Meaningful, Useful and legitimate information

Fred Roberts¹ Alexis Tsoukiàs²

¹DIMACS, Rutgers University

²LAMSADE - CNRS, PSL, Université Paris-Dauphine

Paris, 04/12/2023

Outline

- Motivations
- 2 The problem
- Relevance

Why do we care?

- Decisions are based on information.
- We usually call this "evidence".
- Not any "evidence" is relevant, appropriate or acceptable.
- How do we construct "relevant" evidence for a decision process?

A is 0.5m^3 B is 1m^3

A is 0.5m^3 B is 1m^3

B is twice larger than A

A is 0.5m^3 B is 1m^3

A is 20°C today B is 40m°C today B is twice larger than A

A is 0.5m^3 B is 1m^3

A is 20°C today B is 40m°C today B is twice larger than A

B is twice warmer than A

A is 0.5m³ *B* is 1m³

A is 20°C today B is 40m°C today

A is 1.8m and 80kg *B* is 1.6m and 70kg

B is twice larger than A

B is twice warmer than A

A is 0.5m³ *B* is 1m³

A is 20°C today B is 40m°C today

A is 1.8m and 80kg *B* is 1.6m and 70kg

B is twice larger than A

B is twice warmer than A

B is more likely to have cardiovascular problems than *A* because its BMI is larger.

A is 0.5m³ *B* is 1m³

A is 20°C today B is 40m°C today

A is 1.8m and 80kg *B* is 1.6m and 70kg

50% of recidivists are Afro-Americans, while 35% are White and 15% are Latinos B is twice larger than A

B is twice warmer than A

B is more likely to have cardiovascular problems than *A* because its BMI is larger.

A is 0.5m³ *B* is 1m³

A is 20°C today B is 40m°C today

A is 1.8m and 80kg *B* is 1.6m and 70kg

50% of recidivists are Afro-Americans, while 35% are White and 15% are Latinos B is twice larger than A

B is twice warmer than A

B is more likely to have cardiovascular problems than *A* because its BMI is larger.

If you are Afro-American is most likely you are going to recidive with justice.

A is 0.5m³ *B* is 1m³

A is 20°C today B is 40m°C today

A is 1.8m and 80kg *B* is 1.6m and 70kg

50% of recidivists are Afro-Americans, while 35% are White and 15% are Latinos

All convicted felons eat bread.

B is twice larger than A

B is twice warmer than A

B is more likely to have cardiovascular problems than *A* because its BMI is larger.

If you are Afro-American is most likely you are going to recidive with justice.

A is 0.5m³ *B* is 1m³

A is 20°C today B is 40m°C today

A is 1.8m and 80kg *B* is 1.6m and 70kg

50% of recidivists are Afro-Americans, while 35% are White and 15% are Latinos

All convicted felons eat bread.

B is twice larger than A

B is twice warmer than A

B is more likely to have cardiovascular problems than *A* because its BMI is larger.

If you are Afro-American is most likely you are going to recidive with justice.

Eating bread is criminogenic.

Generally

- We have access to empirical observations (ground data).
- We construct sentences which are supposed to represent "evidence" derived from such empirical observations.
- Evidence is always associated to a decision process.

Generally

- We have access to empirical observations (ground data).
- We construct sentences which are supposed to represent "evidence" derived from such empirical observations.
- Evidence is always associated to a decision process.

Under which conditions

such sentences make any sense for the decision process?

Assumptions

We consider as empirical observations:

- Binary relations related to comparisons
- Measures performed on well known measurement scales
- Distributions of empirical observations and descriptive statistics upon them.

Assumptions

We consider as empirical observations:

- Binary relations related to comparisons
- Measures performed on well known measurement scales
- Distributions of empirical observations and descriptive statistics upon them.

We trust our sources and we do not consider unstructured information such as:

- Images/videos/streaming
- Texts/Narratives/Stories
- Maps/Geography

What is the problem?

- From empirical observations to measures.
- From diverse empirical observations performed jointly to measures and thus to a measure.
- From measures to sentences (summarising the observations and/or the measures).
- From summarised sentences to suggested decisions (recommendations).

More formally

If O is a set of empirical observations, M is a set of measures, φ is a sentence and ψ is a suggested decision

- Under which conditions M is consistent with O?
- How to define the notions of \models_m , \models_u and \models_l standing for meaningful, useful and legitimate inference?
- How to check questions of the type $O \models_m \varphi$ or $M \models_I \psi$?

More formally

If O is a set of empirical observations, M is a set of measures, φ is a sentence and ψ is a suggested decision

- Under which conditions M is consistent with O?
- How to define the notions of \models_m , \models_u and \models_l standing for meaningful, useful and legitimate inference?
- How to check questions of the type $O \models_m \varphi$ or $M \models_I \psi$?

If $\models_i i \in \{m, u, l\}$ stands for the different types of inference previously introduced

How do we define and check that $\varphi \models_i \psi$?

Relevance

Relevant evidence ought be:

- true
- meaningful
- useful
- legitimate

Theorem

The four conditions of truthfulness, meaningfulness, usefulness and legitimacy are independent

Truthness

All convicted felons eat bread: eating bread is criminogenic

This is false: $F \subset B$ is true, but $B \subset F$ is false.

Truthness

All convicted felons eat bread: eating bread is criminogenic

This is false: $F \subset B$ is true, but $B \subset F$ is false.

Yesterday we had 10000 positive cases and today 15000 cases: the incidence of the disease increased

This is false because the collection of daily empirical observations does not define a statistical distribution of the disease.

Truthness

All convicted felons eat bread: eating bread is criminogenic

This is false: $F \subset B$ is true, but $B \subset F$ is false.

Yesterday we had 10000 positive cases and today 15000 cases: the incidence of the disease increased

This is false because the collection of daily empirical observations does not define a statistical distribution of the disease.

Yesterday we had 20C, while today 10C: it is 50% less warm

Is this sentence true?

Given a set of measures

a sentence derived from such measures is meaningful if its truthness is independent from any admissible transformation of the measurement scale.

Yesterday we had 20C, while today 10C: it is 50% less warm

This sentence is true only for C, but not for F. Therefore it is meaningless.

Yesterday we had 20C, while today 10C: it is 50% less warm

This sentence is true only for C, but not for F. Therefore it is meaningless.

$$BMI(x) = \frac{W(x)}{H^2(x)}$$
. Suppose $W(x) = 50$, $H(x) = 1.5$, $W(y) = 120$, $H(y) = 1.65$, then $BMI(x) = 22$, $BMI(y) = 44$: therefore the risk of cardiovascular accident is double

This sentence is meaningful, but is not true, since it has never been proven that the risk is proportional.

Manipulations

Any type of manipulation of numerical information needs to respect the admissible transformations property. In this case we talk about meaningful manipulations.

$$x \succ y \succ z \succ w \succ t$$

$$f(t) \quad f(w) \quad f(z) \quad f(y) \quad f(x)$$

The mean of L1 is 3 and the mean object is z. The mean of L2 is 4 and the mean object is y. The median instead is always z independently from any numerical coding of the ordinal scale.

A mean is meaningless in presence of ordinal information, while a median is meaningful.

Usefulness

Can we have meaningful sentences which are useless?

Example:

pollutant	CO ₂	SO ₂	O ₃	dust	
t_1	3	5	8	6	

The air quality is 8 and therefore we need to launch a warning to the population. This is meaningful and useful for a warning system.

Usefulness

Can we have meaningful sentences which are useless?

Example:

pollutant	CO ₂	SO ₂	O ₃	dust
$\overline{t_1}$	3	5	8	6
t_2	7	7	7	7
t_1	1	2	8	1

The air quality today is 8; with policy t_2 reduces to 7, while with policy t_3 remains 8. Therefore t_2 is better than t_3 . This is meaningful, but useless from a policy comparison perspective.

Usefulness

Can we have meaningful sentences which are useless?

Example:

pollutant	CO ₂	SO ₂	O ₃	dust
$\overline{t_1}$	3	5	8	6
t_2	7	7	7	7
t_1	1	2	8	1

The air quality today is 8; with policy t_2 reduces to 7, while with policy t_3 remains 8. Therefore t_2 is better than t_3 . This is meaningful, but useless from a policy comparison perspective.

An average of the four pollutants is meaningless,

but far more useful from a policy comparison perspective

Legitimacy

- Is a candidate chosen by the electoral system, but not from the majority of the population a legitimate winner?
- Is a racial statistic legitimate as evidence for a public policy?
- Is a gender statistic legitimate if it is binary?
- If the majority of the population (at the polls) prefers introducing the death penalty is this a legitimate reason for passing a bill?

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g
Α	1	2	4	1	2	4	1
В	2	3	1	2	3	1	2
С	3	1	3	3	1	2	3
D	4	4	2	4	4	3	4

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g	B(x)
Α	1	2	4	1	2	4	1	15
В	2	3	1	2	3	1	2	14
С	3	1	3	3	1	2	3	16
D	4	4	2	4	4	3	4	25

The Borda count gives B>A>C>D

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g
Α	1	2	3	1	2	3	1
В	2	3	1	2	3	1	2
С	3	1	2	3	1	2	3

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g	B(x))
Α	1	2	3	1	2	3	1	13	_
В	2	3	1	2	3	1	2	14	
С	3	1	2	3	1	2	3	15	

If D is not there then A>B>C, instead of B>A>C

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g
Α	1	2	3	1	2	3	1
В	2	3	1	2	3	1	2
С	3	1	2	3	1	2	3

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g
Α	1	2	3	1	2	3	1
В	2	3	1	2	3	1	2
С	3	1	2	3	1	2	3

The Condorcet principle gives A>B>C>A !!!!

Legitimacy

The Borda count

is true, meaningful (if interval scales are used), useful, but not legitimate because manipulable.

Legitimacy

The Borda count

is true, meaningful (if interval scales are used), useful, but not legitimate because manipulable.

The Condorcet method

is true, meaningful, legitimate, but useless because does not guarantee to provide a winner.

Relevant Evidence

- Meaningfulness needs to be established with respect to some formal properties, axioms, a theory.
- Usefulness needs to be established with respect to a user/client and some purpose.
- Legitimacy needs to be established with respect to a context/culture/law.

Conclusions

- Information needs to be rigorous: the result of some scientific elaboration of empirical observations.
- Don't play with numbers, pay attention to the semantics they carry.
- Always consider the purpose of the decision process and the long term consequences of the information provided.
- Always consider the stakeholders involved in the decision process and their legitimate expectations.