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Abstract

We consider a framework where decision makers (DMs) interactively define a multicriteria evaluation model by

providing imprecise information (i.e., a linear system of constraints to the model�s parameters) and by analyzing the
consequences of the information provided. DMs may introduce new constraints explicitly or implicitly (results that the

model should yield). If a new constraint is incompatible with the previous ones, then the system becomes inconsistent

and the DMs must choose between removing the new constraint or removing some of the older ones. We address the

problem of identifying subsets of constraints which, when removed, lead to a consistent system. Identifying such subsets

would indicate the reason for the inconsistent information given by DMs. There may exist several possibilities for the

DMs to resolve the inconsistency. We present two algorithms to identify such possibilities, one using {0,1} mixed

integer linear programming and the other one using linear programming. Both approaches are based on the knowledge

that the system was consistent prior to introducing the last constraint. The output of these algorithms helps the DM to

identify the conflicting pieces of information in a set of statements he/she asserted. The relevance of these algorithms for

MCDA is illustrated by an application to an aggregation/disaggregation procedure for the Electre Tri method.
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1. Introduction

Multicriteria decision aiding models usually have many preference parameters that the decision makers

(DMs) must set. These parameters influence the manner in which differences in performances are evaluated,
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the role of each criterion in the aggregation of the performances. Providing precise figures for all parameter

values is often difficult, to the extent that there may exist some imprecision, contradiction, arbitrariness,

and/or lack of consensus concerning the value of the parameters (see [16]).

We consider an imprecise information context (see, e.g., [4,22]), where the DMs may indicate some

constraints on the acceptable combinations of parameter values. Such information may be provided in an

explicit manner (e.g., parameter t1 belongs to ½0:2; 0:3�, or parameter t1 is larger than parameter t2), or in an
implicit manner (indicating a result that the model should restore, e.g., alternative a1 should be better
ranked than a2). Methods that accept the latter type of constraints to infer parameter values are often called
aggregation/disaggregation procedures (see [7,10,13]).

In the course of an interactive process, DMs may progressively add constraints on the parameter values.

Let Tk denote the set of parameter values that are acceptable to the DMs (according to the constraints they
provided) at the kth iteration. Given this set, it is possible to provide some output to support the DMs in
revising Tk:

• robust conclusions – the results that are valid for all the combinations t 2 Tk (see [17,21]); for instance, ‘‘a1
is never contained in the choice set’’ in a selection problem; ‘‘a1 is always better ranked than a2’’ in a
ranking problem; or ‘‘a1 can only be assigned to category good or very good’’ in a sorting problem;

• variability information – the results that vary more, according to the combination chosen; for instance,

‘‘the position of a1 in the ranking is very unstable: for some input values it may be the best, whereas for
other combinations it is one of the worst’’ in a ranking problem (see [8]);

• inferred parameter values procedures (see [7,13]) – a ‘‘central’’ combination t 2 Tk that satisfies all the con-
straints, hence able to restore the results that were demanded; for instance, ‘‘w is the best weight vector in
order to account for the ranking a2 � a4 � a1 � a9 � a7 (stated by the DMs)’’.

We consider interactive processes in which DMs start the first iteration with very little information. Each

iteration will provide an opportunity to add, delete or modify a specific supplementary constraint. Adding a

single piece of information at each iteration facilitates the control of the information supplied by the DMs.

This interactive process stops when DMs are satisfied with the set Tk and when the results of the model
match their view of the decision problem.

We will consider that all the constraints are linear (Tk is a polyhedron) and that the polyhedron Tkþ1 that
corresponds to the next iteration is obtained by adding a single constraint, i.e., by intersecting Tk with a
half-space or a hyperplane. A difficulty occurs when Tkþ1 becomes empty, meaning that the new constraint
contradicts some of the previous ones. To resolve the inconsistency that appeared in the linear system of

constraints, one must either drop the new constraint, or some of the older ones. The choice should belong

to the DMs, after they learn which are the sets of constraints that lead to a non-empty Tkþ1 if removed. Note
that when we refer to the removal of one or more constraints, the DMs may choose to relax these con-

straints instead (e.g. increasing the right-hand side of an Ax6 b system).
Dealing with inconsistent information provided by DMs in the context of an interactive preference

elicitation process requires the development of specific algorithms aiming at solving the infeasibility

problem induced by the MCDA context. Many authors have previously addressed the subject of infeasi-

bility analysis in linear programming (see [3] for a complete summary of the state of the art in infeasibility

analysis algorithms) according to different perspectives, namely:

1. Some authors (see [1,11,20]) are interested in determining an irreducibly inconsistent system (IIS). An

IIS is a minimal subset of constraints that corresponds to an inconsistent system, in the sense that

any proper subset of an IIS is a consistent system. Let us remark that the inconsistency in an IIS can
be removed by deleting any constraint, but if there are several IISs, then the initial system of constraints

can remain inconsistent.
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2. A different problem is to determine the minimum number of constraints that has to be removed to

restore the consistency in the initial system, which is equivalent to solving the minimum-cardinality

IIS set-covering problem (see [2,14]).

3. Finally, we can mention the problem of determining the minimum weight alternative to restore the

consistency in a system, which is equivalent to determining a minimum-weight IIS set-cover (see
[2,14]).

The perspective we are interested in is close to problem 2, with the following specificities:

• we are also interested in sets of constraints that restore the consistency if removed that are not of min-

imum cardinality, since the DMs may rather drop two constraints they consider unimportant than drop

a single important one;

• we know that one of the constraints caused the inconsistency, hence removing that constraint is a trivial
manner to resolve the inconsistency; the question here is what other alternatives exist.

Hence, we may formulate the problem we are addressing as: to determine all ‘‘minimal’’ subsets of

constraints Si (in terms of cardinality) verifying: (a) the cardinality of each Si does not exceed a given value
ðXÞ and (b) the deletion of Si restores the consistency to the initial system.
In the context of the interactive processes we are considering, solving such problems will allow us to

propose alternative ways to resolve an inconsistency that appeared at a given iteration. This helps the DMs

to understand how their inputs are conflicting and to question previously expressed judgments. Analyzing
and confronting the alternative solutions of such problems provide opportunities for the DMs to learn about

their preferences as the interactive process evolves. Searching for the smallest subsets of constraints is

consistent with the idea according to which the DMs will first consider the ‘‘less complex’’ ways to solve

inconsistency. 1

In the next section we define our problem formally and propose two techniques to solve it. One of the

techniques consists of solving a succession of f0; 1g mixed integer linear programs, while the second one
uses only linear programming. Section 3 presents an application to the aggregation/disaggregation ap-

proach for Electre Tri, reviewing this approach and including a numerical example. We finally indicate
some extensions and conclude the paper.

2. Two different methods to cope with inconsistent systems

Consider a problem in which the DMs has interactively specified constraints on the preference pa-

rameters of an MCDA model by defining a polyhedron of acceptable values denoted by Tk
1 (at iteration
k 
 1). This polyhedron is defined by the following (general) consistent system of m
 1 linear constraints
on n variables x1; x2; . . . ; xn:

System ð1Þ :

Pn
j¼1 a1jxj P b1;

..

.Pn
j¼1 aðm
1Þjxj P bm
1;

8><
>: aij; bi 2 R; i ¼ 1; . . . ;m
 1; j ¼ 1; . . . ; n:

Let us consider a new constraint
Pn

j¼1 amjxj P bm that, when added to the System (1), leads to System (2)

containing m linear constraints, which is now inconsistent:

1 It is always possible to increase the value of X if DMs are not satisfied with any of the proposed sets of constraints.
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System ð2Þ :

Pn
j¼1 a1jxj P b1;

..

.Pn
j¼1 aðm
1Þjxj P bm
1;Pm
j¼1 amjxj P bm;

8>>>>><
>>>>>:

aij;bi 2 R; i ¼ 1; . . . ;m
 1; j ¼ 1; . . . ; n:

Let I ¼ f1; 2; . . . ;mg be the set of indices of the constraints defining Tk at iteration k (i.e., with the new

constraint that makes Tk empty). Hence, Tk ¼ fx 2 Rn :
Pn

j¼1 aijxj P bi 8i 2 Ig ¼ ;. Let S � I denote a
subset of indices of constraints. We will say that S resolves System (2) if and only if the systemPn

j¼1 aijxj P bi 8i 2 I n S is consistent. Let jSj denote the cardinality of the set S. Our problem is to identify
all minimal subsets Si that resolve System (2) and whose cardinality is lower (or equal to) than X (X being
considered as an input to the algorithms). Formally, the problem we are addressing is to determine p sets
S1; . . . ; Sp (if they exist) such that:

(i) Si resolves System (2), i 2 f1; 2; . . . ; pg.
(ii) Si 6� Sj; i; j 2 f1; . . . ; pg; i 6¼ j.
(iii) jSij6 jSjj; i; j 2 f1; 2; . . . ; pg; i < j.
(iv) If there exists a set S that resolves System (2) such that S 6� Si 8i ¼ 1; 2; . . . ; p, then jSj > jSpj.
(v) jSij6X 8i ¼ 1; 2; . . . ; p:

Since we already know that the System (1) is consistent and the System (2) is inconsistent, we can ob-

viously set S1 ¼ fmg. From condition (ii), this implies that the remaining sets S2; . . . ; Sp will not include fmg.
Two alternative methods to solve this problem are proposed hereafter.

It should be noted that both algorithms provide the same set of solutions (only the order of appearance

of the solutions Si having the same cardinality can vary).
The first approach makes use of f0; 1g mixed integer linear programming while the second is based on

linear programming techniques only. It is obvious that mixed integer linear programming methods are

computationally more demanding than standard linear programming methods. Therefore, as the size of the
problems increases, the first approach will probably become less efficient than the second one. However, the

size of the problems considered for solving inconsistencies in MCDA models is not very large and both

methods provide results within a computation time that is compatible with interactive decision support

systems. Hence both algorithms are relevant for our problem.

2.1. An algorithm based on f0; 1g mixed integer linear programming techniques

This first method is based on f0; 1g mixed integer linear programming techniques. It allows the iden-
tification of p subsets of constraints that, when removed, make the polyhedron Tk feasible; this is done
through p 
 1 successive optimizations ðPM2; PM3; . . . ; PMpÞ. A similar approach can be found in [9].
The program PM2 minimizes the number of constraints to be removed in order to make Tk feasible. The

subset S1 ¼ fmg is obviously the smallest subset verifying (i)–(v). The first problem PM2 to be solved is the

following:

PM2

Min
Pm
1

i¼1 yi
s:t:

Pn
j¼1 aijxj þMyi P bi 8i 2 I n fmg;Pn
j¼1 amjxj P bm;

xj P 0; j ¼ 1; . . . ; n;
yi 2 f0; 1g 8i 2 I n fmg;

8>>>><
>>>>:
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where M is a positive large number. The variables yi, 8i 2 I n fmg are binary variables assigned to each
constraint. The indices of constraints for which y�i ¼ 1 (at the optimum of PM2) constitute the subset S2.

PM3 is defined in order to compute S3. This new program is derived from PM2 by adding the single

constraint
P

i2S2 yi 6 jS2j 
 1. This constraint prevents PM3 from finding an optimal solution that corre-

sponds to (or includes) S2. The indices of constraints for which y�i ¼ 1 (at the optimum of PM3) constitute
the subset S3. In order to compute S4; . . . ; Sp, we proceed similarly: each new program is formed by adding
one constraint to the previous program. It should be noted that, when multiple optimum solutions exist

(i.e., sets Si and Sj having the same cardinality), all optimal solutions are computed (only the order by which
these solutions are obtained can change, depending on the implementation of the solver used to solve PMk).

The outline of the algorithm is the following:

Begin

k  2

moresol  true

While moresol

Solve PMk

If (PMk has no solution) or (PMk has an optimal value > X)
Then

moresol  false

Else

Sk  fi 2 I 
 fmg : y�i ¼ 1g
Add constraint

P
i2Sk yi 6 jSkj 
 1 to PMk so as to define PMkþ1

k  k+1

End if

End while

End

Solving programs such as PMk is a well-known problem in operations research (e.g. see [15]) which we do

not address here. This algorithm is an adaptation to our particular type of problem (conditions (i)–(v), p. 4)
of a well-known idea based on {0, 1} mixed integer programming (see for instance [9] in a MCDA context).

As an illustrative example, let us consider the example (1)–(8) (see Fig. 1). The system (1)–(7) is con-

sistent (cf. shaded area Fig. 1), but when (8) is added (see dashed constraint in Fig. 1), the system (1)–(8)

becomes inconsistent:

Fig. 1. Feasible set.
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0:05x1 
 x2P 
 40; ð1Þ


0:5x1 
 x2P 
 50; ð2Þ


1:2x1 
 x2P 
 70; ð3Þ


4:5x1 
 x2P 
 179; ð4Þ


x1 P 
 35; ð5Þ


1:3x1 þ x2P 
 60; ð6Þ


0:75x1 þ x2P 
 14; ð7Þ

0:6x1 þ x2P 55: ð8Þ
We then build the following PM model where yi 2 f0; 1g; i ¼ 1; . . . ; 7:

Min
X7
i¼1

yi ð9Þ

s:t: 
 0:05x1 
 x2P 
 40
My1; ð10Þ

 0:5x1 
 x2P 
 50
My2; ð11Þ

 1:2x1 
 x2P 
 70
My3; ð12Þ

 4:5x1 
 x2P 
 179
My4 ð13Þ

 x1 P 
 35
My5; ð14Þ

 1:3x1 þ x2P 
 60
My6; ð15Þ

 0:75x1 þ x2P 
 14
My7; ð16Þ
0:6x1 þ x2P 55: ð17Þ

Let us compute, step by step, all the feasible solutions for the above example as follows (Appendix A

presents for each solution the feasible sets obtained after solving inconsistency):

1. S1 ¼ f8g (trivial solution).
2. In the first stage, we obtain S2 ¼ f1; 2g, i.e., y�1 ¼ y�2 ¼ 1. The constraint y1 þ y26 1 is then added to the
model.

3. In the second stage, after optimizing PM the solution is S3 ¼ f2; 3g, i.e., y�2 ¼ y�3 ¼ 1. We add the con-
straint y2 þ y36 1 to the model.

4. In the third stage, we obtain S4 ¼ f3; 4; 5; 6g, i.e., y�3 ¼ y�4 ¼ y�5 ¼ y�6 ¼ 1. We add the constraint
y3 þ y4 þ y5 þ y66 3.

5. The problem becomes infeasible, meaning that there are no more alternatives to solve our problem.

2.2. An algorithm based on linear programming techniques

In this section we propose a second algorithm to solve the problem we are addressing, i.e., to find the sets

S2; . . . ; Sp (since we are considering S1 ¼ fmg), based on the results presented in Appendix B. The algorithm
starts by considering the polyhedron defined by System (1), a consistent system of m
 1 linear constraints,
and maximizes the quantity

Pn
j¼1 amjxj, over that polyedron by solving a linear program (LP). Since the

system becomes inconsistent after adding the constraint
Pn

j¼1 amjxj P bm, it is obvious that the LP yields an
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optimal solution (strictly) lower than bm. From Proposition 2 (Appendix B), if we want System (2) to

become feasible and maintain the constraint
Pn

j¼1 amjxj P bm at the same time, we need to remove at least

one of the constraints that is binding at the optimal solution. For each binding constraint, the algorithm

will consider a new system, which is equal to System (1) without that constraint. Each of these systems

originates a new LP with the same objective function. The maximum value of each LP will decide whether

the respective constraint that was removed resolves System (2). For those LPs where
Pn

j¼1 amjxj < bm at the
optimum, a new system is considered for each of the binding constraints, and so on. A key aspect in this

algorithm is that all systems that result from removing i constraints from System (1) are examined before

any system that results from removing iþ 1 constraints from System (1).
Let C be a first-in-first-out (FIFO) queue structure whose elements C1;C2; . . . are sets contained in

I n fmg ¼ f1; . . . ;m
 1g (‘‘candidates’’). Each of these sets, Ck, is a candidate to resolve System (2), cor-

responding to a system
Pn

j¼1 aijxj P bi 8i 2 I n ðfmg [ CkÞ. Let S be a FIFO queue structure whose elements
are sets contained in I n fmg that resolve System (2) (‘‘solutions’’).
For any set F � f1; . . . ;m
 1g, let LPðF Þ denote the linear program that maximizes

Pn
j¼1 amjxj, subject

to the constraints of System (1), except the constraints in F, i.e., LPðF Þ : max
Pn

j¼1 amjxj :
Pn

j¼1 aijxj P
bi 8i 2 I n ðF [ fmgÞ. Let x�ðF Þ denote an optimal solution for LPðF Þ. Let BðF Þ be the set of indices of the
constraints that are active (binding) at the solution x�ðF Þ, i.e., BðF Þ ¼ fi 2 In ðF [ fmgÞ s:t:

Pn
j¼1

aijx�j ðF Þ ¼ big. Using this notation, an algorithm to propose p solutions for inconsistency by non-decreasing
order of cardinality, using LP, is the following:

Begin

C  ;
S  ;
card  1
Solve LP ð;Þ
For each constraint index i 2 Bð;Þ do
Add set fig to queue C

While C 6¼ ; and card 6X do

F  first (oldest) element from C

card  jF j
If card 6X Then

Solve LPðF Þ
If LP ðF Þ is unbounded or has an optimal value P bm Then

Add set F to queue S

Else

For each constraint index i 2 BðF Þ do
If ( 9=X 2 S [ C s.t.F [ fig � X) Then Add F [ fig to queue C

End if

End if

End if

End while

End

Justification for the algorithm:

1. This algorithm presents the solutions S2 to Sp by non-decreasing order of cardinality. Before the while
loop, the algorithm considers as candidates sets of cardinality equal to 1. In the while loop, when the

set F at the head of the candidates queue C is tested (by solving LPðF Þ) and fails, the algorithm places
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at the tail of that queue other potential solutions whose cardinality equals jF j þ 1. All candidates of
cardinality jF j are tested before those of higher cardinality.

2. If a set R resolves System (2) and no subset of R resolves System (2), then the algorithm will find R for a

sufficiently large value of X. We will show that this is true by induction. Suppose there exists a set
R ¼ fs1; s2; . . . ; sjRjg that resolves System (2). Before the while loop, the elements in Bð;Þ are considered
as candidates. From Proposition 2 (see Appendix B), Bð;Þ \ R 6¼ ;, i.e., there exists an element sð1Þ 2 R
that enters the candidates queue C. During the while loop, at a given moment, the candidates of cardinal-

ity k ð16 k < jRjÞ will start to appear at the head of the candidates queue C. If one of these elements F is
such that F � R, then solving LPðF Þ yields an optimal value which is less than bm. From Proposition 2,

BðF Þ \ R n F 6¼ ;, i.e., there exists an element SðkÞ that belongs toR and does not belong to F. This element
is appended to F to constitute a set fSð1Þ; . . . ; SðkÞg 2 R that enters queue C. Some iterations later, the can-
didates of cardinality jRj will start to appear at the head of C. One of these candidates is R, which will be
declared a solution since LPðRÞwill either be unbounded, or have an optimal value that is not less than bm.

One way to implement this algorithm is to solve the linear program before the while loop, and then another

linear program for each iteration. An alternative way is to solve the initial LPð;Þ and to save the simplex
tableau corresponding to the removal of each constraint put in the candidates queue C. In the while loop,

solving LPðF Þ will amount to performing a single simplex iteration from the corresponding saved tableau.
Then, for each set inserted in C, a new tableau must be saved. This would be faster, but requires more

memory.

Let us solve the previous example (1)–(8) (see Fig. 1) with this algorithm. The results will be the same
obtained with the algorithm presented in the previous subsection.

1. Initially, C and S are empty queues. LPð;Þ amounts to maximize 0:6x1 þ x2, subject to constraints (1)–
(7). Solving LPð;Þ yields an optimum value of 52.857, meaning that the constraint 0:6x1 þ x2 P 55 (8)

cannot be satisfied. The set of indices of the constraints that are active (binding) at the optimal solution

is Bð;Þ ¼ f2; 3g. This implies that at least one of these two constraints must be dropped to satisfy the
constraint (8). The sets f2g and f3g are added to C. Hence:

C ¼ ff2g; f3gg; S ¼ ;:
2. The set f2g is removed from C. A new problem LPðf2gÞ is formed with the same objective and consid-
ering all the constraints except (2), i.e., maximize 0:6x1 þ x2, subject to constraints (1), (3)–(7). The so-
lution of LPðf2gÞ yields an optimum value of 54.348, which is still less than 55. Hence, removing
only the constraint (2) is not enough to allow 0:6x1 þ x2 P 55 (8). The set of binding constraints is

now Bðf2gÞ ¼ f1; 3g. The sets f1; 2g and f2; 3g are added to C. Hence:

C ¼ ff3g; f1; 2g; f2; 3gg; S ¼ ;:
3. The set f3g is removed from C. A new problem LPðf3gÞ is formed with the same objective and consid-
ering the constraints (1), (2), (4)–(7). Its solution yields an optimum value of 53.225. Hence, 0:6x1þ
x2P 55 (8) cannot hold. The set of binding constraints is now Bðf3gÞ ¼ f2; 4g. Only the set f3; 4g is
added to C, since the other set f2; 3g has already been inserted. Hence:

C ¼ ff1; 2g; f2; 3g; f3; 4gg; S ¼ ;:
4. The set f1; 2g is removed from C. A new problem LPðf1; 2gÞ if formed, to maximize 0:6x1 þ x2, sub-
ject to (3)–(7), yielding an optimum value of 70P 55. This means that the system (3)–(8) is consis-

tent (see Fig. 4 in Appendix A). Therefore, f1; 2g enters the queue S and no element is added to C. Hence:

C ¼ ff2; 3g; f3; 4gg; S ¼ ff1; 2gg:
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5. The set f2; 3g is removed from C. The solution of LPðf2; 3gÞ (i.e. maximize 0:6x1 þ x2, subject to (1), (4)–
(7)) yields an optimum value of 57:180P 55. Therefore, the system (1), (4)–(8) is consistent (see Fig. 5 in

Appendix A) and f2; 3g enters S. Hence:
C ¼ ff3; 4gg; S ¼ ff1; 2g; f2; 3gg:

6. The set f3; 4g is removed from C. The solution of LPðf3; 4gÞ yields an optimum value of 53:5 <
55: Bðf3; 4gÞ ¼ f2; 5g. The set f3; 4; 5g is added to C (the other set f2; 3; 4g contains the set f2; 3g al-
ready in S). Hence:

C ¼ ff3; 4; 5gg; S ¼ ff1; 2g; f2; 3gg:
7. The set f3; 4; 5g is removed from C. The solution of LPðf3; 4; 5gÞ yields an optimum value of
54:444 < 55: Bðf3; 4; 5gÞ ¼ f2; 6g. The set f3; 4; 5; 6g is added to C (the other set f2; 3; 4; 5g contains
the set f2; 3g already in S). Hence:

C ¼ ff3; 4; 5; 6gg; S ¼ ff1; 2g; f2; 3gg:
8. The set f3; 4; 5; 6g is removed from C. The solution of LPðf3; 4; 5; 6gÞ yields an optimum value

of 55:12P 55. Therefore, the system (1), (2), (7), (8) is consistent (see Fig. 6 in Appendix A) and

f3; 4; 5; 6g is inserted in S. Hence:

C ¼ ;; S ¼ ff1; 2g; f2; 3g; f3; 4; 5; 6gg:
The algorithm stops since there are no more candidate solutions.

3. An application in the context of the inference of Electre Tri weights

We have proposed two algorithms for solving inconsistencies among constraints on the parameters of an

MCDA model. The purpose of these algorithms, as far as MCDA is concerned, is to provide support to

DMs in the preference elicitation process when they are confronted to inconsistent information. Such in-

consistencies stem from information, which can be either holistic preferences or explicit constraints on the

parameter values. These algorithms can be used in the context of different aggregation models. In this
section we consider the multiple criteria sorting method Electre Tri and we illustrate the support provided

by the algorithms during the preference elicitation based on real-world data.

3.1. Interactive inference of weights in Electre Tri

Electre Tri is a multiple criteria sorting method (see [12,18]) that assigns each alternative ai from a set A
to one of the ncat pre-defined ordered categories C1;C2; . . . ;Cncat (defined by multi-criteria limits D ¼ fbh;
h ¼ 1; . . . ; ncat 
 1g) on the basis of its evaluation on ncrit criteria. In order to assign each alternative to a
category, Electre Tri defines an outranking relation � ð�� A� D [ D� A) and grounds the assignment of
an alternative ai on the way ai compares to the limits of categories (a description of the Electre Tri method
is given in Appendix C).

Mousseau and Slowinski [13] proposed a methodology to infer the values of the parameters from as-

signment examples through a certain form of regression (hence avoiding direct elicitation of the model pa-

rameters). This methodology proceeds in a way that requires from the DM much less cognitive effort: the

elicitation of parameters is done indirectly using holistic information given by the DM through assignment

examples, i.e, alternatives assigned by the DM to categories according to his/her comprehensive preferences.
We consider the inference process aiming at determining the criteria weights and the cutting level k. We

assume that the other preference parameters (category limits, discrimination thresholds) are fixed and that

no veto phenomenon occurs (see [5,13]). In order to minimize the differences between the assignments made
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by Electre Tri and the assignments made by the DM, a mathematical program infers the values for these

parameters that best restore the assignment examples (see Section 3.2). The DM can tune up the model in

the course of an interactive procedure that aims at finding weights and cutting level that are as compatible

as possible with the assignment examples given by the DM (see Fig. 2). During this process, the DM may

either (1) revise the assignment examples or (2) fix values (or intervals of variation) for the weights wj or k.
In the first case, the DM may add (or delete) some assignment examples, or change the assignment of some
alternatives. In the second case, the DM can change the additional information on the range of variation of

wj or k according to his/her own intuition.
At some point, the DM may provide inconsistent information. The information is said to be inconsistent

when no combinations of values for wj and k comply with the assignment examples (and explicit constraints
on wj and k) given by the DM. In such situation the DM is asked to reconsider his/her judgments, i.e.,

remove or relax some previous statements. However, determining the reason for the inconsistency in order to

reconsider his/her judgment is cognitively very demanding for the DM. The algorithms presented in the

preceding section provide a substantial help to the DM in order to solve the inconsistency by providing him/
her with alternative ways to restore inconsistency. More precisely, the algorithms propose to the DM dif-

ferent subsets of pieces of information (assignment examples or explicit constraints) whose deletion solve

inconsistency.

3.2. Mathematical program to be solved at each iteration

At each iteration of the interactive weight elicitation process, a mathematical program is solved in order

to infer values for weights ðwj; j ¼ 1; . . . ; ncritÞ and cutting level (k) that best match the information pro-
vided by the DM.

As an input to this inference program, the DM specifies assignment examples, i.e., alternatives for which

he/she provides a desired assignment (alternative ai, should be assigned to category Ck, ai ! Ck). In Electre Tri

Fig. 2. Interactive inference process for determining xj and k.
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(pessimistic assignment rule), ai ! Ck holds iff ai is at least as good as bk
i but ai is not at least as good as
bk ðbk
1 and bk being the lower and upper limits of Ck). Hence, according to the Electre Tri pessimistic as-

signment rule (see Appendix C), each assignment example induces two linear constraints on the weights wj

and cutting level k where Cjðai; bk
1Þ and Cjðai; bkÞ are partial concordance indices whose values are known:Xncrit
j¼1

cjðai; bk
1Þwj P k; ð18Þ

Xncrit
j¼1

cjðai; bkÞwj < k: ð19Þ

The DM can also directly provide constraints on the weights that express his/her intuitive views con-

cerning the relative importance of criteria. Each of these constraints represents a pair-wise comparison of

coalitions of criteria (e.g., ‘‘fg2g is at least as important as fg3; g5g, which is interpreted in Electre Tri by the
constraint w2Pw3 þ w5Þ. Hence, each constraint (both for an assignment example or a pair-wise com-
parison of coalitions of criteria) has the following general form:Xncrit

j¼1
ajwj P 0; where aj 2 f1; 0;
1g: ð20Þ

The DM can also directly provide bounds for the cutting level k (if the DM does not provide such bounds, k
is theoretically bounded in the interval ½0:5; 1�, see Appendix C):

k 2 ½kmin; kmax�; where kmin P 0:5 and kmax6 1: ð21Þ
Let us suppose that the DM has specified, at the kth iteration of the interactive elicitation process:

• a set of assignment examples A�k � A (ai ! Chi 8ai 2 A�k ; defining a polyhedron T a
k of acceptable values

for wj and k),
• a list of r constraints on the weights of the form:

Pncrit
j¼1 aljwj P 0; l ¼ 1; . . . ; r; where alj 2 f1; 0;
1g (de-

fining a polyhedron T w
k of acceptable values for wj),

• a lower bound kmin P 0:5 and upper bound kmax6 1 for k defining a polyhedron T k
k of acceptable values

for k).

The following linear program infers values for wj; j ¼ 1; . . . ; ncrit and k that ‘‘best’’ match the provided
information (e being a small positive constant):

Max r ð22Þ

s:t:
Xncrit
j¼1

wjcjðai; bhi
1Þ 
 kP r 8ai 2 A�; ð23Þ

k

Xncrit
j¼1

wjcjðai; bhiÞ 
 e P r 8ai 2 A�; ð24Þ

Xncrit
j¼1

aljwj P r; l ¼ 1; . . . ; r; where alj 2 f1; 0;
1g; ð25Þ

k
 kmin P r; ð26Þ
kmax 
 kP r; ð27ÞXncrit
j¼1

wj ¼ 1; e6wj 6 0:5 8j ¼ 1; . . . ; ncrit; r free: ð28Þ
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In this linear program, (23), (24) account for the constraints (18), (19), (25) account for the constraints

(20) and (26), (27) account for the constraints (21). If the optimum value of this LP is positive, then all

constraints (18)–(21) are fulfilled (wj and k fulfill the explicit constraints and all alternatives from the

reference set A� are ‘‘correctly’’ assigned for all k0 2 ½k
 r; kþ r�. If r < 0, then no combination of values
for wj and k satisfies the information provided by the DM.
Suppose that r < 0 (i.e., the information is inconsistent) and that it was not the case at the preceding

iteration: the DM just added a constraint, either yielded by an assignment example or a pair-wise com-

parison of coalitions of criteria, that makes the polyhedron of acceptable values for wj and k empty. Let us
remark that although an assignment example usually corresponds to a pair of constraints, only one will be

the cause for the inconsistency, due to the assignment rules of Electre Tri (see Appendix C).

Identifying the reasons for inconsistency in the preference information can obviously be supported by

the algorithms proposed in the previous section. Resolving the inconsistencies can be performed by deleting

a subset of constraints yielding a non-empty polyhedron. The algorithms presented in this paper provide

several such subsets among which the DM must choose in order to retrieve a consistent information
concerning the weights and the cutting level. In such interaction with a DM, the results of the algorithm are

not presented as subsets of constraints but rather in terms of the assignment examples and/or pair-wise

comparison of coalitions of criteria.

3.3. Illustration of inconsistency resolution

In order to illustrate the use of the algorithms proposed in the previous section within the context of

weights inference in Electre Tri, let us consider a decision problem considered in [6]. The data are adapted
from a real-world application in the banking sector and the preference elicitation process was designed a

posteriori and is fictitious (but realistic): 39 firms evaluated on seven criteria (see Appendix D) are to be

assigned to five categories according to their risk of failure ðC1: high risk,. . .,C5: low risk). As this section
focuses on the use of the algorithms for MCDA purposes, we do not describe how the algorithms arrive to

the solution. Section 2 provides the reader with step-by-step illustrations of the algorithms.

At a given stage of the interaction, let us suppose that the DM has provided the following consistent

information fw2Pw1;w2 Pw3;w2P w4;w2Pw6;w2Pw7;w3 Pw4; a1 ! C5; a28 ! C1g and he/she wants
to add the assignment example fa31 ! C2g. The resulting set of constraints on wj and k is inconsistent:


w1 þ w2P 0; ð29Þ

w2 
 w3 P 0; ð30Þ

w2 
 w4 P 0; ð31Þ

w2 
 w6 P 0; ð32Þ

w2 
 w7 P 0; ð33Þ

w3 
 w4 P 0; ð34Þ

w4 þ w5 þ w6 
 k P 0; ð35Þ


w1 
 w2 
 w3 
 w4 
 w6 
 w7 þ kP e; ð36Þ

w1 þ 0:75w2 þ w3 þ w5 þ w6 þ w7 
 kP 0; ð37Þ
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w1 
 w3 
 w5 
 w6 
 w7 þ k P e; ð38Þ

k P 0:6; ð39Þ


k P 
 0:99; ð40Þ
where

P7

j¼1 wj¼1 (i.e., weights normalization) and wj 2 ½0:01; 0:49� 8j ¼ 1; . . . ; 7 (these bounds make it
impossible for any criterion to ‘‘weigh’’ more than all others, i.e., to be a dictator) are additional constraints

that cannot be removed. The constraints (29)–(34) correspond to explicit constraints on the weights wj. The
constraints (35)–(38) correspond to necessary and sufficient conditions for the assignment examples

ða1 ! C5; a28 ! C1 and a31 ! C2Þ to be respected (the interested reader will find in [12] explanations on
how these constraints are derived from the assignment examples). The constraints (39), (40) correspond to

explicit constraints on the cutting level k, stated as I feel that the cutting level should be at least 0.6 and lower

than 1 (when the DM does not specify any bounds on the cutting level, k is theoretically constrained in the
interval ½0:5; 1�, see Appendix C.2).
The algorithms provide the information (and the corresponding constraints) to remove in order to re-

trieve consistency. Both algorithms provide as an output S1 ¼ fð38Þg; S2 ¼ fð34Þg and S3 ¼ fð35Þg. In this
case, the DM should be told that the information he/she provided is inconsistent and that solving this

inconsistency requires him/her to reconsider one of the following pieces of information:

• w3Pw4 (i.e., constraint (34)),
• a1 ! C5 (i.e., constraint (35), a1 should be assigned to a lower category than C5) or,
• a31 ! C2 (i.e., constraint (38), a31 should be assigned to a higher category than C2Þ. 2

It should be emphasized that, in the absence of any support, the DM would have to check himself/herself
the reason for inconsistency. Let us suppose that the DM would choose to keep the older constraints

w3Pw4 and a1 ! C5, and relax the new one instead, which becomes a31 ! fC2;C3g. This change would
make the system consistent and this fact allows to compute a combination of parameter values that respects

all the constraints (including the ones corresponding to assignment examples), as well as to determine a

range of possible assignments for each alternative without violating any constraint (see example in Fig. 3).

The DM can then stop the interactive process if he/she is satisfied with the output, or pursue the process by

integrating additional assignment examples and/or preference information.

In such an interactive process (see Fig. 2), it is possible to compute (each time wj and k are inferred) the
range of categories to which an alternative can be assigned according to a polyhedron of possible values for

the weights wj and cutting level k (see [4]). Doing so, the DM observes that alternative a39 cannot be as-
signed to category C3 (a39 can be assigned only to C4, see Fig. 3) and wonders why. It is easy to answer such
question using the presented algorithms.

To answer this question, the information a39 ! C3 would be added to the (consistent) system
fw2Pw1; w2 Pw3; w2Pw4; w2 Pw4; w2Pw6; w2P w7; w3Pw4; a1! C5; a28! C1; a31 ! C2g. The
resulting (inconsistent) system is


w1 þ w2P e; ð41Þ

w2 
 w3P e; ð42Þ

w2 
 w4P e; ð43Þ

2 a31 ! C2 causes two constraints, (37) and (38), but it is easy to check that (38) is the one that is violated by the inferred values in
the previous iteration; that is the reason why S1 ¼ fð38Þg.
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w2 
 w6 P e; ð44Þ

w2 
 w7 P e; ð45Þ

w3 
 w4 P e; ð46Þ

w4 þ w5 þ w6 
 k P 0; ð47Þ


w1 
 w2 
 w3 
 w4 
 w6 
 w7 þ kP e; ð48Þ

w1 þ 0:75w2 þ w3 þ w5 þ w6 þ w7 
 kP 0; ð49Þ


w1 
 w5 
 w7 þ kP e; ð50Þ

w1 þ w2 þ w3 þ w4 þ w5 
 kP 0; ð51Þ

Fig. 3. Possible assignments of alternatives considering the preference information fx2 Px1;x2 P x3;x2 P x4;x2 Px6;x2 P x7;
x3 Px4; a1 ! C5; a28 ! C1; a31 ! C3 or C4; k 2 ½0:6; 0:99�g.
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w1 
 w2 
 w5 þ kP e; ð52Þ

k P 0:6; ð53Þ


k P 
 0:99; ð54Þ
where

P7

j¼1 wj ¼ 1 and wj 2 ½0:01; 0:49� 8j ¼ 1; . . . ; 7: The constraint (49) prevents a31 from being lower
than C2, whereas the constraint (50) prevents a31 from being higher than C3. The constraints (51) and (52)
prevent a39 from being lower or higher (respectively) than C3.
The algorithms provide the information (and the corresponding constraints) to remove in order to re-

trieve consistency. Both algorithms provide as an output S1 ¼ fð44Þg; S2 ¼ fð47Þg and S3 ¼ fð52Þg. Hence,
a39 cannot be assigned to C3 without reconsidering either w2 > w6 (44) or a1 ! C5 (47). The DM might note

that imposing a1 ! C5 was already one of the constraints causing the infeasibility in the prior iteration,
which might influence his/her reaction to these results.

4. Conclusion and further research

In this paper, we have proposed two alternative algorithms to deal with inconsistencies among con-

straints on the parameters of an MCDA model. The inconsistencies considered here correspond to situa-

tions in which the DM specifies a list of linear constraints on preference parameter values that originate an

empty polyhedron. More specifically, these algorithms allow one to compute subsets of constraints that,

when removed, yield a non-empty polyhedron of acceptable values for preference parameters.

When eliciting preferences using an aggregation/disaggregation process, the algorithms presented in

Section 2 are particularly useful for resolving inconsistent information provided by the DM. Section 3
describes and illustrates how these algorithms can be used to solve inconsistency when inferring the weights

in the Electre Tri method from assignment examples.

The results presented in this paper suggest further research. First, it is obvious that the proposed al-

gorithms can be applied to solve inconsistencies on preference parameters in various aggregation models

besides Electre Tri. For example, these algorithms could be integrated in UTA-like methods [7] in order to

provide support to the DMs when they provide ‘‘inconsistent’’ judgments.

Second, if some ordinal confidence index is attached to each constraint provided by the DM, it would be

interesting to find the ‘‘smallest’’ subsets of constraints in which the DM has the least confidence.
Lastly, in this paper we have considered the reduction of inconsistencies through the deletion of subsets

of constraints. It would be interesting to try to restore consistency by relaxing, rather than deleting subsets

of constraints.
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Appendix A. Feasible sets obtained after solving inconsistency

See Figs. 4–6.
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Appendix B. Results concerning the second algorithm

Proposition 1. Let F � Cf1; . . . ;m
 1g be a set of indices of constraints. Let LP ðF Þ denote the linear pro-
gram that maximizes

Pn
j¼1 amjxj, subject to constraints of System (1), except the constraints in F, i.e.,

LP ðF Þ :
Pn

j¼1 amjxj s.t.
Pn

j¼1 aijxj P bi 8i 2 I n ðF [ fmgÞ. It holds:
(a) LP(F) is always feasible and,
(b) F resolves System ð2Þ () LPðF Þ is unbounded or its optimal value is not less than bm.

Fig. 4. Feasible set of System (2) when constraints (1) and (2) are suppressed.

Fig. 5. Feasible set of System (2) when constraints (2) and (3) are suppressed.
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Proof

(a) Since System (1) is consistent, it remains consistent after removing some of its constraints; hence, the

linear program is feasible.

(b) When LPðF Þ is unbounded or when the optimal value of LPðF Þ is greater than, or equal to bm, then all

the constraints except the ones in F are satisfied, including the last constraint in System (2), i.e., S re-
solves System (2). Otherwise, the last constraint in System (2) is violated and F does not resolve System
(2). �

Let

x�ðF Þ ¼ arg max
Xn

j¼1
amjxj :

Xn

j¼1
aijxj

(
P bi 8i 2 I n ðF [ fmgÞ

)

denote an optimal solution for LPðF Þ. Let BðF Þ be the set of indices of the constraints that are active
(binding) at the solution x�ðF Þ, i.e.,

BðF Þ ¼ i 2 nðF [ fmgÞ :
Xn

j¼1
aijx�j ðF Þ

(
¼ bi

)
:

Proposition 2. Let us consider R and F such that F � R � I n fmg: If F does not resolve System (2) and R
resolves System (2), then, BðF Þ \ ðR n F Þ 6¼ 0:

Proof. From Proposition 1, R resolves System ð2Þ ) LPðRÞ is unbounded or its optimal value is not less
than bm, and F does not resolve System ð2Þ ) the optimal value of LPðF Þ is less than bm. Let x

�ðF Þ denote
the optimal solution of the linear program LPðF Þ. Note that x�ðF Þ is also an optimal solution of the linear
program that would be formed by deleting all the constraints that are not binding at x�ðF Þ; max

Pn
j¼1 amjxj

s.t.
Pn

j¼1 aijxj P bi 8i 2 BðF Þ, otherwise it would not be optimal to LPðF Þ. Since the polyhedron

Fig. 6. Feasible set of System (2) when constraints (3)–(6) are suppressed.
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fx 2 Rn :
Pn

j¼1 aijxj P bi 8i 2 I n ðF [ fmgÞg is contained in the cone fx 2 Rn :
Pn

j¼1 aijxj P bi 8i 2 BðF Þ,
then the value of the objective function of LP ðF Þ can increase only if (at least) one of the constraints in BðF Þ
is removed. Thus, the fact that the objective function does increase when F is replaced by R (i.e., when
I n ðF � fmgÞ is replaced by I n ðR � fmgÞ by removing constraints in R n F Þ implies that at least one of the
constraints in R n F belongs to BðF Þ. �

Appendix C. Electre Tri, a brief reminder

Electre Tri is a multiple criteria sorting method, i.e, a method that assigns alternatives to pre-defined

ordered categories. The assignment of an alternative a results from the comparison of a with the profiles
defining the limits of the categories. We consider ncrit criteria ðg1; g2; . . . ; gncritÞ and D the set of the profiles
defining ncat categories ðD ¼ fb1; b2; . . . ; bncat 
 1gÞ being the upper limit of category Ch and the lower limit
of category Chþ1; h ¼ 1; 2; . . . ; ncat 
 1 (see Fig. 7, where the profiles bncat and b0 correspond to the ideal and
anti-ideal alternatives, respectively). In what follows, we will assume, without any loss of generality, that

preferences increase with the value on each criterion.

Schematically, Electre Tri assigns alternatives to categories following two consecutive steps:

• construction of an outranking relation � that characterizes how alternatives compare to the limits of
categories,

• exploitation of the relation � in order to assign each alternative to a specific category.

C.1. Construction of the outranking relation

Electre Tri builds an outranking relation �, i.e, validates or invalidates the assertion a � bh (and
bh � a), whose meaning is a is at least as good as bh. Preferences restricted to the significance axis of each
criterion are defined through pseudo-criteria (see [19] for details on this double-threshold preference rep-

resentation). The indifference and preference thresholds (qjðbhÞ and pjðbhÞ) constitute the intra-criterion
preferential information. They account for the imprecise nature of the evaluations gjðaÞ (see [16]): qjðbhÞ
specifies the largest difference gjðaÞ 
 gjðbhÞ that preserves indifference between a and bh on criterion gj
while pjðbhÞ represents the smallest difference gjðaÞ 
 gjðbhÞ compatible with a preference in favor of a on
criterion gj.

Fig. 7. Definition of categories using limit profiles.
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Two types of inter-criteria preference parameters intervene in the construction of �:

• the set of weight-importance coefficients ðw1;w2; . . . ;wncrit ) is used in the concordance test when comput-

ing the relative importance of the coalitions of criteria being in favor of the assertion a � bh,
• the set of veto thresholds ðv1ðbhÞ; v2ðbhÞ; . . . ; vncritðbhÞÞ is used in the discordance test; vjðbhÞ represents the
smallest difference gjðbhÞ 
 gjðaÞ incompatible with the assertion a � bh:

Electre Tri builds an outranking relation � using an index rða; bhÞ 2 ½0; 1� ðrðbh; aÞ resp:Þ that represents
the degree of credibility of the assertion a � bh ðbh � a, resp.) 8a 2 A; 8bh 2 D. Formally, rða; bhÞ 2 ½0; 1�
is defined by (C.1)–(C.5) (rða; bhÞ is defined similarly):

rða; bhÞ ¼ Cða; bhÞ � NDða; bhÞ; a 2 A; bh 2 D; ðC:1Þ

Cða; bhÞ ¼
1Pncrit

j¼1 wj
�
Xncrit
j¼1

wjcjða; bhÞ; a 2 A; bh 2 D; ðC:2Þ

cjða; bhÞ ¼
pjðbhÞ 
minfgjðbhÞ 
 gjðaÞ; pjðbhÞg
pjðbhÞ 
minfgjðbhÞ 
 gjðaÞ; qjðbhÞg

; a 2 A; bh 2 D; ðC:3Þ

NDða; bhÞ ¼
Y
j2�FF

1
 djða; bhÞ
1
 Cða; bhÞ

; a 2 A; bh 2 D; ðC:4Þ

where F ¼ fj 2 f1; . . . ; nncritg such that djða; bhÞ > Cða; bhÞg,

djða; bhÞ ¼ 1

vjðbhÞ 
minfgjðbhÞ 
 gjðaÞ; vjðbhÞg
vjðbhÞ 
minfgjðbhÞ 
 gjðaÞ; pjðbhÞg

; a 2 A; bh 2 D: ðC:5Þ

It should be noted that, in the absence of veto situation, djða; bhÞ ¼ 0 8j ¼ 1; . . . ; ncrit; 8a 2 A; 8bh 2 D;
therefore NDða; bhÞ ¼ 1, and consequently rða; bhÞ ¼ Cða; bhÞ:

C.2. Exploitation procedure

As the assignment of alternatives to categories does not result directly from the relation �, an exploi-
tation phase is necessary; it requires the relation � to be ‘‘defuzzyfied’’ using a so-called k-cut: the assertion
a � bh ðbh � a, resp.) is considered to be valid if rðabhÞP k ðrðbhaÞP k, resp.), k being a ‘‘cutting level’’
such that k 2 ½0:5; 1�. This k-cut determines the preference situation between a and bh:

• rða; bhÞP k and rðbh; aÞP k ) a � bh and bh � a ) aIbh, i.e, a is indifferent to bh,
• rða; bhÞP k and rðbh; aÞ < k ) a � bh and not bh � a ) a � bh, i.e, a is preferred to bh (weakly or
strongly),

• rða; bhÞ < k and rðbh; aÞP k ) not a � bh and bh � a ) bh � a, i.e, bh is preferred to a (weakly or
strongly),

• rða; bhÞ < k and rðbh; aÞ < k ) not a � bh and not bh � a ) aRbh, i.e, a is incomparable to bh.

Remark that b0 and bpþ1 are denned such that bpþ1 � a and a � b0 8a 2 A. The role of the exploita-
tion procedure is to analyze the way in which an alternative a compares to the profiles so as to deter-
mine the category to which a should be assigned. Two assignment procedures are available (pessimistic
and optimistic), however we present the pessimistic procedure only, as it is the only one used in the
example.
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Pessimistic (or conjunctive) procedure:

(a) compare a successively to bi, for i ¼ p; p 
 l; . . . ; 0,
(b) bh being the first profile such that a � bh, assign a to category Chþ1ða! Chþ1Þ.

If bh
1 and bh denote the lower and upper profiles of the category Ch, the pessimistic (or conjunctive)

procedure assigns alternative a to the highest category Ch such that a outranks bh
1, i.e, a � bh
1. When
using this procedure with k ¼ 1, an alternative a can be assigned to category Ch only if gjðaÞ equals (up to a
threshold) or exceeds gjðbhÞ for each criterion (conjunctive rule). When k decreases, the conjunctive
character of this procedure is weakened.

Appendix D. Dataset considered in the example

The dataset considered in Section 3.3 is adapted from [6]. The criteria are:

g1: (Financial ratio) Earning before interest and taxes/total assets [increasing preferences];
g2: (Financial ratio) Net income/net worth [increasing preferences];
g3: (Financial ratio) Total liabilities/total assets [decreasing preferences];
g4: (Financial ratio) Interest expenses/sales [decreasing preferences];
g5: (Financial ratio) General and administrative expenses/sales [decreasing preferences];
g6: (Qualitative criterion) Managers work experience [increasing preferences];
g7: (Qualitative criterion) Market niche/position [increasing preferences].

The categories Ch are:

C1: very high risk (worst category);
C2: high risk;
C3: medium risk;
C4: low risk;
C5: very low risk (best category).

The parameter values are set as shown in Tables 1 and 2 represents the list of alternatives.

Table 1

Parameter values in the dataset

1 2 3 4 5 6 7

gjðb1Þ )10.0 )60.0 90.0 28.0 40.0 1.0 0.0

qjðb1Þ 1.0 4.0 1.0 1.0 3.0 0.0 0.0

pjðb1Þ 2.0 6.0 3.0 2.0 0.0 0.0 0.0

gjðb2Þ 0.0 )40.0 75.0 23.0 32.0 2.0 2.0

qjðb2Þ 1.0 4.0 1.0 1.0 3.0 0.0 0.0

pjðb2Þ 2.0 6.0 3.0 2.0 0.0 0.0 0.0

gjðb3Þ 8.0 )20.0 60.0 18.0 22.0 4.0 3.0

qjðb3Þ 1.0 4.0 1.0 1.0 3.0 0.0 0.0

pjðb3Þ 2.0 6.0 3.0 2.0 0.0 0.0 0.0

gjðb4Þ 25.0 30.0 35.0 10.0 14.0 5.0 4.0

qjðb4Þ 1.0 4.0 1.0 1.0 3.0 0.0 0.0

pjðb4Þ 2.0 6.0 3.0 2.0 0.0 0.0 0.0
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