

Cost-sensitive classification and regression (+ anything I can talk about in about 45')

Emilio Carrizosa

Instituto de Matemáticas de la Universidad de Sevilla Paris, March 27 2019

www.grupo.us.es/gioptim

- Sandra Benítez-Peña
- Rafael Blanquero
- M. Asunción Jiménez-Cordero
- Alba V Olivares-Nadal
- Pepa Ramírez-Cobo
- Remedios Sillero-Denamiel

www.riseneeds.eu @ needs_project

Supervised classification

• Given: set I of individuals, each $i \in I$ with associated

• Given: set I of individuals, each $i \in I$ with associated

- A vector $\mathbf{x}_i \in \mathcal{X}$, assumed here $\mathcal{X} \subset \mathbb{R}^m$
- A label y_i , assumed here to be in $\{-1, +1\}$

• Seen as a sample from (\mathbf{X}, Y) , with unknown distribution

• Given: set I of individuals, each $i \in I$ with associated

- A vector $\mathbf{x}_i \in \mathcal{X}$, assumed here $\mathcal{X} \subset \mathbb{R}^m$
- A label y_i , assumed here to be in $\{-1, +1\}$
- Seen as a sample from (\mathbf{X}, Y) , with unknown distribution
- Goal: to infer from I a classifier $\varphi : \mathcal{X} \longrightarrow \{-1, 1\}$ so that we can classify any object just by knowing **x**

• Given: set I of individuals, each $i \in I$ with associated

- A vector $\mathbf{x}_i \in \mathcal{X}$, assumed here $\mathcal{X} \subset \mathbb{R}^m$
- A label y_i , assumed here to be in $\{-1, +1\}$
- Seen as a sample from (\mathbf{X}, Y) , with unknown distribution
- Goal: to infer from I a classifier $\varphi : \mathcal{X} \longrightarrow \{-1, 1\}$ so that we can classify any object just by knowing **x**
- Linear classifier $\varphi : \mathbf{x} = (x_1, \dots, x_m) \longmapsto \{-1, 1\}:$

• score function:

$$\mathbf{x} = (x_1, \dots, x_m) \longmapsto \omega_1 x_1 + \dots + \omega_n x_m + \beta$$

•
$$\varphi(x) = \begin{cases} 1, & \text{if } \omega_1 x_1 + \ldots + \omega_n x_m + \beta > 0 \\ -1, & \text{else} \end{cases}$$

• Given: set I of individuals, each $i \in I$ with associated

- A vector $\mathbf{x}_i \in \mathcal{X}$, assumed here $\mathcal{X} \subset \mathbb{R}^m$
- A label y_i , assumed here to be in $\{-1, +1\}$
- Seen as a sample from (\mathbf{X}, Y) , with unknown distribution
- Goal: to infer from I a classifier $\varphi : \mathcal{X} \longrightarrow \{-1, 1\}$ so that we can classify any object just by knowing **x**
- Linear classifier $\varphi : \mathbf{x} = (x_1, \dots, x_m) \longmapsto \{-1, 1\}:$

• score function:

$$\mathbf{x} = (x_1, \dots, x_m) \longmapsto \omega_1 x_1 + \dots + \omega_n x_m + \beta$$

•
$$\varphi(x) = \begin{cases} 1, & \text{if } \omega_1 x_1 + \ldots + \omega_n x_m + \beta > 0 \\ -1, & \text{else} \end{cases}$$

• Problem: how to infer from I the coefficients $\omega = (\omega_1, \ldots, \omega_n), \beta$?

• Roughly speaking, SVM finds the hyperplane $\omega_1 x_1 + \ldots + \omega_m x_m + \beta = 0$ separating most the sets $\{\mathbf{x}_i : i \in I, y_i = 1\}$ and $\{\mathbf{x}_i : i \in I, y_i = -1\}$

Convex quadratic optimization problem with linear constraints:

Duarte Silva, "Optimization approaches to supervised classification", *EJOR*, 2017.

Convex quadratic optimization problem with linear constraints:

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{l} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I \end{array}$$

■ C., and Romero Morales, "Supervised classification and mathematical optimization", Computers & Operations Research, 2013.

Convex quadratic optimization problem with linear constraints:

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{l} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I \end{array}$$

$$\begin{array}{ll} \max_{\lambda} & \sum_{i \in I} \lambda_i - \frac{1}{2} \sum_{ij} \lambda_i y_i \lambda_j y_j \mathbf{x}_i^\top \mathbf{x}_j \\ \text{s.t.} & \sum_{i \in I} \lambda_i y_i = 0 \\ & 0 \leq \lambda_i \leq \frac{C}{2} \end{array} \qquad i \in I \end{array}$$

C., and Romero Morales, "Supervised classification and mathematical optimization", *Computers & Operations Research*, 2013.

Duarte Silva, "Optimization approaches to supervised classification", *EJOR*, 2017.

Convex quadratic optimization problem with linear constraints:

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} & \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I$$

$$\begin{array}{ll} \max_{\lambda} & \sum_{i \in I} \lambda_i - \frac{1}{2} \sum_{ij} \lambda_i y_i \lambda_j y_j K(\mathbf{x}_i, \mathbf{x}_j) \\ \text{s.t.} & \sum_{i \in I} \lambda_i y_i = 0 \\ & 0 \leq \lambda_i \leq \frac{C}{2} \end{array} \qquad i \in I \end{array}$$

C., and Romero Morales, "Supervised classification and mathematical optimization", *Computers & Operations Research*, 2013.

Duarte Silva, "Optimization approaches to supervised classification", *EJOR*, 2017.

Kernels

 $K(\mathbf{x}_i,\mathbf{x}_j)=\ldots$

- $\mathbf{x}_i^\top \mathbf{x}_j$ (linear kernel)
- $(1 + \mathbf{x}_i^\top \mathbf{x}_j)^d$ (polynomial kernel)
- $e^{-\gamma \|\mathbf{x}_i \mathbf{x}_j\|^2}$ (gaussian kernel)
- $\sum_k \theta_k e^{-\gamma_k \|\mathbf{x}_i \mathbf{x}_j\|^2}$
- \bullet ...many more (not only for ${\bf x}$ in a dot product space)
- Cristianini and Shawe-Taylor. An introduction to support vector machines and other kernel-based learning methods, 2000.
- Hofmann, Schölkopf and Smola, "Kernel methods in Machine Learning", *Annals of Statistics*, 2008.

Parameters tuning

$C,\gamma:$ k-fold crossvalidation

- I: split in k blocks of similar size, I_1, \ldots, I_k
- for each pair C, γ in a grid (e.g. $2^{-12} \dots, 2^{12}$), estimate $acc(C, \gamma)$:
 - for each $i = 1, \ldots, k$
 - solve $(P_{I \setminus I_i, C, \gamma})$, yielding λ^i, β (via KKT)
 - calculate $acc(C,\gamma,I_i),$ fraction of correctly classified in I_i if classifier with λ^i,β were used

•
$$acc(C, \gamma) = \frac{1}{k} \sum_{i=1}^{k} acc(C, \gamma, I_i)$$

Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection", *IJCAI*, 1995.

Bootstrap

- Take B (e.g. B = 100, B = 1000)
- **2** Foe each $b \in \{1, \ldots, B\}$:
 - Generate a sample with replacement of same size than training sample
 - **2** Build the model on the bootstrap sample
 - **③** Estimate performance π_b on out-of-bag sample
- Average π_b

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{l} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I \end{array}$$

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{c} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \end{array}$$

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{l} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \end{array}$$

- $\{(\mathbf{x}_i, y_i) : i \in I\}$: seen as a random sample of (\mathbf{X}, Y)
- Accuracy: $acc = P(Y(\omega^{\top}\mathbf{X} + \beta) > 0)$

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{c} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \end{array}$$

- $\{(\mathbf{x}_i, y_i) : i \in I\}$: seen as a random sample of (\mathbf{X}, Y)
- Accuracy: $acc = P(Y(\omega^{\top}\mathbf{X} + \beta) > 0)$
- Distribution of (\mathbf{X}, Y) : Unknown

(Asymmetric) costs

- Benítez-Peña, Blanquero, C., Ramírez-Cobo, "On Support Vector Machines under a multiple-cost scenario". Advances in Data Analysis and Classification, 2017.
- C., Martín-Barragán, Romero Morales. "Multi-group support vector machines with measurement costs: A biobjective approach". Discrete Applied Mathematics, 2008.
 - He, Ma. Imbalanced learning: foundations, algorithms, and applications. Wiley, 2013.
- Maldonado, Pérez, Bravo. "Cost-based feature selection for support vector machines: An application in credit scoring". EJOR, 2017.
- Prati, Batista, Duarte Silva. "Class imbalance revisited: a new experimental setup to assess the performance of treatment methods". Knowledge and Information Systems. 2015.
- Turney. "Types of cost in inductive concept learning". 2002.

Performance measures

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{c} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \end{array}$$

Performance measures $\pi(\omega, \beta)$:

• Accuracy:
$$acc = P(Y(\omega^{\top}\mathbf{X} + \beta) > 0)$$

Performance measures

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{l} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \end{array}$$

Performance measures $\pi(\omega, \beta)$:

- Accuracy: $acc = P(Y(\omega^{\top}\mathbf{X} + \beta) > 0)$
- Sensitivity: $TPR = P(\omega^{\top}\mathbf{X} + \beta > 0 | Y = 1)$
- Specificity: $TNR = P(\omega^{\top}\mathbf{X} + \beta < 0|Y = -1)$
- Youden's index:

• . . .

 $J = TPR + TNR - 1 = P(\boldsymbol{\omega}^\top \mathbf{X} + \boldsymbol{\beta} > 0 | \boldsymbol{Y} = 1) + P(\boldsymbol{\omega}^\top \mathbf{X} + \boldsymbol{\beta} < 0 | \boldsymbol{Y} = -1) - 1$

- Positive Predictive Value: $PPV = P(Y = 1 | \omega^{\top} \mathbf{X} + \beta > 0)$
- Negative Predictive Value: $NPV = P(Y = -1|\omega^{\top}\mathbf{X} + \beta < 0)$

- Performance measures $\pi_{\ell}(\omega,\beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$

- Performance measures $\pi_{\ell}(\omega,\beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$
- J : anchor sample $\{(\mathbf{x}_j, y_j) : j \in J\}$ ($J \cap I = \emptyset$)

- Performance measures $\pi_{\ell}(\omega,\beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$
- J: anchor sample $\{(\mathbf{x}_j, y_j) : j \in J\} (J \cap I = \emptyset)$
- Estimates of performance measures: $\widehat{\pi_\ell}(\omega,\beta;J), \ell \in L$
- Performance measures $\pi_{\ell}(\omega, \beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$
- J: anchor sample $\{(\mathbf{x}_j, y_j): j \in J\} (J \cap I = \emptyset)$
- Estimates of performance measures: $\widehat{\pi_\ell}(\omega,\beta;J), \ell \in L$
- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$

- Performance measures $\pi_{\ell}(\omega, \beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$
- J: anchor sample $\{(\mathbf{x}_j, y_j): j \in J\} (J \cap I = \emptyset)$
- Estimates of performance measures: $\widehat{\pi_\ell}(\omega,\beta;J), \ell \in L$
- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega, \beta; J) \ge \gamma_{\ell}^*, \, \ell \in L$

- Performance measures $\pi_{\ell}(\omega, \beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$
- J : anchor sample $\{(\mathbf{x}_j, y_j) : j \in J\}$ ($J \cap I = \emptyset$)
- Estimates of performance measures: $\widehat{\pi_\ell}(\omega,\beta;J), \ell \in L$
- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega,\beta;J) \geq \gamma_{\ell}^*, \ \ell \in L$

Standard approach

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I$$

- Performance measures $\pi_{\ell}(\omega, \beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$
- J : anchor sample $\{(\mathbf{x}_j, y_j) : j \in J\}$ ($J \cap I = \emptyset$)
- Estimates of performance measures: $\widehat{\pi_\ell}(\omega,\beta;J), \ell \in L$
- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega, \beta; J) \ge \gamma_{\ell}^*, \, \ell \in L$

Constrained approach

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{l} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I \\ \widehat{\pi_{\ell}}(\omega,\beta;J) \ge \gamma_{\ell}^* \qquad \qquad \ell \in L \end{array}$$

Adding constraints to an SVM model

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} \|\boldsymbol{\omega}\|^2 + C \sum_{i \in I} \xi_i \\ \text{s.t.} \quad y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \geq 1 - \xi_i \quad i \in I \\ \xi_i \geq 0 \qquad \qquad i \in I \\ \left(\boldsymbol{\omega},\boldsymbol{\beta}\right) \in \Omega \end{aligned}$$

 Ω : some (polyhedral) regions forced to be in one side of the separating hyperplane

Adding constraints to an SVM model

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} \|\boldsymbol{\omega}\|^2 + C \sum_{i \in I} \xi_i \\ \text{s.t.} \quad y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \geq 1 - \xi_i \quad i \in I \\ \xi_i \geq 0 \qquad i \in I \\ \left(\boldsymbol{\omega},\boldsymbol{\beta}\right) \in \Omega \end{aligned}$$

 Ω : some (polyhedral) regions forced to be in one side of the separating hyperplane

- C., and Plastria, "Optimal expected-distance separating halfspace", *Maths* of OR, 2008.
- Fung, , Mangasarian, and Shavlik, "Knowledge-based support vector machine classifiers". In *Advances in NIPS*, 2002
- Lauer and Bloch, "Incorporating prior knowledge in support vector machines for classification: A review", *Neurocomputing*, 2008.
- Mangasarian, "Knowledge-based linear programming", SIAM Journal on Optimization, 2005.
- Mangasarian and Wild, "Nonlinear knowledge-based classification", *IEEE Transactions on Neural Networks*, 2008.

- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega, \beta; J) \ge \gamma_{\ell}^*, \, \ell \in L$

- Desired: $\pi_{\ell}(\omega, \beta) \geq \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi}_{\ell}(\omega,\beta;J) \geq \gamma_{\ell}^*, \ \ell \in L$
- γ_{ℓ}^* : so that H_0 cannot be rejected in the test hypothesis

$$\begin{cases} H_0: & \pi_\ell(\omega, \beta) \ge \gamma_\ell \\ H_1: & \pi_\ell(\omega, \beta) < \gamma_\ell \end{cases}$$

- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega, \beta; J) \ge \gamma_{\ell}^*, \, \ell \in L$
- γ_{ℓ}^* : so that H_0 cannot be rejected in the test hypothesis

$$\begin{bmatrix} H_0 : & \pi_\ell(\omega, \beta) \ge \gamma_\ell \\ H_1 : & \pi_\ell(\omega, \beta) < \gamma_\ell \end{bmatrix}$$

Building γ_{ℓ}^*

- Hoeffding's inequality: for Z_1, \ldots, Z_n *i.i.d.*, $Be(p), P(\overline{Z} p \ge c) \le e^{-2nc^2}$.
- $100(1-\alpha)\%$ CI for p:

$$\left(\bar{Z} - \sqrt{\frac{\log \alpha}{-2n}}, 1\right)$$

• Imposing $p_0 \in CI$ means

$$\bar{Z} \ge p_0 + \sqrt{\frac{\log \alpha}{-2n}}$$

- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega, \beta; J) \ge \gamma_{\ell}^*, \, \ell \in L$
- γ_{ℓ}^* : so that H_0 cannot be rejected in the test hypothesis

$$\begin{bmatrix} H_0 : & \pi_\ell(\omega, \beta) \ge \gamma_\ell \\ H_1 : & \pi_\ell(\omega, \beta) < \gamma_\ell \end{bmatrix}$$

Building γ_{ℓ}^*

- Hoeffding's inequality: for Z_1, \ldots, Z_n *i.i.d.*, $Be(p), P(\overline{Z} p \ge c) \le e^{-2nc^2}$.
- $100(1-\alpha)\%$ CI for p:

$$\left(\bar{Z} - \sqrt{\frac{\log \alpha}{-2n}}, 1\right)$$

• Imposing $p_0 \in CI$ means

$$\bar{Z} \ge p_0 + \sqrt{\frac{\log \alpha}{-2n}}$$

•
$$\gamma_{\ell}^* = \gamma_{\ell} + \sqrt{\frac{\log \alpha}{-2|J|}}$$

Feasibility?

Always feasible:

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \frac{\|\omega\|^2 + C \sum_{i \in I} \xi_i}{y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i} \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I$$

Maybe unfeasible:

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} \|\boldsymbol{\omega}\|^2 + C \sum_{i \in I} \xi_i \\ \text{s.t.} \quad y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \\ \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* \quad \ell \in L \end{aligned}$$

Coping with (eventual) unfeasibility

ş

V1

V1

Coping with (eventual) unfeasibility

Playing with VC dimension

• Map the dataset $\{\mathbf{x}_i : i \in I\}$ onto $\{\Phi(\mathbf{x})_i : i \in I\}$ so that the transformed set is separable

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} \|\boldsymbol{\omega}\|^2 + C \sum_{i \in I} \xi_i \\ \text{s.t.} \quad y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \geq 1 - \xi_i \quad i \in I \\ \xi_i \geq 0 \quad i \in I \\ \widehat{\pi_\ell}(\boldsymbol{\omega},\boldsymbol{\beta};J) \geq \gamma_\ell^* \quad \ell \in L \end{aligned}$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \boldsymbol{\xi}_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \boldsymbol{\xi}_i \quad i \in I \\ & \boldsymbol{\xi}_i \ge 0 & i \in I \\ & \boldsymbol{\pi}_{\ell}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \boldsymbol{\gamma}_{\ell}^* & \boldsymbol{\ell} \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{c} \|\omega\|^2 + C\sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \\ \widehat{\pi_{\ell}}(\omega,\beta;J) \ge \gamma_{\ell}^* \quad \ell \in L \end{array} z_j = \begin{cases} 1, & \text{if } y_j \left(\omega^\top \mathbf{x}_j + \beta\right) \ge 1 \\ 0, & \text{else} \end{cases} j \in J$$

 $\widehat{TPR}(\omega,\beta;J) \geq \gamma$

$$\sum_{j \in J: y_j = 1} z_j \ge \gamma \# (\{j \in J: y_j = 1\})$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \xi_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \xi_i \quad i \in I \\ & \xi_i \ge 0 & i \in I \\ & \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* & \ell \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{TNR}(\omega,\beta;J) \geq \gamma$

$$\sum_{j \in J: y_j = -1} z_j \ge \gamma \# (\{j \in J: y_j = -1\})$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \boldsymbol{\xi}_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \boldsymbol{\xi}_i \quad i \in I \\ & \boldsymbol{\xi}_i \ge 0 & i \in I \\ & \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* & \boldsymbol{\ell} \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{J}(\omega,\beta;J) \geq \gamma$

$$\sum_{j \in J} z_j \ge \gamma \, \# \, (J)$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \xi_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \xi_i \quad i \in I \\ & \xi_i \ge 0 & i \in I \\ & \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* & \ell \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{TPR_m}(\omega,\beta;J) \geq \gamma$

$$\sum_{j\in J: u_j=m} z_j \ge \gamma \# \left(\{j\in J: u_j=m\}\right)$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \boldsymbol{\xi}_i \\ \text{s.t.} \quad & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \boldsymbol{\xi}_i \quad i \in I \\ & \boldsymbol{\xi}_i \ge 0 \quad & i \in I \\ & \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* \quad & \ell \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{PPV}(\omega,\beta;J) \geq \gamma$

$$(1 - \gamma) prev_{+} \sum_{j \in J: y_{j} = 1} z_{j} - \gamma (1 - prev_{+}) \sum_{j \in J: y_{j} = -1} (1 - z_{j}) \ge 0$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \boldsymbol{\xi}_i \\ \text{s.t.} \quad & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \boldsymbol{\xi}_i \quad i \in I \\ & \boldsymbol{\xi}_i \ge 0 \quad & i \in I \\ & \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* \quad & \ell \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{NPV}(\omega,\beta;J) \geq \gamma$

$$(1 - \gamma) prev_{-} \sum_{j \in J: y_j = -1} z_j - \gamma (1 - prev_{-}) \sum_{j \in J: y_j = 1} (1 - z_j) \ge 0$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \boldsymbol{\xi}_i \\ \text{s.t.} \quad & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \boldsymbol{\xi}_i \quad i \in I \\ & \boldsymbol{\xi}_i \ge 0 \quad & i \in I \\ & \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* \quad & \boldsymbol{\ell} \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{\pi_\ell}(\omega,\beta;J) \geq \gamma_\ell^*$

 $\mathbf{a}_{\ell}^{\top}\mathbf{z} \geq b_{\ell}$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \boldsymbol{\xi}_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \boldsymbol{\xi}_i \quad i \in I \\ & \boldsymbol{\xi}_i \ge 0 & i \in I \\ & \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* & \ell \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{\pi_\ell}(\omega,\beta;J) \geq \gamma_\ell^*$

$$\mathbf{a}_{\ell}^{\top}\mathbf{z} \ge b_{\ell}$$

$$\begin{split} \min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi},\mathbf{z}} & \|\boldsymbol{\omega}\|^2 + C \sum_{i \in I} \xi_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \geq 1 - \xi_i & i \in I \\ & \xi_i \geq 0 & i \in I \\ & \mathbf{a}_{\ell}^\top z \geq b_{\ell} & \ell \in L \\ & z_{\ell} \in \{0,1\} & \ell \in L \\ & y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \geq 1 - M(1 - z_j) & j \in J \end{split}$$

$$\begin{split} \min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi},\mathbf{z}} & \|\boldsymbol{\omega}\|^2 + C \sum_{i \in I} \xi_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \geq 1 - \xi_i & i \in I \\ & \xi_i \geq 0 & i \in I \\ & \mathbf{a}_l^\top z \geq b_l & l \in L \\ & z_\ell \in \{0,1\} & \ell \in L \\ & y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \geq 1 - M(1 - z_j) & j \in J \end{split}$$

• Denote $J(z) = \{ j \in J : z_j = 1 \}$

$$\begin{array}{lll} \min_{\mathbf{z}} & \min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} & \boldsymbol{\omega}^{\top}\boldsymbol{\omega} + C\sum_{i \in I} \xi_i \\ \text{s.t.} & \boldsymbol{z}_{\ell} \in \{0,1\} & \ell \in L & \text{s.t.} & \boldsymbol{y}_i \left(\boldsymbol{\omega}^{\top} \mathbf{x}_i + \boldsymbol{\beta}\right) \geq 1 - \xi_i & i \in I \\ \mathbf{a}_{\ell}^{\top} \boldsymbol{z} \geq \boldsymbol{b}_{\ell} & l \in L & \boldsymbol{y}_j \left(\boldsymbol{\omega}^{\top} \mathbf{x}_j + \boldsymbol{\beta}\right) \geq 1 & j \in J(\mathbf{z}) \\ \boldsymbol{\xi}_i \geq 0 & i \in I \end{array}$$

• Denote $J(z) = \{ j \in J : z_j = 1 \}$

$$\begin{array}{ll} \min_{\mathbf{z}} & \min_{\omega,\beta,\xi} & \omega^{\top}\omega + C\sum_{i\in I}\xi_i \\ \text{s.t.} & z_{\ell} \in \{0,1\} \quad \ell \in L \quad \text{s.t.} & y_i \left(\omega^{\top}\mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \mathbf{a}_{\ell}^{\top}z \ge b_{\ell} \quad l \in L & y_j \left(\omega^{\top}\mathbf{x}_j + \beta\right) \ge 1 \quad j \in J(\mathbf{z}) \\ \xi_i \ge 0 & i \in I \end{array}$$

KKT conditions for inner problem (\mathbf{z} fixed)

$$\begin{array}{rcl} \omega & = & \sum_{s \in I} \lambda_s y_s \mathbf{x}_s + \sum_{t \in J(\mathbf{z})} \mu_t y_t \mathbf{x}_t \\ 0 & = & \sum_{s \in I} \lambda_s y_s + \sum_{t \in J(\mathbf{z})} \mu_t y_t \\ 0 & \leq & \lambda_s \leq C/2 & s \in I \\ 0 & \leq & \mu_t & t \in J(\mathbf{z}) \end{array}$$

• Denote $J(z) = \{ j \in J : z_j = 1 \}$

$$\begin{array}{ll} \min_{\mathbf{z}} & \min_{\omega,\beta,\xi} & \omega^{\top}\omega + C\sum_{i\in I}\xi_i \\ \text{s.t.} & z_{\ell} \in \{0,1\} \quad \ell \in L \quad \text{s.t.} & y_i \left(\omega^{\top}\mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \mathbf{a}_{\ell}^{\top}z \ge b_{\ell} \quad l \in L & y_j \left(\omega^{\top}\mathbf{x}_j + \beta\right) \ge 1 \quad j \in J(\mathbf{z}) \\ \xi_i \ge 0 & i \in I \end{array}$$

KKT conditions for inner problem (\mathbf{z} fixed)

$$\begin{array}{rcl} \omega & = & \sum_{s \in I} \lambda_s y_s \mathbf{x}_s + \sum_{t \in J} \mu_t y_t \mathbf{x}_t \\ 0 & = & \sum_{s \in I} \lambda_s y_s + \sum_{t \in J} \mu_t y_t \\ 0 & \leq & \lambda_s \leq C/2 & s \in I \\ 0 & \leq & \mu_t \leq M z_t & t \in J \end{array}$$

$$\begin{array}{ll} \min_{\lambda,\mu,\beta,\xi,\mathbf{z}} & \left(\sum_{s\in I} \lambda_s y_s \mathbf{x}_s + \sum_{t\in J} \mu_t y_t \mathbf{x}_t\right)^\top \left(\sum_{s\in I} \lambda_s y_s \mathbf{x}_s + \sum_{t\in J} \mu_t y_t \mathbf{x}_t\right) \\ \text{s.t.} & z_\ell \in \{0,1\} & \ell \in L \\ \mathbf{a}_\ell^\top z \ge b_\ell & \ell \in L \\ y_i \left(\left(\sum_{s\in I} \lambda_s y_s \mathbf{x}_s + \sum_{t\in J} \mu_t y_t \mathbf{x}_t\right)^\top \mathbf{x}_i + \beta \right) \ge 1 - \xi_i & i \in I \\ y_j \left(\left(\sum_{s\in I} \lambda_s y_s \mathbf{x}_s + \sum_{t\in J} \mu_t y_t \mathbf{x}_t\right)^\top \mathbf{x}_j + \beta \right) \ge 1 - M(1 - z_j) & j \in J \\ \xi_i \ge 0 & i \in I \\ 0 \le \lambda_i \le C/2 & i \in I \\ 0 \le \mu_j \le M z_j & j \in J \end{array}$$

$$\begin{array}{ll} \min & \sum_{s,s' \in I} \lambda_s y_s \lambda_{s'} y_{s'} K(\mathbf{x}_s, \mathbf{x}_{s'}) + \sum_{t,t' \in J} \mu_t y_t \mu_{t'} y_{t'} K(\mathbf{x}_t, \mathbf{x}_{t'}) \\ & + 2 \sum_{s \in I, t \in J} \lambda_s y_s \lambda_t y_t K(\mathbf{x}_s, \mathbf{x}_t) + C \sum_{i \in I} \xi_i \\ \text{s.t.} & z_\ell \in \{0, 1\} & \ell \in L \\ & \mathbf{a}_\ell^\top z \ge b_\ell & \ell \in L \\ & y_i \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_i) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_i) + \beta\right) \ge 1 - \xi_i & i \in I \\ & y_j \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_j) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_j) + \beta\right) \ge 1 - M(1 - z_j) & j \in J \\ & \xi_i \ge 0 & i \in I \\ & 0 \le \lambda_i \le C/2 & i \in I \\ & 0 \le \mu_j \le M z_j & j \in J \end{array}$$

$$\begin{array}{ll} \min & \sum_{s,s' \in I} \lambda_s y_s \lambda_{s'} y_{s'} K(\mathbf{x}_s, \mathbf{x}_{s'}) + \sum_{t,t' \in J} \mu_t y_t \mu_{t'} y_{t'} K(\mathbf{x}_t, \mathbf{x}_{t'}) \\ & + 2 \sum_{s \in I, t \in J} \lambda_s y_s \lambda_t y_t K(\mathbf{x}_s, \mathbf{x}_t) + C \sum_{i \in I} \xi_i \\ \text{s.t.} & z_\ell \in \{0, 1\} & \ell \in L \\ & \mathbf{a}_\ell^\top z \ge b_\ell & \ell \in L \\ & y_i \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_i) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_i) + \beta\right) \ge 1 - \xi_i & i \in I \\ & y_j \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_j) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_j) + \beta\right) \ge 1 - M(1 - z_j) & j \in J \\ & \xi_i \ge 0 & i \in I \\ & 0 \le \lambda_i \le C/2 & i \in I \\ & 0 \le \mu_j \le M z_j & j \in J \end{array}$$

Parameters involved:

- C, to be tuned
- M, to be fixed

$$\begin{array}{ll} \min & \sum_{s,s' \in I} \lambda_s y_s \lambda_{s'} y_{s'} K(\mathbf{x}_s, \mathbf{x}_{s'}) + \sum_{t,t' \in J} \mu_t y_t \mu_{t'} y_{t'} K(\mathbf{x}_t, \mathbf{x}_{t'}) \\ & + 2 \sum_{s \in I, t \in J} \lambda_s y_s \lambda_t y_t K(\mathbf{x}_s, \mathbf{x}_t) + C \sum_{i \in I} \xi_i \\ \text{s.t.} & z_\ell \in \{0, 1\} & \ell \in L \\ & \mathbf{a}_\ell^\top z \ge b_\ell & \ell \in L \\ & y_i \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_i) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_i) + \beta\right) \ge 1 - \xi_i & i \in I \\ & y_j \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_j) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_j) + \beta\right) \ge 1 - M(1 - z_j) & j \in J \\ & \xi_i \ge 0 & i \in I \\ & 0 \le \lambda_i \le C/2 & i \in I \\ & 0 \le \mu_j \le M z_j & j \in J \end{array}$$

Parameters involved:

- C, to be tuned
- M, to be fixed?

$$\begin{array}{ll} \min & \sum_{s,s' \in I} \lambda_s y_s \lambda_{s'} y_{s'} K(\mathbf{x}_s, \mathbf{x}_{s'}) + \sum_{t,t' \in J} \mu_t y_t \mu_{t'} y_{t'} K(\mathbf{x}_t, \mathbf{x}_{t'}) \\ & + 2 \sum_{s \in I, t \in J} \lambda_s y_s \lambda_t y_t K(\mathbf{x}_s, \mathbf{x}_t) + C \sum_{i \in I} \xi_i \\ \text{s.t.} & z_\ell \in \{0, 1\} & \ell \in L \\ & \mathbf{a}_\ell^\top z \ge b_\ell & \ell \in L \\ & y_i \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_i) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_i) + \beta\right) \ge 1 - \xi_i & i \in I \\ & y_j \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_j) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_j) + \beta\right) \ge 1 - M(1 - z_j) & j \in J \\ & \xi_i \ge 0 & i \in I \\ & 0 \le \lambda_i \le C/2 & i \in I \\ & 0 \le \mu_i \le M z_i & j \in J \end{array}$$

Parameters involved:

- $\bullet~C,$ to be tuned
- M, to be fixed?

Straightforward extension to several anchors

Experiments

- RBF kernel, parameters tuned by grid search
- \bullet Python + Gurobi
- M = 100, time.limit = 300 sec

Experiments

- RBF kernel, parameters tuned by grid search
- Python + Gurobi
- M = 100, time.limit = 300 sec

Data sets

Name	$ \Omega $	V	$ \Omega_+ $	(%)
wisconsin	567	30	357	(62.7%)
australian	690	14	383	(55.5%)
votes	435	16	267	(61.4%)
german	1000	45	700	(70%)

Results. Increasing TNR (0.025)

Name		SVM		CSVM	
		Mean	Std	Mean	Std
wisconsin	TPR	0.990	0.017	0.945	0.045
	TNR	0.948	0.049	0.965	0.037
australian	TPR	0.863	0.079	0.772	0.081
	TNR	0.830	0.071	0.903	0.050
votes	TPR	0.963	0.040	0.846	0.097
	TNR	0.951	0.031	0.978	0.038
german	TPR	0.905	0.036	0.791	0.063
	TNR	0.405	0.114	0.547	0.141

Results. Increasing TPR (0.025)

Name		SVM		CSVM	
		Mean	Std	Mean	Std
wisconsin	TPR	0.990	0.017	0.989	0.018
	TNR	0.948	0.049	0.856	0.153
australian	TPR	0.863	0.079	0.910	0.047
	TNR	0.830	0.071	0.694	0.092
votes	TPR	0.963	0.040	0.978	0.026
	TNR	0.951	0.031	0.922	0.040
german					
Data sets

Name	$ \Omega $	V	$ \Omega_+ $	(%)
wisconsin	567	30	357	(62.7%)
australian	690	14	383	(55.5%)
votes	435	16	267	(61.4%)
german	1000	45	700	(70%)

G-mean criterion

	SVM		CSVM		CSVM	
			(TNR)	$\geq 0.65)$	(TNR	≥ 0.7)
	Mean	Std	Mean	Std	Mean	Std
TPR	0.905	0.036	0.668	0.111	0.683	0.073
TNR	0.405	0.114	0.671	0.164	0.690	0.103

Benítez-Peña, Blanquero, C., Ramírez-Cobo, Cost-sensitive feature selection for support vector machines. Computers & OR, 2018.

Aim

- Find a minimum-cost (e.g. minimum-cardinality) set of features
 - Attaining $\widehat{\pi}_{\ell}(\omega,\beta) \geq \gamma^*_{\ell}, \, \ell \in L$
 - Hoping $\pi_{\ell}(\omega, \beta; I) \geq \gamma_{\ell}, \ \ell \in L$
- Once identified the features, solve an SVM

Feature selection. Linear kernel

$$\min_{\boldsymbol{w},\boldsymbol{\beta},\boldsymbol{z},\boldsymbol{\zeta}} \quad \sum_{k=1}^{N} \frac{\boldsymbol{\delta}_{k} \boldsymbol{z}_{k}}{\boldsymbol{\delta}_{k} \boldsymbol{z}_{k}} \\ s.t. \quad y_{i}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i} + \boldsymbol{\beta}) \geq 1 - L(1 - \zeta_{i}), \qquad \forall i \in I \\ \sum_{i \in I} \zeta_{i}(1 - y_{i}) \geq \boldsymbol{\lambda}_{-1} \sum_{i \in I} (1 - y_{i}) \\ \sum_{i \in I} \zeta_{i}(1 + y_{i}) \geq \boldsymbol{\lambda}_{1} \sum_{i \in I} (1 + y_{i}) \\ |\boldsymbol{w}_{k}| \leq M \boldsymbol{z}_{k} \qquad \forall k \in 1, \dots, N \\ \zeta_{i} \in \{0, 1\} \qquad \forall i \in I \\ \boldsymbol{z}_{k} \in \{0, 1\} \qquad \forall k \in 1, \dots, N$$

Results. Linear kernel

Name		SVM		\mathbf{FS}		Reduction
		Mean	Std	Mean	Std	
wisconsin	TPR	0.992	0.013	0.975	0.023	$30 \to 6.2 \ (0.919 \ \text{Std})$
	TNR	0.943	0.051	0.947	0.048	
votes	TPR	0.955	0.038	0.96	0.034	$32 \to 9.3 \ (1.16 \ \text{Std})$
	TNR	0.947	0.059	0.945	0.052	
nursery	TPR	1	0	1	0	$19 \rightarrow 1 \ (0 \ \text{Std})$
	TNR	1	0	1	0	
australian	TPR	0.769	0.083	0.772	0.074	$34 \to 5.75 \ (1.89 \ \text{Std})$
	TNR	0.912	0.05	0.924	0.053	
careval	TPR	0.96	0.022	0.962	0.018	$15 \rightarrow 11 \ (0 \ \text{Std})$
	TNR	0.948	0.024	0.935	0.039	

Results. Radial kernel

Supervised classification. The framework

- Given: set I of individuals, each $i \in I$ with associated
 - A vector $\mathbf{x}_i \in \mathcal{X}$, assumed here $\mathcal{X} \subset \mathbb{R}^m$
 - A label y_i , assumed here to be in $\{-1, +1\}$
- Seen as a sample from (\mathbf{X}, Y) , with unknown distribution
- Goal: to infer from I a classifier $\varphi : \mathcal{X} \longrightarrow \{-1, 1\}$ so that we can classify any object just by knowing **x**

Supervised classification. The framework

- Given: set I of individuals, each $i \in I$ with associated
 - A vector $\mathbf{x}_i \in \mathcal{X}$, assumed here $\mathcal{X} \subset \mathbb{R}^m$
 - A label y_i , assumed here to be in $\{-1, +1\}$
- Seen as a sample from (\mathbf{X}, Y) , with unknown distribution
- Goal: to infer from I a classifier $\varphi : \mathcal{X} \longrightarrow \{-1, 1\}$ so that we can classify any object just by knowing **x**

Inferring probabilities

I.o. φ , estimate $P(y = 1 \mid x)$, e.g.

$$P(y = 1 \mid x) = \frac{1}{1 + \exp(Af(x) + B)}$$

- Hastie and Tibshirani. Classification by pairwise coupling. In Advances in neural information processing systems, 1998.
- Platt, Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in large margin classifiers, 2000.
- Sollich, Bayesian methods for support vector machines: Evidence and predictive class probabilities. Machine learning, 2002.
- Tao, Wu, Wang, and Wang , Posterior probability support vector machines for unbalanced data. IEEE Transactions on Neural Networks, 2005.
- Vapnik, Statistical Learning Theory, 1998.
- Wahba, Multivariate function and operator estimation, based on smoothing splines and reproducing kernels. In Santa Fe Institute Studies in the Sciences of Complexity-Proceedings, 1992
- Wahba, Support vector machines, reproducing kernel Hilbert spaces and the randomized gacv. Advances in Kernel Methods-Support Vector Learning, 1999.

Inferring probabilities. A frequentist approach

k-fold CV

bootstrapped

43 / 71

Histog. random individual 1

Dataset	Bootstrapped	Sollich	Platt	Tao et al.
				$(r = 0, \sqrt{10}, \sqrt{20}, \sqrt{30})$
wisconsin	0.003	0.064	0.021	0.028, 0.019, 0.034, 0.055
cancer-colon	0.201	0.241	0.252	0.208, 0.208, 0.208, 0.208
diabetes	0.192	0.190	0.157	0.229, 0.233, 0.234, 0.234
leukemia	0	0.239	0.01	0.029, 0.029, 0.029, 0.029
SRBTC	0.01	0.237	0.011	0, 0, 0, 0
heart	0.143	0.158	0.121	0.15, 0.118, 0.207, 0.218
adult	0.144	0.128	0.068	0.148, 0.078, 0.142, 0.167

MSE (linear SVM)

MSE for the positive class probability predictions

MSE for the negative class probability predictions

(Sparse and cost-sensitive) linear models using MINLO

$$\min_{\boldsymbol{\alpha}\in\mathcal{A}}\sum_{i=1}^{m}\left(Y_{i}-\sum_{j=1}^{N}\alpha_{j}X_{ij}\right)^{2}$$

 ${\mathcal A}$ modelling, among other things, which features are selected

(Sparse and cost-sensitive) linear models using MINLO

$$\min_{\boldsymbol{\alpha}\in\mathcal{A}}\sum_{i=1}^{m}\left(Y_{i}-\sum_{j=1}^{N}\alpha_{j}X_{ij}\right)^{2}$$

 ${\mathcal A}$ modelling, among other things, which features are selected

Bertsimas and King, *Operations Research*, 2015

- Bertsimas, King and Mazumder, Annals of Statistics, 2016
- C., Olivares-Nadal, Ramírez-Cobo, *Biostatistics*, 2017

Sparsity in linear models via convex optim

$$Y_i = \sum_{j=1}^{N} \alpha_j X_{ij} + e_i \qquad i = 1, \dots, m$$

Sparsity in linear models via convex optim

$$Y_i = \sum_{j=1}^N \alpha_j X_{ij} + e_i \qquad i = 1, \dots, m \qquad \min_{\alpha} \sum_{i=1}^m \left(Y_i - \sum_{j=1}^N \alpha_j X_{ij} \right)^2$$

Sparsity in linear models via convex optim

$$Y_i = \sum_{j=1}^N \alpha_j X_{ij} + e_i \qquad i = 1, \dots, m \qquad \min_{\alpha} \sum_{i=1}^m \left(Y_i - \sum_{j=1}^N \alpha_j X_{ij} \right)^2$$

Making the model sparse. The lasso

$$\min_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \alpha_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\alpha}\|_1$$

R. Tibshirani, "Regression shrinkage and selection via the lasso", J. of the Royal Statistical Society - B, 1996

 ≈ 27.500 cites in Scholar

50 / 71

Lasso

$$\min_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \alpha_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\alpha}\|_1$$

$$\min_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \alpha_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\alpha}\|_{1}$$

• Lasso and relatives implemented in several packages in R (e.g. lars, elasticnet, ...) and Python (scikit-learn)

$$\min_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \alpha_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\alpha}\|_1$$

- Lasso and relatives implemented in several packages in R (e.g. lars, elasticnet, ...) and Python (scikit-learn)
- Records treated homogeneously. No control of errors on subpopulations, in case of heterogeneous data

$$\min_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \alpha_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\alpha}\|_1$$

- Lasso and relatives implemented in several packages in R (e.g. lars, elasticnet, ...) and Python (scikit-learn)
- Records treated homogeneously. No control of errors on subpopulations, in case of heterogeneous data
- New Mathematical Optimization problem:

$$\min_{\boldsymbol{\alpha}} \quad \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \alpha_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\alpha}\|_1$$

s.t.
$$\sum_{i \in S_h} \left(Y_i - \sum_{j=1}^{N} \alpha_j X_{ij} \right)^2 \le (1 + \tau_h) SSE_h \qquad \forall h$$

$$\min_{\boldsymbol{\alpha}} \quad \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \alpha_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\alpha}\|_1$$

s.t.
$$\sum_{i \in S_h} \left(Y_i - \sum_{j=1}^{N} \alpha_j X_{ij} \right)^2 \le (1 + \tau_h) SSE_h \qquad \forall h$$

 \ldots but we don't know how to (easily) build the path

Ferraty and Vieu. Nonparametric functional data analysis: theory and practice, 2006.

• $\mathbf{x} \in \mathcal{C}^0([0,T])$

- Ramsay and Silverman. *Functional data analysis*, 2006.
 - Febrero-Bande and Oviedo de la Fuente. "Statistical computing in functional data analysis: the r package fda.usc". *Journal of Statistical Software*, 2012.

•
$$\mathbf{x} \in \mathcal{C}^0([0,T])$$

• $\mathbf{x} \approx (\mathbf{x}(t_1), \dots, \mathbf{x}(t_m)) \in \mathbb{R}^m$

Ferraty and Vieu. Nonparametric functional data analysis: theory and practice, 2006.

- Ramsay and Silverman. *Functional data analysis*, 2006.
 - Febrero-Bande and Oviedo de la Fuente. "Statistical computing in functional data analysis: the r package fda.usc". *Journal of Statistical Software*, 2012.

x ∈ C⁰([0,T])
 x ≈ (x(t₁),...,x(t_m)) ∈ ℝ^m
 (x(t₁),...,x(t_m)) ≈ x ∈ C⁰([0,T])

- Ferraty and Vieu. Nonparametric functional data analysis: theory and practice, 2006.
- Ramsay and Silverman. *Functional data analysis*, 2006.
- Febrero-Bande and Oviedo de la Fuente. "Statistical computing in functional data analysis: the r package fda.usc". *Journal of Statistical Software*, 2012.

- $\mathbf{x} \in \mathcal{C}^0([0,T])$ • $\mathbf{x} \approx (\mathbf{x}(t_1), \dots, \mathbf{x}(t_m)) \in \mathbb{R}^m$ • $(\mathbf{x}(t_1), \dots, \mathbf{x}(t_m)) \approx \mathbf{x} \in \mathcal{C}^0([0,T]) \approx (\mathbf{x}(t_1), \dots, \mathbf{x}(t_m))$
- Ferraty and Vieu. Nonparametric functional data analysis: theory and practice, 2006.
- Ramsay and Silverman. *Functional data analysis*, 2006.
- Febrero-Bande and Oviedo de la Fuente. "Statistical computing in functional data analysis: the r package fda.usc". *Journal of Statistical Software*, 2012.

•
$$\mathbf{x} \in \mathcal{C}^0([0,T])$$

• $\mathbf{x} \approx (\mathbf{x}(t_1), \dots, \mathbf{x}(t_m)) \in \mathbb{R}^m$
• $(\mathbf{x}(t_1), \dots, \mathbf{x}(t_m)) \approx \mathbf{x} \in \mathcal{C}^0([0,T]) \approx (\mathbf{x}(t_1), \dots, \mathbf{x}(t_m))$

Muñoz and González. "Representing functional data using support vector machines". *Pattern Recognition Letters*, 2010.

Rossi and Villa. "Support vector machine for functional data classification". *Neurocomputing*, 2006.

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \int_0^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \int_0^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt \approx \sum_k \eta_k (\mathbf{x}_i(t_k) - \mathbf{x}_j(t_k))^2$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \int_0^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt \approx \sum_k \eta_k (\mathbf{x}_i(t_k) - \mathbf{x}_j(t_k))^2$$

• $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt} \approx e^{-\sum_k \gamma \eta_k (\mathbf{x}_i(t_k) - \mathbf{x}_j(t_k))^2}$

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \int_0^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt \approx \sum_k \eta_k (\mathbf{x}_i(t_k) - \mathbf{x}_j(t_k))^2$$

• $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt} \approx e^{-\sum_k \gamma \eta_k (\mathbf{x}_i(t_k) - \mathbf{x}_j(t_k))^2}$

Gaussian kernel with functional bandwidth

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(t) (\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$$
Gaussian kernel with functional bandwidth

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(t) (\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$$

A possible model for γ

$$\gamma(t) = \begin{cases} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le \tau_2 \\ \cdots & \cdots \\ \gamma_H, & \text{if } \tau_{H-1} < t \le T \end{cases}$$

- $\gamma_1,\ldots,\gamma_H\geq 0$
- $0 \leq \tau_1 \leq \ldots \leq \tau_{H-1} \leq T$

Blanquero, C., Jiménez-Cordero, Martín-Barragán. Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm. EJOR, 2019

An example: Mitochondrial calcium data set

- 360 time instants in [0, T], T = 3590
- 44 mice in treatment (+1), 45 control (-1)

An example: Mitochondrial calcium data set

- 360 time instants in [0, T], T = 3590
- 44 mice in treatment (+1), 45 control (-1)

Out of sample accuracy estimates

	$\gamma(t)$	$=\gamma$	$\gamma(t) = \begin{cases} \gamma \\ \gamma \end{cases}$	$\begin{array}{ll} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le T \end{array}$
	-1	+1	-1	+1
-1:	37.55%	10.96%	42.58%	7.56%
+1	12.09%	35.61%	7.23%	42.95%

Parameters tuning (basic gaussian kernel)

C, γ : k-fold crossvalidation

- I: split in k blocks of similar size, I_1, \ldots, I_k
- for each pair C, γ in a grid (e.g. $2^{-12} \dots 2^{12}$), estimate $acc(C, \gamma)$:
 - for each $i = 1, \ldots, k$
 - solve $(P_{I \setminus I_i, C, \gamma})$, yielding λ^i, β (via KKT)
 - calculate $acc_i(C, \gamma)$, fraction of correctly classified in I_i if classifier with λ^i, β were used

•
$$acc(C, \gamma) = \frac{1}{k} \sum_{i=1}^{k} acc_i(C, \gamma)$$

Parameters tuning (basic gaussian kernel)

$C,\gamma:$ k-fold crossvalidation

- I: split in k blocks of similar size, I_1, \ldots, I_k
- for each pair C, γ in a grid (e.g. $2^{-12} \dots 2^{12}$), estimate $acc(C, \gamma)$:
 - for each $i = 1, \ldots, k$
 - solve $(P_{I \setminus I_i, C, \gamma})$, yielding λ^i, β (via KKT)
 - calculate $acc_i(C, \gamma)$, fraction of correctly classified in I_i if classifier with λ^i, β were used

•
$$acc(C, \gamma) = \frac{1}{k} \sum_{i=1}^{k} acc_i(C, \gamma)$$

Unfeasible for functional bandwidth kernel!!!

 $\theta = (\gamma_1, \ldots, \gamma_H | \tau_1, \ldots, \tau_{H-1})$

$$\theta = (\gamma_1, \dots, \gamma_H | \tau_1, \dots, \tau_{H-1}) \qquad \qquad \widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta^C$$

$$\theta = (\gamma_1, \dots, \gamma_H | \tau_1, \dots, \tau_{H-1}) \qquad \qquad \widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta^C$$

$$\max_{\lambda} \quad \sum_{i \in I} \lambda_i - \frac{1}{2} \sum_{ij} \lambda_i y_i \lambda_j y_j K_{\theta}(\mathbf{x}_i, \mathbf{x}_j)$$

s.t.
$$\sum_{i \in I} \lambda_i y_i = 0$$

$$0 \le \lambda_i \le \frac{C}{2}$$
 $i \in I$ $(P_{I,C,\theta})$

$$\theta = (\gamma_1, \dots, \gamma_H | \tau_1, \dots, \tau_{H-1}) \qquad \qquad \widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta^C$$

$$\begin{array}{ll} \max_{\lambda} & \sum_{i \in I} \lambda_i - \frac{1}{2} \sum_{ij} \lambda_i y_i \lambda_j y_j K_{\theta}(\mathbf{x}_i, \mathbf{x}_j) \\ \text{s.t.} & \sum_{i \in I} \lambda_i y_i = 0 \\ & 0 \leq \lambda_i \leq \frac{C}{2} \\ \end{array}$$
 $(P_{I, C, \theta})$

Randomly split sample I into I_1 , I_2 and I_3 . for C in grid do

Alternating Procedure

repeat

1. Fixed θ , find λ^C solving $(P_{I_1,C,\theta})$

2. Fixed λ , find θ maximizing correlation of y and $\hat{y}_{I,C,\theta}$ in I_2 .

until stopping criteria

end for

Return as C the one with best misclassification rate in I_3 . Return as λ and θ those associated with C

$$\theta = (\gamma_1, \dots, \gamma_H | \tau_1, \dots, \tau_{H-1}) \qquad \qquad \widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta^C$$

$$\begin{array}{ll} \max_{\lambda} & \sum_{i \in I} \lambda_i - \frac{1}{2} \sum_{ij} \lambda_i y_i \lambda_j y_j K_{\theta}(\mathbf{x}_i, \mathbf{x}_j) \\ \text{s.t.} & \sum_{i \in I} \lambda_i y_i = 0 \\ & 0 \leq \lambda_i \leq \frac{C}{2} \end{array}$$
 $(P_{I,C,\theta})$

Randomly split sample I into I_1 , I_2 and I_3 . for C in grid do

Alternating Procedure

repeat

1. Fixed θ , find λ^C solving $(P_{I_1,C,\theta})$

2. Fixed λ , find θ maximizing correlation of y and $\hat{y}_{I,C,\theta}$ in I_2 .

until stopping criteria

end for

Return as C the one with best misclassification rate in I_3 . Return as λ and θ those associated with C

$$\widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta$$

$$K_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}_i) = e^{-\sum_{h=1}^{H} \int_{\tau_{h-1}}^{\tau_h} \gamma_h(\mathbf{x}(t) - \mathbf{x}_i(t))^2 dt}$$

$$\widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta$$

$$K_{\theta}(\mathbf{x}, \mathbf{x}_i) = e^{-\sum_{h=1}^{H} \int_{\tau_{h-1}}^{\tau_h} \gamma_h(\mathbf{x}(t) - \mathbf{x}_i(t))^2 dt}$$

Smooth optimization problem

- chain rule
- $K: \mathcal{C}^1$ for $\mathbf{x}: \mathcal{C}^0$
- $K: \mathcal{C}^3$ for $\mathbf{x}: \mathcal{C}^2$ (as generated by cubic spline)

Model ${\cal H}$

$$\gamma(t) = \begin{cases} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le \tau_2 \\ \dots & \dots \\ \gamma_H, & \text{if } \tau_{H-1} < t \le T \end{cases}$$

Nested heuristic

📔 C., Martín-Barragán, Romero Morales, Computers & OR, 2014

Model ${\cal H}$

$$\gamma(t) = \begin{cases} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le \tau_2 \\ \dots & \dots \\ \gamma_H, & \text{if } \tau_{H-1} < t \le T \end{cases}$$

Nested heuristic

🔋 C., Martín-Barragán, Romero Morales, Computers & OR, 2014

 $\begin{array}{l} \text{Model 1} \\ \gamma(t) = \gamma_1 \end{array}$

Model ${\cal H}$

$$\gamma(t) = \begin{cases} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le \tau_2 \\ \dots & \dots \\ \gamma_H, & \text{if } \tau_{H-1} < t \le T \end{cases}$$

Nested heuristic

C., Martín-Barragán, Romero Morales, Computers & OR, 2014

 $\begin{array}{l} \text{Model 1} \\ \gamma(t) = \gamma_1 \end{array}$

Model H

$$\gamma(t) = \begin{cases} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le \tau_2 \\ \dots & \dots \\ \gamma_H, & \text{if } \tau_{H-1} < t \le T \end{cases}$$

Nested heuristic

C., Martín-Barragán, Romero Morales, Computers & OR, 2014

 $\begin{array}{l} \text{Model 1} \\ \gamma(t) = \gamma_1 \end{array}$

$$\begin{array}{ll} \text{Model } 2 \\ \gamma(t) = \\ \begin{cases} \gamma_1, & \text{if } 0 \leq t \leq \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \leq T \end{cases} \begin{cases} \gamma_1, & \text{if } 0 \leq t \leq \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \leq \tau_2 \\ \gamma_3, & \text{if } \tau_2 < t < T \end{cases}$$

A test example

15,000 functions like these

Time

A test example

15,000 functions like these

	1 (classic SVM)	H = 2	H = 3	H = 4
% misc	32.95	0	0	0

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

% misclassification rate (out-of-sample)

	H = 1	H = 2	H = 3	H = 4
MCO	20.80	14.73	11.05	10.37
growth	5.64	4.67	4.35	4.19
phoneme	19.88	18.08	17.63	17.11
rain	28.40	22.84	22.42	21.59
regions	19.46	16.43	16.02	16.51
tecator	3.47	2.92	2.64	2.29

Gaussian kernel for functional data (II)

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$$

Gaussian kernel for functional data (II)

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\boldsymbol{\gamma} \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$$

• $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(t)(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$

Gaussian kernel for functional data (II)

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$$

• $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(t)(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$
• $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\sum_{h=1}^H \gamma(\mathbf{x}_i(\tau_h) - \mathbf{x}_j(\tau_h))^2}$
• $\gamma \ge 0$
• $0 \le \tau_{h-1} \le \tau_h - \delta, h = 1, \dots, H$

tecator

tecator

66 / 71

tecator

67 / 71

tecator

68 / 71

Parameters tuning (time instants selection)

Blanquero, C., Jiménez-Cordero, Martín-Barragán. Variable selection in classification for multivariate functional data. Information Sciences, 2019.

$$\theta = (\gamma | \tau_1, \dots, \tau_{H-1})$$

Parameters tuning (time instants selection)

Blanquero, C., Jiménez-Cordero, Martín-Barragán. Variable selection in classification for multivariate functional data. Information Sciences, 2019.

$$\theta = (\gamma | \tau_1, \dots, \tau_{H-1}) \qquad \qquad \widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_\theta(\mathbf{x}, \mathbf{x}_i) + \beta^C$$

Randomly split sample I into I_1 , I_2 and I_3 . for C in grid do

Alternating Procedure

repeat

1. Fixed θ , find λ^C solving $(P_{I_1,C,\theta})$

2. Fixed λ , find θ maximizing correlation of y and $\hat{y}_{I,C,\theta}$ in I_2 .

until stopping criteria

end for

Return as C the one with best misclassification rate in I_3 . Return as λ and θ those associated with C

% misclassification rate (out-of-sample)

	SVM	H = 1	H=2	H = 3	H = 4
MCO	20.80	29.02	18.64	18.14	18.81
growth	5.64	13.22	4.67	4.03	3.87
phoneme	19.88	18.00	16.96	16.36	16.20
rain	28.40	10.75	11.66	11.66	10
regions	19.46	20.75	10.26	8.10	7.23
tecator	3.47	4.66	2.22	2.08	1.52
Many thanks!!!

ecarrizosa@us.es