An Exact Solution Framework for Multi-Trip Vehicle Routing Problems with Time Windows

Autumn School on Advanced BCP Tools

R. Roberti

Dept. of Supply Chain Analytics
Vrije Universiteit Amsterdam

November 21, 2019
Table of Contents

- Introduction
- Multi-Trip VRP
- Mathematical Models for the MTVRP
- Variants of the MTVRP
- Mathematical Models for Variants of the MTVRP
- Computational Results
- Conclusions and Open Questions
Table of Contents

Introduction

Multi-Trip VRP

Mathematical Models for the MTVRP

Variants of the MTVRP

Mathematical Models for Variants of the MTVRP

Computational Results

Conclusions and Open Questions
Introduction

- Most of the literature on the **Vehicle Routing Problem (VRP)** addresses problems where each vehicle can perform at most one trip per day.
- Many contributions on VRPs where vehicles can perform multiple trips have been published in the last decade.
- These problems are called **Multi-Trip Vehicle Routing Problems (MTVRP)**.
Most of the literature on the Vehicle Routing Problem (VRP) addresses problems where each vehicle can perform at most one trip per day. Many contributions on VRPs where vehicles can perform multiple trips have been published in the last decade. These problems are called Multi-Trip Vehicle Routing Problems (MTVRP).
Most of the literature on the Vehicle Routing Problem (VRP) addresses problems where each vehicle can perform at most one trip per day.

Many contributions on VRPs where vehicles can perform multiple trips have been published in the last decade.

These problems are called Multi-Trip Vehicle Routing Problems (MTVRP).
Motivation

• Such an increasing interest in MTVRPs is due to new practices in, e.g., city logistics and last-mile delivery
• The need of limiting noise and pollution in city centers requires the usage of small vans, electric vehicles, and/or drones and forbids large trucks from entering city centers
• The limited capacity/autonomy of these vehicles forces them to perform multiple trips and to return to the depot to reload multiple times over the day
Motivation

- Such an increasing interest in MTVRPs is due to new practices in, e.g., city logistics and last-mile delivery.
- The need of limiting noise and pollution in city centers requires the usage of small vans, electric vehicles, and/or drones and forbids large trucks from entering city centers.
- The limited capacity/autonomy of these vehicles forces them to perform multiple trips and to return to the depot to reload multiple times over the day.
Motivation

• Such an increasing interest in MTVRPs is due to new practices in, e.g., city logistics and last-mile delivery

• The need of limiting noise and pollution in city centers requires the usage of small vans, electric vehicles, and/or drones and forbids large trucks from entering city centers

• The limited capacity/autonomy of these vehicles forces them to perform multiple trips and to return to the depot to reload multiple times over the day
Main Research Question to Address in this Talk

What is the best model to solve an MTVRP (with side constraints) to optimality?
Research Question

Main Research Question to Address in this Talk

What is the best model to solve an MTVRP (with side constraints) to optimality?

Based on the state-of-the-art exact methods for lots of VRPs...

Set Partitioning Models!
Table of Contents

Introduction

Multi-Trip VRP

Mathematical Models for the MTVRP

Variants of the MTVRP

Mathematical Models for Variants of the MTVRP

Computational Results

Conclusions and Open Questions
Definition of the Multi-Trip VRP I

Input Data

- N: set of customers
- V: vertex set, $V = N \cup \{0\}$, where 0 is the depot
- A: arc set, $A = \{(i, j) \mid i, j \in V : i \neq j\}$
- G: directed graph, $G = (V, A)$
- t_{ij}: travel time of arc $(i, j) \in A$
- K: fleet of identical capacitated vehicles, $|K| = m$
- q_i: demand of customer $i \in N$
- Q: vehicle capacity
- T: length of the planning horizon
Definition of the Multi-Trip VRP II

Definitions

- A **trip** is a sequence of customers, whose total demand does not exceed Q, that can be visited by a vehicle in between two visits at the depot, and that has a fixed departure time from the depot.

- A **journey** is a sequence of non-overlapping trips assigned to a vehicle whose total travel time does not exceed T.

The MTVRP aims at defining a set of at most m journeys such that:

1. each customer is visited exactly once
2. the total traveled time is minimized
Table of Contents

Introduction

Multi-Trip VRP

Mathematical Models for the MTVRP

Variants of the MTVRP

Mathematical Models for Variants of the MTVRP

Computational Results

Conclusions and Open Questions
Models with 3- and 4-index Variables

4-index Variables

\[x_{ij}^{kh} \in \{0, 1\} \] equal to 1 if trip \(h \) of vehicle \(k \in K \) traverses arc \((i, j) \in A\) (0 otherwise)

3-index Variables with Vehicle Index (without Trip Index)

\[x_{ij}^k \in \{0, 1\} \] equal to 1 if vehicle \(k \in K \) traverses arc \((i, j) \in A\) (0 otherwise)

3-index Variables with Trip Index (without Vehicle Index)

\[x_{ij}^h \in \{0, 1\} \] equal to 1 if trip \(h \) traverses arc \((i, j) \in A\) (0 otherwise)
Models with 3- and 4-index Variables

4-index Variables
\[x_{ij}^{kh} \in \{0, 1\} \text{ equal to } 1 \text{ if trip } h \text{ of vehicle } k \in K \text{ traverses arc } (i, j) \in A \text{ (0 otherwise)} \]

3-index Variables with Vehicle Index (without Trip Index)
\[x_{ij}^{k} \in \{0, 1\} \text{ equal to } 1 \text{ if vehicle } k \in K \text{ traverses arc } (i, j) \in A \text{ (0 otherwise)} \]

3-index Variables with Trip Index (without Vehicle Index)
\[x_{ij}^{h} \in \{0, 1\} \text{ equal to } 1 \text{ if trip } h \text{ traverses arc } (i, j) \in A \text{ (0 otherwise)} \]
Models with 3- and 4-index Variables

4-index Variables

\[x_{ij}^{kh} \in \{0, 1\} \text{ equal to 1 if trip } h \text{ of vehicle } k \in K \text{ traverses arc } (i, j) \in \mathcal{A} \text{ (0 otherwise)} \]

3-index Variables with Vehicle Index (without Trip Index)

\[x_{ij}^k \in \{0, 1\} \text{ equal to 1 if vehicle } k \in K \text{ traverses arc } (i, j) \in \mathcal{A} \text{ (0 otherwise)} \]

3-index Variables with Trip Index (without Vehicle Index)

\[x_{ij}^h \in \{0, 1\} \text{ equal to 1 if trip } h \text{ traverses arc } (i, j) \in \mathcal{A} \text{ (0 otherwise)} \]
Models with 3- and 4-index Variables

Pros and Cons

- Polynomial number of variables
- Can be solved with commercial solvers
- Easy to embed additional side constraints
Models with 3- and 4-index Variables

Pros and Cons

- Polynomial number of variables
- Can be solved with commercial solvers
- Easy to embed additional side constraints

- High integrality gaps
- BigM constraints
- Symmetries in the vehicles
2-Index Arc-based Model (Koc and Karaoglan (2011)) I

Variables

- $x_{ij} \in \{0, 1\}$ equal to 1 if arc $(i, j) \in A$ is traversed (0 otherwise)
- $x'_{ij} \in \{0, 1\}$ equal to 1 if a vehicle visits customers $i, j \in N (i \neq j)$ consecutively with a stop at the depot in between (0 otherwise)
- $\ell_i \in \mathbb{R}_+$ load on board after visiting customer $i \in N$
- $a_i \in \mathbb{R}_+$ arrival time at customer $i \in N$
2-Index Arc-based Model (Koc and Karaoglan (2011)) II

\[
\begin{align*}
\text{min} & \quad \sum_{(i,j) \in A} t_{ij} x_{ij} \quad \text{[Minimize travel times]} \quad (1a) \\
\text{s.t.} & \quad \sum_{(i,j) \in A} x_{ij} = 1 \quad i \in N \quad \text{[Serve each customer]} \quad (1b) \\
& \quad \sum_{(i,j) \in A} x_{ij} = \sum_{(j,i) \in A} x_{ji} \quad i \in V \quad \text{[Flow conservation]} \quad (1c) \\
& \quad \ell_i + q_j \leq \ell_j + Q(1 - x_{ij}) \quad i \in N \ j \in V \quad \text{[Subtour + Load on board]} \quad (1d) \\
& \quad a_i + t_{ij} \leq a_j + T(1 - x_{ij}) \quad i \in V \ j \in N \quad \text{[Subtour + Arrival time]} \quad (1e) \\
& \quad a_i + (t_{i0} + t_{0j}) \leq a_j + T(1 - x'_{ij}) \quad i, j \in N : i \neq j \quad \text{[Arrival time depot visit]} \quad (1f) \\
& \quad t_{0i} \leq a_i \leq T - t_{i0} \quad i \in N \quad \text{[Planning horizon]} \quad (1g) \\
& \quad \sum_{j \in N} x'_{ij} \leq x_{i0} \quad i \in N \quad \text{[Link x with x']} \quad (1h) \\
& \quad \sum_{j \in N} x'_{ij} \leq x_{0j} \quad j \in N \quad \text{[Link x with x']} \quad (1i) \\
& \quad \sum_{(0,j) \in A} x_{0j} - \sum_{i,j \in N : i \neq j} x'_{ij} \leq m \quad \text{[Number of vehicles]} \quad (1j) \\
& \quad x_{ij} \in \{0, 1\} \quad (i, j) \in A \quad (1k) \\
& \quad x'_{ij} \in \{0, 1\} \quad i, j \in N : i \neq j \quad (1l) \\
& \quad q_i \leq \ell_i \leq Q, \quad a_i \in \mathbb{R}_+ \quad i \in N \quad (1m)
\end{align*}
\]
2-Index Arc-based Model (Koc and Karaoglan (2011))

Pros and Cons

- Polynomial number of variables (much fewer than 3- and 4-index models)
- Can be solved with commercial solvers
- Easy to embed side constraints

High integrality gaps

BigM constraints

Instances with 50 customers are already difficult to close
2-Index Arc-based Model (Koc and Karaoglan (2011))

Pros and Cons

- Polynomial number of variables (much fewer than 3- and 4-index models)
- Can be solved with commercial solvers
- Easy to embed side constraints

- High integrality gaps
- BigM constraints
- Instances with 50 customers are already difficult to close
Trip-based Model (Mingozzi, Roberti, and Toth (2013))

- \mathcal{H} set of all feasible trips
- c_h cost of trip $h \in \mathcal{H}$
- α_{ih} trip $h \in \mathcal{H}$ serves customer $i \in N$ ($\alpha_{ih} = 1$) or not ($\alpha_{ih} = 0$)
- d_h duration of trip $h \in \mathcal{H}$

Variables

$x_{hk} \in \{0, 1\}$ trip $h \in \mathcal{H}$ is assigned to vehicle $k \in K$ ($x_{hk} = 1$) or not ($x_{hk} = 0$)

\[
\begin{align*}
\text{min} & \quad \sum_{h \in \mathcal{H}} \sum_{k \in K} c_h x_{hk} \\
\text{s.t.} & \quad \sum_{h \in \mathcal{H}} \sum_{k \in K} \alpha_{ih} x_{hk} = 1 \quad i \in N \\
& \quad \sum_{h \in \mathcal{H}} d_h x_{hk} \leq T \quad k \in K \\
& \quad x_{hk} \in \{0, 1\} \quad h \in \mathcal{H} \quad k \in K
\end{align*}
\]

[Minimize travel costs] (2a)

[Serve each customer] (2b)

[Planning horizon] (2c)

(2d)
Trip-based Model (Mingozzi, Roberti, and Toth (2013))

\[\mathcal{H} \text{ set of all feasible trips} \]
\[c_h \text{ cost of trip } h \in \mathcal{H} \]
\[\alpha_{ih} \text{ trip } h \in \mathcal{H} \text{ serves customer } i \in N (\alpha_{ih} = 1) \text{ or not } (\alpha_{ih} = 0) \]
\[d_h \text{ duration of trip } h \in \mathcal{H} \]

Variables

\[x_{hk} \in \{0, 1\} \text{ trip } h \in \mathcal{H} \text{ is assigned to vehicle } k \in K (x_{hk} = 1) \text{ or not } (x_{hk} = 0) \]

\[
\begin{align*}
\min & \sum_{h \in \mathcal{H}} c_h \sum_{k \in K} x_{hk} & \quad & \text{[Minimize travel costs]} \\
\text{s.t.} & \sum_{h \in \mathcal{H}} \sum_{k \in K} \alpha_{ih} x_{hk} = 1 & i \in N & \text{[Serve each customer]} \\
& \sum_{h \in \mathcal{H}} d_h x_{hk} \leq T & k \in K & \text{[Planning horizon]} \\
& x_{hk} \in \{0, 1\} & h \in \mathcal{H} & k \in K
\end{align*}
\]
Trip-based Model (Mingozzi, Roberti, and Toth (2013))

- \mathcal{H} set of all feasible trips
- c_h cost of trip $h \in \mathcal{H}$
- α_{ih} trip $h \in \mathcal{H}$ serves customer $i \in N$ ($\alpha_{ih} = 1$) or not ($\alpha_{ih} = 0$)
- d_h duration of trip $h \in \mathcal{H}$

Variables

- $x_{hk} \in \{0,1\}$ trip $h \in \mathcal{H}$ is assigned to vehicle $k \in K$ ($x_{hk} = 1$) or not ($x_{hk} = 0$)

Minimize

$$\min \sum_{h \in \mathcal{H}} c_h \sum_{k \in K} x_{hk}$$

[Minimize travel costs] (2a)

Subject to

$$\sum_{h \in \mathcal{H}} \sum_{k \in K} \alpha_{ih} x_{hk} = 1 \quad i \in N$$

[Serve each customer] (2b)

$$\sum_{h \in \mathcal{H}} d_h x_{hk} \leq T \quad k \in K$$

[Planning horizon] (2c)

$$x_{hk} \in \{0,1\} \quad h \in \mathcal{H} \quad k \in K$$

(2d)
Trip-based Model (Mingozzi, Roberti, and Toth (2013))

Pros and Cons

- Small integrality gaps
- Instances with 100-120 customers can be closed
- Easy to embed side constraints
Trip-based Model (Mingozzi, Roberti, and Toth (2013))

Pros and Cons

- Small integrality gaps
- Instances with 100-120 customers can be closed
- Easy to embed side constraints

- Exponential number of variables
- Symmetries in the vehicles
- Column generation/branch(-and-cut)-and-price needed
- Additional constraints can make the pricing problem difficult
Journey-based Model (Mingozzi, Roberti, and Toth (2013))

\(\mathcal{R} \) set of all feasible journeys

\(c_r \) cost of journey \(r \in \mathcal{R} \)

\(\alpha_{ir} \) journey \(r \in \mathcal{R} \) serves customer \(i \in N \) \((\alpha_{ir} = 1) \) or not \((\alpha_{ir} = 0) \)

Variables

\(x_r \in \{0, 1\} \) journey \(r \in \mathcal{R} \) is selected \((x_r = 1) \) or not \((x_r = 0) \)

\[
\min \sum_{r \in \mathcal{R}} c_r x_r \quad \text{[Minimize travel costs]} \tag{3a}
\]

\[
\text{s.t.} \sum_{r \in \mathcal{R}} \alpha_{ir} x_r = 1 \quad i \in N \quad \text{[Serve each customer]} \tag{3b}
\]

\[
\sum_{r \in \mathcal{R}} x_r \leq m \quad \text{[Number of vehicles]} \tag{3c}
\]

\(x_r \in \{0, 1\} \quad r \in \mathcal{R} \quad \) \[3d]\
Journey-based Model (Mingozzi, Roberti, and Toth (2013))

- \(\mathcal{R} \): set of all feasible journeys
- \(c_r \): cost of journey \(r \in \mathcal{R} \)
- \(\alpha_{ir} \): journey \(r \in \mathcal{R} \) serves customer \(i \in N \) \((\alpha_{ir} = 1) \) or not \((\alpha_{ir} = 0) \)

Variables

- \(x_r \in \{0, 1\} \): journey \(r \in \mathcal{R} \) is selected \((x_r = 1) \) or not \((x_r = 0) \)

\[
\begin{align*}
\min & \sum_{r \in \mathcal{R}} c_r x_r & \text{[Minimize travel costs]} \quad (3a) \\
\text{s.t.} & \sum_{r \in \mathcal{R}} \alpha_{ir} x_r = 1 & i \in N & \text{[Serve each customer]} \quad (3b) \\
& \sum_{r \in \mathcal{R}} x_r \leq m & \text{[Number of vehicles]} \quad (3c) \\
& x_r \in \{0, 1\} & r \in \mathcal{R} & \quad (3d)
\end{align*}
\]
Journey-based Model (Mingozzi, Roberti, and Toth (2013))

\(\mathcal{R} \) set of all feasible journeys

\(c_r \) cost of journey \(r \in \mathcal{R} \)

\(\alpha_{ir} \) journey \(r \in \mathcal{R} \) serves customer \(i \in N \) (\(\alpha_{ir} = 1 \)) or not (\(\alpha_{ir} = 0 \))

Variables

\(x_r \in \{0, 1\} \) journey \(r \in \mathcal{R} \) is selected (\(x_r = 1 \)) or not (\(x_r = 0 \))

\[
\begin{align*}
\text{min} & \sum_{r \in \mathcal{R}} c_r x_r & \text{[Minimize travel costs]} \\
\text{s.t.} & \sum_{r \in \mathcal{R}} \alpha_{ir} x_r = 1 & i \in N & \text{[Serve each customer]} \\
& \sum_{r \in \mathcal{R}} x_r \leq m & & \text{[Number of vehicles]} \\
& x_r \in \{0, 1\} & r \in \mathcal{R} & \text{[]} \\
\end{align*}
\]
Journey-based Model (Mingozzi, Roberti, and Toth (2013))

Pros and Cons

- Small integrality gaps (smaller than trip-based model)
- Instances with 100-120 customers can be closed
- Easy to embed additional side constraints
Journey-based Model (Mingozzi, Roberti, and Toth (2013))

Pros and Cons

- Small integrality gaps (smaller than trip-based model)
- Instances with 100-120 customers can be closed
- Easy to embed additional side constraints

- Exponential number of variables
- Column generation/branch(and-cut)-and-price needed
- Pricing problem more difficult than trip-based model
- Additional constraints can make the pricing problem (even more) difficult
Table of Contents

Introduction

Multi-Trip VRP

Mathematical Models for the MTVRP

Variants of the MTVRP

Mathematical Models for Variants of the MTVRP

Computational Results

Conclusions and Open Questions
Main Side Constraints and Academic Extensions

- **Time Windows**: each customer $i \in N$ must be visited within a time interval $[a_i, b_i]$
- **Service-Dependent Loading Times**: vehicle loading time at the depot depends on the customers visited in the next trip
- **Limited Trip Duration**: maximum time between the departure from the depot and the arrival time at the last customer of the trip
- **Profits**: a profit p_i is associated with each customer $i \in N$; hierarchical objective function: maximize profit first; minimize routing cost second
Main Side Constraints and Academic Extensions

- **Time Windows**: each customer $i \in N$ must be visited within a time interval $[a_i, b_i]$
- **Service-Dependent Loading Times**: vehicle loading time at the depot depends on the customers visited in the next trip
- **Limited Trip Duration**: maximum time between the departure from the depot and the arrival time at the last customer of the trip
- **Profits**: a profit p_i is associated with each customer $i \in N$; hierarchical objective function: maximize profit first; minimize routing cost second
Main Side Constraints and Academic Extensions

- **Time Windows**: each customer $i \in N$ must be visited within a time interval $[a_i, b_i]$
- **Service-Dependent Loading Times**: vehicle loading time at the depot depends on the customers visited in the next trip
- **Limited Trip Duration**: maximum time between the departure from the depot and the arrival time at the last customer of the trip
- **Profits**: a profit p_i is associated with each customer $i \in N$; hierarchical objective function: maximize profit first; minimize routing cost second
Main Side Constraints and Academic Extensions

- **Time Windows**: each customer \(i \in N \) must be visited within a time interval \([a_i, b_i]\)
- **Service-Dependent Loading Times**: vehicle loading time at the depot depends on the customers visited in the next trip
- **Limited Trip Duration**: maximum time between the departure from the depot and the arrival time at the last customer of the trip
- **Profits**: a profit \(p_i \) is associated with each customer \(i \in N \); hierarchical objective function: maximize profit first; minimize routing cost second
Main Side Constraints and Academic Extensions

<table>
<thead>
<tr>
<th>Reference</th>
<th>Time Windows</th>
<th>Service-Dependent Loading Times</th>
<th>Limited Trip Duration</th>
<th>Profits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azi, Gendreau, and Potvin (2010)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Macedo et al. (2011)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hernandez et al. (2014)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Hernandez et al. (2016)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heuristic Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azi, Gendreau, and Potvin (2014)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wang, Liang, and Hu (2014)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Cattaruzza, Absi, and Feillet (2016a)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaya-Arenas et al. (2016)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Cattaruzza, Absi, and Feillet (2016b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Introduction

Multi-Trip VRP

Mathematical Models for the MTVRP

Variants of the MTVRP

Mathematical Models for Variants of the MTVRP

Computational Results

Conclusions and Open Questions
Trip-based Model (Hernandez et al. (2016))

- \mathcal{H}: set of all feasible trips
- c_h: cost of trip $h \in \mathcal{H}$
- α_{ih}: trip $h \in \mathcal{H}$ serves customer $i \in N$ ($\alpha_{ih} = 1$) or not ($\alpha_{ih} = 0$)
- τ_{th}: trip $h \in \mathcal{H}$ is active at time $t \in [a_0, b_0]$ ($\tau_{th} = 1$) or not ($\tau_{th} = 0$)

Variables

- $x_h \in \{0, 1\}$: trip $h \in \mathcal{H}$ is selected ($x_h = 1$) or not ($x_h = 0$)

Mathematical Formulation:

\[
\begin{align*}
\text{min} & \quad \sum_{h \in \mathcal{H}} c_h x_h & \quad \text{[Minimize travel costs]} \quad (4a) \\
\text{s.t.} & \quad \sum_{h \in \mathcal{H}} \alpha_{ih} x_h = 1 & \quad i \in N \quad \text{[Serve each customer]} \quad (4b) \\
& \quad \sum_{h \in \mathcal{H}} \tau_{th} x_h \leq m & \quad t \in [a_0, b_0] \quad \text{[No overlaps]} \quad (4c) \\
& \quad x_h \in \{0, 1\} & \quad h \in \mathcal{H} \quad (4d)
\end{align*}
\]
Trip-based Model (Hernandez et al. (2016))

\(\mathcal{H} \) set of all feasible trips

\(c_h \) cost of trip \(h \in \mathcal{H} \)

\(\alpha_{ih} \) trip \(h \in \mathcal{H} \) serves customer \(i \in N \) (\(\alpha_{ih} = 1 \)) or not (\(\alpha_{ih} = 0 \))

\(\tau_{th} \) trip \(h \in \mathcal{H} \) is active at time \(t \in [a_0, b_0] \) (\(\tau_{th} = 1 \)) or not (\(\tau_{th} = 0 \))

Variables

\(x_h \in \{0, 1\} \) trip \(h \in \mathcal{H} \) is selected (\(x_h = 1 \)) or not (\(x_h = 0 \))

\[
\begin{align*}
\text{min} & \quad \sum_{h \in \mathcal{H}} c_h x_h & \text{[Minimize travel costs]} \\
\text{s.t.} & \quad \sum_{h \in \mathcal{H}} \alpha_{ih} x_h = 1 & i \in N \text{ [Serve each customer]} \\
& \quad \sum_{h \in \mathcal{H}} \tau_{th} x_h \leq m & t \in [a_0, b_0] \text{ [No overlaps]} \\
& \quad x_h \in \{0, 1\} & h \in \mathcal{H} \end{align*}
\]
Trip-based Model (Hernandez et al. (2016))

- \mathcal{H} set of all feasible trips
- c_h cost of trip $h \in \mathcal{H}$
- α_{ih} trip $h \in \mathcal{H}$ serves customer $i \in N$ ($\alpha_{ih} = 1$) or not ($\alpha_{ih} = 0$)
- τ_{th} trip $h \in \mathcal{H}$ is active at time $t \in [a_0, b_0]$ ($\tau_{th} = 1$) or not ($\tau_{th} = 0$)

Variables

- $x_h \in \{0, 1\}$ trip $h \in \mathcal{H}$ is selected ($x_h = 1$) or not ($x_h = 0$)

\[
\begin{align*}
\min & \quad \sum_{h \in \mathcal{H}} c_h x_h \quad \text{[Minimize travel costs]} \\
\text{s.t.} & \quad \sum_{h \in \mathcal{H}} \alpha_{ih} x_h = 1 \quad i \in N \quad \text{[Serve each customer]} \\
& \quad \sum_{h \in \mathcal{H}} \tau_{th} x_h \leq m \quad t \in [a_0, b_0] \quad \text{[No overlaps]} \\
& \quad x_h \in \{0, 1\} \quad h \in \mathcal{H}
\end{align*}
\]
Trip-based Model (Hernandez et al. (2016))

Pros and Cons

- Small integrality gaps
- Easy to embed additional side constraints defining the feasibility of the trips
Trip-based Model (Hernandez et al. (2016))

Pros and Cons

- Small integrality gaps
- Easy to embed additional side constraints defining the feasibility of the trips
- Exponential number of variables
- Column generation/branch(-and-cut)-and-price needed
- Side constraints make the pricing problem difficult
- Constraints (4c) to add in a cutting plane fashion
- Instances with 25 customers can be out of reach
Journey-based Model (Hernandez et al. (2014, 2016))

- \(\mathcal{R} \): set of all feasible journeys
- \(c_r \): cost of journey \(r \in \mathcal{R} \)
- \(\alpha_{ir} \): journey \(r \in \mathcal{R} \) serves customer \(i \in N \) (\(\alpha_{ir} = 1 \)) or not (\(\alpha_{ir} = 0 \))

Variables

\[x_r \in \{0, 1\} \text{ journey } r \in \mathcal{R} \text{ is selected } (x_r = 1) \text{ or not } (x_r = 0) \]

\[
\begin{align*}
\min & \quad \sum_{r \in \mathcal{R}} c_r x_r & & \text{[Minimize travel costs]} \\
\text{s.t.} & \quad \sum_{r \in \mathcal{R}} \alpha_{ir} x_r = 1 & & i \in N \quad \text{[Serve each customer]} \\
& \quad \sum_{r \in \mathcal{R}} x_r \leq m & & \text{[Number of vehicles]} \\
& \quad x_r \in \{0, 1\} & & r \in \mathcal{R} \\
& \quad x_r & & \text{[Variable selection]} \\
\end{align*}
\]
Journey-based Model (Hernandez et al. (2014, 2016))

- \mathcal{R} set of all feasible journeys
- c_r cost of journey $r \in \mathcal{R}$
- α_{ir} journey $r \in \mathcal{R}$ serves customer $i \in \mathcal{N}$ ($\alpha_{ir} = 1$) or not ($\alpha_{ir} = 0$)

Variables

- $x_r \in \{0, 1\}$ journey $r \in \mathcal{R}$ is selected ($x_r = 1$) or not ($x_r = 0$)

\[
\begin{align*}
\min & \quad \sum_{r \in \mathcal{R}} c_r x_r \quad [\text{Minimize travel costs}] \\
\text{s.t.} & \quad \sum_{r \in \mathcal{R}} \alpha_{ir} x_r = 1 \quad i \in \mathcal{N} \quad [\text{Serve each customer}] \\
& \quad \sum_{r \in \mathcal{R}} x_r \leq m \quad [\text{Number of vehicles}] \\
& \quad x_r \in \{0, 1\} \quad r \in \mathcal{R} \\
& \quad x_r \in \{0, 1\} \quad r \in \mathcal{R}
\end{align*}
\]
Journey-based Model (Hernandez et al. (2014, 2016))

\[\mathcal{R} \text{ set of all feasible journeys} \]
\[c_r \text{ cost of journey } r \in \mathcal{R} \]
\[\alpha_{ir} \text{ journey } r \in \mathcal{R} \text{ serves customer } i \in \mathcal{N} (\alpha_{ir} = 1) \text{ or not } (\alpha_{ir} = 0) \]

Variables
\[x_r \in \{0, 1\} \text{ journey } r \in \mathcal{R} \text{ is selected } (x_r = 1) \text{ or not } (x_r = 0) \]

\[
\begin{align*}
\min & \quad \sum_{r \in \mathcal{R}} c_r x_r & \quad \text{[Minimize travel costs]} \\
\text{s.t.} & \quad \sum_{r \in \mathcal{R}} \alpha_{ir} x_r = 1 \quad i \in \mathcal{N} & \quad \text{[Serve each customer]} \\
& \quad \sum_{r \in \mathcal{R}} x_r \leq m & \quad \text{[Number of vehicles]} \\
& \quad x_r \in \{0, 1\} \quad r \in \mathcal{R} & \quad \text{(5d)}
\end{align*}
\]
Journey-based Model (Hernandez et al. (2014, 2016))

Pros and Cons

- Small integrality gaps (smaller than trip-based model)
- Easy to embed additional side constraints both related to trips and journeys
Journey-based Model (Hernandez et al. (2014, 2016))

Pros and Cons

- Small integrality gaps (smaller than trip-based model)
- Easy to embed additional side constraints both related to trips and journeys

- Exponential number of variables
- Column generation/branch(and-cut)-and-price needed
- Pricing problem more difficult than trip-based model
- Instances with 25 customers can be out of reach
The Concept of Structure

Definition of Structure

A **structure** \(s = (0, i_1, i_2, \ldots, i_{\mu_s}, 0) \) is an ordered set of \(\mu_s \) customers that can be visited in between two visits at the depot and can start from the depot within time interval \([e_s, \ell_s]\), such that:

1. capacity constraints are satisfied
2. the duration \(d_s \) and the cost \(c_s \) are constant for each departure time from the depot within \([e_s, \ell_s]\)
3. the duration \(d_s \) is the minimum duration to serve the set of customers in the given order
Structure-based Model (Paradiso et al. (2019))

- S set of all feasible structures
- c_s cost of structure $s \in S$
- α_{is} structure $s \in S$ serves $i \in N$ ($\alpha_{is} = 1$) or not ($\alpha_{is} = 0$)

Variables

- $x_s \in \{0, 1\}$ structure $s \in S$ is selected ($x_s = 1$) or not ($x_s = 0$)

Variables

\[
\begin{align*}
\min & \quad \sum_{s \in S} c_s x_s & \text{[Minimize travel costs]} \\
\text{s.t.} & \quad \sum_{s \in S} \alpha_{is} x_s = 1 & i \in N & \text{[Serve each customer]} \\
& \quad \sum_{s \in \hat{S}} x_s \leq \eta_m(\hat{S}) & \hat{S} \subseteq S & \text{[Structure feasibility constraints]} \\
& \quad x_s \in \{0, 1\} & s \in S & \\
\end{align*}
\]

where $\eta_m(\hat{S})$ is the maximum number of structures of the set \hat{S} that can be simultaneously in a solution given the number of vehicles m.

R. Roberti

Exact Framework for MT-VRP with Time Windows

29 / 41
Mathematical Models for Variants of the MTVRP

Structure-based Model (Paradiso et al. (2019))

\[S \] set of all feasible structures
\[c_s \] cost of structure \(s \in S \)
\[\alpha_{is} \] structure \(s \in S \) serves \(i \in N \) \((\alpha_{is} = 1)\) or not \((\alpha_{is} = 0)\)

Variables

\[x_s \in \{0, 1\} \] structure \(s \in S \) is selected \((x_s = 1)\) or not \((x_s = 0)\)

\[\min \sum_{s \in S} c_s x_s \] [Minimize travel costs] \hspace{1cm} (6a)

s.t. \[\sum_{s \in S} \alpha_{is} x_s = 1 \hspace{0.5cm} i \in N \] [Serve each customer] \hspace{1cm} (6b)

\[\sum_{s \in \hat{S}} x_s \leq \eta_m(\hat{S}) \hspace{0.5cm} \hat{S} \subseteq S \] [Structure feasibility constraints] \hspace{1cm} (6c)

\[x_s \in \{0, 1\} \hspace{0.5cm} s \in S \] \hspace{1cm} (6d)

where \(\eta_m(\hat{S}) \) is the maximum number of structures of the set \(\hat{S} \) that can be simultaneously in a solution given the number of vehicles \(m \)
Structure-based Model (Paradiso et al. (2019))

- **S** set of all feasible structures
- **c_s** cost of structure \(s \in S \)
- \(\alpha_{is} \) structure \(s \in S \) serves \(i \in N \) (\(\alpha_{is} = 1 \)) or not (\(\alpha_{is} = 0 \))

Variables

\(x_s \in \{0, 1\} \) structure \(s \in S \) is selected (\(x_s = 1 \)) or not (\(x_s = 0 \))

\[
\min \sum_{s \in S} c_s x_s \quad \text{[Minimize travel costs]} \tag{6a}
\]

\[
\text{s.t. } \sum_{s \in S} \alpha_{is} x_s = 1 \quad i \in N \quad \text{[Serve each customer]} \tag{6b}
\]

\[
\sum_{s \in \hat{S}} x_s \leq \eta_m(\hat{S}) \quad \hat{S} \subseteq S \quad \text{[Structure feasibility constraints]} \tag{6c}
\]

\[
x_s \in \{0, 1\} \quad s \in S \tag{6d}
\]

where \(\eta_m(\hat{S}) \) is the maximum number of structures of the set \(\hat{S} \) that can be simultaneously in a solution given the number of vehicles \(m \)
Structure-based Model (Paradiso et al. (2019))
Pros and Cons

- Small integrality gaps
- Easy to embed additional side constraints related to trips
- Fewer variables than trip-based (and journey-based) model
Structure-based Model (Paradiso et al. (2019))

Pros and Cons

- Small integrality gaps
- Easy to embed additional side constraints related to trips
- Fewer variables than trip-based (and journey-based) model

- Exponential number of variables
- Column generation/branch(-and-cut)-and-price needed
- Constraints (6c) to add in a cutting plane fashion
Trip vs Journey vs Structure (-Based Models)

<table>
<thead>
<tr>
<th></th>
<th>Trip</th>
<th>Journey</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrality gap</td>
<td>✅</td>
<td>✅ (✅)</td>
<td></td>
</tr>
<tr>
<td>Number of variables</td>
<td>✅</td>
<td>✅ (✅)</td>
<td>✅ (✅)</td>
</tr>
<tr>
<td>Number of constraints</td>
<td>✅</td>
<td>✅ (✅)</td>
<td>✅ (✅)</td>
</tr>
<tr>
<td>Trip-related constraints</td>
<td>✅</td>
<td>✅ (✅)</td>
<td>✅ (✅)</td>
</tr>
<tr>
<td>Journey-related constraints</td>
<td>✅</td>
<td>✅ (✅)</td>
<td>✅ (✅)</td>
</tr>
<tr>
<td>Complexity of algorithms</td>
<td>✅</td>
<td>✅ (✅)</td>
<td>✅ (✅)</td>
</tr>
</tbody>
</table>
Sketch of an Exact Method based on Structure-based Model
Paradiso et al. (2019)

1. **Compute SP Bound**: solve LP relaxation of (7) without (7c) to compute dual sol. u^1 of cost LB_1

2. **Enumerate Structures**: enumerate structures (\tilde{S}) of red. cost $\leq UB - LB_1$ w.r.t. u^1, where UB is a guessed upper bound

3. **Compute SP plus Relaxed SFC**: solve LP relaxation of (7) with relaxed (7c) to compute dual sol. u^2 of cost LB_2

4. **Reduce set of structures**: remove from \tilde{S} structures of red. cost $> UB - LB_2$ w.r.t. u^2

5. **Branch-and-cut**: solve (7) by replacing S with \tilde{S}

6. **Optimality check**: if no feasible sol. of cost $\leq UB$ exists, increase UB and go to Step 2

Structure-based Model

\[
\begin{align*}
\text{min} & \quad \sum_{s \in S} c_s x_s \quad & (7a) \\
\text{s.t.} & \quad \sum_{s \in S} \alpha_{is} x_s = 1 \quad & i \in N \quad (7b) \\
& \quad \sum_{s \in \hat{S}} x_s \leq \eta_m(\hat{S}) \quad \hat{S} \subseteq S \quad & (7c) \\
& \quad x_s \in \{0, 1\} \quad & s \in S \quad (7d)
\end{align*}
\]
Sketch of an Exact Method based on Structure-based Model
Paradiso et al. (2019)

1. **Compute SP Bound**: solve LP relaxation of (7) without (7c) to compute dual sol. \(u^1 \) of cost \(LB_1 \)

2. **Enumerate Structures**: enumerate structures \((\hat{S})\) of red. cost \(\leq UB - LB_1 \) w.r.t. \(u^1 \), where UB is a guessed upper bound

3. Compute SP plus Relaxed SFC: solve LP relaxation of (7) with relaxed (7c) to compute dual sol. \(u^2 \) of cost \(LB_2 \)

4. **Reduce set of structures**: remove from \(\hat{S} \) structures of red. cost \(> UB - LB_2 \) w.r.t. \(u^2 \)

5. **Branch-and-cut**: solve (7) by replacing \(S \) with \(\hat{S} \)

6. **Optimality check**: if no feasible sol. of cost \(\leq UB \) exists, increase UB and go to Step 2

Structure-based Model

\[
\begin{align*}
\min_{s \in S} & \quad c_s x_s \\
\text{s.t.} & \quad \sum_{s \in S} \alpha_{is} x_s = 1 \quad i \in N \\
& \quad \sum_{s \in \hat{S}} x_s \leq \eta_m(\hat{S}) \quad \hat{S} \subseteq S \\
& \quad x_s \in \{0, 1\} \quad s \in S
\end{align*}
\]
Sketch of an Exact Method based on Structure-based Model

Paradiso et al. (2019)

1. **Compute SP Bound**: solve LP relaxation of (7) without (7c) to compute dual sol. \(u^1 \) of cost \(LB_1 \)

2. **Enumerate Structures**: enumerate structures (\(\tilde{S} \)) of red. cost \(\leq UB - LB_1 \) w.r.t. \(u^1 \), where UB is a guessed upper bound

3. **Compute SP plus Relaxed SFC**: solve LP relaxation of (7) with relaxed (7c) to compute dual sol. \(u^2 \) of cost \(LB_2 \)

4. **Reduce set of structures**: remove from \(\tilde{S} \) structures of red. cost \(> UB - LB_2 \) w.r.t. \(u^2 \)

5. **Branch-and-cut**: solve (7) by replacing \(S \) with \(\tilde{S} \)

6. **Optimality check**: if no feasible sol. of cost \(\leq UB \) exists, increase UB and go to Step 2

Structure-based Model

\[
\begin{align*}
\min & \quad \sum_{s \in S} c_s x_s \quad (7a) \\
\text{s.t.} & \quad \sum_{s \in S} \alpha_{is} x_s = 1 \quad i \in N \quad (7b) \\
& \quad \sum_{s \in \hat{S}} x_s \leq \eta_m(\hat{S}) \quad \hat{S} \subseteq S \quad (7c) \\
& \quad x_s \in \{0, 1\} \quad s \in S \quad (7d)
\end{align*}
\]
Sketch of an Exact Method based on Structure-based Model

Paradiso et al. (2019)

1. **Compute SP Bound:** solve LP relaxation of (7) without (7c) to compute dual sol. u^1 of cost LB_1
2. **Enumerate Structures:** enumerate structures (\tilde{S}) of red. cost $\leq UB - LB_1$ w.r.t. u^1, where UB is a guessed upper bound
3. **Compute SP plus Relaxed SFC:** solve LP relaxation of (7) with relaxed (7c) to compute dual sol. u^2 of cost LB_2
4. **Reduce set of structures:** remove from \tilde{S} structures of red. cost $> UB - LB_2$ w.r.t. u^2
5. **Branch-and-cut:** solve (7) by replacing S with \tilde{S}
6. **Optimality check:** if no feasible sol. of cost $\leq UB$ exists, increase UB and go to Step 2

Structure-based Model

\[
\begin{align*}
\text{min} & \quad \sum_{s \in S} c_s x_s \quad & (7a) \\
\text{s.t.} & \quad \sum_{s \in S} \alpha_{is} x_s = 1 \quad & i \in N \quad (7b) \\
& \quad \sum_{s \in \hat{S}} x_s \leq \eta_m(\hat{S}) \quad \hat{S} \subseteq S \quad (7c) \\
& \quad x_s \in \{0, 1\} \quad & s \in S \quad (7d)
\end{align*}
\]
Sketch of an Exact Method based on Structure-based Model
Paradiso et al. (2019)

1. **Compute SP Bound**: solve LP relaxation of (7) without (7c) to compute dual sol. u^1 of cost LB_1

2. **Enumerate Structures**: enumerate structures (\tilde{S}) of red. cost $\leq UB - LB_1$ w.r.t. u^1, where UB is a guessed upper bound

3. **Compute SP plus Relaxed SFC**: solve LP relaxation of (7) with relaxed (7c) to compute dual sol. u^2 of cost LB_2

4. **Reduce set of structures**: remove from \tilde{S} structures of red. cost $> UB - LB_2$ w.r.t. u^2

5. **Branch-and-cut**: solve (7) by replacing S with \tilde{S}

6. **Optimality check**: if no feasible sol. of cost $\leq UB$ exists, increase UB and go to Step 2
Sketch of an Exact Method based on Structure-based Model
Paradiso et al. (2019)

1. **Compute SP Bound**: solve LP relaxation of (7) without (7c) to compute dual sol. u^1 of cost LB_1

2. **Enumerate Structures**: enumerate structures (\tilde{S}) of red. cost $\leq UB - LB_1$ w.r.t. u^1, where UB is a guessed upper bound

3. **Compute SP plus Relaxed SFC**: solve LP relaxation of (7) with relaxed (7c) to compute dual sol. u^2 of cost LB_2

4. **Reduce set of structures**: remove from \tilde{S} structures of red. cost $> UB - LB_2$ w.r.t. u^2

5. **Branch-and-cut**: solve (7) by replacing S with \tilde{S}

6. **Optimality check**: if no feasible sol. of cost $\leq UB$ exists, increase UB and go to Step 2

Structure-based Model

\[
\min \sum_{s \in S} c_s x_s \tag{7a}
\]
\[
\text{s.t. } \sum_{s \in S} \alpha_{is} x_s = 1 \quad i \in N \tag{7b}
\]
\[
\sum_{s \in \hat{S}} x_s \leq \eta_m(\hat{S}) \quad \hat{S} \subseteq S \tag{7c}
\]
\[
x_s \in \{0, 1\} \quad s \in S \tag{7d}
\]
Table of Contents

Introduction

Multi-Trip VRP

Mathematical Models for the MTVRP

Variants of the MTVRP

Mathematical Models for Variants of the MTVRP

Computational Results

Conclusions and Open Questions
Computational Results

MTVRP with Time Windows, Loading Times

Group	$	N	$	Inst	Trip-based	Journey-based	Structure-based				
			Intel Core i7 2670QM	Intel Core i7 2670QM	Virtual CPU 2.59GHz						
			%Gap	Opt	T_{tot}	%Gap	Opt	T_{tot}	%Gap	Opt	T_{tot}
C	25	8	2.24	8	108	2.12	7	805	0.73	8	19
R	25	11	2.41	11	646	1.19	7	6,925	0.78	11	115
RC	25	8	5.41	6	6,671	2.86	5	2,963	1.91	8	880
C	40	8				1.51	7	2,170			
R	40	11	0.41	10	418				0.83	8	872
RC	40	8									
C	50	8				1.41	3	3,577			
R	50	11							0.59	7	312
RC	50	8									
Computational Results

MTVRP with Time Windows, Loading Times

| Group | \(|N|\) | Inst | %Gap | Opt | \(T_{\text{tot}}\) | %Gap | Opt | \(T_{\text{tot}}\) | %Gap | Opt | \(T_{\text{tot}}\) |
|-------|-------|------|------|-----|-------------------|------|-----|-------------------|------|-----|-------------------|
| C | 25 | 8 | 2.24 | 8 | 108 | 2.12 | 7 | 805 | 0.73 | 8 | 19 |
| R | 25 | 11 | 2.41 | 11 | 646 | 1.19 | 7 | 6,925 | 0.78 | 11 | 115 |
| RC | 25 | 8 | 5.41 | 6 | 6,671 | 2.86 | 5 | 2,963 | 1.91 | 8 | 880 |
| | 40 | 8 | | | | | | | | | |
| | | | | | | | | | | | |
| | 50 | 8 | | | | | | | | | |

Trip-based

Hernandez et al. (2016)

Intel Core i7 2670QM

Journey-based

Hernandez et al. (2016)

Intel Core i7 2670QM

Structure-based

Paradiso et al. (2019)

Virtual CPU 2.59GHz

R. Roberti

Exact Framework for MT-VRP with Time Windows
Computational Results

MTVRP with Time Windows, Loading Times

<table>
<thead>
<tr>
<th>Group</th>
<th></th>
<th>Inst</th>
<th>%Gap</th>
<th>Opt</th>
<th>T$_{tot}$</th>
<th>%Gap</th>
<th>Opt</th>
<th>T$_{tot}$</th>
<th>%Gap</th>
<th>Opt</th>
<th>T$_{tot}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trip-based</td>
<td></td>
<td>Journey-based</td>
<td></td>
<td>Structure-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intel Core i7 2670QM</td>
<td></td>
<td>Intel Core i7 2670QM</td>
<td></td>
<td>Virtual CPU 2.59GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 25 8</td>
<td></td>
<td>2.24</td>
<td>8</td>
<td>108</td>
<td>2.12</td>
<td>7</td>
<td>805</td>
<td>0.73</td>
<td>8</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>R 25 11</td>
<td></td>
<td>2.41</td>
<td>11</td>
<td>646</td>
<td>1.19</td>
<td>7</td>
<td>6,925</td>
<td>0.78</td>
<td>11</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>RC 25 8</td>
<td></td>
<td>5.41</td>
<td>6</td>
<td>6,671</td>
<td>2.86</td>
<td>5</td>
<td>2,963</td>
<td>1.91</td>
<td>8</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>C 40 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.51</td>
<td>7</td>
<td>2,170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 40 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.41</td>
<td>10</td>
<td>418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC 40 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.83</td>
<td>8</td>
<td>872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 50 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>3</td>
<td>3,577</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 50 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC 50 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.59</td>
<td>7</td>
<td>312</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computational Results

MTVRP with Time Windows, Loading Times

| Group | $|N|$ | Inst | %Gap | Opt | T_{tot} | %Gap | Opt | T_{tot} | %Gap | Opt | T_{tot} |
|-------|-----|------|------|-----|----------|------|-----|----------|------|-----|----------|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| C | 25 | 8 | 2.24 | 8 | 108 | 2.12 | 7 | 805 | 0.73 | 8 | 19 |
| R | 25 | 11 | 2.41 | 11 | 646 | 1.19 | 7 | 6,925 | 0.78 | 11 | 115 |
| RC | 25 | 8 | 5.41 | 6 | 6,671 | 2.86 | 5 | 2,963 | 1.91 | 8 | 880 |
| | | | | | | | | | | | |
| C | 40 | 8 | | | | | | | 1.51 | 7 | 2,170 |
| R | 40 | 11 | | | | | | | 0.41 | 10 | 418 |
| RC | 40 | 8 | | | | | | | 0.83 | 8 | 872 |
| | | | | | | | | | | | |
| C | 50 | 8 | | | | | | | 1.41 | 3 | 3,577 |
| R | 50 | 11 | | | | | | | - | 0 | - |
| RC | 50 | 8 | | | | | | | 0.59 | 7 | 312 |
Computational Results

MTVRP with Time Windows, Loading Times

<table>
<thead>
<tr>
<th>Group</th>
<th></th>
<th>N</th>
<th></th>
<th>Inst</th>
<th>%Gap</th>
<th>Opt</th>
<th>T<sub>tot</sub></th>
<th>%Gap</th>
<th>Opt</th>
<th>T<sub>tot</sub></th>
<th>%Gap</th>
<th>Opt</th>
<th>T<sub>tot</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trip-based</td>
<td></td>
<td>Journey-based</td>
<td></td>
<td>Structure-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intel Core i7 2670QM</td>
<td></td>
<td>Intel Core i7 2670QM</td>
<td></td>
<td>Virtual CPU 2.59GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>8</td>
<td></td>
<td>2.24</td>
<td>8</td>
<td>108</td>
<td>2.12</td>
<td>7</td>
<td>805</td>
<td>0.73</td>
<td>8</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>25</td>
<td>11</td>
<td></td>
<td>2.41</td>
<td>11</td>
<td>646</td>
<td>1.19</td>
<td>7</td>
<td>6,925</td>
<td>0.78</td>
<td>11</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>25</td>
<td>8</td>
<td></td>
<td>5.41</td>
<td>6</td>
<td>6,671</td>
<td>2.86</td>
<td>5</td>
<td>2,963</td>
<td>1.91</td>
<td>8</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>8</td>
<td></td>
<td>1.51</td>
<td>7</td>
<td>2,170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>40</td>
<td>11</td>
<td></td>
<td>0.41</td>
<td>10</td>
<td>418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>40</td>
<td>8</td>
<td></td>
<td>0.83</td>
<td>8</td>
<td>872</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>8</td>
<td></td>
<td>1.41</td>
<td>3</td>
<td>3,577</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>50</td>
<td>11</td>
<td></td>
<td>-</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>50</td>
<td>8</td>
<td></td>
<td>0.59</td>
<td>7</td>
<td>312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computational Results

MTVRP with Time Windows, Loading Times, Limited Trip Duration

| Group | $|N|$ | Inst | %Gap | Opt | T_{tot} | %Gap | Opt | T_{tot} |
|-------|-----|------|------|-----|----------|------|-----|----------|
| | | | Trip-based | Structure-based |
| | | | Hernandez et al. (2014) | Paradiso et al. (2019) |
| | | | Intel Core 2 Duo 2.10GHz | Virtual CPU 2.59GHz |
| C | 25 | 16 | 1.91 | 16 | 420 | 0.38 | 16 | 14 |
| R | 25 | 22 | 0.76 | 22 | 33 | 0.25 | 22 | 2 |
| RC | 25 | 16 | 2.35 | 11 | 18 | 0.49 | 16 | 2 |
| C | 40 | 16 | 1.25 | 13 | 511 | 0.48 | 16 | 151 |
| R | 40 | 19 | 1.43 | 12 | 1,738 | 1.06 | 19 | 220 |
| RC | 40 | 2 | - | 0 | - | 0.67 | 2 | 11 |
| C | 50 | 16 | - | 0 | - | 0.22 | 16 | 62 |
| R | 50 | 22 | - | 0 | - | 0.22 | 22 | 20 |
| RC | 50 | 16 | - | 0 | - | 0.28 | 16 | 11 |
Computational Results

MTVRP with Time Windows, Loading Times, Limited Trip Duration

| Group | \(|N|\) | Inst | %Gap | Opt | \(T_{\text{tot}}\) | %Gap | Opt | \(T_{\text{tot}}\) |
|-------|--------|------|-------|-----|----------------|-------|-----|----------------|
| | | | | | | | | |
| Trip-based | | | | | | | | |
| Hernández et al. (2014) | | | | | | | | |
| Intel Core 2 Duo 2.10GHz | | | | | | | | |
| Structure-based | | | | | | | | |
| Paradiso et al. (2019) | | | | | | | | |
| Virtual CPU 2.59GHz | | | | | | | | |
| C | 25 | 16 | 1.91 | 16 | 420 | 0.38 | 16 | 14 |
| R | 25 | 22 | 0.76 | 22 | 33 | 0.25 | 22 | 2 |
| RC | 25 | 16 | 2.35 | 11 | 18 | 0.49 | 16 | 2 |
| C | 40 | 16 | 1.25 | 13 | 511 | 0.48 | 16 | 151 |
| R | 40 | 19 | 1.43 | 12 | 1,738 | 1.06 | 19 | 220 |
| RC | 40 | 2 | - | 0 | - | 0.67 | 2 | 11 |
| C | 50 | 16 | 0.22 | 16 | 62 | 0.22 | 16 | 20 |
| R | 50 | 22 | 0.22 | 22 | 20 | 0.22 | 22 | 20 |
| RC | 50 | 16 | 0.28 | 16 | 11 | 0.28 | 16 | 11 |
Computational Results

MTVRP with Time Windows, Loading Times, Limited Trip Duration

<table>
<thead>
<tr>
<th>Group</th>
<th></th>
<th>Inst</th>
<th>%Gap</th>
<th>Opt</th>
<th>T<sub>tot</sub></th>
<th>%Gap</th>
<th>Opt</th>
<th>T<sub>tot</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trip-based</td>
<td>Structure-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hernandez et al. (2014)</td>
<td>Paradiso et al. (2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intel Core 2 Duo 2.10GHz</td>
<td>Virtual CPU 2.59GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>16</td>
<td>1.91</td>
<td>16</td>
<td>420</td>
<td>0.38</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>R</td>
<td>25</td>
<td>22</td>
<td>0.76</td>
<td>22</td>
<td>33</td>
<td>0.25</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>RC</td>
<td>25</td>
<td>16</td>
<td>2.35</td>
<td>11</td>
<td>18</td>
<td>0.49</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>16</td>
<td>1.25</td>
<td>13</td>
<td>511</td>
<td>0.48</td>
<td>16</td>
<td>151</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>19</td>
<td>1.43</td>
<td>12</td>
<td>1,738</td>
<td>1.06</td>
<td>19</td>
<td>220</td>
</tr>
<tr>
<td>R</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>-</td>
<td>0.67</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>RC</td>
<td>50</td>
<td>16</td>
<td>0.22</td>
<td>16</td>
<td>62</td>
<td>0.22</td>
<td>16</td>
<td>62</td>
</tr>
</tbody>
</table>

R.Roberti

Exact Framework for MT-VRP with Time Windows
Computational Results

MTVRP with Time Windows, Loading Times, Limited Trip Duration

| Group | $|N|$ | Inst | %Gap | Opt | T_{tot} | %Gap | Opt | T_{tot} |
|-------|-----|------|------|-----|---------|------|-----|---------|
| Trip-based | | | | | | | | |
| Hernandez et al. (2014) | | | Intel Core 2 Duo 2.10GHz | | | | | |
| Structure-based | | | Paradiso et al. (2019) | | | | | Virtual CPU 2.59GHz |
| | | | | | | | | |
| C | 25 | 16 | 1.91 | 16 | 420 | 0.38 | 16 | 14 |
| R | 25 | 22 | 0.76 | 22 | 33 | 0.25 | 22 | 2 |
| RC | 25 | 16 | 2.35 | 11 | 18 | 0.49 | 16 | 2 |
| C | 40 | 16 | 1.25 | 13 | 511 | 0.48 | 16 | 151 |
| R | 40 | 19 | 1.43 | 12 | 1,738 | 1.06 | 19 | 220 |
| RC | 40 | 2 | - | 0 | - | 0.67 | 2 | 11 |
| C | 50 | 16 | - | 0 | - | 0.22 | 16 | 62 |
| R | 50 | 22 | - | 0 | - | 0.22 | 22 | 20 |
| RC | 50 | 16 | - | 0 | - | 0.28 | 16 | 11 |
Computational Results

MTVRP with Time Windows, Loading Times, Limited Trip Duration

<table>
<thead>
<tr>
<th>Group</th>
<th></th>
<th>Inst</th>
<th>%Gap</th>
<th>Opt</th>
<th>T_{tot}</th>
<th>%Gap</th>
<th>Opt</th>
<th>T_{tot}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>16</td>
<td>1.91</td>
<td>16</td>
<td>420</td>
<td>0.38</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>R</td>
<td>25</td>
<td>22</td>
<td>0.76</td>
<td>22</td>
<td>33</td>
<td>0.25</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>RC</td>
<td>25</td>
<td>16</td>
<td>2.35</td>
<td>11</td>
<td>18</td>
<td>0.49</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>16</td>
<td>1.25</td>
<td>13</td>
<td>511</td>
<td>0.48</td>
<td>16</td>
<td>151</td>
</tr>
<tr>
<td>R</td>
<td>40</td>
<td>19</td>
<td>1.43</td>
<td>12</td>
<td>1,738</td>
<td>1.06</td>
<td>19</td>
<td>220</td>
</tr>
<tr>
<td>RC</td>
<td>40</td>
<td>2</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0.67</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>16</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0.22</td>
<td>16</td>
<td>62</td>
</tr>
<tr>
<td>R</td>
<td>50</td>
<td>22</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0.22</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>RC</td>
<td>50</td>
<td>16</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0.28</td>
<td>16</td>
<td>11</td>
</tr>
</tbody>
</table>
Computational Results

Drone Routing Problem

| $|N|$ | Inst | %Gap | Opt | T_{tot} | %Gap | Opt | T_{tot} |
|---|---|---|---|---|---|---|---|
| 10 | 10 | 4.49 | 10 | 0 | 0.40 | 10 | 0 |
| 15 | 10 | 5.47 | 4 | 9 | 1.28 | 10 | 1 |
| 20 | 10 | 3.69 | 5 | 18 | 0.86 | 10 | 2 |
| 25 | 37 | 2.68 | 22 | 59 | 0.62 | 37 | 1 |
| 30 | 10 | 0 | 0 | 0 | 0.52 | 10 | 4 |
| 35 | 10 | 0 | 0 | 0 | 0.44 | 10 | 11 |
| 40 | 37 | 3.83 | 4 | 4,168 | 0.20 | 37 | 5 |
| 45 | 10 | 0 | 0 | 0 | 0.36 | 10 | 13 |
| 50 | 5 | 0 | 0 | 0 | 1.72 | 5 | 275 |

Cheng et al. (2018)
Intel X5650 2.67GHz

Paradiso et al. (2019)
Virtual CPU 2.59GHz
Computational Results

Drone Routing Problem

| $|N|$ | Inst | %Gap | Opt | T_{tot} | %Gap | Opt | T_{tot} |
|-----|------|------|-----|----------|------|-----|----------|
| 10 | 10 | 4.49 | 10 | 0 | 0.40 | 10 | 0 |
| 15 | 10 | 5.47 | 4 | 9 | 1.28 | 10 | 1 |
| 20 | 10 | 3.69 | 5 | 18 | 0.86 | 10 | 2 |
| 25 | 37 | 2.68 | 22 | 59 | 0.62 | 37 | 1 |
| 30 | 10 | 0 | 0 | 0 | 0.52 | 10 | 4 |
| 35 | 10 | 0 | 0 | 0 | 0.44 | 10 | 11 |
| 40 | 37 | 3.83 | 4 | 4,168 | 0.20 | 37 | 5 |
| 45 | 10 | 0 | 0 | 0 | 0.36 | 10 | 13 |
| 50 | 5 | 0 | 0 | 1.72 | 0 | 5 | 275 |

Arc-based
- Cheng et al. (2018)
- Intel X5650 2.67GHz

Structure-based
- Paradiso et al. (2019)
- Virtual CPU 2.59GHz
Computational Results

Drone Routing Problem

| |N| |Inst| %Gap| Opt| T_{tot} | %Gap| Opt| T_{tot} |
|---|---|---|---|---|---|---|---|---|
|10|10|4.49|10|0|0.40|10|0|
|15|10|5.47|4|9|1.28|10|1|
|20|10|3.69|5|18|0.86|10|2|
|25|37|2.68|22|59|0.62|37|1|
|30|10|0|0|0.52|10|4|
|35|10|0|0|0.44|10|11|
|40|37|3.83|4|4,168|0.20|37|5|
|45|10|0|0|0.36|10|13|
|50|5|0|1.72|5|275|
Computational Results

Drone Routing Problem

| $|N|$ | Inst | %Gap | Opt | T_{tot} | %Gap | Opt | T_{tot} |
|----|------|------|-----|----------|------|-----|---------|
| 10 | 10 | 4.49 | 10 | 0 | 0.40 | 10 | 0 |
| 15 | 10 | 5.47 | 4 | 9 | 1.28 | 10 | 1 |
| 20 | 10 | 3.69 | 5 | 18 | 0.86 | 10 | 2 |
| 25 | 37 | 2.68 | 22 | 59 | 0.62 | 37 | 1 |
| 30 | 10 | 0 | 0 | | 0.52 | 10 | 4 |
| 35 | 10 | 0 | 0 | | 0.44 | 10 | 11 |
| 40 | 37 | 3.83 | 4 | 4,168 | 0.20 | 37 | 5 |
| 45 | 10 | 0 | 0 | | 0.36 | 10 | 13 |
| 50 | 5 | 0 | 0 | | 1.72 | 5 | 275 |
Table of Contents

- Introduction
- Multi-Trip VRP
- Mathematical Models for the MTVRP
- Variants of the MTVRP
- Mathematical Models for Variants of the MTVRP
- Computational Results
- Conclusions and Open Questions
Conclusions

- Increasing **interest in MTVRPs**, mainly motivated by city logistics and last-mile delivery
 - **Trip-based** and **journey-based** models are effective to solve the MTVRP
 - **To handle side constraints, structure-based** models seem the better choice, even better than set-partitioning models
Conclusions

• Increasing interest in MTVRPs, mainly motivated by city logistics and last-mile delivery
• Trip-based and journey-based models are effective to solve the MTVRP
• To handle side constraints, structure-based models seem the better choice, even better than set-partitioning models
Conclusions

- Increasing **interest in MTVRPs**, mainly motivated by city logistics and last-mile delivery
- **Trip-based** and **journey-based** models are effective to solve the **MTVRP**
- To handle **side constraints**, **structure-based** models seem the better choice, even better than set-partitioning models
Open Questions

- Research on MTVRPs is scarce and 50-customer instances are already challenging, how can large instances be solved?
- Are there better models (maybe models not based on arcs, structures, trips, or journeys)?
- Can we use models not based on arcs or routes to solve other VRPs?

Open Questions

- Research on MTVRPs is scarce and 50-customer instances are already challenging, how can large instances be solved?
- Are there better models (maybe models not based on arcs, structures, trips, or journeys)?
- Can we use models not based on arcs or routes to solve other VRPs?

Open Questions

- Research on MTVRPs is scarce and 50-customer instances are already challenging, how can large instances be solved?
- Are there better models (maybe models not based on arcs, structures, trips, or journeys)?
- Can we use models not based on arcs or routes to solve other VRPs?

Open Questions

- Research on MTVRPs is scarce and 50-customer instances are already challenging, how can large instances be solved?
- Are there better models (maybe models not based on arcs, structures, trips, or journeys)?
- Can we use models not based on arcs or routes to solve other VRPs?

References

