value
of a (and not on the comparison of a to other alternatives from A).

In this paper, we are interested in the multiple criteria sorting problematic
and, more precisely, in an existing multiple criteria method called ELECTRE
TRI (see [Yu92a], [MSZ99a], [MSZ99b] and [RB93]). When using this method,
the analyst must determine values of several parameters (profiles that define the
limits between the categories, weights, discrimination thresholds, ...). The set
7 of these parameters is used to construct a preference model with which the
Decision Maker (DM) accept as a working hypothesis in the decision aid study.
Apart from some very specific cases, it is not realistic to assume that the DM
would be able to give explicitly the values of each parameter in 7. They are
far different from the natural terms in which the DM usually expresses his/her
preferences and expertise.

A realistic approach consists in infering the model parameters of ELECTRE
TRI through an analysis of assignment examples given by the DM, i.e., from
hollistic information on his/her judgments. This approach aims at substituting
assignment examples for direct elicitation of the model parameters. The values
of the parameters will be inferred through a certain kind of regression on as-
signment examples.

[MS98] proposed an approach that infer all ELECTRE TRI parameters sim-
multaneaously starting from assignment examples. In this approach, the deter-
mination of the parameter’s values that best fit the assignment examples given
by a decision maker (DM) stems from the resolution of a non-linear mathemat-
ical program. This optimization procedure is integrated in an interactive tool
that enable the DM (or anyone acting on his/her account) to react on the set
of obtained parameters and to get insights on his/her preferences.

Although [MS98] proposed to infer simmultaneously weights, profiles and
thresholds, we consider in this paper the problem of the inference of the weight
vector only (in this particular case the mathematical program to be solved be-
comes linear). Our paper presents numerical results obtained in a laboratory
experiment aiming at validating the practical usefullness of the weight infer-
ence procedure in an interactive process (preliminary results may be found in
[Nau96]). The experimental questions are the following (they are operational-
ized through the experimental design described in section 4.):
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e Let w°P be the weight vector obtained using the linear optimization pro-
cedure on the basis of the assignment to categories of alternatives from a
set A* C A. Let w?™ be a weight vector expressed by the DM or infered
by the analyst from DM’s assertions. Are the assignments of alternatives
from A* more ”stable” when using w°P! than when considering w®™ (the
term stable is used as unsensitive of the assignments to changes of the
weight vector). In other words, is the tool able to increase the ”stability”
of assignments of alternatives in a set A*?

e The obtained weight vector w°P* depend on the information given as input,
i.e., on the set of assignment examples. What is the average amount of
information necessary to ” calibrate” the model in a satisfactory way? How
large should A* be in order to derive w°P! in a reliable manner?

e In practical decision situations, real DMs do not always provide reliable
information. Due to time constraints and cognitive limitations, DMs ex-
press contradictory information, their preferences change over time... The
optimization procedure should be able to highlight the assignment exam-
ples that are contradictory or not representable through the ELECTRE
TRI preference model. This experiment aims at investigating the ability of
the tool to ”identify” the inconsistencies in the DM’s statements in order
to help him/her in revising the preference information. How reliable is the
optimization procedure to identify inconsistencies in the DM’s judgments?

e The output of the optimization phase rely on the choice of an objective
function. As different objective functions can be considered, it is impor-
tant to check the variability of the output to the different functions. Does
the choice of a specific objective function strongly impact the results?

The paper is organized as follows. In the next section, we present the general
approach used by the inference tool. A brief description of the ELECTRE TRI
method is given in section 3. Section 4 describes the experimental design. The
final section groups results and conclusions.

2 General Scheme of the Approach

The general scheme of our inference procedure is presented in Figure 1. Its aim is
to find an ELECTRE TRI model as compatible as possible with the assignment
examples given by the user (the user being either the DM himself/herself or
anyone acting on his/her account). The assignment examples concern a subset
A* C A of alternatives for which the user has clear preferences, i.e., alternatives
that the user can easily assign to a category, taking into account their evaluation
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on all criteria. The compatibility between the ELECTRE TRI model and the
assignment examples is understood as an ability of the ELECTRE TRI method
using this model to reassign the alternatives from A* in the same way as the
user did.

Figure 1: General scheme of the inference procedure

In order to minimize the differences between the assignments made by ELEC-
TRE TRI and the assignments made by the user, an optimization procedure is
used. The resulting ELECTRE TRI model is denoted by M;. The user can
tune the model in the course of an interactive procedure. He/she may either
revise the assignment examples or fix values (or intervals of variation) for some
model parameters. In the former case, the user may:

e remove and/or add some alternatives from/to A*,

e change the assignment of some alternatives from A*.

In the latter case, the user can give additional information on the range
of variation of some model parameters basing on his/her own intuition. For
example, he/she may specify:

e ordinal information on the importance of criteria,

e noticeable differences on the scales of criteria,
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e incomplete definition of some profiles defining the limits between cate-
gories.

When the model is not perfectly compatible with the assignment examples,
the procedure should be able to detect all "hard cases”, i.e., the alternatives for
which the assignment computed by the model strongly differs from the user’s
assignment. The user could then be asked to reconsider his/her judgment.

Inferring a form of knowledge from examples of expert’s decisions is a typical
approach of artificial intelligence. Induction of rules or decision trees from ex-
amples in machine learning (see [Mic83], [Qui86]), knowledge acquisition based
on rough sets (see [GB92], [PS94], [Slo92]), supervised learning of neural nets
(see [Gal93], [WK91)) are well-known representatives of this approach. The ap-
peal of this approach is that the experts are typically more confident exercising
their decisions than explaining them.

In Multiple Criteria Decision Analysis, this approach is concordant with
the principle of posterior rationality (see [Mar88]) and with the aggregation-
disaggregation logic used for the construction of a preference model in UTA-like
procedures (see [JLS82], [JLMS8&7], [JLI0], [NMK92], [Slo91]). It has been also
applied for the elicitation of weights used for the construction of an outranking
relation in the DIVAPIME method (see [Mou95] and [Mou93]).

3 Presentation of the ELECTRE TRI method

ELECTRE TRI is a multiple criteria assignment method, i.e., a method that
assigns alternatives to predefined ordered categories. The limit between two
consecutive categories is formalized by what we call a profile (see Figure 2).
The assignment of an alternative a results from the comparison of a with the
profiles defining the limits of the categories. Let F' denote the set of the indices
of the criteria g1,92,...,9m (F = {1,2,...,m}) and B the set of indices of the
profiles defining p + 1 categories (B={1,2,...,p}), by being the upper limit of
category C}, and the lower limit of category Cri1, h = 1,2, ..., p (see Figure 2).
In what follows, we will assume, without any loss of generality, that preferences
increase with the value on each criterion.

ELECTRE TRI uses an outranking relation S (see [Roy91)), i.e., validates
or invalidates the assertion aSby, (and bpSa), whose meaning is ”a is at least as
good as by”. Preferences restricted to the significance axis of each criterion are
defined through pseudo-criteria (see [Roy96], [RV84] for details on this double-
threshold preference representation). The indifference and preference thresh-
olds, ¢;(bn) and p;(bp), constitute the intra-criterion preferential information.
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Category 1  Category 2 Category p-1 Category p Category p+1
........... gl

........... g2

........... g3

Im—1

........... gm
by bp 1 by

Figure 2: Definition of categories using limit profiles

They account for the imprecise nature of the evaluations g;(a) (see [Roy89)]).
The indifference threshold g;(bs) specifies the largest difference g;(a) — g;(bn)
that preserves indifference between a and by, on criterion g; while the preference
threshold p;(by) represents the smallest difference g;(a)—g;(by) compatible with
a preference in favor of a on criterion g;.

At the comprehensive level of preferences, in order to validate the assertion aSby,
(or bpSa), two conditions should be verified:

e concordance: for an outranking aSb, (or by Sa) to be accepted, a ”suffi-
cient” majority of criteria should be in favor of this assertion,

e non-discordance: when the concordance condition holds, none of the cri-
teria in the minority should oppose to the assertion aSb, (or bySa) in a
"too strong way”.

Two types of inter-criteria preference parameters intervene in the construction

of S:

e the set of weight-importance coefficients (wq,ws,...,wpn) is used in the
concordance test when computing the relative importance of the coalitions
of criteria being in favor of the assertion aSby,

e the set of veto thresholds (vi(bs), ..., v;(bn), ---, Um (by)) is used in the dis-
cordance test; v;(by) represents the smallest difference g;(by) — g;(a) in-
compatible with the assertion aSby,.

ELECTRE TRI builds an index o(a,by) € [0,1] (6(bp,a), resp.) that repre-
sents the degree of credibility of the assertion aSby, (bySa, resp.), Va € A,Vh €
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B. The assertion aSby, (bpSa, resp.) is considered to be valid if o(a,by) > A
(o(bp,a) > A, resp.), A being a ”cutting level” such that A € [0.5,1] (see [RB93]
for a justification of the construction of this index).

Determining o (a, by,) consists of the following steps (the value of o(by, a) is com-
puted analogously):

1 - compute the partial concordance indices c;(a,bs), Vj € F:

0 if g;(bn) —gj(a) > p;(bn)
(a,bp) =< 1 if gj(br) — gj(a) < q;(bn) 1
i(a:bn) 23 (bn) 4 95(a) — g (bn) ’ M)
P (bn)—q; (bn)

2 - compute the comprehensive concordance index c(a,by):

otherwise

ZjeF wjcj(a, bp)
EjeF wj

3 - compute the discordance indices d;(a,bs),Vj € F:

0 if gj(a) < g;(bn) + p;j(bn)
dj(a7 bh) = {

C((l, bh) =

1 if gj(a) > gj(bh) +1}j(bh) (3)
9;(bn)—g;(a)—p; (bn)
v (br) —p; (bn)

4 - compute the credibility index o(a, by) of the outranking relation:

otherwise

1-— dj (a, bh)

0'((1, bh) = c(a, bh) H 1_ c(a bh) )

JEF
where F = {j € F:dj(a,by) > c(a,bs)}

(4)

The values of o (a, by), o(bp, a) and A determine the preference situation between
a and by:

e o(a,by) > X and o(by,a) > X = aSby, and by Sa = alby, i.e., a is indiffer-
ent to by,

e g(a,by) > X and o(bp,a) < A = aSby, and not bpSa = a = by, i.e., ais
prefered to by, (weakly or strongly),

e g(a,by) < X and o(bp,a) > A =not aSb, and bpSa = b, > a, i.e., by is
prefered to a (weakly or strongly),

e g(a,by) < A and o(bp, a) < A =not aSby, and not bpSa = aRby, ie., ais
incomparable to by,.
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Two assignment procedures are then available (the role of these exploitation
procedures is then to analyse the way in which an alternative a compare to the
profiles so as to determine the category to which a should be assigned) :

Pessimistic (or conjunctive) procedure:

a) compare a successively to b;, for i=p,p-1, ..., 1,
b) by, being the first profile such that aSby,
assign a to category Chi1 (@ = Chi1).

Optimistic (or disjunctive) procedure:

a) compare a successively to b;, i=1, 2, ..., p,
b) by, being the first profile such that by, > a,
assign a to category Cp, (a — Ch).

If by,_1 and by, denote the lower and upper profile of the category C},, the
pessimistic (or conjunctive) procedure assigns alternative a to the highest cat-
egory C} such that a outranks by_1, i.e., aSb,_1. When using this procedure
with A = 1, an alternative a can be assigned to category C}, only if g;(a) equals
or exceeds g;(bn) (up to a threshold) for each criterion (conjunctive rule).

The optimistic (or disjunctive) procedure assigns a to the lowest category
C}, for which the lower profile by, is prefered to a, i.e., by > a. When using this
procedure with A = 1, an alternative a can be assigned to category C} when
9j(bn) exceeds g;(a) (up to a threshold) at least for one criterion (disjunctive
rule). When X decreases, the conjunctive and disjunctive characters of these
rules are weakened.

4 The Optimization Procedure

The set 7 of parameters of an ELECTRE TRI model are:
e the profiles defined by their evaluations g;(bs), Vj € F, Vh € B,
e the importance coefficients w;, Vj € F,
e the indifference and preference thresholds g;(bs), p;j(bn), Vj € F, Vh € B,
e the veto thresholds v;(bs), Vj € F, Vh € B.

The conducted experiment considered the case where the profiles and thresholds
are known and where the weights are to be inferred. Moreover, we will confine
our analysis to the case were the pessimistic assignment procedure is used.
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4.1 Variables of the problem

In ELECTRE TRI pessimistic assignment procedure, an alternative ay is as-
signed to category Cj (bp—1 and by being the lower and upper profiles of Cj,
respectively) iff o (ag,bp—1) > X and o, (ag,by) < A (where o is the credibility
index related to the set of parameters 7).

Let us suppose that the DM has assigned the alternative ar € A* to cate-
gory Cp, (ar — Cp,). Let us define the slack variables z; and y; such that
Uﬂ—(ak,bhkfl) —zr =X and a,r(ak,bh,c) +yr = A

The optimization problem will include the following variables:

Zk, Yk, Vk such that a, € A* slack variables (2n)
A cutting level (1)
w;, VjeF importance coefficients (m)

4.2 An accuracy criterion

If the values of the slack variables zj; and y; are both positive then ELECTRE
TRI pessimistic assignment procedure will assign alternative ay to the ”correct”
category. If, however, one or both of these values are negative, the ELECTRE
TRI pessimistic assignment procedure will assign alternative ay to a ”"wrong”
category. The lower the minimum of these two values, the less adapted is the
model M, to give an account of the assignment of a; made by the DM. More-
over, if x; and yj are both positive then ay is assigned consistently with the
DM’s statement for all A’ € [A — yg, A + zg].

Let us consider now the set of alternatives A* C A where card(A*) = n
and suppose that the DM has assigned the alternative a; to the category Ch,,
Var € A*. The model M, will be consistent with the DM’s assignments iff
x> 0 and yg > 0, V& such that a; € A*.

Consistently with the preceding argument, an accuracy criterion can be de-
fined as:

kzznkzgl*{min {zr,yk}} ()

We obtain a standard MaxMin problem. If the accuracy criterion takes a
non-negative value then all alternatives contained in A* are ” correctly” assigned
for all X' € [A — ming.qpea{yr}, A + Ming.q,ca{zx}]-

This criterion, however, takes into account the ”worst case” only, i.e., the
alternative for which the ELECTRE TRI model gives the most different assign-
ment from the DM. An accuracy criterion should be able to take into account
an average information concerning the accuracy of the model, i.e., its overall
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ability to assign the alternatives from A* to the ”correct” category. Hence, we
propose to replace criterion (5) by the following one:

max {min{zg, + TE + 6
s i (o} +e 0 (@) (6)

where € is a small positive value. (6) can be rewritten as :

max {a + € Z (zr + yr)} (7)
k:ap€A*

sit. a <z, Vksuch that a, € A* (8)

a <yg, Vksuch that ay € A* (9)

4.3 Constraints of the problem

The constraints of the optimization problem are the following:

or(ak,bp,—1) — Tk = A\, Vk : a, € A* definition of the slack variables xy (n)
ox(ak,br,) +yr = A, Vk : ap, € A* definition of the slack variables y; (n)

a<zp,a<yg, Vk:ap € A* definition of a (2n)
A €[0.5,1] interval of variation for A (2)
w; >0,VjeF non-negativity constraints (m)

Additional constraints can be added in the course of the interactive proce-
dure in order to take into account an intuitive view of the DM on the value of
some parameters. For instance, if the DM does not consider any criterion as a
dictator, an appropriate constraint is: w; < %E:L w;, Vj€EF

4.4 Optimization problem to be solved

The basic form of the optimization problem to be solved is the following:

max {a + € Z (zr +yr)} (10)
k:apcA*

st. a<uwzg, Vksuch that ap € A* (11)

a <yg, VEksuch that a, € A* (12)

ijcj'(ak,bhk_l) — 1z = A Vk such that a, € A*  (13)

i=1

ijcj (ak,bn,) +yr = A, VEk such that a; € A* (14)

=1
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Swy =1 (15)

A €[0.5,1] (16)
w; >0, VjeF (17)

As the objective function and all constraints are linear, the above problem is
a linear programming problem. It contains 2n + m + 1 variables and 4n +m + 2
constraints. Let us remark that the slack variables x; and y; can be eliminated
from the problem formulation since they are defined by the constraints (13) and
(14). This elimination reduces the number of variables.

5 Experimental Design

This experiment is a laboratory work, i.e., takes its material in a past real world
case study to perform a posteriori computations in order to test the operational
validity of the optimization model proposed in §4. The data considered comes
from the real world application described in [Yu92a] and [Yu92b].

This application considers the problem of assigning a set A of 100 alterna-
tives (A = {a1,as,...,a100} is described in [MFN97]) to three (the initial data
specified 5 categories; we grouped the three top categories (C3,Cy and Cs) as
none of the alternatives were assigned by the ELECTRE TRI model to Cy and
C5) ordered categories C1,Cy and C3 (two limit profiles b; and be define the
”frontiers” C;-Cy and C2-C3) on the basis of 7 criteria (preferences on all cri-
teria are decreasing with the evaluations, i.e., the lower the better).

As no interaction with the DM is possible, we consider the assignment of
ELECTRE TRI pessimistic assignment procedure (with the parameters given
in [Yu92a]) as assignment examples expressed by a ”fictitious” DM. The ex-
perimental method consist in using the optimization procedure with different
subsets of assignment examples to infer the weights that ”best” match with the
examples (with the given values for profiles and thresholds).

So as to get consistent results, we generate 80 subsets of A, the cardinality
of these subset being either 6, 12, 18, 24, 30, 36, 42 or 48 (10 sets of each size
were generated). Each of these subsets is conceived so that the alternatives are
assigned uniformly on the three categories. Let us denote A} the jt* set of size
i. In order to test the ability of the optimization procedure to identify incon-
sistent information (see §6.3), we consider Err] derived from A} in which an
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alternative is volontarily assigned to a ”wrong” category. The error introduced
consist in changing the assignment of an alternative (for example, assigning to
(4 an alternative that should be assigned to C5). Different types of errors were
considered as shown in the table 1. The sets of assignment examples for which
computations were performed are described in [MFN97].

Initial Cat. | Error Cat. | Number in each sample
o Cs 2
Co Cy 2
Co Cs 2
Cs Cs 2
Ch Cs 1
C3 Cl 1

Table 1: type of errors introduced in the sets

The mathematical program corresponding to each set Err and A’ has been
solved with different objective functions (see §4.2). The general form of the
considered objective function z to be maximized is z = ming.q, cax {Zr,Yr} +
€Y papea+ (T + yx) and computations have been performed for e = 1072,1072,
10~1,1,10%,102. This allows us to check for the variability of the output to the
choice of an objective function.

6 Results

The computations have been performed using Cplex on a Sun Sparc 5 work-
station with 32 MB memory. Considering the small size of the problem, the
computing time never exceeded 0.1 sec.

Before to state the results, it is important to mention that these results are
dependent on the data under consideration. The proposed general implications
should be understood taking into account this restriction. The reader will find
detailled numerical results in [MFN97].

6.1 Is the tool able to increase the ”stability” of assign-
ments of alternatives?

Let w°P! be the weight vector obtained using the optimization procedure on the
basis of the assignment to categories of alternatives from a set A7. Let w%™ be
the weight vector used to generate the assignment examples. A first validation
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of the usefullness of the optimization procedure is to check if the assignments of
alternatives from A7 are more ”stable” when using w°?* than when considering
wi™ ie., is the tool able to increase the ”stability” of assignments of alternatives
in a set A7 ?

So as to answer this question, we will use the following methodology. In the
mathematical program to be solved, the variable « is introduced to transform
a MaxMin objective into a Max objective and represents the minimum value
among the slack variables z; and y; (§4.2). The larger o, the more stable are
the assignments of alternatives in A]. The assignments are said to be stable if
they are not affected by a modification of the cutting level A (or of the weights).

Let us denote adm(Ag ) the maximum variation on the cutting level A pre-
serving correct assignment of alternatives from A{ with the initial weights, i.e.
those given in [Yu92a]. Let us denote a,,;(A?) the maximum variation on the
cutting level A preserving correct assignment of alternatives from Af.' with the
weights obtained using the optimization procedure. The improvement of the
stability of the assignments provided by the procedure can be evaluated by
Qopt (Af ) — adm(Ag). Table 2 gives the numerical results.

Size: 1 | Qopt (1) | Wam (2) | Copt (i) — Wam (4)

6 0.24 0.08 0.16
12 0.23 0.02 0.21
18 0.21 0.08 0.13
24 0.20 0.02 0.18
30 0.19 0.08 0.11
36 0.18 0.03 0.15
42 0.18 0.02 0.16
48 0.10 0.02 0.08

mean 0.15

Table 2: Improvement of the ”stability” of assignments

Considering these results, we can observe:

e Firstly the results show that the larger the set of assignment examples, the
less stable the assignments, i.e., the more sensitive are these assignments
to a change in weights. This a straightfoward evidence as each assignment
example adds two constraints to the program to be solved (see §4.3).

e Secondly, these results show a significant improvement of the stability of
the assignments whatever the size of the set of examples (mean value:
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0.15). This proves the ability of the optimization procedure to perform
”good” weights that enables ELECTRE TRI to reassign the alternatives
in a very stable way.

6.2 Which ”amount” of information is necessary to infer
the weights in a reliable way?

In order to infer in a reliable way a weight vector w°Pt, the optimization pro-
cedure requires information as input, i.e., on the set of assignment examples.
What is the amount of information necessary to ”calibrate” the model in a sat-
isfactory way? How large should A* be in order to derive w°P! in a reliable
manner? This question is essential for practical use to the inference model in
real world decision problems. The analyst should have some simple guidelines
to manage the interaction with the DM avoiding unnecessary question, but col-
lecting a sufficient information.

In order to determine a ”reasonable amount of information” to infer the
weights, we use the following experimental scheme: the optimization procedure
is performed using different sets of assignment examples, whose size varies from
6 to 48 (10 set for each size, see §5). We observe then the ability of ELECTRE
TRI using the infered weights to assign ”correctly” the whole set of 100 alter-
natives. Obviously the ability of ELECTRE TRI using the infered weights to
reassign all alternatives correctly increases with the size of the set from which
the weights are derived. However, the number of assignment examples expressed
by the DM should not be to large.

Let us denote by al% (A7) the maximum variation on the cutting level A
perserving correct assignment for all 100 alternatives with the weights inferred

from A7. Let @.% (i) be the mean value of the a109(A?), for all sets A of size i.

100

opt (A7) the number of ”wrong” assignments among the

100 alternatives with the weights inferred from AJ. Let err100

value of the errl99(A?), for all sets A7 of size i. The results of the computations

are grouped in table 3:

Let us denote by err
(7) be the mean

As foreseen, the results show that a0¢ (i) increases and err,); (i) decreases

with the size i of the set. Moreover, @yo¢ (i) becomes positive for 12 < i < 18;
such a positive value means that weights inferred from a set of ¢ assignment

examples is able (in mean value) to reassign correctly all 100 alternatives.

The number of parameters to be inferred (weights w;) depend on the number
of criteria only. Considering the above results, 2 X m (m being the number of
criteria) seems to be a reasonable number of assignment examples to infer the
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Size: i a})g‘g (%) Wig? ()
6 -0.093 4.4
12 -0.088 4.0

18 0.076 0.6

24 0.129 0.2
30 0.157 0.0
36 0.112 0.4
42 0.164 0.0

Table 3: Information required to infer weights reliably

weights in a reliable way (as 7 criteria are considered, 12 < 2m < 18). However,
it is important to notice that using a set A7 of 2m assignment examples does
not always infer weights such that err}J? (A7) = 0, i.e., some alternatives mights
be uncorrectly reassigned. Nevertheless, the 2m seems to us a good balance
between number of examples required from the DM (necessary limited) and
the reliability of the inferred weights. This result needs to be reinforced by a
replication of this experiment, particularily in the case where the number of
categories exceeds 3.

6.3 Is the tool able to identify the inconsistencies in the
DM’s assertions?

The optimization procedure that is tested in this experiment is conceived to
be integrated in an interactive tool briefly described in §2. In practical deci-
sion situations, real DMs do not always provide reliable information. Due to
time constraints and cognitive limitations, DM’s preferences evolve over time,
contains contradictory or inconsistent information. The role of an interacive
tool is to help the DM to learn about his/her preferences and their possible
representation in a specific aggregation model. Inconsistencies occur when the
DM’s preferences (in our case a set of assignment examples) can not be expressed
through the preference model that is used (ELECTRE TRI in our case). In such
cases, it is important to extract from the expressed preferences the inconsistent
pieces of information, i.e., the most untypical or contradictory assignment ex-
amples. Consequently, a fundamental experimental issue concerns the ability
of the tool to identify the inconsistencies in the DM’s statements: identifying
inconsistencies will help the DM in revising the expressed assertions in order for
his/her preference to match the used preference model.
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In order to test the ability of the optimization procedure to identify incon-
sistent information, we consider the sets Err] derived from A} in which an
alternative is volontarily assigned to a ”wrong” category. The error introduced
consist in changing the assignment of an alternative (for example, assigning to
C; an alternative that should be assigned to Cs).

So as to know if the opimization procedure is able to identify an inconsis-
tency, we will ground on the following idea. Let ager be the alternative wrongly
assigned in Err], Tgerr and ygerr being the corresponding slack variables (see
§4.1). Let us recall that the variable o correspond to the minimum of z; and
yi, for all alternatives in Err]. The alternatives that are the ”most difficult” to
assign are those (in the interactive process, these alternatives are those which
should be proposed to the DM in order to revise the assignments) for which
T = a or Yy = a. Hence, we will consider the error or inconsistency to be ”dis-
covered” if Tperr = @ OF Yperr = a. If agerr is identified as one of the alternative
the most diffficult to assign, it might not be the only alternative for wich one of
the slack variable equal . Let n(Err]) denote the number of such alternatives;
the lower n(Err!), the more accurate is the identification. We denote 7 (i) the

mean value for n(Err]), for all j.

In the result, we observe that the error is always identified (zge = a or
Ygerr = ). Table 4 gives the numerical results:

Size: i | @(i) | () | =2
6 | 0.00 | 43 | 71.7%
12 | 001 | 6.9 | 57.5%
18 | -0.01 | 8.8 | 48.9%
24 | -0.01 | 8.3 | 34.6%
30 | 0.01 | 152 50.7%
36 | 0.01 | 13.0 | 36.1%
42 -0.02 | 12.4 | 29.5%
48 -0.02 | 14.1 | 29.4%

Table 4: Identification of ”errors”

Unsurprisingly, we observe a degradation of the value of @(¢) compared to
its value in the case of the initial assignment sets, i.e., without errors (see ta-
ble 2). Secondly, though the errors are systematically identified, the number
of alternatives m(4) is increasing with the size i of the sets; however, the pro-
portion of such alternatives is decreasing with i. Finally the results show that
the optimization procedure has a good ability to identify suspicious assignments.
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6.4 TIs the output sensitive to the choice of an objective
function?

The output of the optimization phase rely on the choice of an objective function.
As different objective functions can be considered, it is important to check the
variability of the output to the different functions.

In this study, we investigate a class of objective functions z(€) to be maxi-
mized of the form (see §4.2):

z(e) = kz;rknerh* {zk, yr} + ek ZEA* (xk + yr) (18)
1Ak

These objective functions z(e) aggregate two components:

e 3 first component which leads to an optimum that account only for the
alternative that is the most difficult to assign correctly,

¢ a second additive component in which a ”stable” assignment may be com-
pensated by a less stable one; this second component account for the
overall ability of the obtained weight vector to assign the alternatives cor-
rectly.

The parameter € enables to tune z(e) in direction of one of its two compo-
nents (¢ = 0 leads to a standard MaxMin criterion while a sufficiently large
value for e leads to an additive criterion).

In our experiment, we perform the computations for e = 1073,1072,107",
10°,10',10% and for each set A7,i = 6,12,24,30,36,42,48,j = 1,...,10. Firstly,
we can observe that different values for € leads to different results. Obvi-
ously, we observe that optimal value for a decreases when e increases and
m Zk:ake 4+ (@k + yi) increases with e. In other words, the stability of
the ”worst case” deteriorates while the ”mean stability” increases when we em-
phasize the additive component of the objective function.

A more interesting point deals with the comparative reliability of the weights
Wazmin and Wqqq infered using a pure maxmin and a standard additive ob-
jective function. More precisely, what is the ability of wiepmin and wegq to
reassign correctly the whole set of 100 alternatives. Table 5 and 6 presents the

—100

values of a0 (i) and erFT 00 (i) (see §6.2).

We observe that:

e when the set of assignment examples is unsufficiently large (< 12, see
86.2), Wmazmin and wegqq are equally acurate,
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Size: i —

6

12

18

24

36

42

€ | 0.001

-0.093

-0.088

0.076

0.129

0.157

0.112

0.164

L [oo1

-0.093

-0.088

0.076

0.129

0.157

0.112

0.164

0.1

-0.093

-0.088

0.076

0.129

0.157

0.112

0.164

1

-0.093

-0.088

0.076

0.129

0.138

0.112

0.155

10

-0.093

-0.088

0.050

0.095

0.114

0.083

0.121

100

-0.093

-0.088

0.050

0.095

0.114

0.083

0.121

Table 5: &

100
opt

(4): ability of w to reassign alternatives

Size: i —

6

12

18

24

30

36

42

0.001

4.4

4.0

0.6

0.2

0.0

0.4

0.0

0.01

4.4

4.0

0.6

0.2

0.0

0.4

0.0

0.1

4.4

4.0

0.6

0.2

0.0

0.4

0.0

1

4.4

4.0

0.6

0.2

0.0

0.4

0.0

10

4.4

4.0

1.2

0.2

0.0

0.4

0.0

100

4.4

4.0

1.2

0.2

0.0

0.4

0.0

Table 6: err

100
opt

(1): number of uncorrect reassignments

e when sufficient information is provided, the maxmin criterion leads to
slightly more robust weights,

e the number of uncorrectly reassigned alternatives are almost always equal

when using Wmazmin OF Wadd-

While both objective functions give good results, a slight advantage is ob-
served in favor of the maxmin criterion in terms of the stability of reassignments.

7 Conclusions

This paper presents an experimental validation of a procedure aiming at in-

ferring the weights of the ELECTRE TRI method on the basis of assignment
examples (see [MS98]). The performances of this procedure were tested to-
gether with its ability to be integrated in an interactive process based on the

aggregation-disaggregation paradigm. In conclusion, we can state the following;:
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o the results show that the inference procedure derives weights that assign
(using ELECTRE TRI) the examples to the ”correct” category in a stable
way,

e experimental results suggest that a "reasonable” number of assignment
examples to infer the weights reliably is 2m, m being the number of cri-
teria,

e the inference procedure shows a good ability to detect inconsistencies in
the user’s assertions; this property is particularily important in the per-
spective of its integration in an interactive process,

o the different objective functions tested did not provided significantly dif-
ferent results in terms of reassignment performances.

Although these results depend on the data under consideration, the empir-
ical results seems robust. These good results concerning the behaviour of the
inference procedure must be analysed in relation the use of this inference proce-
dure. The inference phase (formalized by the mathematical program) is not only
a simply adjustment process, but is intended to be integrated into an interactive
aggregation disaggregation process (see section 2).This interactive process aims
at providing the DM a tool for him/her to learn about his/her preferences and
their compatibility with the used preference model. In this sense, the presented
empirical results are very promising in terms of applicability of the approach
proposed in [MS98].
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