
Nucleolus of shortest path games

Mourad Baı̈ou, CNRS and Université Clermont Auvergne

Francisco Barahona, IBM T.J. Watson Research Center



Shortest Path Games

t
2 1

1
1 1

2

1

s

revenue: 7

cost of a shortest path: 5

profit: 7-5

how much extra to pay in each arc?

In other words we want to define the relative importance of each arc to

ensure the connectivity between s and t.



Shortest Path Games



Shortest Path Games

Directed graph G = (V,A), distinguished nodes s, t, c : A → R+



Shortest Path Games

Directed graph G = (V,A), distinguished nodes s, t, c : A → R+

Cooperative game, coalition S ⊂ A

v(S) =

{

r −m(S) if m(S) < ∞,

0 otherwise,

r > 0 is a reward

m(S) = min {c(P ) |P ⊆ S, P is an st-path and c(P ) ≤ r}.



Shortest Path Games

Directed graph G = (V,A), distinguished nodes s, t, c : A → R+

Cooperative game, coalition S ⊂ A

v(S) =

{

r −m(S) if m(S) < ∞,

0 otherwise,

r > 0 is a reward

m(S) = min {c(P ) |P ⊆ S, P is an st-path and c(P ) ≤ r}.

Introduced by Fragnelli et al. (2000)



Core

{x ∈ R
A |x(A) = v(A), x(S) ≥ v(S), for S ⊆ A}.



Core

{x ∈ R
A |x(A) = v(A), x(S) ≥ v(S), for S ⊆ A}.

Let λ be the value of a shortest path

Core:

x(A) = r − λ

x(P ) ≥ r − c(P ) for each st-path P

x ≥ 0



Core

{x ∈ R
A |x(A) = v(A), x(S) ≥ v(S), for S ⊆ A}.

Let λ be the value of a shortest path

Core:

x(A) = r − λ

x(P ) ≥ r − c(P ) for each st-path P

x ≥ 0

x(a) > 0 =⇒ a is in the intersection of all shortest paths



Core

x(A) = r − λ

x(P ) ≥ r − c(P ) for each st-path P

x ≥ 0

Let Π be one (fixed) shortest path

Let z = x+ c
Core

z(Π) = r

z(P ) ≥ r for each st-path P

z ≥ c

z(a) = c(a) if a /∈ Π



Core

One more change of variables: pz(u) = z(Πsu) (sum of the variables z
in the sub-path from s to u)

us

t

pz(s) = 0, pz(t) = r

pz(v)− pz(u) ≥ c(u, v) for (u, v) ∈ Π



Core

A jump from u to v is a path that intersects Π only in {u, v}

J

uv

s

t

u v

If P contains one jump, z(P ) ≥ r is equivalent to

z(Psu) + z(Juv) + z(Pvt) ≥ r,

pz(u) + c(Juv) + (z(Π)− z(Psv)) ≥ r,

pz(u) + c(Juv) + r − pz(v) ≥ r,

pz(u)− pz(v) ≥ −c(Juv)



Core

A jump from u to v is a path that intersects Π only in {u, v}

J

uv

s

t

u v

If P contains one jump, z(P ) ≥ r is equivalent to

z(Psu) + z(Juv) + z(Pvt) ≥ r,

pz(u) + c(Juv) + (z(Π)− z(Psv)) ≥ r,

pz(u) + c(Juv) + r − pz(v) ≥ r,

pz(u)− pz(v) ≥ −c(Juv)

Paths with more than one jump are not needed



Core

A jump from u to v is a path that intersects Π only in {u, v}

J

uv

s

t

u v

If P contains one jump, z(P ) ≥ r is equivalent to

z(Psu) + z(Juv) + z(Pvt) ≥ r,

pz(u) + c(Juv) + (z(Π)− z(Psv)) ≥ r,

pz(u) + c(Juv) + r − pz(v) ≥ r,

pz(u)− pz(v) ≥ −c(Juv)

Paths with more than one jump are not needed

Only shortest jumps are needed



Core

c(a)
s t

u v

r

−r

Juv

−c(Juv

Let V ′ be the set of nodes of Π and A′ the set of arcs composed by Π and

the red arcs.

Define d(u, v) = c(u, v) if (u, v) ∈ Π

d(u, v) = −c(Ju,v) if (u, v) /∈ Π,

where Ju,v is shortest jump from u to v

The core is defined by: pz(v)− pz(u) ≥ d(u, v) (u, v) ∈ A′



Core

c(a)
s t

u v

r

−r

Juv

−c(Juv

Let V ′ be the set of nodes of Π and A′ the set of arcs composed by Π and

the red arcs.

Define d(u, v) = c(u, v) if (u, v) ∈ Π

d(u, v) = −c(Ju,v) if (u, v) /∈ Π,

where Ju,v is shortest jump from u to v

The core is defined by: pz(v)− pz(u) ≥ d(u, v) (u, v) ∈ A′

Polynomial number of inequalities. Based on that Granot et al. (1998)

showed that computing the nucleolus (when the core is nonempty)

reduces to a sequence of combinatorial linear programs.



Core

Dual of a network flow problem

max
∑

(u,v)∈A′

d(u, v)x(u, v)

∑

(u,v)∈A′

x(u, v)−
∑

(v,u)∈A′

x(v, u) = 0, for v ∈ V ′,

x(u, v) ≥ 0, for all (u, v) ∈ A′.

This problem is unbounded if and only if there is no cycle with positive

cost. Thus the dual problem has a solution if and only if there is no cycle

with positive cost.



The nucleolus

x(A) = v(A)

x(S) ≥ v(S) ∀S ⊂ A



The nucleolus

x(A) = v(A)

x(S) ≥ v(S) ∀S ⊂ A

For a coalition S and a vector x ∈ R
A, their excess is

e(x, S) = x(S)− v(S).
The nucleolus has been introduced Schmeidler (1969), trying to minimize

dissatisfaction of players. Schmeidler defined it as the allocation that

lexicographically maximize the vector of non-decreasing ordered excess.



The nucleolus

S1 S2

S3

S4

x1

x2

x3

x4

nucleolus

x1 � x2 � x3 � x4



The nucleolus

S1 S2

S3

S4

x1

x2

x3

x4

nucleolus

x1 � x2 � x3 � x4

S1

S2

S4

x1x1

x2x2

x3x3

x4 x4



Nucleolus

max ǫ

x(A) = v(A)

x(S) ≥ v(S) + ǫ, ∀S 6= A



Nucleolus

max ǫ

x(A) = v(A)

x(S) ≥ v(S) + ǫ, ∀S 6= A

ǫ1 optimal value, P1(ǫ1) set of optimal solutions



Nucleolus

max ǫ

x(A) = v(A)

x(S) ≥ v(S) + ǫ, ∀S 6= A

ǫ1 optimal value, P1(ǫ1) set of optimal solutions

F1: coalitions S with x(S) = v(S) + ǫ1 for all x ∈ P1(ǫ1).



Nucleolus

max ǫ

x(A) = v(A)

x(S) ≥ v(S) + ǫ, ∀S 6= A

ǫ1 optimal value, P1(ǫ1) set of optimal solutions

F1: coalitions S with x(S) = v(S) + ǫ1 for all x ∈ P1(ǫ1).

max ǫ

x(A) = v(A)

x(S) ≥ v(S) + ǫ, ∀S 6= A

x(S) = v(S) + ǫ1, ∀S ∈ F1



Nucleolus

max ǫ

x(A) = v(A)

x(S) ≥ v(S) + ǫ, ∀S 6= A

ǫ1 optimal value, P1(ǫ1) set of optimal solutions

F1: coalitions S with x(S) = v(S) + ǫ1 for all x ∈ P1(ǫ1).

max ǫ

x(A) = v(A)

x(S) ≥ v(S) + ǫ, ∀S 6= A

x(S) = v(S) + ǫ1, ∀S ∈ F1

This gives ǫ2 ... continue ... (at most m times)



Nucleolus

max ǫ

pz(s) = 0, pz(t) = r

pz(v)− pz(u) ≥ d(u, v) + ǫ



Nucleolus

max ǫ

pz(s) = 0, pz(t) = r

pz(v)− pz(u) ≥ d(u, v) + ǫ

This system has a solution iff the graph with weights d(u, v) + ǫ has no

cycle of positive weight.



Nucleolus

max ǫ

pz(s) = 0, pz(t) = r

pz(v)− pz(u) ≥ d(u, v) + ǫ

This system has a solution iff the graph with weights d(u, v) + ǫ has no

cycle of positive weight.

d(C) + n(C)ǫ ≤ 0

for every cycle C



Nucleolus

max ǫ

pz(s) = 0, pz(t) = r

pz(v)− pz(u) ≥ d(u, v) + ǫ

This system has a solution iff the graph with weights d(u, v) + ǫ has no

cycle of positive weight.

d(C) + n(C)ǫ ≤ 0

for every cycle C

ǫ ≤ −d(C)/n(C)



Nucleolus

max ǫ

pz(s) = 0, pz(t) = r

pz(v)− pz(u) ≥ d(u, v) + ǫ

This system has a solution iff the graph with weights d(u, v) + ǫ has no

cycle of positive weight.

d(C) + n(C)ǫ ≤ 0

for every cycle C

ǫ ≤ −d(C)/n(C)

ǫ = min
C

−d(C)

n(C)
min ratio cycle, O(n3)



Algorithm for nucleolus

Find min ratio cycle. Fix variables on this cycle



Algorithm for nucleolus

Find min ratio cycle. Fix variables on this cycle

Find min ratio cycle involving non-fixed variables. Fix variables on the new

cycle, continue.





Nucleolus when the core is empty

When the core is empty the solution of the program below is ǫ1 < 0.

max ǫ

x(A) = v(A)

x(S) ≥ v(S) + ǫ, ∀S 6= A

We use parametric linear programming and look for the maximum value of

the parameter ǫ < 0, so that the value of the parametric linear program

below is r − λ.

min x(A)

x(P ) ≥ r + ǫ− c(P ), ∀st− path P,

x ≥ 0.



Nucleolus when the core is empty

The dual of this problem is:

max
∑

P

(r + ǫ− c(P ))yP

∑

a∈P

yP ≤ 1, ∀a ∈ A,

y ≥ 0.

We reduce this problem to a network flow problem:

• We add an arc from t to s with cost r + ǫ.

• each arc a ∈ A receive the cost −c(a).

Then we look for a maximum circulation cost.

Capacities 1 implies: there is an optimal circulation that corresponds to a

set of arc-disjoint st-paths of minimum cost.



Nucleolus when the core is empty

Thus the optimal value of the dual problem my be written as:

g(ǫ) = max
k

{k(r + ǫ)− f(k)}

ǫ1ǫ− ǫ+ǫ+ǫ−

g

r − λ



Nucleolus when the core is empty

Thus the optimal value of the dual problem my be written as:

g(ǫ) = max
k

{k(r + ǫ)− f(k)}

ǫ1ǫ− ǫ+ǫ+ǫ−

g

r − λ

Similar approach is used:

change variables, use the dual of a network flow problem

solve a sequence of min ratio cycles


	Shortest Path Games
	Shortest Path Games
	Core
	Core
	Core
	Core
	Core
	Core
	The nucleolus
	The nucleolus
	Nucleolus
	Nucleolus
	Algorithm for nucleolus
	Nucleolus when the core is empty
	Nucleolus when the core is empty
	Nucleolus when the core is empty

