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“Divide et Impera” in Graph Coloring

I Break up complex problems into a series of
easier problems, solved in cascade!

I Dantzig-Wolfe reformulation of the (weak)
compact Integer Formulations.

I Hard Combinatorial Optimization Problems, once
decomposed and reformulated, become easier to
tackle.

I Find effective decompositions and reformulations!

I Vertex Coloring Problem

I Max Coloring Problem

I Partition Coloring Problem

I Sum Coloring Problem

I . . .
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Automatic Dantzig-Wolfe Reformulation: Overview

Potentially, every MIP model is amenable to DWR, even if its structure is not
known in advance (from the modeler or from other sources).

We need to detect a structure algorithmically:

(i) which constraints of the MIP (if any) to keep in the master problem;

(ii) the number of blocks k

(iii) how to assign the remaining constraints to the different blocks.

We need to partition the set of the original constraints into one subset
representing the master and several subsets representing the blocks.

I Permutation of the variables and the constraints to get an:

I Arrowead Form

I Once the decomposition is chosen⇒ Branch-and-Price Algorithm
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GCG - Generic Column Generation

I GCG is a generic branch-cut-and-price solver for mixed integer programs.

I It is based on the branch-and-cut-and-price framework of SCIP and is also part of the SCIP
Optimization Suite.

I GCG is developed jointly by RWTH Aachen and Zuse-Institute Berlin.

[1] M. Bergner, A. Caprara, A. Ceselli, F. F., M. Lübbecke, E. Malaguti, and E. Traversi.
Automatic dantzig–wolfe reformulation of mixed integer programs.
Mathematical Programming, 149(1):391–424, 2015.

Does it work? I’ve tried to solve a MIPLIB instance . . .
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Solving noswot with CPLEX
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Solving noswot with SCIP and GCG

I CPLEX in more that 600 seconds explored 8286801 nodes, 1488265 to
be explored. Hundreds of cuts are generated but . . . still 4.88% of
optimaltiy gap!

I GCG solved the instance in less than 1 second at the root node!
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The Vertex Coloring Problem (VCP)
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The Vertex Coloring Problem (VCP)

Given a graph G = (V ,E), the VCP asks for a partition of the vertex set

C = {S1,S2, . . . ,Sk},

with the minimum number of colors, such that vertices linked by an edge
receive different colors.

v2
v7

v1

v6
v5

v10

v4

v9

v3

v8

S1 = {v1, v4, v7, v8}

S2 = {v2, v9, v10}

S3 = {v3, v6, v5}

chromatic number→ χ(G) = 3

I A coloration C is a partition a of vertices into stables sets of G
I Clique number→ ω(G) = 2 ≤ χ(G)
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Origins and applications

I Colour the map of UK , in such a way that no two
counties touching with a common stretch of
boundary are given the same colour, by using the
smallest number of colours.

I The Four Color Conjecture was proposed by
Francis Guthrie in 1852

Theorem (Appel and Haken (1976))
Given any separation of a plane into contiguous
regions, producing a figure called a map, no more
than four colours are required to color the regions of
the map so that no two adjacent regions have the
same color.

I It was the first major theorem to be proved using
a computer.



Dantzig-Wolfe reformulation Vertex Coloring Problem Pricing and Branching Conclusions and Perspectives

Origins and applications

1. problem (i): assign frequencies to broadcast
stations in such a way that:

I interfering stations use different frequencies;
I the total number of used frequencies is minimized.

2. problem (ii): assign exams to time slots in such a
way:

I every student can do the exams of the courses he
is taking;

I the total number of used time slots is minimized.

3. problem (iii): assign platforms to trains in such a
way that:

I if the arrival times overlap, the trains cannot use
the same platform;

I the total number of used platforms is minimized.
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How difficult is the VCP in practice?

Theorem (Garey and Johnson (1979))
The Vertex Coloring Problem is NP-Hard.

I Some NP-Hard problems can be solved to optimality for instances of
reasonable size:

I TSP — thousands of vertices (Branch-and-Cut Algorithms)

I BPP — up to 1000 items (Branch-and-Price Algorithms)

I VRP — up to 200 customers (Branch-and-Price Algorithms)

I VCP is really difficult from a practical viewpoint: it cannot be consistently
solved to optimality for graphs with more than ≈ 150 vertices.

I The state-of-the-art algorithms for the VCP are based on Column
Generation!
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A natural compact Integer Linear Programming (ILP) Formulation

Two sets of binary variables

yc =

{
1 if color c is used
0 otherwise

xvc =

{
1 if vertex v has color c
0 otherwise,

I given an an upper bound m ≤ n
on the chromatic number

ILP Formulation

min
x,y∈{0,1}

m∑
c=1

yc

m∑
c=1

xvc = 1 v ∈ V

xvc + xuc ≤ yc vu ∈ E

c = 1, . . . ,m

Very weak and symmetric formulation!
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The Linear Programming Relaxation has optimal solution value 2

y1 = 1, y2 = 1

yc = 0 c = 3, . . . ,m

xv1 =
1
2
, xv2 =

1
2

v ∈ V

xvc = 0 v ∈ V , c = 3, . . . ,m

m∑
c=1

xvc︸ ︷︷ ︸
=1

+
m∑

c=1

xuc︸ ︷︷ ︸
=1

≤
m∑

c=1

yc →
m∑

c=1

yc ≥ 2

Every (fract.) solution with α ≤ n colors has
(n
α

)
α! equivalent solutions!

v1

v2

v3 v1

v2

v3 v1

v2

v3 v1

v2

v3 v1

v2

v3

α = n = 3→ 5 equivalent solutions
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Dantzig-Wolfe Reformulation

Minkowski-Weyl Theorem. Every polyhedron can be represented:
I by outer descriptions (intersection of finitely many affine halfspaces)
I by inner descriptions (Minkowski sum of a polytope and a finitely

generated cone)

So a polyhedron P = {x : Ax ≤ b} can be then expressed as:

P =

{
x : x =

∑
p

p λp +
∑

r

r µr ,
∑

p

λp = 1, λp ≥ 0, µr ≥ 0

}

where p are the extreme points and r are the extreme rays of P.

For the VCP, we reformulate the following sets of constraints (polytope):

Pc =

{
x , y ∈ {0, 1} : xvc + xuc ≤ yc , vu ∈ E

}
c = 1, . . . ,m

→ if yc = 1, it is the stable set polytope!
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Extreme points −→ p ∈ EP

x̄p
vc =

{
1 if vertex v has color c in p
0 otherwise ȳp

i =

{
1 if color c is used in p
0 otherwise

Relation between the original variables and the new ones:

xvc =
∑

p∈EP

x̄p
vc λ

c
p v ∈ V , c = 1, . . . ,m

yc =
∑

p∈EP

ȳp
c λ

c
p c = 1, . . . ,m

Example of extreme points with 8 vertices (color last position):

I vertices 1, 3, 8 and color used

[1, 0, 1, 0, 0, 0, 0, 1|1]

I color not used
[0, 0, 0, 0, 0, 0, 0, 0|0]
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Exponential-size formulation

Now by using inner description of the “stable set” constraints we obtain:

min
λ∈{0,1}

m∑
c=1

∑
p∈EP

ȳp
c λ

c
p

m∑
c=1

∑
p∈EP

x̄p
vc λ

c
p = 1 v ∈ V

∑
p∈EP

λc
p = 1 c = 1, . . . ,m

I The extreme points in which ȳp
c = 0 can be removed

I The colors are identical (same set of extreme points)

λp =
m∑

c=1

λc
p

I After the removal of some variables the “convex combination” constraints
become ≤ and they can be dropped (due to the objective function)



Dantzig-Wolfe reformulation Vertex Coloring Problem Pricing and Branching Conclusions and Perspectives

Exponential-size formulation

Now by using inner description of the “stable set” constraints we obtain:

min
λ∈{0,1}

m∑
c=1

∑
p∈EP

ȳp
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Exponential-size formulation

min
λ∈{0,1}

∑
p∈EP:ȳp

c =1

(
m∑

c=1

λc
p

)
︸ ︷︷ ︸

λp∑
p∈EP

x̄p
vc

(
m∑

c=1

λc
p

)
︸ ︷︷ ︸

λp

= 1 v ∈ V

by replacing the variables we obtain:

min
λ∈{0,1}

∑
p∈EP

λp

∑
p∈EP

x̄p
vc λp = 1 v ∈ V

by relaxing the integrality condition on the variables→ λ ≥ 0, we obtain the
fractional chromatic number χf (G)
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Exponential-size formulation: example

Let S represent the set of incidence vectors of all stable sets of G:

S =
{

x ∈ {0, 1}n : xu + xv ≤ 1, uv ∈ E
}

v1

v2

v3

v4 v5

cycle C of size 5
ω(C) = 2, χ(C) = 3

I S =
{
{v1, v3}︸ ︷︷ ︸

S1

, {v1, v4}︸ ︷︷ ︸
S2

, {v2, v4}︸ ︷︷ ︸
S3

, {v2, v5}︸ ︷︷ ︸
S4

, {v3, v5}︸ ︷︷ ︸
S5

}

min
λ≥0

λS1 + λS2 + λS3 + λS4 + λS5

λS1 + λS2 = 1 (v1)

+ λS3 + λS4 = 1 (v2)

λS1 + λS5 = 1 (v3)

+ λS2 + λS3 = 1 (v4)

+ λS4 + λS5 = 1 (v5)

I λ∗S1
=λ∗S2

=λ∗S3
=λ∗S4

=λ∗S5
= 1

2 → χf (G) = 2.5
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Pricing and Branching



Dantzig-Wolfe reformulation Vertex Coloring Problem Pricing and Branching Conclusions and Perspectives

Column Generation

I Restricted Mater Problem

min
λ≥0

∑
S∈S

λS∑
S∈S :v∈S

λS ≥ 1 v ∈ V

I Dual Problem

max
π≥0

∑
v∈V

πv∑
v∈S

πv ≤ 1 S ∈ S

I Given an opt. sol. (λ∗, π∗) of the (RMP), find a stable set S∗ ∈ S :∑
v∈S∗

π∗v > 1

I Pricing: Max Weight Stable Set Problem (MWSSP)

α(G, π∗) = max
∑
v∈V

π∗v xv

xu + xv ≤ 1 uv ∈ E

xv ∈ {0, 1} v ∈ V .
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MWSSPs are solved by means of specialized B&B algorithms!

I Main Idea! Given a valid lower bound on MWSSP of value q, we can
partition V into two disjoint sets of vertices

P and B = V \ P such that α(G[P], π∗) ≤ q

Branching is necessary on the vertices in B only!

I Instead of computing α(G[P], π∗), strong MWSSP upper bounds are
obtained via feasible dual solutions:

α(G, π∗) ≤ min
∑

K∈K̃

ρK

∑
K∈K̃ :v∈K

ρK ≥ π∗v v ∈ V ,

ρK ≥ 0 K ∈ K̃ .

where K̃ is a subset of the cliques of the graph.

I If K̃ is a vertex disjointed clique partition→ Max Coloring Upper Bound!
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Infra-chromatic Bounding Functions (Main Idea)

Partial MAX-SAT Bound

v1

v2

v3

v4 v5

cycle C of size 5
ω(C) = 2, χ(C) = 3

I Hard Clauses (non-edges)

h1 ≡ x̄1 ∨ x̄3, h2 ≡ x̄1 ∨ x̄4

h3 ≡ x̄2∨x̄4, h4 ≡ x̄2∨x̄5, h5 ≡ x̄3∨x̄5

I Soft Clauses (colors)

s1 ≡ x1∨x3, s2 ≡ x2∨x4, s3 ≡ x5

I Unit Literal Propagation

x5 = 1→ x2 = 0 (h4)→ x4 = 1 (s2)

x5 = 1→ x3 = 0 (h5)→ x1 = 1 (s1)

I Inconsistency!
→ h2 core {s1, s2, s3}

I Stronger Bound
→ χ(C) > 3− 1 = 2 ≥ ω(C)
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Some Computational Results

BBMCW MWSS

|V | |E| µ(G) dχf (G)e t[s] tot t[s] pricing t[s] tot t[s] pricing

flat300_28_0 300 21695 0.48 28 (28) 136.06 118.29 881.03 863.05
r1000.5 1000 238267 0.48 234 (234) 268.40 211.79 2556.25 2508.37
r250.5 250 14849 0.48 65 (65) 3.88 3.54 6.41 6.15
DSJR500.5 500 58862 0.47 122 (122) 21.35 18.67 94.86 93.04
DSJR500.1c 500 121275 0.97 85 (85) 8.73 8.43 40.27 39.97
DSJC125.5 125 3891 0.50 16 (17) 2.36 1.85 3.83 3.33
DSJC250.9 250 27897 0.90 71 (72) 5.07 4.47 9.40 8.93
queen10_10 100 1470 0.30 10 (11) 3.19 2.64 4.92 4.37
queen11_11 121 1980 0.27 11 (11) 9.20 8.21 13.87 12.98
queen12_12 144 2596 0.25 12 (12) 41.51 39.63 67.42 65.60
queen13_13 169 3328 0.23 13 (13) 234.69 231.10 303.05 299.73
queen14_14 196 4186 0.22 14 (14) 1564.04 1558.14 1922.45 1916.36

Table 1: Comparing the performance of BBMCW and MWSS as pricing algorithms in
computing the fractional cromatic number χf (G).

[1] P. San Segundo, F. F. and J. Artieda.
A new branch-and-bound algorithm for the Maximum Weighted Clique Problem.
Computers & Operations Research , 110:18 – 33, 2019.
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Ryan/Foster branching rule

Basic idea. At each node of the branching tree select two vertices v , u ∈ V :∑
S∈S :u∈S,v∈S

λ∗S = γ, γ is fractional

Then two branching nodes are created as follows:

1) vertices v and u take the same color

2) vertices v and u take different colors

I This branching rule is complete (Zykov (49), Barnhart et al. (98)). Since
the master constraint matrix A is a 0-1 matrix, if a basic solution to
A λ∗ = 1 is fractional, then there exist two rows (vertices) u and v of the
master problem such that:

0 <
∑

S∈S :u∈S,v∈S

λ∗S < 1

I It preserve the same pricing algorithm! Only minor graph modifications
are necessary.
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Example: u and v fractionally colored

u

v

w

I The first subproblem graph is obtained by adding the edge uv which
forces these vertices to take different colors.

I The second subproblem graph is obtained by merging the two vertices
into a new vertex w (connected to all the neighbours of u and v ). This
forces the two vertices to take the same color.
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Conclusions and Future Lines of Search

I The Vertex Coloring Problems and its variants are very challenging
problems. The state-of-the-art exact approaches are branch-and-price
algorithms

I There is still a large space for improvements since only instances with up
to 100 vertices can be effectively solved

I To the best of my knowledge, no branch-and-cut-and-price algorithms
have been developed for the VCP

I Some techniques to accelerate the column generation phase can be
designed, e.g., stabilization, smoothing, strong branching, column
enumeration and columns pools, pricing relaxations etc. etc. . . . . . .

I I have not mentioned other exact approaches for the VCP like e.g., other
compact ILP formulations, branch-and-cut algorithms, combinatorial
branch-and-bound algorithm like DSATUR-B&B . . . . . . etc. etc. . . . . . .
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