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Abstract. Sorting models consist in assigning alternatives evaluated on several
criteria to ordered categories. To implement such models it is necessary to set the
values of the preference parameters used in the model. Rather than fixing the values
of these parameters directly, a usual approach is to infer these values from assign-
ment examples provided by the decision maker (DM), i.e., alternatives for which
(s)he specifies a required category. However, assignment examples provided by
DMs can be inconsistent, i.e., may not match the sorting model. In such situations,
it is necessary to support the DMs in the resolution of this inconsistency. In this
paper, we extend algorithms from Mousseau et al. (2003) that calculate different
ways to remove assignment examples so that the information can be represented
in the sorting model. The extension concerns the possibility to relax (rather than to
delete) assignment examples. These algorithms incorporate information about the
confidence attached to each assignment example, hence providing inconsistency
resolutions that the DMs are most likely to accept.
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1 Introduction

Many real-world decision problems can be represented by a model stating ex-
plicitly the multiple points of view from which alternatives under consider-
ation should be evaluated, through the definition of ncrit criterion functions
g1, g2, . . . , gj , . . . , gncrit . Given a set A = {a1, a2, . . . , ai, . . . , analt } of poten-
tial alternatives evaluated on the criteria, the analyst conducting the decision aiding
study may formulate the problem in different terms. Roy (1996) distinguishes three
problem statements (choosing, sorting, and ranking) that may guide the analyst in
structuring the decision problem (see also Bana and Costa 1996).

In this paper, we are interested in sorting problems which consist in assigning
each alternative to one of the pre-defined categories C1, C2, ..., Ck, ..., Cncat . The
assignment of an alternative ai results from its intrinsic evaluation on all criteria
with respect to the norm defining the categories. Several methods have been pro-
posed to handle multiple criteria sorting problems (MCSP), e.g., Trichotomic Seg-
mentation (Moscarola and Roy 1977), N-TOMIC (Massaglia and Ostanello 1991),
ORCLASS (Larichev and Moskovich 1994), ELECTRE TRI (Roy and Bouyssou
1993), PROAFTN (Belacel 2000), UTADIS (Zopounidis et al. 2001) and a general
class of filtering methods (Perny 1998).

One of the major difficulties that an analyst must face when interacting with a
decision maker (DM) in order to build a sorting model is the elicitation of various
preference parameters used by the method. Even when these parameters can be in-
terpreted, it is difficult to fix their values directly and to have a clear understanding
of the implications of these values in terms of the output of the model. In order to
avoid direct elicitation of the parameters, several authors have designed disaggre-
gation procedures which make it possible to infer parameter’s values from holistic
judgments, an approach firstly introduced in the UTA method (Jacquet-Lagrèze
and Siskos, 1982). Such procedures have been defined for MCSP (e.g., Zopounidis
et al. 2001 for UTADIS and Mousseau and Slowinski 1998 for ELECTRE TRI).

The holistic judgments required to infer sorting models are called assignment
examples and correspond to alternatives (real or fictitious) for which the DM can
express a desired assignment, e.g., “ai should be assigned toC3” (ai → C3), or “ai
should be assigned to C1 or C2” (ai → [C1, C2], i.e., imprecise assignment exam-
ples can be considered). In some sorting methods (namely UTADIS and ELECTRE
TRI when only the weights of criteria are inferred) such assignment examples define
linear constraints on the model parameters.

When the assignment examples provided by the DM can be fully represented in
the preference model, one may infer values for the models parameters that restore
these examples. However, this is not always possible and the preference model
cannot represent all examples simultaneously. Such a situation can be understood
according to two perspectives: either the examples provided by the DM contradict
each other, or the preference model is not flexible enough to account for the way the
DM assigns alternatives holistically. In the first case, the DM would acknowledge
a misjudgment and would agree to reconsider his/her examples; in the second case,
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the DM would not agree to change the examples and the preference model should
be changed. In both cases, we refer to an inconsistency situation. In any case, the
DM needs to know what causes inconsistency, i.e., which judgments should be
changed if the aggregation model is to be kept. Very few multiple criteria methods
incorporate such inconsistency analysis: MACBETH (Bana e Costa et al. 2005)
provides such feature to build an additive model from qualitative judgments about
difference of value.

Consider a problem in which a DM has specified assignment examples induc-
ing linear inequalities on the preference parameters. This is namely the case with
UTADIS (Zopounidis et al. 2001) and ELECTRE TRI (Dias et al. 2002) when only
the weights of criteria are inferred. The assignment examples define a polyhedron
of possible values for the parameters; when an inconsistent set of assignment ex-
amples is provided by the DM, this polyhedron is empty. There exist various ways
by which the set of assignment examples can be modified so that the polyhedron
becomes non-empty.

The problem is then to identify all the “minimal” subsets (in the sense of the
inclusion) that resolve inconsistency, i.e., subsets among which the DM must choose
in order to make his/her information consistent. In Mousseau et al. (2003), two
algorithms are proposed to identify all the minimal subsets Sq , q = 1, . . . ,Q to be
deleted (sorted by cardinality) that resolve inconsistency and whose cardinality is
lower than (or equal to) maxcount (maxcount is an input to the algorithms that
states the maximum number of solutions to be computed).

In this paper, we complement Mousseau et al. (2003) by proposing alterna-
tive ways to resolve inconsistencies stemming from a set of assignment examples.
Namely, instead of deleting assignment examples, we consider relaxing them, i.e.,
enlarging the interval of the possible assignments for an alternative. Moreover, we
consider that the DM may provide confidence levels associated with the assignment
examples.

The paper is organized as follows. Section 1 defines inconsistency relaxation
and shows that the algorithms proposed by Mousseau et al. (2003) still apply when
considering constraints relaxation rather than constraints deletion. An illustrative
example is introduced within the context of the ELECTRE TRI method. Section 2
considers the case in which the DM is able to provide confidence levels associated
to the assignment examples, and suggests two ways to account for such information
in order to rank the solutions according to the confidence levels provided by the
DM. The example introduced in Sect. 1 is extended to this case. Finally, conclusions
and suggestions for future research are provided.

2 Inconsistency resolution via constraints relaxation

Resolving the inconsistencies can be performed by deleting a subset of constraints.
Let x1, x2, . . ., xj , . . ., xn denote the n parameters of the considered sorting model.
Let us denote I = {1, 2, ..., m} the set of indices of the constraints and T∅ =
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{x ∈ R
n : ∑n

j=1 αij xj ≥ βi,∀i ∈ I } the initial empty polyhedron, i.e., the
polyhedron with all the initial constraints. Let S ⊆ I denote a subset of indices
of constraints. We will say that S resolves the inconsistency if and only if the
polyhedron TS = {∑n

j=1 αij xj ≥ βi,∀i ∈ I \ S} is not empty.

In Mousseau et al. (2003) two algorithms are proposed to compute alternative
ways to restore consistency by constraints deletion. We would like to consider here
the case in which consistency can be solved by relaxing constraints rather than
deleting them.

2.1 Defining constraints relaxations

Considering an infeasible system of linear inequalities (that can correspond to
assignment examples), relaxing constraints rather than deleting them (in order to
restore feasibility) has already been studied in the general case by (e.g., León and
Liern 2001 and Roodman 1979). The relaxations considered by these authors are
continuous and deal with the right-hand-side of the constraints only. In our case,
we will define the relaxations differently:

– the relaxations will be performed by changing the technical coefficients αij of
the constraints rather than the right-hand-side;

– a discrete set of relaxations will be considered which have a meaning with
respect to the sorting model, namely increasing the interval of categories to
which an alternative can be assigned.

Suppose the DM has specified a set of assignment examples, i.e., a subset
of alternatives A∗ ⊆ A such that each ai ∈ A∗ is associated with max(ai)
(min(ai), respectively) the index of the maximum (minimum, respectively) cat-
egory to which ai should be assigned according to his/her holistic preferences
(ai → [Cmin(ai ), Cmax(ai )], ai ∈ A∗). From the DM’s perspective, max(ai) repre-
sents the statement “ai should be assigned at most to category Cmax(ai )” (denoted
C(ai) ≤ max(ai)) and, min(ai) express that “ai should be assigned at least to
category Cmin(ai )” (denoted C(ai) ≥ min(ai)). For each ai ∈ A∗, min(ai) and
max(ai) induce two constraints. As mentioned earlier, when considering UTADIS
or ELECTRE TRI (the limits of categories and associated thresholds being known)
these constraints are linear.

Let us consider the assignment example ai → [min(ai),max(ai)], ai ∈ A∗. A
relaxation of this assignment example consists in assigning ai to a wider interval
[Ck,Ck′ ] such that k ≤ min(ai) or k′ ≥ max(ai), with at least one strict inequality.
Let us consider the system of inequalities containing the constraints corresponding
to all the possible relaxations of the assignment example ai → [Cmin(ai ), Cmax(ai )]
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(it also contains the constraints corresponding to the original assignment example):



C(ai) ≥ min(ai)

C(ai) ≥ min(ai)− 1
...

C(ai) ≥ 1
C(ai) ≤ max(ai)

C(ai) ≤ max(ai)+ 1
...

C(ai) ≤ ncat

Consider S∗ the set of all indices of constraints induced from a set of assignment
examples corresponding to a relaxation of the initial assignment examples. It should
be noticed that all the constraints corresponding to a relaxation of one of the two
initial constraints are redundant (therefore, S∗ contains many redundancies). It
should also be remarked that the constraintsC(ai) ≥ 1 andC(ai) ≤ ncat are trivial
and can be removed.

2.2 Illustrative example

Let us consider a situation in which a set of 40 alternatives has to be assigned
to 5 categories using the ELECTRE TRI pessimistic method. Each alternative is
evaluated on the basis of a set of 7 criteria (see Appendix A). The limits of the
categories are known but the criteria importance coefficients are to be defined
(see Appendix B). No discordance situation (veto) is considered. Suppose the DM
provides assignment examples, where ai → [Ck,Ck′ ] means that alternative ai
must be assigned to a category between Ck and Ck′ , (k ≤ k′):

– a1 → C5
– a18 → C4
– a23 → [C2, C3]
– a24 → [C2, C3]
– a26 → C5
– a30 → C1
– a31 → C5
– a35 → [C1, C2]
– a36 → C4
– a38 → C4
– a39 → C3

From these assignment examples, it is possible to define relaxations as in §1.1.
These assignment examples and their relaxations generate a set of 41 constraints
on the criteria weights wj , j = 1, ..., 7 and cutting level λ.
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For instance, C(a1) ≥ 5 is equivalent to stating that a1 is at least as good as
b4 (b4 being the limit between C4 and C5) which amounts to stating the following
constraint according to ELECTRE TRI pessimistic rule:

7∑
i=1

wici(a1, b4) ≥ λ ⇔ w4 + w5 + w6 − λ ≥ 0

wherewi denotes the weight of criterion i,λ is the required majority and ci(a1, b4) ∈
[0, 1] represents the degree to which criterion i agrees that a1 is at least as good as
b4.

The first 17 constraints correspond to the original assignment examples and
the remaining ones correspond to the relaxations (the complete list of constraints
is provided in Appendix C). The linear system associated with the assignment
examples is infeasible, which means that the information provided by the DM is
inconsistent, i.e. there is no way to represent the information in the ELECTRE TRI
sorting model.

If we apply the algorithms proposed by Mousseau et al. (2003) (i.e., inconsis-
tency resolution via constraints deletion) to the set S, the solutions correspond to
constraints relaxation and/or deletion. It follows from the preceding remark that it
is possible to use the algorithm proposed by Mousseau et al. (2003) to solve incon-
sistencies by relaxation (rather than deletion) of assignment examples. Hence, in
the rest of the paper, we will talk in terms of constraints deletion, knowing that it
embraces the case of constraints relaxation.

Considering this infeasible linear system, there exist 11 minimal subsets of
constraints that resolve the inconsistency, where I = {1, 2, ..., 41}.These 11 subsets
(ordered by cardinality) are listed below. Let us remark that due to the limited size
of this example, we have computed all the solutions. When dealing with a large
size problem, the DM ought to indicate a maximum number of solutions to be
computed.

– S1 = {5, 8, 9, 10, 11, 25, 28, 29}
– S3 = {1, 5, 8, 9, 10, 14, 17, 28, 29}
– S4 = {1, 5, 8, 9, 10, 14, 25, 28, 29}
– S5 = {1, 8, 9, 10, 14, 25, 28, 29, 31}
– S6 = {1, 8, 9, 10, 11, 25, 28, 29, 31}
– S7 = {5, 7, 9, 10, 11, 13, 17, 28, 29, 30}
– S8 = {1, 8, 9, 10, 12, 14, 16, 25, 28, 31, 38}
– S9 = {5, 8, 9, 10, 11, 12, 14, 16, 25, 28, 31, 38}
– S10 = {3, 5, 7, 9, 11, 13, 15, 17, 23, 24, 28, 29, 30, 41}
– S11 = {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21, 22, 25,

26, 27, 31, 32, 33, 36, 37, 38, 39, 40}
To solve the inconsistency, the DM should choose one among these 11 alter-

native solutions. In order to be presented to the DM, these solutions should be
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formulated in terms of relaxation of the assignment examples. For instance, S1
corresponds to:




relax a23 → [C2, C3] to a23 → [C2, C4]
relax a26 → C5 to a26 → [C3, C5]
relax a30 → C1 to a30 → [C1, C4]
relax a31 → C5 to a31 → [C4, C5]
relax a35 → [C1, C2] to a35 → [C1, C3]

We can observe that some of these relaxations correspond to the deletion of
one constraint from I (relax a23 → [C2, C3] to a23 → [C2, C4], constraint 5),
while others require the deletion of several constraints from I (relax a26 → C5 to
a26 → [C3, C5], constraints 8 and 25).

3 Attributing confidence levels to assignment examples

For each assignment example, the DM may be more or less confident in his/her state-
ments. In this section, we will suppose that the DM is able to express confidence
judgments. Such confidence judgments can be taken into account by algorithms
that identify alternative ways for solving inconsistencies. Intuitively, these algo-
rithms should provide solutions in an order such that the least confident constraints
are relaxed/deleted with a higher priority than solutions relaxing high-confidence
statements.

3.1 Defining confidence levels

Let us consider a confidence scale � (ψ0 ≺ ψ1 ≺ . . . ≺ ψp ≺ . . . ≺ ψτ ). The
semantics of this qualitative scale is such that, when facing an inconsistency situa-
tion, an assignment example is less likely to be relaxed/deleted when its confidence
level is high.

From the DM’s perspective, the statements “ai should be assigned at most
to category Cmax(ai )” and “ai should be assigned at least to category Cmin(ai )”
induce two constraints. The DM can attach a confidence level to each of the above
mentioned statements. The information will be interpreted as confidence levels
attached to the corresponding constraints (for example, a1 → C2 implies “a1
should be assigned at least to C2” and “a1 should be assigned at most to C2” and
the DM may have different confidence levels concerning these two statements, e.g.,
(s)he may say that if a1 is not assigned to C2, then it is more likely to be assigned
to a higher category than to a lower one). For each relaxed constraint, the attached
confidence level is considered to be equal to the confidence level of the original
constraint from which it was derived (unless the DM provides specific information).
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3.2 A lexicographic ranking procedure

Let us consider an inconsistent set of assignment examples provided by the DM and
the set of linear constraints associated with them.Any relaxation of these assignment
examples (see §1) will be also considered here. Following the notation introduced
previously,m denotes the total number of constraints and I = {1, 2, . . . , i, . . . , m}
denotes the set of indices of these constraints. The resulting polyhedron is, T∅ =
{x ∈ R

n : ∑n
j=1 αij xj ≥ βi,∀i ∈ I } = ∅.

Let Ip denote the subset of constraints whose confidence level is equal to ψp.
Hence, I 0, I 1, ..., Ip, ..., I τ define a partition of I . Furthermore, we will denote
I≤p = ⋃p

l=0 I
l the set of constraints whose confidence level is lower than or equal

to ψp. Now, consider Sl ⊆ I≤l a subset of indices of constraints whose confidence
level is lower than or equal to ψl . We will say that Sl resolves the inconsistency
at a confidence level ψl if and only if TSl = {x ∈ R

n : ∑n
j=1 αij xj ≥ βi,∀i ∈

I \ Sl} �= ∅.
A simple way to account for the confidence level attached to each constraint is

to proceed as follows:

1. Identify (by increasing order of cardinality) all minimal subsets S0
1 , S

0
2 , ..., S

0
q0

that resolve the inconsistency at level ψ0 (i.e., relaxations whose confidence
level is equal to ψ0 that make the original system of inequalities feasible).

2. Then, identify (by increasing order of cardinality) all minimal subsets
S1

1 , S
1
2 , ..., S

1
q1

that resolve the inconsistency at level ψ1.
3. Proceed in the same way until finding minimal subsets Sτ1 , S

τ
2 , ..., S

τ
qτ

that
resolve the inconsistency at level ψτ or finding a total number of subsets equal
to maxcount.

The algorithms presented in Mousseau et al. (2003) can be rather easily adapted
to account for the confidence levels lexicographically as outlined above (for a
detailed description of the adapted algorithm see Mousseau et al. 2004).

3.3 A penalty based ranking procedure

Another approach to our problem consists in defining a penalty function π(S)
associated to each subset of constraints indicesS ⊆ I , and in ranking the subsets that
resolve the inconsistency by decreasing penalty order: the larger π(S), the greater
the dissatisfaction of the DM in removing S from I . This approach generalizes the
lexicographic ranking as it is possible to define the penalty function π in such a
way that the penalty ranking coincides with the lexicographic ranking.

Given a subsetS ⊆ I ,S∩Ip denotes the subset ofS corresponding to constraints
indices whose confidence level is equal to ψp, p = 0, ..., τ . Let |S ∩ Ip| denote
the cardinality of S whose confidence level is equal to ψp. In order to define the
semantic of the penalty function π , we impose a few suitable conditions on π :
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Condition 3.1 (non-negativity)
∀S ⊆ I, π(S) ≥ π(∅) = 0.

Condition 3.2 (anonymity)
∀S, S′ ⊆ I, if |S ∩ Ip| = |S′ ∩ Ip|, ∀p = 0, ..., τ then π(S) = π(S′).

Condition 3.3 (confidence monotonicity)
∀S, S′ ⊆ I such that |S∩ Ip| = |S′ ∩ Ip|, p = 1, . . . , τ, p �= u, p �= v, it holds:

|S′ ∩ Iu| = |S ∩ Iu| + 1
|S′ ∩ I v| = |S ∩ I v| − 1
u < v


 ⇒ π(S) > π(S′)

Condition 3.4 (cardinality monotonicity)
∀S, S′ ⊆ I, if ∀p = 0, ..., τ, |S ∩ Ip| ≥ |S′ ∩ Ip| then π(S) ≥ π(S′).

Among many possible penalty functions, one of the simplest can be defined
considering that each constraint in S of a given confidence level ψp contributes to
increasing π(S) by an amount �p (the values �p are to be defined by the DM):

π(S) =
τ∑
p=0

�p |S ∩ Ip| (3.1)

Given a penalty function π , it is necessary to define an algorithm to rank by
increasing penalty the subsets of I that, if removed, lead to a consistent system. The
algorithms presented in Mousseau et al. (2003) provide the set of the solutions or-
dered by cardinality without considering confidence levels. Obviously, the smallest
cardinality solutions might not correspond to those of the smallest penalty. There-
fore, we can proceed by computing the solutions by increasing cardinality and stop
when we are sure that the solutions of a higher cardinality have a greater penalty
than the ones we have already obtained. Let Stail be the solution of highest penalty
in a list of maxcount elements and let Sx,p denote an arbitrary set of x con-
straints, whose confidence levels are all equal to ψp. Proposition 2.1 allows us to
define the stopping condition π(Stail) ≤ π(S|Sq |,0)). For a detailed description of
this algorithm see Mousseau et al. (2004).

Proposition 3.1. ∀S ⊆ I, S′ ⊆ I : |S| ≥ |S′|, it holds π(S) ≥ π(S|S′|,0) i.e.,
the penalty of any solution after the q-th is not lower than the penalty that would be
awarded to the q-th solution if all the constraints indexed by Sq were of the lowest
confidence.

Proof. From repeatedly using Condition 2.3, π(S) ≥ π(S|S|,0). From Condition
2.4, since |S| ≥ |S′|, it holds that π(S|S|,0) ≥ π(S|S′|,0).
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3.4 Illustrative example

Let us consider the same example as in §1.2, but now assuming the DM provides
associated confidence judgements on a 3-point scale (absolutely confident � quite
confident � not so confident), as follows:

– a35 → [C1, C2], absolutely confident
– a18 → C4, a24 → [C2, C3], a26 → C5, a36 → C4, quite confident
– a1 → C5, a23 → [C2, C3], a30 → C1, a31 → C5, a38 → C4, a39 → C3, not

so confident

Considering these confidence judgments, the lexicographic ranking provides
the solutions, considering first the solutions that remove constraints which are
“not so confident” (i.e., I≤0), then the solutions removing constraints that are “not
so confident” or “quite confident” (i.e., I≤1) and finally the remaining ones. In
each group, the solutions are computed by increasing order of cardinality. In our
example, no solution exists removing only “not so confident” constraints; the first
five solutions computed only involve the deletion of constraints that are “not so
confident” or “quite confident”:

– S3 = {1, 5, 8, 9, 10, 14, 17, 28, 29}
– S4 = {1, 5, 8, 9, 10, 14, 25, 28, 29}
– S5 = {1, 8, 9, 10, 14, 25, 28, 29, 31}
– S7 = {5, 7, 9, 10, 11, 13, 17, 28, 29, 30}
– S8 = {1, 8, 9, 10, 12, 14, 16, 25, 28, 31, 38}

If the DM provides a penalty function π(.), then the penalty based procedure
presented in §2.3 may also be used. For instance, let us consider a penalty function
as in (3.1), with �0 = 1, �1 = 2 and �2 = 3. The five best solutions are:

– S5 = {1, 8, 9, 10, 14, 25, 28, 29, 31}, π(S5) = 10
– S1 = {5, 8, 9, 10, 11, 25, 28, 29}, π(S1) = 11
– S3 = {1, 5, 8, 9, 10, 14, 17, 28, 29}, π(S3) = 11
– S4 = {1, 5, 8, 9, 10, 14, 25, 28, 29}, π(S4) = 11
– S7 = {5, 7, 9, 10, 11, 13, 17, 28, 29, 30}, π(S7) = 11

Using either of these rankings of solutions, the DM is to chose among the
“most promising” solutions to solve inconsistency. Hence, this largely reduces the
cognitive effort of the DM to resolve inconsistency.

Conclusion

In this paper, we considered the problem of supporting the DM in the resolution of
inconsistent judgments expressed in the form of assignment examples in multiple
criteria sorting model. We have proposed the concept of relaxation of an assignment
example, which is helpful in this context. To resolve the inconsistency, it is useful to
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obtain from the DM confidence statements associated with the assignment exam-
ples. We have proposed procedures that account for the information to assist the DM
in finding the most relevant ways to restore consistency. Although we used ELEC-
TRE TRI for illustrative purposes, our procedures apply to any sorting method for
which assignment examples generate linear constraints on the preference-related
parameters.

An interesting extension of this work consists in considering the possibility of
associating different confidence levels to the original assignment examples con-
straints and their corresponding relaxation. This extension amounts to considering
that the various relaxations of an assignment example are not judged as equivalent
as regards their confidence levels.
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Appendices

Appendix A:
Evaluation matrix (assignment examples only)

g1(ai ) g2(ai ) g3(ai ) g4(ai ) g5(ai ) g6(ai ) g7(ai )

a1 16.4 14.5 59.8 7.5 5.2 5 3
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
a18 11.7 10 42.1 12.2 4.3 5 2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
a23 12.9 1.9 65 14 7.5 4 3
a24 5.9 -27.7 77.4 16.6 12.7 3 2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
a26 16.7 13.1 73.5 11.9 4.1 2 2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
a30 29.5 8.6 41.8 5.2 6.4 2 3
a31 7.3 -64.5 67.5 30.1 8.7 3 3
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
a35 -13.3 -31.1 63 21.2 29.1 2 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
a36 6.2 -3.2 46.1 4.8 10.5 2 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
a38 0.1 -9.6 42.5 12.9 12.4 1 1
a39 13.6 9.1 76 17.1 10.3 1 1
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Appendix B:
Fixed parameters

g1 g2 g3 g4 g5 g6 g7

gj (b1) −10.0 −60.0 90.0 28.0 40.0 1.0 0.0
qj (b1) 1.0 4.0 1.0 1.0 0.0 0.0 0.0
pj (b1) 2.0 6.0 3.0 2.0 3.0 0.0 0.0

gj (b2) 0.0 −40.0 75.0 23.0 32.0 2.0 2.0
qj (b2) 1.0 4.0 1.0 1.0 0.0 0.0 0.0
pj (b2) 2.0 6.0 3.0 2.0 3.0 0.0 0.0

gj (b3) 8.0 −20.0 60.0 18.0 22.0 4.0 3.0
qj (b3) 1.0 4.0 1.0 1.0 0.0 0.0 0.0
pj (b3) 2.0 6.0 3.0 2.0 3.0 0.0 0.0

gj (b4) 25.0 30.0 35.0 10.0 14.0 5.0 4.0
qj (b4) 1.0 4.0 1.0 1.0 0.0 0.0 0.0
pj (b4) 2.0 6.0 3.0 2.0 3.0 0.0 0.0

Appendix C:
Constraints stemming from the assignment examples

1. C(a1) ≥ 5 ⇔ −λ+ w4 + w5 + w6 ≥ 0
2. C(a18) ≥ 4 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 ≥ 0
3. C(a18) ≤ 4 ⇔ λ− w5 − w6 ≥ ε

4. C(a23) ≥ 2 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0
5. C(a23) ≤ 3 ⇔ λ− w1 − w2 − w4 − w5 − w6 − w7 ≥ ε

6. C(a24) ≥ 2 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0
7. C(a24) ≤ 3 ⇔ λ− w4 − w5 ≥ ε

8. C(a26) ≥ 5 ⇔ −λ+ 0.1w4 + w5 ≥ 0
9. C(a30) ≤ 1 ⇔ λ− w1 − w2 − w3 − w4 − w5 − w6 − w7 ≥ ε

10. C(a31) ≥ 5 ⇔ −λ+ w5 ≥ 0
11. C(a35) ≤ 2 ⇔ λ− w2 − w3 − w4 − w5 − w6 ≥ ε

12. C(a36) ≥ 4 ⇔ −λ+ 0.2w1 + w2 + w3 + w4 + w5 ≥ 0
13. C(a36) ≤ 4 ⇔ λ− w4 − w5 ≥ ε

14. C(a38) ≥ 4 ⇔ −λ+ w2 + w3 + w4 + w5 ≥ 0
15. C(a38) ≤ 4 ⇔ λ− w5 ≥ ε

16. C(a39) ≥ 3 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 ≥ 0
17. C(a39) ≤ 3 ⇔ λ− w1 − w2 − w4 − w5 ≥ ε

18. C(a1) ≥ 4 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0
19. C(a1) ≥ 3 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0
20. C(a1) ≥ 2 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0
21. C(a18) ≥ 3 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0
22. C(a18) ≥ 2 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0
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23. C(a23) ≤ 4 ⇔ λ− w5 ≥ ε

24. C(a24) ≤ 4 ⇔ λ− w5 ≥ ε

25. C(a26) ≥ 4 ⇔ −λ+ w1 + w2 + w4 + w5 ≥ 0
26. C(a26) ≥ 3 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0
27. C(a26) ≥ 2 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0
28. C(a30) ≤ 2 ⇔ λ− w1 − w2 − w3 − w4 − w5 − w6 − w7 ≥ ε

29. C(a30) ≤ 3 ⇔ λ− w1 − w2 − w3 − w4 − w5 − w7 ≥ ε

30. C(a30) ≤ 4 ⇔ λ− w1 − w4 − w5 ≥ ε

31. C(a31) ≥ 4 ⇔ −λ+ w1 + w5 + w7 ≥ 0
32. C(a31) ≥ 3 ⇔ −λ+ w1 + w3 + w5 + w6 + w7 ≥ 0
33. C(a31) ≥ 2 ⇔ −λ+ w1 + 10.75w2 + w3 + w5 + w6 + w7 ≥ 0
34. C(a35) ≤ 3 ⇔ λ ≥ ε

35. C(a35) ≤ 4 ⇔ λ ≥ ε

36. C(a36) ≥ 3 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 ≥ 0
37. C(a36) ≥ 2 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0
38. C(a38) ≥ 3 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 ≥ 0
39. C(a38) ≥ 2 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0
40. C(a39) ≥ 2 ⇔ −λ+ w1 + w2 + w3 + w4 + w5 + w6 + w7 ≥ 0
41. C(a39) ≤ 4 ⇔ λ− w5 ≥ ε
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