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revenue: 7

cost of a shortest path: 5

profit: 7-5

how much extra to pay in each arc?

In other words we want to define the relative importance of each arc to

ensure the connectivity between s and t.
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v(S) =

{

r −m(S) if m(S) < ∞,

0 otherwise,

r > 0 is a reward
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Directed graph G = (V,A), distinguished nodes s, t, c : A → R+

Cooperative game, coalition S ⊂ A

v(S) =

{

r −m(S) if m(S) < ∞,

0 otherwise,

r > 0 is a reward

m(S) = min {c(P ) |P ⊆ S, P is an st-path and c(P ) ≤ r}.

Introduced by Fragnelli et al. (2000)
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x(a) > 0 =⇒ a is in the intersection of all shortest paths



Core

x(A) = r − λ

x(P ) ≥ r − c(P ) for each st-path P

x ≥ 0

Let Π be one (fixed) shortest path

Let z = x+ c
Core

z(Π) = r

z(P ) ≥ r for each st-path P

z ≥ c

z(a) = c(a) if a /∈ Π



Core

One more change of variables: pz(u) = z(Πsu) (sum of the variables z
in the sub-path from s to u)

us

t

pz(s) = 0, pz(t) = r

pz(v)− pz(u) ≥ c(u, v) for (u, v) ∈ Π
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A jump from u to v is a path that intersects Π only in {u, v}
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If P contains one jump, z(P ) ≥ r is equivalent to

z(Psu) + z(Juv) + z(Pvt) ≥ r,

pz(u) + c(Juv) + (z(Π)− z(Psv)) ≥ r,

pz(u) + c(Juv) + r − pz(v) ≥ r,

pz(u)− pz(v) ≥ −c(Juv)
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A jump from u to v is a path that intersects Π only in {u, v}
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If P contains one jump, z(P ) ≥ r is equivalent to

z(Psu) + z(Juv) + z(Pvt) ≥ r,

pz(u) + c(Juv) + (z(Π)− z(Psv)) ≥ r,

pz(u) + c(Juv) + r − pz(v) ≥ r,

pz(u)− pz(v) ≥ −c(Juv)

Paths with more than one jump are not needed

Only shortest jumps are needed
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Let V ′ be the set of nodes of Π and A′ the set of arcs composed by Π and

the red arcs.

Define d(u, v) = c(u, v) if (u, v) ∈ Π

d(u, v) = −c(Ju,v) if (u, v) /∈ Π,

where Ju,v is shortest jump from u to v

The core is defined by: pz(v)− pz(u) ≥ d(u, v) (u, v) ∈ A′
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Let V ′ be the set of nodes of Π and A′ the set of arcs composed by Π and

the red arcs.

Define d(u, v) = c(u, v) if (u, v) ∈ Π

d(u, v) = −c(Ju,v) if (u, v) /∈ Π,

where Ju,v is shortest jump from u to v

The core is defined by: pz(v)− pz(u) ≥ d(u, v) (u, v) ∈ A′

Polynomial number of inequalities. Based on that Granot et al. (1998)

showed that computing the nucleolus (when the core is nonempty)

reduces to a sequence of combinatorial linear programs.
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Dual of a network flow problem

max
∑

(u,v)∈A′

d(u, v)x(u, v)

∑

(u,v)∈A′

x(u, v)−
∑

(v,u)∈A′

x(v, u) = 0, for v ∈ V ′,

x(u, v) ≥ 0, for all (u, v) ∈ A′.

This problem is unbounded if and only if there is no cycle with positive

cost. Thus the dual problem has a solution if and only if there is no cycle

with positive cost.
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The nucleolus

x(A) = v(A)

x(S) ≥ v(S) ∀S ⊂ A

For a coalition S and a vector x ∈ R
A, their excess is

e(x, S) = x(S)− v(S).
The nucleolus has been introduced Schmeidler (1969), trying to minimize

dissatisfaction of players. Schmeidler defined it as the allocation that

lexicographically maximize the vector of non-decreasing ordered excess.
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max ǫ

x(A) = v(A)

x(S) ≥ v(S) + ǫ, ∀S 6= A

ǫ1 optimal value, P1(ǫ1) set of optimal solutions

F1: coalitions S with x(S) = v(S) + ǫ1 for all x ∈ P1(ǫ1).

max ǫ

x(A) = v(A)

x(S) ≥ v(S) + ǫ, ∀S 6= A

x(S) = v(S) + ǫ1, ∀S ∈ F1

This gives ǫ2 ... continue ... (at most m times)
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Nucleolus

max ǫ

pz(s) = 0, pz(t) = r

pz(v)− pz(u) ≥ d(u, v) + ǫ

This system has a solution iff the graph with weights d(u, v) + ǫ has no

cycle of positive weight.

d(C) + n(C)ǫ ≤ 0

for every cycle C

ǫ ≤ −d(C)/n(C)

ǫ = min
C

−d(C)

n(C)
min ratio cycle, O(n3)
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Algorithm for nucleolus

Find min ratio cycle. Fix variables on this cycle

Find min ratio cycle involving non-fixed variables. Fix variables on the new

cycle, continue.





Nucleolus when the core is empty

When the core is empty the solution of the program below is ǫ1 < 0.

max ǫ

x(A) = v(A)

x(S) ≥ v(S) + ǫ, ∀S 6= A

We use parametric linear programming and look for the maximum value of

the parameter ǫ < 0, so that the value of the parametric linear program

below is r − λ.

min x(A)

x(P ) ≥ r + ǫ− c(P ), ∀st− path P,

x ≥ 0.



Nucleolus when the core is empty

The dual of this problem is:

max
∑

P

(r + ǫ− c(P ))yP

∑

a∈P

yP ≤ 1, ∀a ∈ A,

y ≥ 0.

We reduce this problem to a network flow problem:

• We add an arc from t to s with cost r + ǫ.

• each arc a ∈ A receive the cost −c(a).

Then we look for a maximum circulation cost.

Capacities 1 implies: there is an optimal circulation that corresponds to a

set of arc-disjoint st-paths of minimum cost.



Nucleolus when the core is empty

Thus the optimal value of the dual problem my be written as:

g(ǫ) = max
k

{k(r + ǫ)− f(k)}

ǫ1ǫ− ǫ+ǫ+ǫ−

g

r − λ



Nucleolus when the core is empty

Thus the optimal value of the dual problem my be written as:

g(ǫ) = max
k

{k(r + ǫ)− f(k)}

ǫ1ǫ− ǫ+ǫ+ǫ−

g

r − λ

Similar approach is used:

change variables, use the dual of a network flow problem

solve a sequence of min ratio cycles
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